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Abstract
Vulcan XC-72 samples were functionalized with methanol (MeOH) by the Intermittent Microwave Heating (IMH) under different
treatment conditions. To assess the effectiveness of the proposed method, citric acid (CA) functionalization was also performed
as comparison. The effectiveness of the surface treatment of the carbonaceous materials was assessed by using them as support
for Pt/C-MeOH and Pt/C-CA nanocatalysts and conducting investigations of their catalytic activity for the Ethanol Oxidation
Reaction (EOR). FTIR characterization reveals that Pt/C-MeOH was mainly composed of C-O, CH3 and OH functional groups
while Pt/C-CA presents more C-O species. The most active nanocatalyst was Pt/C-MeOH2 (0.15 mol L−1 MeOH and 8 min
heating) which generated a current of 63.7 mA cm−2. In situ SPAIRS measurements showed that the EOR at Pt/C-MeOH2 follows
a C2-pathway mechanism where acetaldehyde is further oxidized to acetic acid, resulting in a high current density ( j) generated
from the EOR. Meanwhile, a competition between the C1 and C2 pathway was observed at Pt/C. The study demonstrated that
the proposed IMH functionalization of Vulcan with MeOH produces carbon supported Pt nanocatalysts with enhanced catalytic
activity for the EOR, with potential application in Direct Ethanol Fuel Cells (DEFC). Also, we believe that this simple and cost-
effective green methanol functionalization can open opportunities to for the rational design of alloyed nanostructures useful in
other areas of catalysis.
Keywords: Green vulcan surface functionalization, microwave heating, Pt/C nanocatalysts, in situ SPAIRS analysis, ethanol
oxidation reaction.
Resumen
Las muestras de Vulcan XC-72 fueron funcionalizadas con metanol (MeOH) por medio de un calentamiento intermitente por
microondas (IMH), utilizando diferentes condiciones. Para evaluar la efectividad del método propuesto también se llevó a cabo
la funcionalización con ácido cítrico (CA). La efectividad del tratamiento superficial de los materiales carbonosos se evalúo al
utilizarlos como soportes para los nanocatalizadores Pt/C-MeOH y Pt/C-CA y realizando también investigaciones de su actividad
catalítica para la reacción de oxidación de etanol (EOR). La caracterización por espectroscopia infrarroja por transformada de
Fourier (FTIR) muestra que el material Pt/C-MeOH estaba compuesto principalmente de grupos funcionales de C-O, CH3 y
OH mientras que el material Pt/C-CA presenta principalmente especies C-O. El nanocatalizador más activo fue Pt/C-MeOH2
(0.15 mol L−1 MeOH y 8 minutos de calentamiento) el cual generó una corriente de 63.7 mA cm−2. Las mediciones in situ de
SPAIRS mostraron que la EOR en el material Pt/C-MeOH sigue el mecanismo de la vía C2 donde el acetaldehído es oxidado
a ácido acético, lo cual resulta en una alta densidad de corriente ( j) debido a la EOR. Mientras tanto en el material Pt/C se
observó una competencia entre las vías C1 y C2. El estudio demostró que la funcionalización propuesta con metanol y asistido
por IMH para el carbón Vulcan produce un soporte carbonoso para los nano-catalizadores de Pt el cual mejora la actividad
catalítica para la EOR, con una aplicación potencial en las celdas de consumo directo de etanol (DEFC). Además creemos que
esta funcionalización con metanol rentable y verde puede abrir oportunidades para el diseño racional de nanoestructuras aleadas
útiles en otras áreas de catálisis.
Palabras clave: funcionalización verde de la superficie del carbón Vulcan, calentamiento por microondas, nanocatalizadores
Pt/C, análisis in situ SPAIRS, reacción de oxidación de etanol.
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1 Introduction

Fuel cells are attractive electrochemical devices for
sustainable electric energy generation (Lindorfer,
Rosenfeld, & Böhm, 2020; Paul, Saha, Qi, Stumper,
& Gates, 2020; Shao, Dodelet, Wu, & Zelenay, 2019).
These systems convert the chemical energy of a
fuel (hydrogen, ethanol, methanol and others) into
electricity via electrochemical reactions activated by
nanocatalysts (Goor, Menkin, & Peled, 2019; Ioroi,
Siroma, Yamazaki, & Yasuda, 2019; Rivera-Lugo
et al., 2020; Y. Wang, Ruiz Diaz, Chen, Wang, &
Adroher, 2020; Wnuk & Lewera, 2020). Up to present
days, because of their high performance, noble metals
have been used as efficient catalyst for fuel cells
despite their cost (Esfandiari, Kazemeini, & Bastani,
2016; L. Wang et al., 2017). Nevertheless, for practical
fuel cell applications it is required to develop active,
stable and low-cost nanocatalysts (Ghosh, Bhandary,
Basu, & Basu, 2017).

Pt based electrocatalysts are the most popular
anodes in DEFC. However, these devices have a
big challenge, because of the complexity of their
oxidation at low temperatures, which includes C-C
bonds cleavage not easy to occur at such operating
conditions (S. Q. Song et al., 2005). Indeed, it is
reported that Pt is one of the best electrocatalysts
for the EOR in acid media, and its structure and
morphology play a key role during the adsorption and
oxidation of this alcohol(W. J. Zhou et al., 2004).

