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Abstract. In this article, Part 1 of a two-part series, we run and evaluate the skill of a regional physical-8 
biogeochemical stochastic ocean model based on NEMO. The domain covers the Bay of Biscay at 1/36° 9 
resolution, as a case study for open-ocean and coastal shelf dynamics. We generate ensembles of 10 
uncertainties from assumptions related to errors in the atmospheric forcing, the ocean model 11 
parameterizations and in the sources and sinks of the biogeochemical variables. The resulting errors are 12 
found to be mainly driven by the wind forcing uncertainties, with the rest of the perturbed forcing and 13 
parameters locally influencing the ensemble spread. Biogeochemical uncertainties arise from intrinsic 14 
ecosystem model errors and from errors in the physical state. Uncertainties in physical forcing and 15 
parameterization are found to have a larger impact on chlorophyll spread than uncertainties in ecosystem 16 
sources and sinks. The ensembles undergo quantitative verification with respect to observations, focusing 17 
on upper-ocean properties. Despite a tendency for ensembles to be generally under-dispersive, they 18 
appear to be reasonably consistent with respect to sea surface temperature data. The largest statistical sea-19 
level biases are observed in coastal regions. These biases hint at the presence of high-frequency error 20 
sources currently unaccounted for, and suggest that the ensemble-based uncertainties are unfit to model 21 
error covariances for assimilation. Model ensembles for chlorophyll appear to be consistent with ocean 22 
colour data only at times. The stochastic model is qualitatively evaluated by analysing its ability at 23 
generating consistent multivariate incremental model corrections. Corrections to physical properties are 24 
associated with large-scale biases between model and data, with diverse characteristics in the open-ocean 25 
and the shelves. Mesoscale features imprint their signature on temperature and sea-level corrections, as 26 
well as on chlorophyll corrections due to the vertical velocities associated with vortices. Small scale local 27 
corrections are visible over the shelves. Chlorophyll information has measurable impact on physical 28 
variables. 29 
Keywords: ensemble modelling, model uncertainties, stochastic physics-biogeochemistry, ocean colour, 30 
data assimilation, Bay of Biscay 31 
1 Introduction 32 
For a while now, the oceanographic community has been aware that regional and coastal ocean models 33 
have some quite specific requirements for both the methods and the observational data used for an 34 
effective data assimilation scheme (see extensive reviews e.g. in De Mey-Frémaux, 2000; Edwards et al., 35 
2015; Pinardi et al., 2017; Fujii et al., 2019). But the success of data assimilation in a particular case will 36 
depend not only on the power of the methodology and data themselves, but on how realistic our estimates 37 
of observational errors and model errors are (Oke and Sakov, 2008). Error processes in a model constitute 38 
a subspace of the complete space spanned by all of its variables as the model is integrated. Important 39 
sources of model errors in coastal domains are the presence of the coast and shallower water, strong 40 
bathymetry gradients, inputs from rivers, and are forced by (among other things) pressure and current 41 
fields from ocean-scale mass balances, circulation, tides and eddies, winds and air pressure variations, 42 
and non-uniform density (Kourafalou et al., 2015a; 2015b). 43 
In addition to the effects of local geography mentioned above, the dynamics of coastal (nested) models 44 
are largely controlled by the open boundary conditions (Ghantous et al., 2020). Thacker et al. (2012) 45 
presented how model uncertainties in the open boundaries manifest as model sea-level uncertainties in 46 
the Gulf of Mexico. The Bay of Biscay’s dynamics are influenced by the North East Atlantic circulation, 47 
especially along the southern slope, with the seasonal reversal of the Iberian poleward current. At depth, 48 
the entrance of Mediterranean water masses from the south has been shown to influence the Bay of 49 
Biscay’s hydrology between 600m and 1500m depth (Koutsikopoulos and Le Cann, 1996), and 50 
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potentially the circulation through interactions between eddies and deep, salty lenses (see for instance 51 
Carton et al., 2013). 52 
One common approach to realistically represent error processes and their time evolution is stochastic 53 
modelling (e.g. Adhler et al., 1996; and recent studies for regional configurations in Melsom et al., 2012; 54 
Sakov et al., 2012; Quattrocchi et al., 2014; Vandenbulcke and Barth, 2015, 2019; Vervatis et al., 2016). 55 
Lucas et al. (2008) generated ensembles using NEMO (Nucleus for European Modelling of the Ocean; 56 
http://www.nemo-ocean.eu/; Madec, 2012), based on a configuration for the North Atlantic at 1/4° 57 
resolution and multivariate EOF modes. The ensemble capabilities of NEMO have been discussed in the 58 
literature following the SANGOMA (http://www.data-assimilation.net/) and OCCIPUT projects (Penduff 59 
et al., 2014), focusing on global and regional academic configurations spanning from 2° to 1/4° resolution 60 
and from seasonal to decadal time scales (Brankart, 2013; Brankart et al., 2015; Candille et al., 2015; 61 
Garnier et al., 2016; Bessières et al., 2017). 62 
In this paper, we configure, run and assess a stochastic ocean model in the Bay of Biscay, consisting of 63 
physical-biogeochemical ensemble simulations with the NEMO-PISCESv2 model (Pelagic Interactions 64 
Scheme for Carbon and Ecosystem Studies volume 2; Aumont et al., 2015), as a step towards coastal and 65 
regional data assimilation. The work is based on recent advances in NEMO explicitly simulating the 66 
effects of model uncertainties using an “ensemble generator” (e.g. the same as a scalar time-stepping 67 
numerical model can be seen as a “state generator”), modified here specifically for stochastic 68 
parameterizations in high-resolution configurations. Our “classic” stochastic modelling approach is based 69 
on introducing stochastic degrees of freedom of forcings and model parameterizations (the model 70 
response to those stochastic degrees of freedom being the so-called “system errors” whose second-order 71 
moments are usually modelled as the Q matrix in a data assimilation context). This stochastic model 72 
undergoes validation in Parts 1 and 2 of this study. 73 
