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The Hardness and Approximation of the Densest k-Subgraph Problem in Parameterized Metric Graphs

with exactly k vertices such that the total edge weight of G[C] is maximized. For β = 1, this problem, ∆-WDkS, is known NP-hard and admits a 1 2 -approximation algorithms. In this paper, we show that for any β > 1/2, ∆β-WDkS is NP-hard. We also show how to modify any α-approximation algorithm for ∆-WDkS to obtain a δα,β-approximation algorithm for ∆β-WDkS with δα,β > α for every β < 1. Moreover, we prove that ∆β-WDkS can be approximated to within a factor 1 2β for any β > 1 2 .

I. INTRODUCTION

Various real-world systems can be modeled as graph-based representation. Many applications in social networks, communication networks, mobile ad hoc networks, World Wide Web (WWW) communities, bioinformatics are related to find a dense subgraph from a large graph [START_REF] Faragó | In search of the densest subgraph[END_REF]. In particular, on studying social networks, detecting cohesive subgroups is a very important task. It helps sociologists to understand the structures of networks. A cohesive subgroup can be defined as a complete graph (clique) [START_REF] Luce | A method of matrix analysis of group structure[END_REF]. However, it seems too restricted to consider a clique as a cohesive subgroup in real networks. The concept dense subgraph is a density-based clique relaxation model for defining cohesive subgraphs in social networks.

Given an undirected unweighted graph G, a densest k subgraph of G is an induced subgraph G[C] of G with exactly k vertices such that the number of edges is maximized. If G is a weighted graph, a densest k-subgraph of G is an induced subgraph G[C] of G having exactly k vertices satisfying that the total edge weight is maximized. The concept of densest k-subgraph is often used to define cohesive subgroups in a social network. In the following, we list the formal definition of the DENSEST k-SUBGRAPH problem.

DENSEST k-SUBGRAPH PROBLEM (DkS) Input:

An undirected graph G = (V, E), an integer k > 0.

Output: A vertex subset C ⊆ V , |C| = k such that the number of edges in G[C] is maximized. WEIGHTED DENSEST k-SUBGRAPH PROBLEM (WDkS) Input: An undirected weighted G = (V, E, w), an integer k > 0. Output: A vertex subset C ⊆ V , |C| = k such that the total edge weight of G[C] is maximized.
Known results. A densest k-subgraph is also called a kcluster [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF]. The problem of finding a densest k-subgraph in an undirected graph was introduced by Corneil and Perl [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF]. It is a generalization of the maximum clique problem. The DkS problem is NP-hard on general graphs [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF] and remains NP-hard on chordal graphs [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF], bipartite graphs [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF], planar graphs [START_REF] Keil | The complexity of clustering in planar graphs[END_REF], even on graphs of maximum degree three [START_REF] Feige | On the dense k-subgraph problem[END_REF]. Some exact exponential time algorithms were given for solving the DkS problem in general graphs [START_REF] Bourgeois | Exact and superpolynomial approximation algorithms for the densest ksubgraph problem[END_REF], [START_REF] Chang | Exact algorithms for problems related to the densest k-set problem[END_REF].

It has been shown that the DkS problems does not admit a Polynomial Time Approximation Scheme (PTAS) for general graphs under a complexity assumption [START_REF] Khot | Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique[END_REF]. There are PTASes given for graphs of minimum degree Ω(n) and dense graphs (of Ω(n 2 ) edges) when k is Ω(n) [START_REF] Arora | Polynimial time approximation schemes for dense instances of NP-hard problems[END_REF], stars of cliques [START_REF] Liazi | The densest k-subgraph problem on clique graphs[END_REF] and interval graphs [START_REF] Nonner | PTAS for densest k-subgraph in interval graphs[END_REF]. Many approximation algorithms were developed for the DkS problem on general graphs and special graphs. Feige et al. gave an approximation algorithm with approximation ratio O(n δ ), for some δ < 1 3 for the DkS problem on general graphs [START_REF] Feige | The dense k-subgraph problem[END_REF]. Bhaskara et al. improved the ratio to be O(n 1/4+ ) for any > 0 [START_REF] Bhaskara | Detecting high log-densities: an O(n 1/4 )-approximation algorithms for the densest k-subgraph[END_REF]. Asahiro et al. presented a simple greedy algorithm for this problem on general graphs and showed that the approximation ratio is O(n/k) [START_REF] Asahiro | Greedily finding a dense subgraph[END_REF]. Chen et al. gave constant factor approximation algorithms for a large family of intersection graphs [START_REF] Chen | Densest k-subgraph approximation on intersection graphs[END_REF]. In [START_REF] Liazi | A constant approximation algorithm for the densest k-subgraph problem on chordal graphs[END_REF], Liazi et al. gave a 3approximation algorithm for chordal graphs. Backer and Keil gave a 3 2 -approximation algorithm for proper interval graphs and bipartite permutation graphs [START_REF] Backer | Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs[END_REF]. For WDkS, it was shown NP-hard for metric graphs [START_REF] Ravi | Heuristic and special case algorithms for dispersion problems[END_REF]. There are two approximation algorithms with approximation factors 4 [START_REF] Ravi | Heuristic and special case algorithms for dispersion problems[END_REF] and 2 [START_REF] Hassin | Approximation algorithms for maximum dispersion[END_REF] for the WDkS problem in metric graphs.

