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Abstract—The Air Traffic Flow Management (ATFM) is con-
sidered as an effective method for air safety and efficiency
guarantee. However, as one of the vital part of flight efficiency,
fuel consumption is easily affected by external factors induced by
various uncertainties such as severe weather conditions, which
impact decision making process. Therefore, a distributionally
robust mixed integer programming model for ATFM problem
(DR-ATFM) is introduced in this paper to handle the uncertainty
of fuel consumption while minimizing the total cost of fuel
consumption, flight cancellation and flight delays. By exploiting
the moment information of the fuel consumption data, a moment
ambiguity set is constructed which characterizes the actual
distribution of fuel consumption influctation. Based on this, an
equivalent reformulation of DR-ATFM is derived to transform
the problem into a mathematically solvable one, which is further
solved through a cutting plane-based decomposition algorithm
proposed in this paper. Finally, the effectiveness and robustness
of the method are verified based on computational results of
small-sized instances.

Index Terms—ATFM, uncertainty, distributionally robust op-
timization, cutting plane-based decomposition

NOMENCLATURE
A. Sets
A Set of all airways
Ay Set of airways for flight f
Al (s) Set of airways outbound from waypoint s
Alfn(s) Set of airways inbound to waypoint s
D Set of candidate distributions for fuel con-
sumption
F Set of flights in network
H Set of height levels for airways
P Set of waypoints and airports
P/ Set of waypoints and airports for flight f
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T Set of time periods

depy Set of departure airways for flight f

B. Parameters

Dy Cancellation cost for flight f

T_min/" The minimal traversing time of airway a at

height h for flight f

arry Arrival airway for flight f

orign Departure airport for flight f

desty Arrival airport for flight f

g{ Unit time cost of delay for flight f

Ap The maximal height difference between air-
ways

C. Variables

eﬂl Binary decision variable to indicate if flight
f enters airway a at height & in period t. ”1”
if it enters and ”0” otherwise
T,a, 3 Dual variables of DR-ATFM model
D. Random Parameters
(% Continuous variables indicating the fuel con-

sumption of airway a in period ¢ at height
h

I. INTRODUCTION

Air traffic demand is growing rapidly while airspace capac-
ity improvement is stagnating, leading to increased demand-
capacity imbalances and frequent flight delays. In 2019, the
average delay per flight was 13.1 minutes in Europe, 12.9
minutes in the United States and about 14 minutes in China



[1]-[3]. These delays have led to undesirable consequences
such as unpleasant passenger experiences and economic losses
of airlines. Air Traffic Flow Management (ATFM) is consid-
ered as an effective way to alleviate flight delays by means
of matching air traffic flow to sector capacity. In ATFM field,
a large amount of studies have been done based on airports
network, airspace sectors network [4] (nodes include airports
and sectors), or air routes network [5]. As for ATFM problem,
air routes network is the most common form in which civil
flight activities are abstracted and modeled. However, in the
operation level, air traffic flow contains inherent uncertainty
brought by numerous factors including maneuvering, weather
and ATC controllers’ decision [6]. Thus, how to quantify the
impact of uncertainty in air routes network is a major difficulty
scholars face in the field.

Previous works for solving the above challenge could be
roughly divided into two categories: stochastic programming
(SP) and robust optimization (RO). SP utilizes assumed prob-
ability distributions to describe different kinds of uncertain
scenarios and solves ATFM problem. Alonso-Ayuso et al. [7]
proposed a ATFM model taking into account of uncertainty
of airport arrival and departure capacity in several assumed
scenarios. With system capacity being modeled stochastically,
Marron [8] formulated a model to plan rerouting strategies for
aircrafts to alleviate en-route congestion while using Dantzig-
Wolfe decomposition to reduce computational complexity.