A generic perturbation approach based on first-order autoregressive processes - AR(1) - is proposed for 74 
the coupled physical and biogeochemical models. Autoregressive processes are based on statistical 75 
models operating under the hypothesis that the past state has an effect on the present state. First-order 76 
denotes that the current value is based on the immediately preceding value. A comprehensive analysis for 77 
the stochastic formulation of NEMO is given in Brankart (2013) and Brankart et al. (2015). Some 78 
theoretical background for probabilistic ocean modelling, with technical details on implementation 79 
strategies based on NEMO (e.g. online ensemble diagnostics, connection with observation operators and 80 
data assimilation systems) is provided by Bessières et al. (2017). 81 
Brankart et al. (2015) introduced two approaches for ensemble ocean modelling: the first is the stochastic 82 
perturbed parameterized tendencies (SPPT; Buizza et al., 1999) and the second is the stochastic 83 
parameterization of unresolved fluctuations (SPUF). The SPPT implementation, which we use in this 84 
study, aims to generate perturbations on the models’ parameterized tendencies (referred to here as the 85 
models’ time derivative) and implements Monte-Carlo techniques to obtain a probability density function 86 
(pdf) of these tendencies. The stochastically derived parameterized tendencies are added to the models’ 87 
non-parameterized tendencies (the latter assumed free of uncertainties). The SPUF implementation (not 88 
used in this study) is based on random walks sampling gradients from the state vector and adding them 89 
to the models’ solution. In another study, Ollinaho et al. (2017) proposed a stochastic perturbed 90 
parameters (SPP) scheme, perturbing a number of model parameters whose values are presumed to 91 
contain errors. As in their work, model errors of physical parameters are introduced in this study, by 92 
applying spatiotemporally varying perturbations. 93 
Marine biogeochemical data assimilation is increasingly being used in operational platforms as a tool to 94 
improve ocean forecasting systems. However, the subject is still immature with several challenges 95 
remaining, as for example using multivariate increments and validating non-assimilated variables in 96 
biogeochemical models. The Ensemble Kalman Filter (EnKF; Evensen, 2003) was first used with a simple 97 
1D ecosystem model by Eknes and Evensen (2002), and later, by Allen et al. (2003), to control the 98 
evolution of zooplankton and nutrients by assimilating chlorophyll. Simon and Bertino (2009) extended 99 
the EnKF to include a Gaussian anamorphosis transformation, accounting for non-Gaussian 100 
biogeochemical distributions. Ciavatta et al. (2014), instead of assimilating chlorophyll, adapted the 101 
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EnKF to assimilate the SeaWiFS (https://oceancolor.gsfc.nasa.gov/SeaWiFS/) light attenuation 102 
coefficient incorporating a bio-optical model. Biogeochemical data assimilation mostly relies on satellite 103 
chlorophyll a. Recent studies have shed light on the assimilation of ocean colour plankton functional 104 
types, further improving marine ecosystem simulations (Ciavatta et al., 2016, 2018). 105 
In light of these advances, the ocean modelling and data assimilation communities have put significant 106 
effort in improving the predictive skill of biogeochemical models (Song et al., 2016; Mattern et al., 2017; 107 
Mattern et al., 2018; Kaufman et al., 2018; Yu et al., 2018; Ford, 2019; Goodliff et al., 2019). Meanwhile, 108 
there is an increasing interest in biogeochemical model optimization (Wang et al., 2020), as well as for 109 
coupled probabilistic systems and methods for their evaluation (Candille et al., 2015; Garnier et al., 2016; 110 
Santana-Falcón et al., 2020). Errors in biogeochemical models stem from parameterizations and 111 
unresolved scales, and can be investigated by uncertainties in initial and atmospheric conditions (Verdy 112 
and Mazloff, 2017; Fransner et al., 2020), in biogeochemical tracers and their sources and sinks (Brankart 113 
et al., 2015), and model parameters (e.g. nutrient limitations, growth and mortality rates, grazing etc.; 114 
Garnier et al., 2016; Gharamti et al., 2017). Moreover, biogeochemical model performance is strongly 115 
dependent on ocean dynamics and on choices made in the assimilation scheme. The use of (pre-) 116 
operational biogeochemistry data assimilation is of vital importance to assess these systems and their 117 
products, and advance on the management of marine ecosystems (Gehlen et al., 2015). 118 
The most useful statistical properties of ensembles include their mean, spread, and - especially for data 119 
assimilation - their covariances. Higher order moments can also sometimes prove useful (e.g. Quattrocchi 120 
et al., 2014). Where observations are available the ensemble mean can reveal biases, while the ensemble 121 
spread can measure model sensitivity to perturbed quantities used to generate the ensemble. When data 122 
are available and their uncertainties reasonably well known, consistency analyses can be performed 123 
between ensemble-based uncertainties and observational errors (Edwards et al., 2015), using differences 124 
between modelled and observed variable values (the innovation vectors). 125 
We use the above techniques to validate our ensembles, and hence the underlying stochastic model. We 126 
describe and implement consistency analysis methods to produce a quantitative assessment of the 127 
stochastic modelling of coupled physical and biogeochemical processes. Two other methods to assess the 128 
empirical consistency of ensembles will be discussed in a companion article (Vervatis et al., 2021). We 129 
complement this quantitative assessment with a qualitative approach, in which the stochastic model is 130 
evaluated by exploring its ability to generate consistent multivariate incremental model corrections. We 131 
illustrate this by means of multivariate representers and “stochastic” EnKF incremental analyses for a few 132 
members. 133 
The scientific objectives of this paper focus on the generation of ensembles in high-resolution coastal and 134 
regional models. The study aims at guiding future ensemble-based modelling strategies, in support of data 135 
assimilation and probabilistic forecasting approaches. On the basis of prior knowledge in the literature 136 
for stochastic approaches and on what is feasible in terms of computational resources, we investigate 137 
