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Abstract 25 

Von Kármán crater's floor was flooded with mare basalts during the Imbrian period. 26 

This site is the target of China's ongoing Chang'e-4 mission that includes the Yutu-2 27 

rover and its instrumental payload. The Zhinyu crater, one of the largest craters within 28 

a few tens of kilometers from the landing site, is the product of a fresh impact that 29 

excavated subsurface, basaltic materials onto the surface. The compositional 30 

characteristics of the continuous ejecta around the crater vary radially with distance, 31 

suggesting possible mineral heterogeneity at depth. At least three main mare flooding 32 

phases could have occurred within Von Kármán, producing a basalt layer of at least 33 

320 m in thickness. However, a broadly consistent olivine composition (Fo#: 55) of 34 

the three proposed basalt layers suggests that the sources of the mare basalts would 35 

have been similar in composition, perhaps even consisting of a single magma chamber 36 

where magma had time to evolve. The Yutu-2 rover that is edging its way westwards, 37 

could in principle test this hypothesis, thus further constraining the thermal history of 38 

the Von Kármán crater. 39 

 40 
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Highlights 44 

 45 

1. Three mare flooding events occurring inside Von Kármán crater during the 46 

Imbrian period are suggested. 47 

 48 

2. The sources of mare basalts are almost homogenous in composition, perhaps 49 

even from a single magma chamber with a moderate evolution. 50 

 51 

3. A refined stratigraphy for low-Ti mare basalts is established and is expected to 52 

be verified by the Yutu-2 rover in the near future. 53 

 54 

 55 



1. Introduction 56 

The Von Kármán crater (~186 km in diameter), lying in the northwest of South 57 

Pole-Aitken (SPA) basin on the lunar farside, was formed 3.97 Ga ago in the pre-58 

Nectarian period (Stuart-Alexander, 1978; Yingst et al., 2017). During the Imbrian 59 

period, the floor of Von Kármán crater was flooded with several basaltic lava flows 60 

(or mare basalts) (Huang et al., 2018; Pasckert et al., 2018; Ling et al., 2019). China's 61 

Chang'e-4 probe touched down successfully in the Von Kármán crater at 177.588°E, 62 

45.457°S on January 3, 2019, and released the Yutu-2 rover to conduct in situ 63 

measurements on this previously unexplored region (Di et al., 2019a; Pinet, 2019). 64 

The surface of the Chang'e-4 landing site is generally thought to be mantled by ejecta 65 

from the Finsen crater (e.g., Gou et al., 2019; Hu et al., 2019; Gou et al., 2020; Huang 66 

et al., 2020; Lin et al., 2020), though the estimation of ejecta thickness from Finsen 67 

crater at the landing site is debated (Huang et al., 2018; Di et al., 2019b; Fu et al., 68 

2020). 69 

Zhinyu (176.15 °E, 45.34 °S), a fresh, simple crater with a diameter of ~3.8 km 70 

and a depth of ~ 800 m (Fig. 1) is one of the largest impacts near the Chang'e-4 landing 71 

site, lying about 30 km away to the west. The Zhinyu impact penetrated the mare 72 

basalts within the Von Kármán crater, thus it opens an exploratory window into the 73 

composition and stratigraphy of the subsurface. Hypervelocity impacts exhume 74 

materials from the subsurface and deposit them both within and outside the newly 75 

formed crater, allowing for investigation. For instance, Fu et al. (2020) targeted 40 76 

dark-haloed craters and 77 bright ray craters around the Chang'e-4 landing area and 77 



constructed a possible stratigraphy (including a low-Ti mare basalt layer) based on the 78 

excavation depths of these craters and their distances from the Finsen crater. Further, 79 

observed differences in the ejecta layers would represent geological variations with 80 

depth at the target point. For example, Ding et al. (2020) proposed that several fresh 81 

craters surrounded by blocky fragments encountered by the Yutu-2 rover might be 82 

secondaries of the Zhinyu crater. Since the primary source for the regolith at the 83 

Chang'e-4 landing site is reckoned to represent Finsen crater ejecta (compositionally 84 

different from mare basalt), caution must be applied in interpreting the in situ 85 

measured spectra around these secondary craters. Therefore, the Zhinyu crater ejecta 86 

provides a rare opportunity to explore the sub-regolith mare basalts, and should also 87 

contribute to the correct interpretation of the in situ measured data by the Yutu-2 rover. 88 