In this paper, we focus on solving the WDkS problem in ∆ β -metric graphs. A complete weighted graph G = (V, E, w) is called ∆ β -metric, for some β ≥ 1/2, if w(u, v) ≥ 0 for u, v ∈ V , and G satisfies the β-triangle inequality, i.e., w(u, v) ≤ β • (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . For β = 1, it defines the so-called metric graphs. The formal problem definition is listed in the following.

∆ β -WEIGHTED DENSEST k-SUBGRAPH PROBLEM (∆ β -WDkS) Input: A ∆ β -metric graph G = (V, E, w), an integer k > 0. Output: A vertex subset C ⊆ V , |C| = k such that w(C) = u,v∈C w(u, v) is maximized. For β = 1, i.e., the input graph is a metric graph, we use ∆-WDkS to denote ∆ 1 -WDkS.
The design of approximation algorithms for the ∆-WDkS problem is related to the concept of stability of approximation for hard optimization problems [START_REF] Böckenhauer | Towards the Notion of Stability of Approximation for Hard Optimization Tasks and the Traveling Salesman Problem (Extended Abstract)[END_REF], [START_REF] Böckenhauer | Stability of Approximation[END_REF], [START_REF] Hromkovič | Stability of approximation algorithms and the knapsack problem[END_REF], [START_REF] Rozenberg | Hromkovič: Algorithmics for Hard Problems -Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF], [START_REF] Klasing | A modern view on stability of approximation[END_REF]. It is similar to that of the stability of numerical algorithms. Suppose there is a small change in the specification (some parameters, characteristics) of the set of problem instances. It is of interesting to see that what the approximation ratio would be changed accordingly. We say an algorithm is stable if the change of the approximation ratio is small for every small change in the set of problem instances. There have been many research results on the concept of stability of approximation for solving fundamental hard optimization problems. E.g. in [START_REF] Andreae | On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality[END_REF], [START_REF] Andreae | Performance guarantees for approximation algorithms depending on parameterized triangle inequalities[END_REF], [START_REF] Bender | Performance guarantees for the TSP with a parameterized triangle inequality[END_REF], [START_REF] Böckenhauer | Approximation algorithms for the TSP with sharpened triangle inequality[END_REF]- [START_REF] Böckenhauer | An Improved Lower Bound on the Approximability of Metric TSP and Approximation Algorithms the TSP with Sharpened Triangle Inequality (Extended Abstract)[END_REF], [START_REF] Mömke | An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality[END_REF] it was shown that one can partition the set of all input instances of the Traveling Salesman Problem into infinitely many subclasses according to the degree of violation of the triangle inequality, and for each subclass one can guarantee upper and lower bounds on the approximation ratio. Similar studies demonstrated that the β-triangle inequality can serve as a measure of hardness of the input instances for other problems as well, in particular for the problem of constructing 2-connected spanning subgraphs of a given complete edge-weighted graph [START_REF] Böckenhauer | On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality[END_REF], and for the problem of finding, for a given positive integer k ≥ 2, and an edge-weighted graph G, a minimum k-edgeor k-vertexconnected spanning subgraph [START_REF] Böckenhauer | On k-Edge-Connectivity Problems with Sharpened Triangle Inequality[END_REF], [START_REF] Böckenhauer | On k-Connectivity Problems with Sharpened Triangle Inequality[END_REF]. Moreover, β-triangle inequality is also applied to measure the hardness of several hub allocation problems [START_REF] Chen | The approximability of the p-hub center problem with parameterized triangle inequality[END_REF]- [START_REF] Chen | Approximation algorithms for the p-hub center routing problem in parameterized metric graphs[END_REF].