physical-biogeochemical model uncertainties and what the impacts of the choice of different sets of 138 
perturbations and observational networks are on the analysed ocean state. In Section 2, we begin by 139 
describing the coupled physical-biogeochemical model and the methods to evaluate the stochastic model 140 
with respect to satellite observations. The ensembles and the model-data consistency assessment are 141 
discussed in the results section (Section 3). A discussion and concluding remarks are presented in Section 142 
4. 143 
2 Methods and data 144 
2.1 The coupled physical-biogeochemical deterministic ocean model 145 
We use the release 3.6 of the NEMO ocean model in a regional configuration encompassing the Bay of 146 
Biscay and the western part of the English Channel (Fig. 1). The configuration, named BISCAY36, is a 147 
subgrid of the operational Copernicus Marine Environment Monitoring Service (CMEMS) Iberia-Biscay-148 
Ireland (IBI) configuration (Sotillo et al., 2015) previously applied and validated (Quattrocchi et al., 149 
2014; Vervatis et al., 2016). The horizontal resolution is 1/36° (about 3 km and 2 km in the meridional 150 
and zonal directions respectively). For a complete description of the original BISCAY36 configuration, 151 
and for validation details, the reader is referred to Maraldi et al. (2013). 152 
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In our BISCAY36 implementation, the NEMO ocean engine OPA (Océan Parallélisé) is coupled on-line 153 
with the passive tracer package TOP2 and the biogeochemical model PISCESv2. The model solves for 154 
24 prognostic variables simulating the biogeochemical cycles of oxygen, carbon and the main nutrients 155 
controlling phytoplankton growth: nitrate, ammonium, phosphate, silicic acid and iron. The model 156 
distinguishes four plankton functional types based on size, including two phytoplankton compartments 157 
(nanophytoplankton and diatoms) and two zooplankton classes (microzooplankton and 158 
mesozooplankton). The distinction of the two phytoplankton size classes, along with the description of 159 
multiple nutrient co-limitations, allows the model to represent ocean productivity across different 160 
biogeographic ocean provinces (Longhurst, 1998). 161 
The biogeochemical model tracks phytoplankton biomass in units of carbon, iron, silicon (the latter only 162 
for diatoms) and chlorophyll. The ratios between carbon and the latter three variables can change, which 163 
allows for a more accurate conversion from phytoplankton to chlorophyll concentrations, which is of 164 
great importance for comparisons with ocean colour satellite data. The ratio between carbon, nitrogen and 165 
phosphorus is kept constant at the Redfield values of 122:16:1 following Takahashi et al. (1985). 166 
PISCESv2 also distinguishes three non-living pools for organic carbon: small Particulate Organic Matter 167 
(sPOM), big Particulate Organic Matter (bPOM; different settling velocities from sPOM) and semi-labile 168 
Dissolved Organic Carbon (DOC). 169 
The physical and biogeochemical models are coupled on-line, using a high coupling frequency for the 170 
conservation of tracers of once every two time-steps, i.e. 150 s for physics and 300 s for biogeochemistry. 171 
The coupling is one-way, so that the ocean forcing is applied to the biogeochemical model but there is no 172 
feedback. The primitive equations and the tracer transport model are discretized on the same 1/36° 173 
curvilinear Arakawa C-grid. The TOP2 package controls the advection-diffusion equations of the passive 174 
and biogeochemical tracers. The numerical scheme for the biogeochemical processes is forward in time 175 
(Euler) and differs from the classical leap-frog scheme used for the physics. The advection scheme is the 176 
same as for the physics, i.e. QUICKEST (Leonard, 1979), but using the limiter of Zalesak (1979). These 177 
options have been tested by Gutknecht et al. (2016) and are now used in the IBI-MFC operational system 178 
(http://marine.copernicus.eu/). 179 
The meteorological fields are provided by the ECMWF (European Center for Medium-Range Weather 180 
Forecasts). The initial state and open boundary conditions are acquired from the daily archives of the 181 
CMEMS infrastructure for physics, and the weekly archives for biogeochemistry. Details of the physical 182 
model set-up are described in Vervatis et al. (2016). The open boundaries of the biogeochemical model 183 
are forced by the global system BIOMER4V1R1 (resolution: 1/2°; http://www.mercator-ocean.fr/), which 184 
provides (via the CMEMS archives) a 3D global weekly mean analysis for dissolved iron, nitrate, 185 
phosphate, silicate, oxygen, chlorophyll and phytoplankton concentrations expressed as their carbon 186 
contents. 187 
2.2 The stochastic model 188 
The main issues to be faced when building a stochastic model is first to identify and select the relevant 189 
quantities to perturb (depending on the dynamics and on the objectives of the stochastic model) and 190 
secondly to generate the perturbations. This is what we propose to investigate in this study, the general 191 
context being an operational system assimilating satellite data in coastal and regional domains. 192 
The ensembles of simulations are generated by perturbing some quantities that are considered as major 193 
sources of errors for the model. These quantities consist of forcing fields at the boundaries, parameters 194 
and state variables; these are referred to as “parameterized tendencies” (see Buizza et al., 1999), in the 195 
sense that the time evolution of the model state variables can be written as follows: 𝜕 𝑀 𝒙,𝒖,𝒑, 𝑡196 
𝐷 𝒙, 𝑡 𝑃 𝒙,𝒖,𝒑, 𝑡 , where 𝜕 𝑀 𝒙,𝒖,𝒑, 𝑡  is the time derivative of the model 𝑀 𝒙,𝒖,𝒑, 𝑡 , as a 197 
function of the model state vector 𝒙 (e.g. temperature, salinity or currents), the forcing 𝒖 and the vector 198 
of the model parameters 𝒑. 𝐷 𝒙, 𝑡  is the dynamics tendency of the ocean state for well-resolved, non-199 
parameterized processes, equal to the advection term 𝛻 ⋅ 𝒙𝑼 , where 𝑼 the vector of the Eulerian 200 
velocity, and 𝑃 𝒙,𝒖,𝒑, 𝑡  is the tendency of parameterized processes. The latter is perturbed based on 201 
assumptions on the amplitude and space-time structure of atmospheric forcing uncertainties, model errors 202 
in physical parameterizations and sources-minus-sinks 𝑆𝑀𝑆  biogeochemical model errors (state 203 
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variables are not explicitly perturbed in our experiments); the scientific basis of these assumptions is 204 
discussed in the next sections. 205 