 89 

Fig. 1. Location of the Zhinyu crater inside the Von Kármán crater. The base map 90 

is a digital orthophoto map mosaic (7 m/pixel) generated from Chang'e-2 images (Ren 91 

et al., 2014). Different colors in the inset represent different heights, with red being the 92 

highest and blue being the lowest. The white box shows the boundaries of Fig. 1. The 93 

black box frames the area of Fig. 2, Fig. 4, and Fig. 5. 94 



 95 

2. Data 96 

2.1 Moon mineralogy mapper spectra 97 

The Moon Mineralogy Mapper (M3), which flew onboard India's Chandrayaan-1 98 

lunar orbiter, was a push-broom imaging spectrometer operating from the visible into 99 

the near-infrared (0.42 - 3.0 μm). M3 observed the lunar surface both in a high-100 

resolution target mode (80 m/pixel; 260 spectral channels) and in a low-resolution 101 

global mode (140 m/pixel; 85 spectral channels) from a 100 km orbit (Pieters et al., 102 

2009). The M3 Level 2 spectral reflectance images (REFIMG), which have been 103 

photometrically calibrated and thermal emission corrected (Clark et al., 2011; Besse 104 

et al., 2013), are used in this study to extract spectra from regions of interest (ROIs) 105 

for further detailed analysis (Supplementary Fig. 1). 106 

2.2 Multiband imager products and images 107 

The multiband imager (MI) was a high-resolution imaging camera onboard the 108 

Japanese Kaguya lunar orbiter that included separate visible and near infrared sensors 109 

(Ohtake et al., 2008). It acquired push-broom images in five bands for the visible and 110 

four bands for the near-infrared spectral ranges (Ohtake et al., 2008). The spatial 111 

resolution of the MI images is 20 m/pixel for the visible bands and 62 m/pixel for the 112 

near‐ infrared bands taken at a nominal orbit altitude of 100 km (Ohtake et al., 2008). 113 

The mineral abundance products derived from topographically-corrected MI 114 

reflectance data (Lemelin et al., 2016) are used in this study to evaluate compositional 115 

variabilities of the mare basalts. As concentrations of TiO2 and FeO are useful in 116 

classifying major lunar rock types (Lucey et al., 1998), derived abundances around the 117 



Zhinyu crater were produced using the algorithm of Otake et al. (2012) to investigate 118 

possible differences. 119 

 120 

3. Methods 121 

3.1 Basalt layer identification 122 

There is evidence that the lava infill of the Von Kármán crater occurred during the 123 

Imbrian (Im) period (Huang et al., 2018). Inferred TiO2 content is commonly used as 124 

a classifier for basalts: very low Ti (<1.5 wt% TiO2), low-Ti (1.5–6 wt% TiO2), and 125 

high-Ti (>6 wt% TiO2) (Hiesinger and Jaumann, 2014). The overall TiO2 content of 126 

the continuous ejecta of Zhinyu crater is relatively low (see section 4.1), making it not 127 

suitable for subdivision. Consequently, to evaluate the mineral composition of the 128 

ejecta around Zhinyu crater, mineral maps (Fig. 2) of clinopyroxene (CPX), 129 

orthopyroxene (OPX), olivine (OL) and plagioclase (PLG) were extracted from the 130 

MI derived global map products (Lemelin et al., 2016). It emerges that three rings with 131 

varied mineral abundance, in particular for the OL (Fig. 2a), are distributed 132 

concentrically around the Zhinyu crater. The boundaries of these three rings are 133 

broadly outlined by the OL variation (Lai et al., 2020) and defined in this study as Im1, 134 

Im2 and Im3, in the order from the rim outward (Fig. 2). Previous studies have 135 

proposed buried mare basalts fields inside the Von Kármán crater (Pasckert et al., 2018; 136 

Ling et al., 2019). Here the spectral/mineralogical variations suggest there might have 137 

been at least three distinct mare flooding events with a degree of compositional 138 

differences.  139 



 140 

Fig. 2. Three mineral abundance variation rings distributed concentrically around 141 

the Zhinyu crater. (a) OL; (b) CPX; (c) OPX; (d) PLG. These MI derived products are 142 

from Lemelin et al. (2016). Upper range boundaries differ to highlight variations. 143 