Though SP approach is simple and effective for ATFM prob-
lems [9], [10], it can be hard to implement, if not impossible,
when decisions need to be made before the full information
related to flights is awared. In contrast, RO requires less
information and could offer a more robust way to capture the
uncertain information than SP in min-max cost approach. Saraf
et al. [11] presented a Monte Carlo simulation-based approach
for quantifying the uncertainties of demand and capacity, and
assessed reasonable solutions robust to above two factors.
Bertsimas et al. [12] proposed a robust integer programming
model that allows controlling the degree of conservatism.
When the cost coefficients and the data are not all known.
However, RO typically produces over-conservative solutions
for the ATFM problem in the worst-case scenarios, which
results in inefficient use of airspace and waste of resources.

To effectively address the over-conservative problem, a
moment-based distributionally robust optimization (DRO) ap-
proach is utilized in this paper for ATFM problem with
uncertainty (DR-ATFM). DRO approaches have been applied
to solve other problems such as robust optimal network design
[14] and optimal power system operations [15], [16]. DRO
constructs a set of distributions containing a serial of uncer-
tain parameters by analyzing data based on which optimal
decisions could effectively avoid over-conservatism [13]. The
contributions of this paper include:

e Considering the uncertainty of fuel consumption in air
routes, a moment-based distributionally robust mixed
integer programming (DRMIP) model for the ATFM
problem is developed. Within the problem, the total cost
of fuel consumption, flight cancellation and flight delays

are minimized. And comprehensive traffic management
measures are considered such as ground holding, airborne
holding and reroute action.

e The DRMIP model is reformulated to a mathematical
uniform one and then solved by a cutting plane-based
decomposition algorithm.

e With out-of-sample simulation data, the effectiveness and
robustness of the proposed model are verified through
small-sized instances.

The paper is organized as follows. In Section II, the DR-
ATFM model and the ambiguity set of fuel consumption prob-
ability distributions are presented. The costs of arrival delay,
fuel consumption and flight cancellation are minimized in the
model. In Section III, the DR-ATFM model is reformulated
and a cutting plane-based decomposition algorithm is derived.
In Section IV, the effectiveness and robustness of the method
are verified by computational results of small-sized instances.
Section V summarizes the paper and discusses future work.

II. MATHEMATICAL FORMULATION

In this section, the DR-ATFM problem is introduced in
detail. The model minimizes the costs of arrival delay, fuel
consumption and flight cancellation while ensuring that flights’
constraints are satisfied. An air routes network in which flights
can re-route by selecting airways is given. It is considered that
the fuel consumption of flying through an airway is uncertain,
i.e., only the related information from limited data could be
obtained. Then, a compact form of the problem is presented
for the sake of algorithm deduction. And the ambiguity set of
fuel consumption is constructed.

Before introducing the mathematical model of DR-ATFM
problem, two concepts should be clarified here: (1) air routes
network: each waypoint or airport can be represented as a node
in the network. If a flight is planned to fly from one node to
another, there will be a directed arc between these two nodes;
(2) fuel consumption: fuel consumption is related to many
parameters such as flight type, travel time and others, which
makes it sensitive and thus typical as a way of evaluating the
trajectory. For each airway, the fuel consumption is assumed
identical for all flights and to be a random variable due to
uncertain factors such as convective weather.

A. DR-ATFM Mathematical Model
The DR-ATFM model is presented as follows.
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where cy,gr,dy represent the costs of fuel consumption,
arrival delay and cancellation, respectively, for flight f. They
are described in detail below:
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The value of decision variable ei? is 1 when the flight f
enters airway a at height level h at time ¢. Each airway a € A
has uncertain fuel consumption 52’,t for all flights.