In this study, the perturbations, hereafter noted 𝜉, are computed using the stochastic perturbed 206 
parameterized tendencies (SPPT; Buizza et al., 1999) and the stochastic perturbed parameters (SPP; 207 
Ollinaho et al., 2017) schemes. Assuming that the past value of the uncertainties affects the present one, 208 
the 𝜉 are modelled as first-order auto-regressive processes. In practice, at every time-step, Gaussian AR(1) 209 
processes are generated following the expression defining: 210 

𝜉 𝑒 ∙ 𝜉 𝜎 ∙ 1 𝑒 ∙ 𝑤 𝜇 ∙ 1 𝑒       (1) 211 

where 𝑘 is the model time-step, 𝑤 is white Gaussian noise, 𝜇, 𝜎 and 𝜏 the mean, standard deviation 212 
(uncertainty amplitude) and correlation timescale, respectively. Here, we assume the errors are unbiased, 213 
so 𝜇 is set to zero. The perturbation fields are different for each perturbed tendency or parameter, and 214 
vary under the assumption of spatial and temporal correlated scales. Also, the fields are bounded 𝜉 ∈215 

1 1  to retain the sign of the tendency (Palmer et al., 2009). 216 

Brankart et al. (2015) generated independent Gaussian autoregressive processes at every model grid point 217 
and introduced spatial dependence in the 𝜉 2D or 3D fields, by applying a Laplacian filtering operator 218 
ℱ   to the white noise 𝑤 in Eq. (1) as 𝜉 ∝ ℱ 𝑤 . The Laplacian filter implemented in NEMO is equivalent 219 
to the five-point smoothing operator described by Shapiro (1970). This is a low-pass, first-order Shapiro 220 
filter used to remove small scale grid noise. When applied to white noise on a coarse-resolution domain 221 
(typically of a few tens of kilometres), a few Laplacian passes are sufficient to introduce correlation at 222 
scales of a few hundreds of kilometres. In this context, the Laplacian-Shapiro filter acts to “blur” the 223 
white noise at every model grid point and is computationally efficient (Brankart et al., 2015; Garnier et 224 
al., 2016). By contrast, in high-resolution configurations of a few kilometres (e.g. BISCAY36), the 225 
Laplacian-Shapiro filter is not an optimal approach to attenuate noise and produce long-range correlations 226 
(cf. Appendix A; Fig. A1); therefore, another approach is required. 227 
Here, long-range spatial correlations (on the order of 10 to 100 km) are explicitly calculated by applying 228 
a 2D Gaussian function to estimate iso-correlation contours with a pdf given by the mathematical 229 
expression: 230 