 144 

3.2 Olivine composition analysis 145 

The olivine fraction content of igneous rocks is highly diagnostic for interpreting 146 

the magma source and the degree of petrologic evolution (Isaacson et al., 2011). Based 147 

on the established relation between laboratory spectral absorption features and OL 148 

composition (Sunshine and Pieters, 1998; Isaacson and Pieters, 2010), the relative 149 

Mg/(Mg + Fe) ratio, as known as the forsterite number (Fo#), can be estimated from 150 

the remotely-sensed spectra. Therefore, the average spectrum of each layer was 151 

extracted from M3 images (Supplementary Fig. 1) and deconvolved by the Modified 152 



Gaussian Model (MGM) (Supplementary Figs. 2-4) (Sunshine and Pieters, 1993) with 153 

different mineral combination configurations (Supplementary Table 1) to estimate 154 

mineral modes (Clénet et al., 2011; Clénet et al., 2013). The OL composition is 155 

determined by fitting the MGM-derived OL-related absorption centers to a laboratory-156 

derived compositional trend line (Sunshine and Pieters, 1998; Isaacson and Pieters, 157 

2010). The uncertainty of the predicted Fo# values that arises from model initial 158 

conditions and other error sources, e.g., the low signal-to-noise ratio and low resolution 159 

of M3 spectrum, is estimated to be about 10% Fo# # and possibly more in the case of 160 

ternary mineral mixtures (Isaacson and Pieters, 2010; Pinet et al., 2018; Pinet et al., 161 

2019). 162 

 163 

3.3 Basalt layer thickness estimation 164 

For a lunar simple crater with a diameter smaller than 15 km, the maximum 165 

excavation depth (Hexc) is approximately 1/10 of the transient crater diameter (Dt), 166 

which is about 0.84 times the rim-to-rim diameter (D), i.e., Dt = 0.84D (Melosh, 1989). 167 

The ejecta apron of an impact crater is composed of target materials excavated during 168 

the excavation stage (Melosh, 1989). They are deposited around the crater following an 169 

inverted pre-impact stratigraphy of the underlying bedrock: the materials from the 170 

shallower depths tend to be thrown farther away from the crater rim than materials 171 

excavated from deeper layers (Thomson et al., 2009). The ejecta becomes thinner and 172 

more mixed with local mature regolith with increasing radial distance (Melosh, 1989). 173 

The average radius of continuous ejecta blanket (Rce) can be estimated from crater 174 



radius (R) using the relation Rce = (2.348−0.454
+0.564)R1.006 (Moore et al., 1974). 175 

Although many laboratory experiments and numerical simulations have studied 176 

impacts into layered targets (e.g., Stöffler et al., 1975; Senft and Stewart, 2007; Prieur 177 

et al., 2018), little work has been done to specifically address the relationship between 178 

the radial position of ejecta on the upper surface of the continuous ejecta blanket and 179 

depth of excavation in layered targets (e.g., Baratoux et al., 2007; Thomson et al., 2009). 180 

As a first approximation in this study, it's assumed that continuous ejecta at the farthest 181 

distance (Dmax) comes from the surface, and the radial position of the continuous ejecta 182 

blanket is inversely related to the excavation depth, i.e., (Hexc - Sce)/Hexc = D/Dmax. 183 

Therefore, the source depth of continuous ejecta blanket (Sce) at a given radial position 184 

(D) is estimated by equation Sce = Hexc – (D*Hexc/Dmax). 185 

 186 

4. Results and discussions 187 

4.1 Composition variations 188 

Results of the MI-derived mineral abundances (Lemelin et al., 2016) for the three 189 

layers (in the order Im1, Im2, and Im3) show that the PLG abundance increases from 190 

38.2% to 43.1%, the CPX decreases from 26.3% to 18.8%, the OPX increases from 191 

22.6% to 25.2%, and the OL decreases from 12.9% to 10.5% and then increases to 192 

13.2%. The mineral abundances almost fall within each other's standard deviation (Fig. 193 

3), suggesting variations to be marginal. For example, the average CPX abundances for 194 