Meanwhile, the use of carbonaceous conductive
materials as support have the purpose of reducing
the metal loading and therefore the costs, also having
a positive effect in promoting the catalytic activity
of fuel cell nanocatalysts (Auer, Freund, Pietsch,
& Tacke, 1998; Thompson, Jordan, & Forsyth,
2001). Carbon supports possess high surface area,
good electrical conductivity and reasonable porosity
(Dessources, del Jesús González-Quijano, & Pech-
Rodríguez, 2018; Ghosh, Remita, et al., 2015; J.
Wang et al., 2007). The support also enhances
the metal utilization coefficient, while at the same
time prevents aggregation and dissolution of metal
nanoparticles (Ghosh, Bera, Bysakh, & Basu, 2017;
Ghosh, Teillout, et al., 2015). A great deal of
experimental studies of the EOR using Pt supported
on carbonaceous materials has been carried out. For
instance, ordered mesoporous carbon support was
used to elucidate the effect of some templates in
the electroactivity of Pt nanoparticles for alcohol

oxidation (He et al., 2011). Pt/C suffers a poisoning
effect due to the strong adsorption of CO, one of
the main reaction intermediate, which diminished the
availability of active sites for ethanol adsorption and
oxidation. The EOR was studied in detail by using
DEMS and in situ FTIR measurements, revealing
that CO electrooxidation initiates at higher potentials
at Pt/C compared with other nanomaterials such
as PtSnO2/C (Bach Delpeuch, Maillard, Chatenet,
Soudant, & Cremers, 2016).With the aim to improve
the electrocatalytic activity of Pt, different attempts
have been made. One of them is the incorporation
of a second or third element into the Pt structure.
For instance, novel Pt/Re/SnO2/C nanocatalysts were
synthesized using a carbon support previously treated
with HNO3 and H2O. The ternary material showed
high catalytic activity and stability for the EOR
(Drzymała et al., 2020).

Typically, carbon supports are normally pre-
treated with the aim of promoting metal/support
interactions forming surface functional groups
and enhancing the catalytic activity of fuel cell
nanocatalysts. Nowadays, great attention has been
paid in the development of simple and versatile
process for carbon functionalization to be used as
support for noble metals and even as metal-free
catalysts (Y. J. Yang & Li, 2014).

The most used carbon modification is the acid
chemical functionalization (Guha, Lu, Zawodzinski,
& Schiraldi, 2007; W. J. Pech-Rodríguez, González-
Quijano, Vargas-Gutiérrez, & Rodríguez-Varela,
2014). In such process, carbon materials are treated
in a concentrated solution of H2SO4 and HNO3
under refluxing conditions followed by washing and
filtering. Another method to functionalize carbon
nanostructures is the citric acid (CA) treatment. Poh
and coworkers have developed an effective method
to functionalize carbon nanotubes by mixing them
with CA, heating the solution at 300°C for 30 min
(Poh, Lim, Pan, Lin, & Lee, 2008). The procedure
successfully introduces HCOO- groups on the carbon
surface, which create active sites for the nucleation
and growth of well dispersed Pt nanostructures.
The authors report that the functionalized Pt/C
electrocatalyst enhances the current density of the
Methanol Oxidation Reaction (MOR) in 0.5 mol
L−1 H2SO4, attributed to a better Pt dispersion that
promoted the removal of COads.

Also, Jiang and coworkers propose the
functionalization of carbon nanotubes by using
an HF/H2O2 mixture under IMH treatment (Yin,
Shen, Song, & Jiang, 2009). The procedure consists
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of several time-consuming steps where acetone,
NaOH and HF are agents used to chemically treat
the carbonaceous material. The Pt/CNT catalysts
synthesized by this fashion show higher surface
area, Pt utilization and catalytic activity for the
Oxygen Reduction Reaction compared to other
materials studied. Moreover, the use of soft chemical
treatments of carbonaceous materials has been
reported as well. For example, Yin and coworkers
report the treatment of CNTs with KOH, followed
by IMH at a temperature higher than 900°C and
their application as support of Pt nanostructures (Yin
et al., 2012). Such nanostructured catalyst shows
a higher performance for the MOR than other Pt-
based anodes. Recently, a two-step functionalization
of nitrogen-doped carbon nano-onion has been
reported. First, the carbon nanostructure has been
refluxed in nitric acid and hydrogen peroxide for
6 h. Then, nitrogen doping has been performed by
treating the sample with ammonia at 600 °C for
1 h (Sikeyi et al., 2021). Another procedure has
been published by Zhang and coworkers, where
CNTs have been successfully functionalized by
using poly(diallyldimethyl ammonium) chloride as
source of nitrogen (X. Zhang, Yang, & Jiang, 2021).
Nevertheless, from the aforementioned works, it
can be concluded that carbon functionalization has
been traditionally achieved by using time-consuming
processes where specialized equipment or costly
chemical reagents are used.

This exploratory work reports a novel green
procedure to functionalize Vulcan XC-72 using MeOH
and CA as soft chemical agents, and the IMH process.
The functionalized carbons are used as support for
synthesizing Pt nanocatalysts by the microwave-
assisted polyol method. The catalytic activity of the
Pt nanoanodes supported on functionalized Vulcan
for the EOR in acid media is compared to that
of a conventional Pt/C nanocatalyst. The reaction
mechanism of the EOR on some of the nanocatalysts
is corroborated by in situ Single Potential Alteration
IR Reflectance Spectroscopy (SPAIRS) analysis.

2 Materials and methods

2.1 Carbon functionalization

Vulcan® XC-72 (from now on Vulcan, Cabot Corp.)
with a specific surface area of 237 m2 g−1 was
chemically modified with MeOH and CA (Sigma-

Aldrich) as soft chemical reagents. The concentration
of MeOH and CA used in this work was determined
based on previous studies in our Laboratory (0.15 mol
L−1 for MeOH and 0.05 mol L−1 for CA with two
different times of functionalization: 4 and 8 min. As
an example, the procedure to carry out the Vulcan
functionalization to obtain C-MeOH1 was as follows:
300 mg of Vulcan were mixed by ultrasound in 30 mL
of 0.15 mol L−1 MeOH for 1 h. The slurry was
placed in a modified microwave oven and heated at ca.
100 °C, using a sequence of 25 s power on followed
by 15 s power off under magnetic stirring, for 4 min
of total irradiation time. The resulted solution was
allowed to cool down for 1 h, vacuum filtered by using
a PVDF membrane (0.45 µm pore size) and dried at
200 °C for 30 min, with the aim to remove all traces
of the chemical reagent. C-MeOH2 was obtained by
using 8 min of total irradiation. Thus, CA1 and CA2
where obtained after heat treatment at 4 and 8 min.