𝑝 𝑿|𝑿,𝜮 ∝ 𝑒𝑥𝑝 𝑿 𝑿 𝜮 𝑿 𝑿        (2) 231 

where 𝑿 𝑥,𝑦  represents the whole model domain, 𝑿 �̅�,𝑦  is the central grid point of the 232 
distribution (the mode) and 𝜮 𝑑𝑖𝑎𝑔 𝜎 ,𝜎  is the bivariate diagonal covariance kernel controlling the 233 
length scales of the perturbation. The spatial covariance kernel has anisotropic (important in coastal 234 
domains) e-folding length scale variances in the meridional 𝜎  and zonal 𝜎  directions, varying randomly 235 
around a typical correlation length per variable and across the ensemble members. In order to generate a 236 
multimodal pattern (with two or more local maxima; 𝓂 2), we recursively implement the Gaussian 237 
function at 𝓂 random central grid points 𝑿  in the model domain, resulting in a finite sum of Gaussian 238 
distributions 𝑝 𝑿|𝑿 𝓂 ,𝜮 𝓂 ∝ 𝑝 𝑿 𝑿 𝓂 ,𝜮 𝓂 ∑ 𝑝 𝑿 𝑿 ,𝜮 𝒊𝓂 . The recursive 239 
implementation of the function further increases the perturbation’s anisotropy. The number of recursive 240 
iterations 𝑖 1, … ,𝑚 (and therefore the number of modes) depends on the correlation length within a 241 
given model domain. For instance, a correlation length half the size of the model domain yields 242 
approximately a bimodal distribution. The Gaussian function in Eq. (2), is used as a squared exponential 243 
(apodization) covariance function, so instead of the normalization factor 1 2𝜋|𝛴| /⁄  we used the 244 
perturbation uncertainty amplitude defined by 𝜎 in Eq. (1). Stochastic perturbations are generated by 245 
substituting the Laplacian convolutions in the white noise 𝑤 in Eq. (1), with a multimodal Gaussian 246 
pattern spanning the whole model domain i.e. ℱ 𝑤 → 𝑝 𝑿|𝑿 𝓂 ,𝜮 𝓂 . AR(1) processes estimated by 247 
Eq. (1), are performed at every model grid point shifting and altering the Gaussian modes in space and 248 
time. The implementation is compatible with the NEMO MPI double parallelization environment in the 249 
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spatial domain and across an ensemble (Bessières et al., 2017). The algorithm is available from the open-250 
source software platform Zenodo with doi:10.5281/zenodo.2556530. 251 
2.2.1 Atmospheric forcing uncertainties 252 
The atmospheric forcing in coastal and regional applications constitutes a major source of ocean model 253 
uncertainty and is likely to lead to large-scale biases (Vervatis et al., 2016). We investigate here 254 
uncertainties in the wind velocities 𝑈 𝑢 , 𝑣 , the sea level pressure 𝑆𝐿𝑃) and the air 255 
temperature 𝑇 , i.e. 𝑢 ∈  𝑈 , 𝑆𝐿𝑃,𝑇 . The ECMWF atmospheric fields 𝑢 are multiplied by 256 
AR(1) stochastic processes 𝜉 (Figs. 2a-f) following the SPPT scheme: 257 

𝑢 → 1 𝛼 ∙ 𝜉 ∙ 𝑢           (3) 258 

at every time-step 𝑘, where 𝛼 is an optional tapering value in the interval 0 1  (Buizza et al., 1999). To 259 
calculate the AR(1) stochastic parameterization 𝜉 using Eq. (1), we select representative values for the 260 
uncertainty amplitude 𝜎, the average spatial correlation length 𝜎 ,  used in Eq. (2) and the correlation 261 
timescale 𝜏 for each tendency. 262 

Output diagnostics from a one-year control run are analysed to estimate the distribution of pdfs (not 263 
shown) and tune the stochastic parameterizations for all atmospheric variables of interest. Wind velocity 264 
𝑈  and 𝑆𝐿𝑃 are distributed normally, whereas the distribution 𝑇  is bimodal due to the seasonal cycle. 265 
We assume that uncertainties are related to synoptic timescales, e.g. atmospheric phenomena such as 266 
storms, and we set a temporal correlation length of a few days for all atmospheric variables. The synoptic 267 
timescales are also verified by time-lagged autocorrelation methods applied to the control run. The spatial 268 
scales of the atmospheric fluctuations are determined over synoptic timescales. The signal-to-noise ratio 269 
is assigned according to the statistical laws of the pdfs. These stochastic parameterizations for Eq. (1) are 270 
in agreement with other studies in the literature (e.g. Palmer et al., 2009). 271 
2.2.2 Model uncertainties in physical parameterizations 272 
Fluxes of momentum, heat and mass are the key quantities linking the air and sea. The physical processes 273 
related to them are parameterized in terms of bulk coefficients, which are deduced from empirical laws, 274 
incorporating wind speed dependent coefficients and feedback from the sea state. In this study, we assume 275 
that model errors are in part due to limitations of these parameterizations of air-sea interaction. Stochastic 276 
perturbations varying spatiotemporally are imposed on the models’ momentum drag 𝑐 , latent heat 𝑐  and 277 
sensible heat 𝑐  coefficients. The AR(1) distribution and temporal scales are the same as those we 278 
prescribed for the wind; the spatial scales on the other hand, are assumed to be that of the ocean state and 279 
are set to a few Rossby radii of deformation. The same stochastic pattern is applied to all coefficients in 280 
the CORE bulk formulae (Large and Yeager, 2004). The positiveness of the coefficients is verified by 281 
tapering methods and for different stability conditions and wind speed regimes in the bulk formulae. Like 282 
Eq. (3), the SPP scheme introduces spatiotemporal perturbations following a normal distribution of AR(1) 283 
processes (other options may include simpler perturbations of white noise uncorrelated in space and time), 284 
expressed as: 285 