Im1, Im2 and Im3 are ~26.3±5.3%, ~24.8±6.9% and ~18.8±6.2%, respectively. Also, 195 

the average OL abundances are ~12.9±2.6%, ~10.5±4.7% and ~13.2±3.4%, 196 

respectively. MGM fitting results reveal that Fo# values derived from OL-related 197 



absorptions are ~55, suggesting that the OL to be relatively homogenous within the 198 

sampled units. 199 

 200 

Fig. 3. Mineral abundances of the identified three basalt layers. The error bars 201 

show the standard deviation of each mineral abundance. 202 

 203 

The average FeO contents for Im1, Im2 and Im3 are ~17.1±0.4%, ~16.6±0.4% and 204 

~15.9±0.5%, respectively. Also, the average TiO2 contents are ~1.5±0.4%, ~1.7±0.3% 205 

and ~1.6±0.3%, respectively (Fig. 4). Compared with lunar basalts sampled by Apollo 206 

and Luna missions or in situ measured by a rover (for example, the FeO and TiO2 207 

contents of basalt measured by the Chang'e-3 rover are ~22.8 wt% and ~5.0 wt%, 208 

respectively (Ling et al., 2015)), the identified three layers generally have relatively 209 

low FeO and TiO2 contents.  210 



 211 

Fig. 4. FeO and TiO2 contents of identified three mare basalt layers. 212 

4.2 The thickness of the basalt layers 213 

Based on the excavation depth of impact crater (section 3.3), the maximum 214 

excavation depth (Hexc) and radius of continuous ejecta blanket (Rce) of Zhinyu cater 215 

are about 320 m and 11.4 km, respectively. Because the extents of the identified three 216 

layers are outlined by irregular polygonal rings, the average ejecta range from each 217 

layer is approximated by the difference between the radius of a fitted circle of each 218 

layer and the radius of Zhinyu crater (Fig. 5). The results show that the extents of all 219 

the three identified layers are roughly within the maximum extent of the continuous 220 

ejecta. The average ejecta ranges of Im1, Im2 and Im3 are about 4.6 km, 7.6 km and 221 

11.4 km, indicating the extent of each layer is about 3.4, 5 and 7 times of Zhinyu crater's 222 

radius, respectively. Therefore, the thicknesses of the proposed three basalt layers (from 223 

top to bottom) are estimated to be about 107 m, 84 m and 129 m, respectively. It is 224 

important to note that it cannot be determined whether the Zhinyu impact had 225 

penetrated the entire Im1 layer in this study. Therefore, the overall thickness of three 226 

mare basalt layers is estimated to be at least 320 m. Because large portions of the 227 

northeastern region of the Von Kármán crater floor are mantled by the ejecta from the 228 



Finsen crater, and the area of the mare unit is about 6145 km2 (Pasckert et al., 2018), a 229 

minimum mare volume is thus estimated to be about 1966 km3. 230 

 231 

Fig. 5. Approximation of ejecta range around Zhinyu crater. 232 

 233 

Ling et al. (2019) divided the mare region inside the Von Kármán crater into Low-234 

Ti unit (1.5 wt%< TiO2 < 3 wt%) and Finsen ejecta unit (TiO2 < 1.5 wt %). Crater size-235 

frequency distribution (CSFD) measurements of the Low-Ti mare unit show three 236 

absolute model ages (AMAs), i.e., 3.38 Ga, 3.57 Ga, and 3.72 Ga (Ling et al., 2019). 237 

These AMAs indicate there might be older buried lava flows in the Von Kármán crater 238 

(Pasckert et al., 2018; Ling et al., 2019), and the composition variations (Fig. 3) 239 

highlighted in this study indicate the recent erupted basalt (Im3) might have a lower 240 

CPX/OPX ratio than the older basalts (Im1). The kink (deflection diameter) between 241 

the youngest (3.38 Ga) and oldest (3.72) isochron curves is ~1 km, suggesting the 242 

thickness of buried lava flows to be >100 m (Ling et al., 2019). The estimated total 243 

basalt thickness (≥320 m) in this study agrees with this estimate. As a result, a refined 244 

stratigraphic sequence for the low-Ti mare basalts (Ling et al., 2019; Qiao et al., 2019; 245 



Fu et al., 2020) is proposed in this study, from top to bottom: Im3 (~107 m), Im2 (~84 246 

m), and Im1 (≥129 m).  247 

A Lunar Penetrating Radar (LPR), with two work frequency channels (channel 1, 248 

60 MHz; channel 2, 500 MHz), is part of the instrumentation on the Yutu-2 rover to 249 

study the subsurface structure of its traversing area (Fang et al., 2014; Jia et al., 2018). 250 