In Section II, we prove that for any β > 1 2 , the ∆ β -WDkS problem is NP-hard. In Section III, we show how to modify any α-approximation algorithm for ∆-WDkS to obtain a δ α,β -approximation algorithm for ∆ β -WDkS with δ α,β > α for every β < 1. In Section IV, we show that a 1 2approximation algorithm given in [START_REF] Hassin | Approximation algorithms for maximum dispersion[END_REF] for solving the WDkS problem in metric graphs can be applied to solve the ∆ β -WDkS problem for any β > 1 2 and the approximation ratio is 1 2β . The concluding remarks are given in Section V.

We close this section with some notation and definitions. For a vertex subset C of a weighted graph G = (V, E, w), we use w(C) to denote the total edge weight of G[C], i.e., w(C) = u,v∈C w(u, v). We use n to denote the number of vertices in a graph G. The approximation ratio used in this paper is AP X OP T where AP X is the size of the approximation solution and OP T is the size of the optimal solution. Notice that the ∆ β -WDkS problem is a maximization problem, AP X OP T ≤ 1.

II. NP-HARDNESS

In this section, we prove that for β > 1 2 , the ∆ β -WDkS is NP-hard. This shows that even in subclasses of metric graphs β < 1 (e.g., β = 1 2 + for any 0 < < 1 2 ), the ∆ β -WDkS is still NP-hard.

Theorem 1. For any β > 1 2 , the ∆ β -WDkS problem is NPhard.

Proof. We prove that the ∆ β -WDkS problem is at least as hard as the NP-hard problem, the DkS problem.

For an input graph By the fact that the DkS problem is an NP-hard problem, this implies that the ∆ β -WDkS problem is also an NP-hard problem. This completes the proof.

G = (V, E) of the DkS problem, construct a ∆ β -metric graph G = (V, E, w) such that w(u, v) = 2β if (u, v) ∈ E, otherwise w(u, v) = 1. It is easy to see that G is a ∆ β -metric
Remark 1. Theorem 1 shows that the ∆ β -WDkS problem is already NP-hard on the class of ∆ β -metric graphs where all the edge costs are in {1, 2β}.

III. USING ∆-WDkS APPROXIMATION ALGORITHMS FOR ∆ β -WDkS

In this section we show how to modify any α-approximation algorithm for ∆-WDkS to obtain a δ α,β -approximation algorithm for ∆ β -WDkS with δ α,β > α for every β < 1. The advantage of this approach is that any improvement on the approximation of ∆-WDkS automatically results in an improvement of the approximation ratio for ∆ β -WDkS. The idea of this approach is to reduce an input instance of ∆ β -WDkS to an input instance of ∆-WDkS by subtracting a suitable cost from all edges.

Lemma 1 ( [9]

). Let G be a ∆ β -metric graph for 1 2 ≤ β < 1. Let c min and c max be the minimum edge cost and maximum edge cost in G respectively. Then c max ≤ 2β 2 1-β • c min . Theorem 2. Let A be an approximation algorithm for ∆-WDkS with approximation ratio α, and let 1 2 < β < 1. Then A is an approximation algorithm for ∆ β -WDkS with approximation ratio 1 

α + (1 -α) • (1-β) 2 β 2 . Proof. Let I = (G, cost) be a problem instance of ∆ β -WDkS, 1 2 < β < 1. Let c = (1-β)•2•c
c = (1 -β) • 2 • c min ≤ (1 -β) • (x + y) it follows that z ≤ β • (x + y) ≤ x + y -c and thus z -c ≤ (x -c) + (y -c).
Furthermore we know that a k-subgraph is optimal for I if and only if it is optimal for I. Let H opt be an optimal k-subgraph for I. Let H be the k-subgraph that is produced by the algorithm A on the input I . Then cost (H) ≥ α • cost (H opt ) holds and thus