𝑝 → 1 𝛼 ∙ 𝜉 ∙ 𝑝            (4) 286 

In order to represent model uncertainties for tidal mixing over the shelves, stochastic fluctuations based 287 
on flux boundary conditions are also imposed at the bottom layer. The bottom drag parameterizations 𝑐  288 
are based on model assumptions for the vertical shear, the mixing scheme and the nature of the seabed 289 
(rocky, sandy or muddy), when known, which modify the bottom boundary layer. Because in many ocean 290 
models the bottom drag is approximated as a permanent feature (e.g. constant minimum values in the 291 
abyssal plain as in Maraldi et al., 2013), large temporal scales up to one month are imposed in Eq. (1). 292 
The true nature of the seabed is unknown and consequently so are the dominant scales in the bottom layer, 293 
so we simply apply white noise and Laplacian filtering to introduce AR(1) spatial scales. The formulation 294 
of the bottom drag follows a quadratic log law, with minimum positive values clamped at 2.5 10  in 295 
the abyssal plain and maximum values observed in the shallow areas of the English Channel. 296 
2.2.3 Biogeochemical sources-minus-sinks model uncertainties 297 
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Marine biogeochemical models encompass many sources of uncertainty stemming from unresolved 298 
model processes and poorly constrained parameterizations. These uncertainties fall into two broad 299 
categories: unresolved biodiversity and unresolved scales. The first category refers to the biodiversity 300 
restriction of only a few tens of species resolved by the model in an effort to reduce state variables (Le 301 
Quéré et al., 2005). This category also includes errors in the parameterization or missing biogeochemical 302 
processes, those that control the feedback between sub-systems (ecosystem, chemistry, oxygen and 303 
carbonate models; Gehlen et al., 2011). These errors emerge from having a limited number of 304 
compartments, which often leads to a crude parameterization of their processes. The second category - 305 
errors due to unresolved scales - includes errors related to the model resolution and the species included 306 
in the model (e.g. lack of diurnal migration in the model), and the method for handling them is similar to 307 
that for small scale unresolved physical processes. 308 
The SPUF scheme appears to be the most natural method to simulate uncertainties for both categories. 309 
However, one must consider that performing random walks with a large state vector could be 310 
computationally expensive. Hence, as with the other sources of error, unresolved biodiversity is here 311 
explored via the SPPT AR(1) scheme (Brankart et al., 2015; Garnier et al., 2016), introducing 312 
uncertainties in the sources-minus-sinks terms for each of the 24 biogeochemical tracers 𝐶, using the 313 
stochastic field 𝜉 described in Eq. (1) at every time step 𝑘, as 314 

𝑆𝑀𝑆 𝐶 → 𝑆𝑀𝑆 𝐶 ∙ 𝑒 .         (5) 315 
As an example of this term, phytoplankton sources and sinks are photosynthesis, respiration, death and 316 
grazing. The biogeochemical model parameters themselves are not perturbed. 317 
Garnier et al. (2016) used SeaWIFS at 1/12° resolution to assess the unresolved scales of a coarser 1/4° 318 
model and tune the AR(1) stochastic parameterizations. In this study, we are unable to assess the 319 
unresolved scales of the high-resolution BISCAY36 model, with respect to a dense observational 320 
network. Therefore, stochastic parameterizations are deduced from a one-year control run, mainly 321 
focusing on the statistical properties of chlorophyll. The sources-minus-sinks perturbations are assumed 322 
to have a lognormal distribution and large uncertainty amplitude 𝜎 of up to 60%. The bias correction term 323 
𝜎 2⁄  (Simon and Bertino, 2009) is part of the model tuning, implying that the ensemble mean is equal to 324 
the unperturbed 𝑆𝑀𝑆 term. The spatial scales are representative of a few Rossby radii of deformation and 325 
the correlation time-scale is set to10 days, typical for the underlying mesoscale dynamics and associated 326 
upwelling patterns. We perturb the state of the sources-minus-sinks terms in all three dimensions and 327 
across all vertical levels with the same stochastic pattern. Sensitivity experiments showed that this 328 
approach yielded uncertainty regimes with an ensemble spread increasing in time. We did test alternatives 329 
by applying different stochastic patterns per level or per tracer but these degraded the impact of the 330 
method. 331 
2.3 Experimental design 332 
In order to test which error sources are most significant for the biogeochemical uncertainties, and to better 333 
understand the couplings within the stochastic model, we designed three ensemble experiments: 334 
perturbing only the physics (EnsP), only the biogeochemistry (EnsB), and perturbing both simultaneously 335 
(EnsPB). In the coupled simulation, the evolution of the biogeochemical tracers is described by the 336 
advection-diffusion equation: 337 