2.2 Synthesis of the Pt/C nanocatalysts

Anode materials with a nominal 20 wt. % Pt
loading were synthesized by the IMH polyol method
as described previously (W.J. Pech-Rodríguez,
Gonzalez-Quijano, Vargas-Gutierrez, Escalante-
Garcia, & Rodriguez-Varela, 2014). For example,
56 mg of modified Vulcan were dispersed by
ultrasound in an EG/H2O solution (v/v= 90/5) and
37 mg of H2PtCl6·6H2O (Sigma-Aldrich) dispersed
also in an EG/H2O mixture were added drop by drop.
The colloidal solution was stirred for 1 h, with the pH
adjusted to 12 using a NaOH/EG solution. Afterwards,
the sample was placed in the microwave oven and a
radiation was applied continuously for 58 s, followed
by pulses of 4 s power on and 15 s power off for a total
time of 40 min. The mixture was left to cool at room
temperature overnight with continuous stirring. Then,
the pH was adjusted to 3 using an H2SO4/EG solution.
The obtained product was filtered as described in
the previous paragraph and washed with abundant
deionized water.

2.3 Physicochemical characterization of
the nanocatalysts

The synthesized nanocatalysts were characterized by
XRD in a Phillips-X’Pert diffractometer using a CuKα
radiation source with an working voltage of 40 kV,
in a range between 10 and 100° (2θ). The chemical
composition of the nanocatalysts was determined as
the average of several measurements over the powder
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sample, by using EDS in a Phillips XL30 SEM
microscope operating at 20 kV. In order to identify
the chemical functional group formed on their surface,
some Vulcan samples were analyzed by FTIR in a
Magna Nicolet 550 FTIR apparatus. Spectra were
taken in the transmission mode with a resolution of
4 cm−1 in the scan range of 4000-500 cm−1 using KBr
pellets (i.e., 120 mg of KBr were mixed with 0.8 mg
of carbon).

Moreover, due to constraints in the use of
the apparatus at our institutions, only two of the
nanocatalysts were characterized in a HR-TEM Talos
F200X microscope at an accelerating voltage of
200 kV, as well as in a Thermo Scientific K-Alpha+

XPS apparatus equipped with a monochromator (Al-
Kα radiation, hv=1486.68 eV).

2.4 Electrochemical characterization

The experiments were performed in a three-
electrode cell (Pine Inst.) using a Voltalab PGZ 301
potentiostat/galvanostat. The working electrode was
obtained by transferring 10 µL of a catalytic ink,
composed by 5 mg of the synthesized electrocatalyst
in a solution of 0.5 mL isopropyl alcohol and 25 µL
Nafion®, on a glassy carbon disc (0.5 mm). The
counter electrode was a platinum sheet contained in
a separate reservoir having a membrane at the tip.
The reference electrode was of the Ag/AgCl type
placed in a Luggin capillary also with a membrane
at the tip. Nevertheless, all potentials reported in this
work were referenced to the Reversible Hydrogen
Electrode (RHE) scale. Cyclic voltammograms (CVs)
were obtained in N2-saturated 0.5 mol L−1 H2SO4
electrolyte at 20 mV s−1.

The Electrochemically Active Surface Area
(ECSA) of the materials was determined by
integrating the charge associated to the average area
of the hydrogen adsorption and desorption peaks,
from the CVs. The catalytic activity for the EOR
was evaluated in the same acid electrolyte containing
0.5 mol L−1 C2H5OH. The ethanol solution was
added to the electrolyte while maintaining the working
electrode under no polarization. Chronoamperometric
measurements were conducted at 20 mV s−1,
polarizing the working electrode at 0.87 V vs. RHE
in N2-saturated 0.5 mol L−1 H2SO4 + 0.5 mol L−1

C2H5OH electrolyte.

2.5 In situ FTIR characterization

These measurements were carried out in a modified
Bruker IFS 66V spectrometer with a resolution
of 4 cm−1. A three-electrode cell with transparent
window (CaF2) was used. The working electrode
was a disk of glassy carbon (8 mm diameter)
that was modified by transferring 3 µL of the as
prepared catalytic ink. The working electrode was
activated by submitting them to 40 cycles at 40
mV s−1. The ethanol solution was added to the
electrolyte while maintaining the working electrode
under no polarization. The Single Potential Alteration
IR Spectroscopy (SPAIRS) was studied in a windows
potential of 0.05 to 1.2 V vs. RHE. The electrode
reflectivity REi was obtained at different potentials
separated by 0.1 V with a sweep rate of 1 mV s−1.

3 Results and discussion

Figure 1 shows the XRD patterns of Pt/C and the
nanocatalysts obtained using Vulcan functionalized
with MeOH and CA. The diffractogram of Pt/C shows
a diffraction peak close to 25° that is ascribed to the
(002) reflection of the graphite structure of Vulcan.
The reflections located at 39.7, 46.2, 67.6 and 81.8° are
attributed to the (111), (200), (220) and (311) planes
of face-centered cubic Pt, respectively (JCPDF # 04-
0802) (Silva et al., 2010).

Fig. 1. XRD patterns of Pt/C and the nanocatalysts
supported on Vulcan functionalized with MeOH and
CA.
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Table 1. Physical and chemical characteristics of the nanocatalyst.

d, XRD d, TEM Pt content ECSA
Nanocatalyst (nm) (nm) (wt.%) (m2g−1

Pt/C 2.1 – 20.6 59.6
Pt/C-MeOH1 1.5 – 17.7 63.7
Pt/C-MeOH2 1.7 1.8 18.6 62.8
Pt/C-CA1 2.0 1.9 20.8 48.2
Pt/C-CA2 – – 17.9 53.5

Fig. 2. Figure 2. CVs of Pt/C and the Pt/C-MeOH
and Pt/C-CA series of nanocatalysts, obtained in N2-
saturated 0.5 mol L−1 H2SO4 at 20 mV s−1.