Initial interpretations of the data indicate that there are several subsurface layers/units, 251 

pointing to a complex thermal history. For example, the high-frequency LPR data reveal 252 

that the shallow subsurface at the landing area is roughly composed of three layers (Lai 253 

et al., 2019; Li et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b): a topmost fine-254 

grained regolith layer (depth, 0 to 12 m), an intermediate layer consisting of coarse 255 

materials with embedded rocks (12 to 24 m), and a bottom layer composed of 256 

alternating coarse and fine materials (24 to 40 m). As of November 22, 2020, the Yutu-257 

2 rover had already operated for 24 lunar days and traversed about 590 m on the Finsen 258 

ejecta unit within the Von Kármán crater. The rover is currently about 30 km away from 259 

the Zhinyu crater. The collected low-frequency LPR channel has the maximum 260 

detection depth of ~330m (Lai et al., 2020), possibly up to ~500 m (Zhang et al., 2020a). 261 

However, due to the low thickness resolution (~10 m) of the LPR low-frequency data 262 

and different processing procedures, the deep multi-layered stratigraphic structure 263 

revealed by the low-frequency LPR data is not entirely consistent between most of the 264 

studies, including Lai et al. (2020), Zhang et al. (2020a), and Zhang et al. (2020b). 265 

Nevertheless, the basaltic stratigraphic sequence at the Zhinyu crater proposed in this 266 

study roughly corresponds to the D and E layers in the work of Lai et al. (2020). The 267 



rover will continue to traverse westward and it is planned to reach the mare basalt area 268 

in the future. The proposed stratigraphic sequence and basalt thickness are expected to 269 

be validated by the LPR data, which will provide ground truth and should contribute to 270 

a fuller understanding of the basalt thermal history of the Von Kármán crater. 271 

 272 

4.3 Implications for magma evolution 273 

The ejecta under investigation is composed of materials exhumed by the Zhinyu 274 

crater during formation, a process that inverts the target's stratigraphical sequence. 275 

Therefore, the variation of ejecta composition along the radial distances around Zhinyu 276 

crater reflects the compositional variation of the basalt source at different stratigraphic 277 

depths. A fairly homogenous OL composition (Fo#: 55) of the three layers indicates the 278 

sources of these mare basalts (≥320 m in thickness) are almost homogenous in 279 

composition, or might even be from a single magma chamber. Generally, for primary 280 

magmas, forsteritic (high Fo#) OL is indicative of a primitive source, and more fayalitic 281 

(low Fo#) OL is indicative of an evolved source (Basaltic Volcanism Study Project, 282 

1981). The predicted Fo# value points to a moderate magma evolution. The small 283 

mineral abundance differences (Fig. 3) among layers may indicate there were at least 284 

three mare flooding events occurred inside Von Kármán crater during the Imbrian 285 

period, with two dome-like structures being the possible latest volcanic vents of these 286 

basalts (Qiao et al., 2019). 287 

 288 

5. Conclusion 289 

China's Chang'e-4 probe landed inside the Von Kármán crater, whose floor was 290 



flooded with mare basalts during the Imbrian period. Zhinyu, a fresh impact crater, is 291 

the largest close to the landing site. The materials exhumed by the blast would have 292 

distributed the ejecta around the crater, exposing the stratigraphy sequence of the 293 

underlying basaltic rock layer(s). The mineral abundances derived from multispectral 294 

data, vary radially and discontinuously from the rim craters outwards, forming 295 

compositionally distinguished annuli. In particular, variations in the mineral olivine and 296 

clinopyroxene abundances support the idea that there could be at least three distinct 297 

basalt layers (named Im1, Im2, and Im3 from bottom to top) within the Von Kármán 298 

crater. The thickness of each layer is estimated by an empirical relation according to the 299 

processes of impact excavation and ejecta deposition, i.e., the shallow material deposits 300 

at the further distance whereas the deep material deposits around the crater. As it cannot 301 

be determined in this study whether the Zhinyu impact penetrated through the entire 302 

Im1 layer, the total thickness of the three basalt layers is estimated to be at least 320 m. 303 

However, the minor differences noted in the mineral abundances and the fairly 304 

consistent olivine compositions (Fo#: 55) of these three layers indicate the sources of 305 

these mare basalts to be comparable in composition, perhaps even from a single magma 306 

chamber where the magma underwent only moderate evolution. The westward 307 

traversing Yutu-2 rover may provide ground truth for the findings in this study, which 308 

would contribute to the understanding of the thermal history of the Von Kármán crater. 309 
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