In the formulations described above, the objective function
(1a) seeks to minimize the total route cost expectation (i.e.,
costs for fuel consumption, arrival delay and cancellation)
in the worst case. As compared to the robust ATFM model
only based on the support set of the uncertain parameters, the
DR-ATFM model leverages all the probability distributions
P which are satisfied with certain characteristic information.
As a consequence, the proposed approach is distributionally
robust and can be less conservative than the contemporary
robust ATFM approaches. In formulation (1), constraints (1b)
describe that any flight could take off or be cancelled. But any
took-off flight should land at its arrival airway. Constraints

(1c) ensure that only one flight could enter one airway at
the same time. Constraints (1d) denote that if one flight
enters one airway inbound to a waypoint, it will enter one
subsequent airway outbound from that waypoint, i.e., the flow
over network is balanced. Constraints (le) demonstrate that
at each waypoint, each flight could enter at most one subse-
quent airway. Constraints (1f) are time connectivity constraints
which means that each flight’s traversing time of airway has
a minimum value. Constraints (1g) ensure that the height
difference between two subsequent airways within the flight
routes is less than the fixed value. Constraints (1h) illustrate
that the height levels of departure and arrival airport are
assumed to 0.

B. Abstract Formulation

For notation brevity, formulation (1) is given in a compact
form as follows:

min alx + 2161% Ep [Tz (5a)
st. Az <b (5b)
Br=c (50)
where = [ef MT represents the decision variables, & =

34 ] represents the uncertain fuel consumption of airways,
constraints (5b) represent constraints (1b), (1c), (le), (1f)and
(1g), constraints (5c) represent constraints (1d), (1h).

C. Ambiguity Set Construction

An ambiguity set D of candidate distributions is established,
from which a distribution P or random fuel consumption &
is found to maximize the expected cost Ep[¢Tx] given the
decision x and fuel consumption £. The ambiguity set is

founded in which the marginal mean vector p € RL{' and

. I .
variance 0% € RL_‘ of random fuel consumption are used.

They are calculated by limited data as follows:

1 k
Hi = ey d;
K12
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where I is the index set of £ and the size of I equals to the
number of decision variables, K is the number of limited data

Viel (62)

Viel (6b)

samples.
The marginal moment-based ambiguity set is formulated as
P cE) =
D={ P| [&P(dE) <Mz Viel @)
JEPdE) <p?+o? Viel

where = is the support set of £ which contains various possible
values of £. The three constraints of (7) ensure that (i) the
integral value of P is one, (ii) true means of ¢ are less than
calculated p; and (iii) true variances of ¢ are less than p? + o2
calculated. The solution time of DR-ATFM using this set is
independent from the scale of data set since the ambiguity set
only use p and o2 which are pre-calculated by (6).



ITI. SOLUTION METHODOLOGY

In this section, methodologies for reformulating and even-
tually solving the DR-ATFM model (5) using the ambiguity
set (7) are elaborated.

A. Reformulation of DR-ATFM

Firstly, the worst-case expectation sup,c , Ep[¢” 2] in (5a)
is rewrote as an optimization problem

sup Ep[Tx] = glgg/STwP(df) (8a)
s.t. /gP(df) <p; Viel (8b)
[epag <utear vier (80)

/ P(d¢) =1 (8d)

where constraints (8b) -(8d) represent P € D. Then above
maximization problem is dualized to obtain a minimization
problem that can be minimized together with the primal prob-
lem (1). Based on standard duality techniques, formulation
(8) equals to the optimal objective value of the following dual
formulations:

mi
720,020,8

in /34—2 [Timi + ai (1 + 07)] (%a)
st. B—€Tz+ ) (& +gl) >0 VE€E  (9b)

where the dual variables 7 € Rl a € RV, 3 € R
are associated with constraints (8b) -(8d), respectively. Next,
the optimal problem (8) is replaced with formulation (9) in
DR-ATFM model (5). And the dual formulation is merged
with the primal problem to obtain the reformulation of DR-
ATFM model (5) under the moment-based ambiguity set D as
follows:

Lomin  aled Bt D [+ (uF +07)] (10
1

s.t. Ax <b (10b)
Bx =c (10c)