Even though some similarities remain, changes
emerge at the Pt/C-CA and the Pt/C-MeOH series of
nanocatalysts compared to Pt/C, i.e., lower intensity,
widening and shift in the position of some peaks
as a result of the surface modification of Vulcan.
Such differences can be attributed to the interaction of
Pt nanoparticles with the treated carbon during their
nucleation and growth. Changes in patterns can be
more readily seen in the (220) plane.

The crystallite size of the nanocatalysts (d) is
estimated from data of the (220) Pt plane using the
Scherrer Equation (Hsu & Tongol, 2013):

d =
0.9× λ

β2θ × cosθ
(1)

where d is the average crystallite size, 0.9 is a
shape factor for spherical crystallites, λ the radiation
wavelength, β2θ is the Full Width at Half Maximum
and θ the position of the reflection peak.

Table 1 summarizes d values of 2.1 nm and less
of the nanocatalysts. Pt/C-MeOH1 and Pt/C-MeOH2
have d= 1.5 and 1.7 nm, respectively, while in the case

of Pt/C-CA2 it is not possible to calculate it because of
the low intensity of the reflection. Table 1 also shows
the Pt content at the nanoanodes, in all cases fairly
close to the 20 wt. % nominally expected.

Figure 2 shows the CVs of Pt/C, along
with the Pt/C-MeOH and Pt/C-CA series of
nanocatalysts. Even though the curves have similar
characteristics in terms of shape and j, Pt/C-MeOH2
shows a slightly higher intensity in the peaks
corresponding to hydrogen adsorption/desorption,
and formation/reduction of Pt-oxides. Pt/C-MeOH1
shows a more intense shoulder in the double layer
region characteristic of the formation of hydroquinone
species at Vulcan.

The ECSA values of the materials from the CVs
in Figure 2 and after correction for double layer
contributions have been determined using Equation
(2):

ECS A =
Q[µC cm−2]

Q0[µC cm−2Pt]×Ptload[mg cm

−2

× 10−2

(2)
where Q is the average electronic charge due to the
adsorption and desorption of hydrogen; Q0 is the
theoretical charge due to the adsorption of a monolayer
of hydrogen on polycrystallite Pt (210 µC cm−2) (Yin
et al., 2009); and Ptload is the amount of Pt on the
working electrode, from data in Table 1. Pt/C has an
ECSA value of 59.6 m2 g−1 (Table 1). Nanocatalysts
such as Pt/C-MeOH1 and Pt/C-MeOH2 show higher
ECSA (e.g., 63.7 m2 g−1 in the case of Pt/C-
MeOH1). These nanocatalysts supported on methanol-
functionalized Vulcan seem to have a surface that
promote the utilization of the Pt nanoparticles. The
polarization curves of the EOR at the nanocatalysts are
shown in Figure 3 a). The anodes that generate higher
j values with the reaction starting at more negative
Eonset (0.3 V vs. RHE) are Pt/C-MeOH2 and Pt/C-
CA1 (63.7 and 63.1 mA cm−2, respectively), as seen
in Table 2. The j value at Pt/C-MeOH2 and Pt/C-CA1
is roughly 1.2 times higher than that of Pt/C.

www.rmiq.org 959



Pech-Rodríguez et al./ Revista Mexicana de Ingeniería Química Vol. 20, No. 2 (2021) 955-973

Table 2. Electrochemical parameters of the EOR at the nanocatalysts in 0.5 mol L−1 H2SO4.

Eonset j j at 0.55 V jm j/ jb
Nanocatalyst (V) (mA cm−2) (mA cm−2) (mA mgPt

−1) ratio

Pt/C 0.30 51.0 4.70 486.1 1.0
Pt/C-MeOH1 0.34 62.3 2.66 691.1 0.98
Pt/C-MeOH2 0.30 63.7 4.41 672.4 1.0
Pt/C-CA1 0.30 63.1 4.66 595.6 0.68
Pt/C-CA2 0.30 49.9 3.76 547.3 0.90

Fig. 3. XPS data of Pt/C-CA1 and Pt/C-MeOH2.

Pt/C-MeOH1 also generates higher j from the
EOR than Pt/C, but at a more positive Eonset. In the
Figure, there is a sharp increase in j at potentials
around 0.55 V vs. RHE. At such potential, Pt/C and
Pt/C-CA1 deliver slightly higher j values (4.70 and
4.66 mA cm−2, respectively) than Pt/MeOH2, while
Pt/C-MeOH1 and Pt/C-CA2 are less performing, as
summarized in Table 2. These values show that
Pt/C performs relatively well at the more negative
potentials, but its behavior declines as the scan in
the positive direction continues (as is also the case
of Pt/C-CA2). Meanwhile, Pt/C-CA1, Pt/MeOH2 and
Pt/C-MeOH1, show a better performance at the more
positive potentials.

Figure 3 b) shows a plot of j and the peak mass
current density ( jm, determined from the chemical
composition obtained by EDS) at the nanocatalysts.
It is clear that the performance of Pt/C-MeOH2,
Pt/C-CA1 and Pt/MeOH1 is higher considering both
geometric and mass activity, compared to Pt/C and
Pt/C-CA2. Table 2 depicts the jm values at each
nanocatalyst. It can be seen that under this analysis, all
the nanocatalysts supported on functionalized Vulcan
generate a higher jm than Pt/C, with values in the order
Pt/C-MeOH1 > Pt/MeOH2 > Pt/C-CA1 > Pt/C-CA2
> Pt/C. The j values delivered by the functionalized
Pt/C-MeOH nanocatalysts are superior or comparable
with those reported in literature (G. Yang, Zhang, Yu,
& Peng, 2021). For example, Song and coworkers
synthesized a PtSnRh/C catalysts that exhibit j close
to 20 mA cm−2 (S. Song et al., 2012), a significantly
lower value than the 63.7 mA cm−2 delivered by
Pt/MeOH2.