𝜕 𝐶 𝛻 𝑢 ∙ 𝐶 𝐾  𝛻 𝐶 𝜕 𝐾  𝜕 𝐶 𝑆𝑀𝑆 𝐶       (6) 338 

where on the right hand of Eq. (6) the first term represents the advective transport of tracers along 339 
isopycnals, and the second and third terms the 3D parameterized diffusion processes. The last term 340 
denotes all biological processes affecting the concentration of tracers 𝐶, due to the sources-minus-sinks 341 
terms 𝑆𝑀𝑆 𝐶). The three experiments defined above are indicated schematically in Eq. (6). 342 
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In Table 1, we summarize our settings for the stochastic parameterizations in the sensitivity experiments 343 
perturbing individual sources of model uncertainty and the seasonal-range ensembles EnsP, EnsB, EnsPB. 344 
We also include a reference ensemble (Ens0) and a control run (CR). A detailed presentation of the Ens0 345 
ensemble is given by Vervatis et al. (2016), but it suffices to say here that it differs fundamentally from 346 
the EnsP, EnsB, EnsPB ensembles in that it was generated by performing stochastic modelling of the 347 
wind forcing based on empirical orthogonal functions (EOF); there is no other variable perturbed in Ens0. 348 
A major challenge in ensemble forecasting is to identify the most important sources of model error and 349 
properly configure the stochastic parameterizations. In order to tackle this, we adopted the following two-350 
step procedure: firstly, we identified which error sources the model was most sensitive to in the Bay of 351 
Biscay, by running medium-range ensembles of 20 members for one month during the spring bloom, 352 
namely April, 2012 (S1-5, SP, SB, SPB experiments in Table 1). Several stochastic parameterizations, 353 
deduced from the output diagnostics of a one-year control run, were tested on a case-by-case basis for 354 
each sensitivity experiment. A final selection of perturbations was established, based on their impact on 355 
the spread of upper-ocean variables as well as on their computational efficiency (e.g. the requirement that 356 
no members blow up during the ensemble run). Based on these experiments, we decided not to perturb 357 
variables and parameters that the model in this configuration is insensitive to, such as, for example the 358 
photosynthetically active radiation coefficient 𝑘  for the penetrative solar radiation (sensitivity 359 
experiments not shown). Results from the sensitivity experiments are discussed in Section 3.1. For the 360 
second step, we used these perturbations to run seasonal-range ensembles of 40 members each (EnsP, 361 
EnsB, EnsPB experiments in Table 1). The stochastic model skill of the seasonal-range ensembles is 362 
evaluated with respect to observations in Sections 3.2 and 3.3. 363 
Figure 2 shows examples of AR(1) stochastic patterns drawn for several variables of the coupled system, 364 
in order to introduce model errors. We generate wind uncertainties with smaller spatial scales, varying 365 
around an average of 𝜎 , ~1° (Figs. 2a-d), compared to the work presented by Vervatis et al. (2016), who 366 
used in their study broader patterns based on dominant EOF modes (cf. Appendix A; Fig. A2). Figures 367 
2a-c depict the spatial variations of the wind stochastic pattern for member-001, over a temporal 368 
correlation period of three days. In the same simulation stochastic patterns with larger spatial scales can 369 
be applied to other atmospheric variables: for example, scales of 𝜎 , ~2° and 𝜎 , ~3° have been adopted 370 
for the air temperature and sea level pressure respectively (Figs. 2e-f). Figure 2h illustrates the effect of 371 
the Laplacian filtering after 100 iterations in BISCAY36. It shows noisy spatial patterns, not 372 
representative of most oceanic processes. 373 
In the same vein as Vervatis et al. (2016), a free run (i.e. the CR in Table 1) is carried out with no stochastic 374 
parameterizations. Starting from the PSY2V4R2 analysis (1/12° resolution; Lellouche et al., 2013; 375 
http://www.mercator-ocean.fr/) the free run is used to generate a five-month spin-up, from July to 376 
November 2011, to allow the ocean model to develop coherent structures and represent the main physical 377 
processes in the Bay of Biscay. The same period is used for the spin-up of the on-line coupled 378 
biogeochemical model. The post spin-up solution is used as the initial conditions for all other experiments. 379 
The free run is then extended from December 2011 to June 2012 and serves as a reference for the above-380 
mentioned ensemble experiments; hence, we refer to it as the one-year control run. In Fig. 3, we present 381 
the ocean state of the control run on April 30, 2012, for a number of surface variables: sea surface height 382 
(SSH), sea surface temperature (SST), sea surface salinity (SSS), total chlorophyll, and 383 
nanophytoplankton and diatom concentrations. In supplementary material, we verify the model’s skill to 384 
simulate subsurface nutrient conditions compared to world ocean atlas climatology (Garcia et al., 2018). 385 
The seasonal-range ensembles were run from December 2011 to June 2012. The computational resources 386 
for the ensemble experiments are presented in Appendix B. All sensitivity (S1-5, SP, SB, SPB) and 387 
seasonal-range (EnsP, EnsB, EnsPB) ensembles were initialized by using the ocean and the 388 
biogeochemical states of the control run, with the exact same initial conditions. No data was assimilated 389 
and the perturbation mechanism remains at work throughout the whole simulation period. A total number 390 
of 40 ensemble restarts was archived, where pseudo-random seed numbers (with different random 391 
sequences) were saved for all stochastic parameterizations. These ensemble restarts were used to ensure 392 
the reproducibility of the stochastic patterns upon initialization of the ensembles. This capability allowed 393 
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us to investigate the growth rate of model uncertainties, with the same forecast lead time, under different 394 
atmospheric and ocean states. 395 
2.4 Datasets 396 
We focus on upper-ocean properties for sea level anomaly (SLA), SST and surface total chlorophyll. The 397 
observational networks were accessed via the CMEMS infrastructure (http://marine.copernicus.eu/) and 398 
are summarized in Table 2. The observational errors include both measurement and representativity 399 
errors, and are usually unknown. Here, the observational errors were taken from those reported at 400 
CMEMS and averaged to create a single representative value for each product (Table 2). 401 
High-resolution SST observations are necessary when it comes to validating ensembles at eddy-resolving 402 
scales, such as in BISCAY36 at 1/36° resolution. We use the OSTIA SST L4 gap-free gridded dataset 403 
which is a near-real-time daily-mean product of foundation SST free of diurnal variability. The data set 404 
is provided with an estimate of their uncertainty which is 0.5°C on average. The model proxy for the 405 
foundation SST has been chosen to be the temperature interpolated at 10 metres depth. 406 
For the sea-level, we use the CMEMS L3 along-track product based on several altimetry missions and 407 
which provides SLA at a resolution of 14 km with uncertainties of 0.05 m. Both data and model include 408 
tides and both observed and simulated SLA are detided. The model includes pressure forcing, and 409 
therefore an inverted barometer correction is applied to the model and observations (a dynamic 410 
atmospheric correction is applied to the sea-level observations). In order to calculate the SLA model 411 
equivalent, we use the mean dynamic topography of the parent model IBI36 (Benkiran, pers. comm.). 412 
Of central importance to this work is the consistency analysis of biogeochemical ensembles, where 413 
physics and biogeochemistry are both perturbed, against ocean colour products. The ocean colour method 414 
exploits different radiation wavelengths and reflectances emitted from the sea surface, affected by 415 
phytoplankton and corresponding to different water types. In this study, we use surface total chlorophyll 416 
produced for the Global Ocean in the framework of the ESA ocean colour climate change initiative (OC-417 
CCI), made available through CMEMS. This is a merged data records product collected from multiple 418 
sensors and ocean satellite passages provided in gridded format at 4 km resolution. The ocean colour L4 419 
product is reconstructed from L3 reprocessed daily composites applying 8-day temporal averaging to fill 420 
in missing data, though some gaps remain. 421 