cost(H) - k 2 • c ≥ α • (cost(H opt ) - k 2 • c).
This leads to

cost(H) ≥ α • cost(H opt ) + (1 -α) • k 2 • c = α • cost(H opt ) + (1 -α) • k 2 • (1 -β) • 2 • c min ≥ α • cost(H opt ) + (1 -α) • k 2 •(1 -β) • 2 • 1 -β 2β 2 • c max (by Lemma 1) = α • cost(H opt ) + (1 -α) • (1 -β) 2 β 2 • k 2 • c max ≥ α • cost(H opt ) + (1 -α) • (1 -β) 2 β 2 • cost(H opt ) = α + (1 -α) • (1 -β) 2 β 2 • cost(H opt )
which completes the proof. 1 Observe that the approximation ratio tends to 1 with β approaching 1 2 and it tends to α with β approaching 1.

According to Theorem 2, we have the following corollary.

Corollary 1. For 1 2 ≤ β < 1, Algorithm 1 is a ( 1 2 + (1-β) 2 2β 2 )- approximation algorithm for ∆ β -WDkS.
Note that Corollary 1 provides a weaker approximation ratio than Theorem 3 in the next section.

IV. A 1 2β -APPROXIMATION ALGORITHM FOR ALL β > 1 2
In [START_REF] Hassin | Approximation algorithms for maximum dispersion[END_REF], a 1 2 -approximation algorithm was given for solving the WDkS problem in metric graphs. We list this algorithm in Algorithm 1. In this section, we show that Algorithm 1 can be applied to solve the ∆ β -WDkS problem for any β > 1 2 and the approximation ratio is 1 2β . It means that the algorithm can be applied to solve the problem not only restricted to the input graph being a metric graph but also in a graph belonging to a super graph class of metric graphs.

Algorithm 1 Approximation algorithm for ∆ β -WDkS (G, w)

1: Initially, C := ∅ 2: while |C| ≤ k -2 do 3: Select (u, v) such that w(u, v) is of maximum weight in G; 4: C := C ∪ {u, v}; 5:
Remove all edges incident to u or v in G; 6: end while 7: if k is odd then If k = 2, we see that

w(C * 2 ) = w(x, y) ≤ w(u, v) (since w(u, v) is of maximum weight in G) = w(C 2 ) ≤ 2β • w(C 2 ). Thus w(C2) w(C * 2 ) ≥ 1
2β . The theorem is true. Suppose that k = 3. Let C * 3 = {x, y, z}. We see that

w(C * 3 ) = w(x, y) + w(y, z) + w(z, x) ≤ 3 • w(u, v) (since (u, v) is of maximum weight) ≤ w(u, v) + 2 • β • (w(u, t) + w(t, v)) (by β-triangle inequality) ≤ 2β(w(u, v) + w(u, t) + w(t, v))) (by β ≥ 1 2 ) = 2β • w(C 3 ). Thus, w(C3) w(C * 3 ) ≥ 1
2β . The theorem is true for k ≤ 3. Suppose that the theorem is true for k -2. Now we prove it for k. Notice that (u, v) is a maximum weight edge in G. There are three cases. 

Next we prove the ratio

w(C k ) w(C * k ) ≥ 1 2β . w(C * k ) ≤ w(e) + 2(k -2) • w(u, v) + w(C * k-2 ) ≤ w(u, v) + 2(k -2) • w(u, v) + 2β • w(C k-2 ) (by induction hypothesis) ≤ w(u, v) + 2 t∈C k-2 β • (w(u, t) + w(v, t)) +2β • w(C k-2 ) (by β-triangle inequality) ≤ 2β • (w(u, v) + t∈C k-2 (w(u, t) + w(v, t)) +2β • w(C k-2 ) (by β ≥ 1 2 ) = 2β • w(C k ). Thus, we obtain that w(C k ) w(C * k ) ≥ 1 2β
. This shows that ∆ β -WDkS problem can be approximated to within a factor 1 2β . It is not hard to see that a straightforward implementation of Algorithm 1 is O(kn 2 ). It was proved in [START_REF] Hassin | Approximation algorithms for maximum dispersion[END_REF] that by applying a linear time selection algorithm [START_REF] Blum | Time bounds for selection[END_REF] and a heap data structure [START_REF] Cormen | Introduction to Algorithms[END_REF], Algorithm 1 can be executed in O(n 2 +k 2 log k) time. This completes the proof.