Even more, an indication of the performance of the
nanocatalysts to oxidize the organic molecule can be
obtained by determining the ratio of current densities
in the forward ( j) and backward ( jb) scans (Liu, Ling,
Su, & Lee, 2004; Scibioh et al., 2008).

Fig. 4. Chronoamperometric curves of the EOR at the
nanocatalysts. Applied potential 0.87 V vs. RHE in
N2-saturated 0.5 mol L−1 H2SO4 + 0.5 mol L−1 EtOH.
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Under some conditions, Pt/C nanocatalysts show
a j/ jb ratio close to 1 from the oxidation of organic
molecules (Liu et al., 2004; Paul et al., 2020). Table 2
summarizes the j/ jb ratio of the nanocatalysts in this
work. It is observed that Pt/MeOH2 has the same j/ jb
ratio as that of Pt/C (i.e., 1.0), which is acceptable
considering the fact that monometallic platinum is
used for the oxidation of ethanol. Even though, it
is acknowledged that Pt-alloys and Pt-metal oxide
electrocatalysts can enhance the j/ jb ratio (Liu et al.,
2004).

Figure 4 shows the chronoamperometric curves
of the nanocatalysts. Pt/C-MeOH2, Pt/C-MeOH1 and
Pt/C-CA1 have a more stable behavior and deliver
a higher j after 600 s, which correlates with their
performance in Figure 3. Pt/C and particularly Pt/C-
CA2 show lower performance. The decay in j is
related to the blockage of the active Pt sites mainly
by CO species resulting from the partial dissociation
of ethanol (Lu et al., 2019; C. Zhang, Zhu, Huang,
Zhang, & Liu, 2014). Thus, it seems that Pt/C-
MeOH2 has better capability to handle the CO
poisoning effect and this can be due to the presence
of functional groups or the modification of Pt state
during the nucleation and growth at the functionalized
carbon support. It is worth mentioning that the
j value at the end of the study at Pt/C-MeOH2
is comparable with those reported elsewhere. For
example, Zhang and coworkers report a j value close
to 270 mA mg−1

pt from a PtNiRh NWs/C catalyst
after chronoamperometric evaluation (W. Zhang et al.,
2019), which is similar to 285 mA mg−1

pt at Pt/C-
MeOH2 after the test.

Fig. 5. FTIR spectra of untreated Vulcan, C-
MeOH2 and C-CA1 (see Table 1 for functionalization
conditions).

The higher performance of Pt/MeOH2 and Pt/CA1
in terms of j, jm, as well as Eonset, compared to Pt/C
(Pt/CMeOH1 generates a high jm, but its Eonset is
higher), suggests that the treatment of Vulcan with the
soft MeOH and CA reagents under these conditions
promotes the formation of surface functional groups
(e.g., -COOH, C-O) that results in a homogeneous
dispersion of Pt nanoparticles on the support. Figure
5 shows the representative FTIR spectra obtained
from untreated Vulcan and the C-MeOH2 and C-CA1
treated samples.

The band located at 1019 cm−1 is due to the
C-O stretching of the -COOH group (Lakshmi,
Rajalakshmi, & Dhathathreyan, 2006) and as can
be observed the C-CA1 sample displays a more
intense peak compared to C-MeOH2 and Vulcan. This
outcome is attributed to the fact that citric acid consists
of 3 carboxyl groups. Moreover, the vibration due
to the C-O groups (Figueiredo, Pereira, Freitas, &
Órfão, 1999; Kuznetsova et al., 2000) is observed at
1245 cm−1 and is more intense at the treated carbons
compared with the untreated one, i.e., more of these
groups are there on the surface of C-CA1 and C-
MeOH2. Also, an intense broad band between 1000
and 1492 cm−1 emerges at C-MeOH2, attributed to
the contribution of C-O and CH3 species (Ghobadi,
Arami, Bahrami, & Mahmoodi, 2013; Vesali-Naseh
et al., 2009; Wu, Hu, Shen, Li, & Wei, 2010; Y. J.
Yang & Li, 2014). The bands at 1570 and 1710 cm−1

are due to C=O stretching vibrations (Vesali-Naseh et
al., 2009; Wu et al., 2010) and as can be seen, C-
CA1 and C-MeOH2 show different features in this
region compared to Vulcan. It can also be observed
that the band at 1624 cm−1, due to the C=C stretching
vibrations (Ghobadi et al., 2013; Moon, Park, Kim,
& Choi, 2011), is more intense at the functionalized
carbons.

The two peaks located at 2850-2920 cm−1 are
ascribed to the C-H symmetric and asymmetric
stretching vibrations (Ghobadi et al., 2013) and are
more intense at C-MeOH2 and C-CA1. Even more,
the band at 3450 cm−1 is ascribed to hydroxyl
groups. From Figure 5, it can be seen that C-MeOH2
has an intense band in this region compared with
the other samples, which can be explained by -OH
groups formed at this material after functionalization
with methanol (CH3-OH) molecules. These features
confirm that surface functional groups are formed at
C-MeOH2 and C-CA1 after chemical treatment by
IMH in the presence of methanol and citric acid,
respectively. The successful incorporation of OH, C-
O and CH3 onto the carbon plays a key role because
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these functional groups represent favorable sites for Pt
ion adsorption, preventing the agglomeration of Pt into
large nanoparticles (Youssry, Al-Ruwaidhi, Zakeri, &
Zakeri, 2020). These results correlate well with the
crystallite size determined from XRD analysis (Table
1).

The Pt/C-CA1 and Pt/C-MeOH2 nanocatalyst
have been characterized by HR-TEM and XPS. It
must be emphasized that access to the apparatus in
our institutions is limited, therefore, only these two
nanomaterials have been studied by these techniques.
The image of Pt/C-CA1 in Figure 6 a) shows a high
dispersion of Pt nanoparticles over the functionalized
Vulcan.