B>€ETx - (r&+ &) VEEE (10d)

1
B. A cutting-plane algorithm

A cutting-plane algorithm is presented to solve the problem
(10). For any &, constraint (10d) is called as a cutting plane to
&. By selecting several constraints from (10d), more cutting
planes are added iteratively. Then stronger relaxations are
obtained until the algorithm meets the predefined conditions.
A flowchart of the cutting-plane algorithm is shown in Fig. 1.
And the whole algorithm is illustrated as follows:

1. Initialization of parameters sets.

Initialization of parameters sets

Calculation of the master problem[*]

Calculation of the subproblem

Judgment of algorithm
convergence

Yeq Expansion of cutting planes

—®1  Obtain the optimal solution

Fig. 1: Flowchart of the cutting-plane algorithm

iteration counter Nz, = 0, lower bound LB := —o0,
upper bound UB := +o00, set of cutting planes CUT :=
&, and select a non-negative tolerance value e.
Calculation of the master problem.

In the m!" iteration, the master problem.

i 4 P2 e )

(11a)
s.t. Ax <b (11b)
Bx =c (11c)

a"z+ B+ [ripi+ o (4 +07)] >0 (11d)

3

is solved with the current set of cutting-plane cuts in
CUT as additional constraints. And the constraint (11d)
enforces the cost lower bound. The optimal solutions
(™, 7™, ™, ™) and the optimal objective function
value V,,qster are recorded. Then set LB := Vi, qster-
Calculation of the subproblem.

The subproblem

max{€Ta™ — 3 ("G + o)} (12)
K3

is solved. The optimal solution £ and the optimal
objective function value Vj,;, are recorded. Then set
UB = LB — ™ 4 V. It is worth noting that
except for the upper and lower boundary constraints for
random variables, there is no other constraint, i.e., fuel
consumption can take any value between the maximum
and minimum value.
Judgment of algorithm convergence.



If Condition 1: ‘%f < € or Condition 2: g™ >
Vsub, then return and output " as an optimal solution;
otherwise, go to the next step.

5. Expansion of cutting planes.

Add a cutting-plane cut B > (¢&™)Tz —
S (€™ + oi(€M)?) into set CUT, then go to
step 2.

IV. NUMERICAL EXPERIMENTS

In this section, case studies are performed based on small-
sized instances to test the proposed DR-ATFM approach. In
the solving process, the samples are solved in python language
with CPLEX 12.6 on a laptop with an Intel 17-3630 QM
processor, 2.40 GHz, 8 GB RAM with a platform of Windows
10.

A. Network Configuration

The small-sized experiments are based on 2-airport network
which is composed of two airports, thirteen directed airways
and six waypoints. The layout of the network is shown in
Fig. 2 and the characteristics of the model are shown in
Tables I-II. Noted height levels are set equal to 1, i.e., the
height levels influence are not considered here in order to
reduce computational complexity.

Fig. 2: 2-airport network
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Fig. 3: The optimal value of two methods
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Fig. 4: The comparison of two methods under various flights
and variance

TABLE I: The mean fuel consumption of airways

Directed airway | The mean fuel consumption 1;
(1,2) 40
(1,3) 10
(1,4) 30
(2,5) 50
(2,6) 40
(3.,5) 10
(3,6) 30
(€X))] 20
(4,6) 20
4.7 50
(5,8 10
(6,8) 20
(7.8) 30

B. Results and Discussions

First, the performance of DR-ATFM is studied under various
fuel consumption variances which range from 1 to 50. In
particular, an out-of-sample simulation is conducted to test
the optimal solutions of the DR-ATFM and the robust ATFM
methods. It’s suggested to note that the DR-ATFM model
degenerates to robust ATFM model when the constraints (8b),
(8c) of ambiguity set are ignored. In this simulation, it is
assumed that there are five flights which have the same plan
in the network. And the uncertain fuel consumption follows a
normal distribution with independent means and variance for
each flight. 300 scenarios are randomly generated. As shown
in Fig. 5, the DR-ATFM problem converges when the iteration