Corollary 2. The approximation ratio 1 2β of Algorithm 1 is asymptotically tight.

Proof. We give an example to show that the approximation ratio 1 2β of Algorithm 1 is asymptotically tight. The example can be construted by the following steps: It is not hard to see that G is a ∆ β -metric graph. An optimal solution of the ∆ β -WDkS problem in G can be obtained by selecting all vertices in G R . We have OP T = k 2 • 2β. If Algorithm 1 chooses all vertices of G L into the solution, the solution returned will be AP X = k 2 + k 2 • (2β -1). This implies

AP X OP T = k 2 + k 2 • (2β -1) k 2 • 2β = 1 2β + 2β -1 2β • k 2 k 2 ≤ 1 2β + 1 k -1 ≈ 1 2β (since k = n 2 ).
This shows that the approximation ratio 1 2β of Algorithm 1 is asymptotically tight even when the edge weights have only two distinct values.

V. CONCLUDING REMARKS

In this paper, we prove that for β > 1 2 , the ∆ β -WDkS problem is NP-hard. It implies that for 1 2 < β < 1 (subclasses of metric graphs), the ∆ β -WDkS problem is still NP-hard. We show that a 1 2 -approximation algorithm given for solving the WDkS problem in metric graphs can be applied to solve the ∆ β -WDkS problem for any β > 1 2 and its approximation ratio is 1 2β . It is of interesting to see that whether ∆ β -WDkS problem can be approximated to within a factor better than 1 2β for any β, especially for β < 1. Moreover, it is also of interesting to know whether the ∆ β -WDkS problem has a PTAS. If not, we must show that there exists a function r(β) such that to approximate the ∆ β -WDkS to within a factor r(β) is NP-hard.

  graph satisfying the βtriangle inequality for β ≥1 2 . We show that the ∆ β -WDkS problem is as hard as the DkS problem.Let C be an optimal solution of the ∆ β -WDkS problem in G and w(C) = 2β • p + k 2 -p, i.e., G [C] has p edges with weight 2β and ( k 2 -p) edges with weight 1. Since the edge cost in G is either 2β or 1, we see that G[C] has exactly p edges. Suppose that there exists a vertex subset D of size k such that G[D] has more than p edges. It is easy to see that in G , w(D) > 2β • p + k2 -p, a contradiction. Thus, if C is an optimal solution of the ∆ β -WDkS problem in G , then C is an optimal solution of the DkS problem in G. Notice that w(u, v) ≥ 0 for u, v ∈ V since G satisfies the β-triangle inequality.

  min where c min is the minimum edge cost in G. For all e ∈ E(G), let cost (e) = cost(e) -c. Then the WDkS instance I = (G, cost ) still satisfies the triangle inequality: Let x, y, z be the costs of the edges of an arbitrary triangle of G. Then z ≤ β • (x + y) holds. Since

8 :

 8 Add an arbitrary vertex to C. 9: end if 10: return C. Theorem 3. For β ≥ 1 2 , the ∆ β -WDkS problem can be approximated to within a factor 1 2β in O(n 2 + k 2 log k) time. Proof. Let C k be the solution returned by Algorithm 1 for the ∆ β -WDkS. Let C * k be an optimal solution of the ∆ β -WDkS problem in G. Let e = (u, v) be the edge of maximum weight in G and let G = G[V \ {u, v}]. Let C k-2 be the approximation solution on G returned by Algorithm 1. Assume that C k-2 = C k \ {u, v}. Let C * k-2 be an optimal solution on G . The proof is by induction on k.

Case 1 :

 1 u, v ∈ C * k . Let e = (u, v). Case 2: u ∈ C * k and v ∈ C * k . Arbitrary pick x ∈ C * k and let e = (u, x). Case 3: u, v ∈ C * k . Arbitrary pick x, y ∈ C * k and let e = (x, y).

1 )

 1 Construct a graph G of n = 4h vertices, consisting of a left half G L and a right half G R . Let k = 2h. 2) The weights in G are constructed as follows: (a) Identify a perfect matching of the 2h vertices in G L , and give each of the edges of the matching weight 2β. All other edges in G L have weight 1. (b) All edges in G R have weight 2β. (c) All edges between G L and G R have weight 1.
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