Fig. 6. a) HR-TEM image and b) HAADF
characterization showing the chemical mapping of
the Pt/C-CA1 nanocatalyst.

From this micrograph, an average particle size
(d) of 1.9 nm has been determined (Table 1), in
good agreement with the XRD value. Moreover,
the nanocatalyst has been submitted to High Angle
Annular Dark Field (HAADF) analysis. Figure 6 b)
confirms Pt nanoparticles homogeneously dispersed
on the support, along with the chemical mapping
highlighting the position of Pt, C and O sites.
The excellent morphology at this nanocatalyst is
advantageous, since well dispersed Pt nanoparticles
leads to more active sites available for the dissociative
chemisorption and further oxidation of ethanol
molecules. This feature is also related to a higher
electrochemically active surface area (ECSA).

Fig. 7. a) HR-TEM image and b) HAADF
characterization showing the chemical mapping of
the Pt/C-MeOH2 nanocatalyst.
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Moreover, the utilization factor becomes more
important, since apparently spherical nanoparticles are
formed by the IMH assisted polyol method. Opposed,
agglomerated Pt nanoparticles have a smaller ECSA
value and a great deal of active sites are not available
for ethanol chemisorption.

The same characterization has been performed on
Pt/C-MeOH2, which also shows a high dispersion of
Pt nanoparticles on the functionalized support (Figure
7 a). The d value of this nanocatalyst is 1.8 nm
(Table 1), similar to that obtained from XRD. Figure
7 b) shows its HAADF characterization, where the
chemical mapping also demonstrates the excellent
dispersion of Pt nanoparticles, along with the presence
of C and O.

These features confirm the advantageous
functionalization of Vulcan with CA and MeOH,
which along with the well-known high capacity of
the microwave-assisted polyol method to limit the
particle size growth of fuel cell nanocatalysts, results
in a homogeneous dispersion of Pt nanoparticles at
Pt/C-CA1 and Pt/C-MeOH2.

Figure 8 shows the XPS spectra of the two
nanocatalysts. In the C 1s region, signals attributed
to carbon sp2 (C=C) and sp3 (C-C) hybridizations
at a binding energy (BE) of 284.84 and 285.84 eV,
respectively, are observed at Pt/C-CA1 (A. A. Siller-
Ceniceros et al., 2017). A peak due to C-O species
(Adriana A. Siller-Ceniceros et al., 2019) is also
detected at a BE= 286.43 eV (Figure 8 a and Table
3).

Fig. 8. XPS spectra of Pt/C-CA1 and Pt/C-MeOH2 at the regions: a-b) C 1s, c-d) O 1s, and e-f) Pt 4f.
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Pt/C-MeOH2 shows these same signals, with
slight shifts in BE (Figure 8 b and Table 3).
Additionally, a clear peak due to C=O species at BE=

289.35 eV is observed in the spectrum of Pt/C-MeOH2
(Arteaga et al., 2019; Adriana A. Siller-Ceniceros et
al., 2019; X. Wang et al., 2015), which is not detected
at Pt/C-CA1. Such difference may be due to an effect
of the functionalization with methanol. The higher C
content at both nanocatalysts is that of sp2 (around 63-
65 at. %, Table 3).

In the O 1s state, the nanocatalysts show C=O
and C-O bonds, along with the formation of the PtO
species (Figures 8 c and d). The presence of the
C-O species has not been observed in our previous
work on a similar Pt/C nanocatalyst supported on non-
functionalized Vulcan (A. A. Siller-Ceniceros et al.,
2017). Therefore, even though more studies can be
performed in future work, such C-O peak is likely to
be due to the functionalization of Vulcan with MeOH
and CA.

Figures 8 e) and f) depict the signals at the Pt 4f
region of Pt/C-CA1 and Pt/C-MeOH2, respectively.
The splitting into the Pt4f7/2 and Pt4f5/2 states leads
to doublets attributed to Pt0 and PtII (Li et al., 2013).

The total Pt content is of 21.17 and 20.56 at. % on
Pt/C-CA1 and Pt/C-MeOH2, respectively. The surface
chemical composition of Pt/C-CA1 indicates 6.39 and
14.78 Pt0 and PtII (at. %), respectively. The values are
6.79 and 13.77 at. % in the case of Pt/C-MeOH2 (Table
3).

With the aim of gaining a better understanding
of the effect of Vulcan treatment on the catalytic
activity of the nanocatalysts for the EOR, SPAIRS
measurements (from 0.1 V to 1.2 V, in 0.1 V intervals),
have been conducted on Pt/C-CA1 and Pt/C-MeOH2
(the most active nanocatalysts) as well as on Pt/C-
MeOH1, with Vulcan irradiated by IMH in half the
time related to the first one. Pt/C, being a reference
nanocatalyst, has also been characterized by this
technique. Figure 9 shows the spectra obtained from
a) Pt/C and b) Pt/C-CA1, while Figure 10 depicts
those of a) Pt/C-MeOH1 and b) Pt/C-MeOH2. It is
observed that starting at 0.3 V vs RHE, an IR band
emerges at about 2050 cm−1, corresponding to linearly
adsorbed COL, species that form as a result of the
ethanol dissociation step. The presence of such species
can be associated to a reaction mechanism that follows
a C1-pathway.