TABLE II: The parameter of model

Item The parameter
Flight Cancellation 10000 V f
Delay Cost costgeray = (t — tarrive)>
Time period [1,90]
Height 1
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Fig. 5: An optimization of 5 flights in the network while o varies from 1 to 8.

increases gradually. It could be observed that with increased
iteration, the upper bound gradually decreases, and the lower
bound gradually rises until they are equal, i.e., the optimal
solution is obtained. And it could also be noted that the optimal
value varies with the increase of variance. In Table III, the
iteration number (Iter), the optimal value for DR-ATFM model
(DROP) and robust model (ROOP) are reported. Particularly,
Fig.3 shows different optimal values of two methods. From
Table 111, it is revealed that with the increase of the variance of
fuel consumption, the optimal value of DR-ATFM and robust
model present growing trend. But it is clear that the growth
rate of DR-ATFM is much slower than that of robust.
Second, variance is fixed to 10 and the performance of
DR-ATFM under various number of flights is studied. The
performance of DR-ATFM is illustrated in Table IV. From this
table, it is observed that for all number of flights, the results of
DR-ATFM are smaller than the ones of robust model. Then,
we change variance from 1 to 80 under various number of
flights. The result is shown in Fig. 4. By comparing the results
of DR-ATFM model and robust model, the results of two
methods are almost the same when the variance is small(e.g.,
o = 1), i.e., the models are both approximately equal to the
determination model. With the increase of the variance, the

gap between two optimal results become large. It is shown
that DR-ATFM is less than the robust ATFM model according

TABLE III: Computational results for the 2-airport network
under various means of fuel consumption

The variance o | Iter DROP ROOP
1 110 | 272.8021 | 315.2092
3 54 164.6595 | 238.1084
5 25 164.6802 | 259.3825
8 20 165.0549 | 284.3855
10 21 165.4776 | 298.4771
20 19 168.4779 | 353.7651
30 19 171.8495 | 396.1891
40 20 175.1910 | 431.9541
50 20 178.4361 | 463.4638
60 20 181.5425 | 491.9507
70 21 184.5038 | 518.1471
80 19 187.3338 | 542.5301
90 21 190.0481 | 565.4312

to the optimal value. In summary, the proposed DR-ATFM
is less conservative than robust ATFM with the increase of
number of flights.



TABLE IV: Computational results for the 2-airport network
under various number of flights

The number of flights | Iter DROP ROOP
1 5 29.7082 58.5810
2 8 60.8379 114.6768
3 14 92.1768 172.5615
4 17 126.1983 | 231.3833
5 21 165.4776 | 298.4771
6 23 211.7128 | 371.5336
7 27 | 266.3160 | 452.1233
8 32 | 332.2796 | 545.4255

V. CONCLUSION

In this paper, considering the fuel consumption uncertainty
of flights, a moment-based distributionally robust mixed inte-
ger programming model for the ATFM problem is proposed.
The proposed DR-ATFM makes decision by minimizing the
total costs of fuel consumption, flight cancellation and flight
delays. Meanwhile, DR-ATFM could reduce the conserva-
tivencess by utilizing the moment information of fuel con-
sumption. Furthermore, the model is solved by a cutting plane-
based decomposition algorithm. Finally, the case studies based
on small-sized data verifies the reduced conservativeness of the
DR-ATFM approach.

The model could be further improved in many aspects.
Various kinds of uncertainty sources could be considered
besides fuel consumption. For example, weather information
such as radar echo value also has non-negligible impact on
ATFM. Also, relevant information such covariance between
the fuel consumption of different airway segments could
be considered. Moreover, we could also apply the cutting
plane-based decomposition algorithm to solving large-sized
instances. In this way, the model could be extended to adapt
to various scenarios.
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