Table 3. XPS data of Pt/C-CA1 and Pt/C-MeOH2.
Species State BE Doublet Composition

Nanocatalyst (eV) splitting (eV) (at. %)

Pt/C-CA1 C=C C 1s 284.84 65.15
C-C C 1s 285.84 3.49
C-O C 1s 286.43 2.53
C=O O 1s 532.19 6.45
C-O O 1s 533.5 1.21
Pt0 Pt4f7/2 71.47 3.36 3.29

Pt 4f5/2 74.83 3.1
PtO Pt 4f7/2 72.48 3.58 2.71

Pt 4f5/2 76.06 1.86
O 1s 531.18 10.21

Pt/C-MeOH2 C=C C 1s 284.83 63.42
C-C C 1s 285.96 3.59
C-O C 1s 286.62 2.46
C=O C 1s 289.35 1.98
C=O O 1s 532.33 5.38
C-O O 1s 533.66 2.61
Pt0 Pt 4f7/2 71.52 3.38 3.41

Pt 4f5/2 74.9 3.38
PtO Pt 4f7/2 72.73 3.21 2.65

Pt 4f5/2 75.94 1.89
O 1s 531.35 9.23
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This signal is clearly more intense at Pt/C
as compared to Pt/C-CA3, Pt/C-MeOH5 and Pt/C-
MeOH6, and remains almost unchanged as the
potential rises. This is one of the reasons why the
Pt/C material shows a lower catalytic activity for the
EOR, since some of the Pt sites become poisoned by
the C1-species. Additionally, the Pt/C and Pt/C-CA1
nanocatalysts display a clear band at 1640 cm−1 due
to the bending vibration of water molecules (Almeida
et al., 2012; Palma et al., 2014). Meanwhile the
perturbation close to 1840 cm−1 is ascribed to the
presence of bridge-bonded CO (Z.-Y. Zhou, Wang,
Lin, Tian, & Sun, 2010).

The band at 2345 cm−1 is associated with the
CO2 anti-symmetric stretch vibration (W. J. Pech-
Rodríguez et al., 2017; Wnuk & Lewera, 2020) and
it is observed at potentials starting at 0.7 V in Pt/C-
CA1, Pt/C-MeOH1 and Pt/C-MeOH2. As can be seen
in Figure 9 b), this band is more intense at Pt/C-CA1
compared to the other nanocatalysts.

The broad band centered at 2615 cm−1 may be
ascribed to an overlapping of the C-H stretch vibration
of acetaldehyde and the O-H stretch of the carboxyl
group in acetic acid (Dos Anjos, Hahn, Léger, Kokoh,
& Tremiliosi-Filho, 2007). Therefore, it is related to
a C2-pathway mechanism of the EOR. Pt/C-CA1 and
Pt/C-MeOH1 show a higher intensity of this band.
Also, another band can be seen at 1709 cm−1, which
is ascribed to the stretch of the C=O carbonyl group
both on acetaldehyde and acetic acid (De Souza et
al., 2012). Moreover, the bands at 1280 cm−1 and
1390 cm−1 are ascribed to the C-O stretch and O-
H deformation vibrations in acetic acid (Camara &
Iwasita, 2005; Lai et al., 2010; Q. Wang et al.,
2007) while the bands at 1368 cm−1 and 1100 cm−1

are due to the symmetrical deformation of CH3
and CH vibrating in acetaldehyde (Q. Wang et al.,
2007). The spectra also show the presence of upgoing
bands at 1047 and 1088 cm−1 which are related to
the consumption of ethanol (Geraldes et al., 2013;
Thotiyl, Kumar, & Sampath, 2010).

Further analysis of the EOR mechanism on the
nanocatalysis is obtained from the intensities of the
acetic acid (1280 cm−1) and the CO (2050 cm−1)
bands, normalized by the integrated area of the
CH3COH signals (1368 cm−1) at a potential of 1.2
V, as shown in Figure 11. From Figure 11 a), it can
be seen that Pt/C-CA1 has the lowest band intensity
suggesting that acetaldehyde is mainly formed on this
nanocatalyst (i.e., a 2 e- transfer). The large formation
of acetaldehyde on Pt/C-CA1 may explain in part its
low j/ jb ratio in Table 2.

Fig. 9. In situ FTIR spectra of the EOR at the Pt/C and
Pt/C-CA1 nanocatalysts in 0.5 mol L−1 H2SO4 + 0.5
mol L−1 EtOH.

It can also be correlated with the relatively high
intensity of the CO2 band at the nanocatalyst in Figure
9 b), which is produced according to reaction (1) [6]:

Pt−(CO)ads +Pt−OHads −−−→ CO2 +H+ +2Pt+e− (3)

As can be seen, Pt/C and Pt/C-CA1 have the
same trend, since their band intensity increases as the
potential goes from 0.8 to 1.2 V. Nevertheless, the
acetaldehyde yield at these two nanocatalysts is lower
with respect to acetic acid.

Meanwhile, Pt/C-MeOH2 and Pt/C-MeOH1 have
higher band intensity at potentials higher than ca. 0.95
V, confirming a higher acetic acid yield (i.e., a 4 e-
transfer). Therefore, the high current density delivered
particularly by Pt/C-MeOH2 is due to a mechanism
involving the production of acetaldehyde and its
oxidation to acetic acid (Rizo, Pérez-Rodríguez, &
García, 2019).
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Fig. 10. In situ FTIR spectra of the EOR at the Pt/C-
MeOH1 and Pt/C-MeOH2 nanocatalysts in 0.5 mol
L−1 H2SO4 + 0.5 mol L−1 EtOH.

The high yield of acetic acid on Pt/C-MeOH2 and
Pt/C-MeOH1 may be due to the presence of hydroxyl
groups (ethoxy species) (Guillén-Villafuerte, García,
Arévalo, Rodríguez, & Pastor, 2016), which promote
the oxidation process, according to the following
reaction (Lamy, Belgsir, & Léger, 2001):

(CH3 −CHO)ads + Pt-OHads −−−→ CH3-COOH +H+

+ e− + Pt
(4)

The low performance of Pt/C can also be explained
by the fact that this nanocatalyst follows a complex
multistep process where adsorbed acetaldehyde is
further oxidized to CO and CH3 adsorbed species (Lai
et al., 2010; Rizo et al., 2019). As opposed to what
has been discussed elsewhere (Rizo et al., 2019), the
CO and CH3 groups formed at Pt/C do not react at the
catalytic sites, i.e., no CO2 is produced.

Figure 11 b) shows the normalized band intensities
for the CO signal. From this Figure it is concluded that

Pt/C produces a significantly higher amount of CO-
species, while the treated electrocatalysts show lower
intensities of this band. As can be seen in Figure 9
a), CO-species are clearly formed at Pt/C, but no band
related to CO2 formation is detectable. Evidently, C1
and C2 species are adsorbed on the catalytic surface of
Pt/C, blocking its active sites that should promote the
EOR.

The SPAIRS results in Figures 9 to 11
demonstrates that at Pt/C-MeOH2, Pt/C-MeOH1 and
Pt/C-CA1, ethanol molecules undergo the breaking
of C-C bonds and a dehydrogenation step, in a path
that involves the formation of acetaldehyde and acetic
acid. It has been reported that acetaldehyde and acetic
acid contribute with 60% or higher of the current
density generated during the EOR (Rizo et al., 2019),
which explains in part the higher values of j at these
nanocatalysts compared to Pt/C in Table 2. On the
other hand, it is to be noticed that Pt/C-CA1 forms
a relatively high amount of CO2, which is a relevant
electrocatalytic behavior, considering that the overall
conversion efficiency of C2H5OH to carbon dioxide
has been reported to be of less than 6% (Flórez-
Montaño et al., 2016; Guillén-Villafuerte et al., 2016).

Fig. 11. Normalized band intensities of acetic acid and
CO.
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Table 4. Comparison of catalytic activity and stability of Pt/C-MeOH2 with those of several Pt-alloys reported
in the literature.

Material Composition Peak potential/scam j j at the end of
chronoamperometry/applied

Electrolyte Reference

(at. %) rate potential/time of the test

PtSn/C 2:01 0.740 V vs SCE 50 mV
s−1

61 mA cm−2 - 1 mol L−1 C2H5OH
+ 1 mol L−1 HClO4

(Song et al., 2005)

PtRu/C 1:01 0.95 V vs NHE 25 mV
s−1

26 mA cm−2 25 mA cm−2 0.8 V for 10
min

1 mol L−1 C2H5OH
+ 0.5 mol L−1

HClO4

(Li, Sun, Cao, Jiang,
& Xin, 2007)

PtRuMo/C 63.7:26.2:10.1 0.92 V vs RHE @ 20 mV
s−1

31 mA cm−2 8 mA cm−2 @ 0.8 V for 10
min

0.5 mol L−1

C2H5OH + 0.5 mol
L−1 H2SO4

(Wang, Yin, & Lin,
2007)

PtSn/C 1.7:1 0.983 V vs RHE @ 20
mV s−1

658.52 mA
mg−1

Pt

12 mA cm−2 0.6 V for 10
min

0.5 mol L−1

C2H5OH + 0.5 mol
L−1 H2SO4

(González-Quijano et
al., 2015)

PtNiRh 66:27:07 0.66 v vs SCE @ 50 mV
s−1

750 mA mg−1
Pt 350 mA mg−1

Pt 0.65 V for
10 min

0.5 mol L−1

C2H5OH + 0.5 mol
L−1 H2SO4

(Lu et al., 2019)

PtNiCu/C 35.5:6.1:58.4 0.95 V vs RHE 50 mV
s−1

634 mA mg−1
Pt 125 mA mg−1

Pt 0.74 V for
10 min

1 mol L−1 C2H5OH
+ 0.5 mol L−1

H2SO4

(Castagna, Sieben,
Alvarez, Sanchez, &
Duarte, 2020)

Pt/C-MeOH2 - 0.95 V vs RHE 20 mV
s−1

63.7 mA cm−2

or 672.4 mA
mg−1

Pt

27 mA cm−2 or 285 mA
mg−1

Pt 0.87 V for 10 min
0.5 mol L−1

C2H5OH + 0.5 mol
L−1 H2SO4

This work

A comparison of the catalytic activity of Pt/C-
MeOH2 with that of some Pt-alloys from the literature
is shown in Table 4. As can be observed, the
nanocatalyst developed in this work shows a high
performance for the EOR.

To the best of our knowledge, exploratory studies
of the green surface functionalization of the widely
used Vulcan support with soft agents such as MeOH
and CA, using IMH, have not been reported before.
More importantly, the positive effect that, under some
experimental conditions, such functionalization has
on the performance of Pt/C nanocatalysts for the
EOR clearly indicates the road to perform more
studies. For example, it is of interest to evaluate the
effect of varying experimental parameters such as
concentration of chemical agent and time of heating.
The outcome is highly relevant for the development
of active nanocatalysts for DEFC applications. The
results shown in this work also open the opportunity
to use the functionalized supports to disperse Pt-alloys
(e.g., Pt-Sn/C) in future work.

Conclusions

The surface chemistry of commercial Vulcan XC-72
was effectively modified from the functionalization

with MeOH and CA, using IMH. The HR-TEM
average particle size of Pt/C-MeOH2 and Pt/C-CA1
was below 2 nm, indicating good anchorage and
inhibition of particle size growth of Pt nanoparticles.
Functionalization with MeOH promotes the formation
of C=O bonds in Pt/C-MeOH2, a species not
observed at Pt/C-CA1. Moreover, C-O species were
formed at both nanocatalysts, not observed previously
at non-functionalized Vulcan. From the SPAIRS
measurements it was observed that Pt/C-MeOH2
and Pt/C-CA1 showed a higher catalytic activity
for the EOR. The reaction mechanism followed a
C2-pathway at these nanocatalysts. At Pt/C-MeOH2,
acetic acid is preferentially formed. On the contrary,
the mechanism follows a higher rate of acetaldehyde
production at Pt/C-CA1. Both nanocatalysts showed a
low generation of COL species.

Therefore, the results of this exploratory work
indicated that green and rapid functionalization of
Vulcan with MeOH and CA, using IMH, is a
promising process for the development of highly
active Pt nanocatalysts for the oxidation of ethanol in
acid media.
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