The satellite chlorophyll a data are provided with a scaled (%) observational error in comparison to the 422 
signal and therefore, the error has spatial distribution. We decided not to use this information because it 423 
would be harder to interpret pattern-consistency and because here we mostly focus on the investigation 424 
of model errors. Instead, we estimated a static error at 0.3 mg/m3, which is moderately larger (smaller) in 425 
the abyssal plain (shelf areas) compared with the scaled error. The ocean colour chlorophyll proxy in 426 
models is often taken as an average of chlorophyll over the top 10% of the euphotic layer (Prunet et al., 427 
1996). In our case, estimating a euphotic layer of approximately 50 m, we decided to tune the observation 428 
operator to return a model proxy as the mean value of the first 5 m of the water column. This is in 429 
agreement also with calculations based on 1/𝑘 . 430 

2.5 Consistency analysis framework 431 
2.5.1 Ensemble-based innovation metrics 432 
In Section 3.2, we evaluate the stochastic model, by quantifying the ability of the ensembles at 433 
representing the model’s errors with respect to observations. Our method assesses the statistical 434 
consistency of the following distributions: (a) ensemble-based uncertainties, and (b) empirically-based 435 
uncertainties for upper-ocean properties. As the system is dynamically heterogeneous, the consistency is 436 
checked locally. 437 
The empirically-based uncertainties are represented by an ensemble of observations for each dataset. The 438 
observations are perturbed with a Gaussian random number to generate data distributions with the proper 439 
error standard deviation for each network. All observational errors are considered independent (no cross-440 
correlations) for each dataset so that their error covariance matrix is diagonal (a useful, but not entirely 441 
true assumption). For the consistency analysis of EnsP perturbing only the physics, we used the SST and 442 
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SLA observational networks. The chlorophyll a product is used for the consistency check of EnsB and 443 
EnsPB biogeochemical model uncertainties. The statistical consistency between the simulated and 444 
empirical ensembles is evaluated by comparing the shape of the ensemble envelopes locally and as a 445 
function of time. For each dataset, we also compute the innovation vector, that is the model-data misfits, 446 
and compare the second-order moments: the innovation variance across the ensemble is the result of 447 
uncertainties in both the model and observations. Under the assumption that errors in the model and in 448 
observations are uncorrelated, the innovation variance should be close to the sum of the model uncertainty 449 
variance (estimated from the ensemble variance) and the observational error variance. The diagnosis 450 
proposed by Desroziers et al. (2005) for data assimilation is based on a similar assumption. 451 

Denoting 𝑦 ,  the measured value of observation 𝑛 for ensemble member 𝑗, and 𝑦 ,  the model forecast 452 
equivalent for observation 𝑛 for member 𝑗, the following ensemble-based consistency statistics in data 453 
space may be calculated: 454 

𝑂𝑚𝐸 𝑦 , 𝑦 ,

,
          (7) 455 

𝑂𝑚𝐸 𝑦 , 𝑦 ,

,

          (8) 456 

𝐷𝑂𝑚𝐸 𝑦 , 𝑦 , 𝑦 , 𝑦 ,        (9) 457 

where the 𝑗 overbar averages are taken over the ensemble members 𝑗 1, … ,𝑁 and the 𝑛 overbar 458 
averages are taken over all observations 𝑛 1, … ,𝑝 of a given type within a given region, and the 459 
combined 𝑗,𝑛 overbar denotes a double average taken first over the ensemble and second over all 460 
observations of a given type within a given region. 𝑂𝑚𝐸 stands for Observation minus Ensemble metric 461 
(it is an ensemble-wide extension of the so-called Norm of the innovation vector used in data 462 
assimilation). 𝐷𝑂𝑚𝐸 stands for Debiased 𝑂𝑚𝐸 metric defining the mean spread of innovation, which 463 
should be larger than the ensemble spread, and can be used even if the 𝑂𝑚𝐸  is not small. For an 464 
unbiased system, i.e. no biases between observations 𝑦 ,  and model 𝑦 , , ∀𝑛, we get 𝑂𝑚𝐸 0 and 465 
𝐷𝑂𝑚𝐸 𝑂𝑚𝐸. In Appendix C, we provide a detailed description of the notation for the ensemble-based 466 
innovation metrics. 467 
In addition, we calculate the ensemble spread and the quantiles in data space to assess the ensemble 468 
median Q2(50%), the mid-spread Q1(25%)-Q3(75%) and the ensemble outermost quantiles Q0(1%)-469 
Q4(99%). 470 
Let us also define the support of a probability density function (pdf) as the smallest closed set outside of 471 
which the pdf vanishes. For a pdf defined in ℝ, the pdf envelope is defined as the range between the 472 
minimum and maximum values of the support. 473 
In order to illustrate the dependency of assessment results on geographic region, we focus on two distinct 474 
areas in the Bay of Biscay, namely the abyssal plain and the Armorican shelf. Both areas exhibit strong 475 
spatiotemporal variability, governed by diverse physical-biogeochemical open-ocean and coastal shelf 476 
processes, respectively. 477 
2.5.2 Multivariate incremental analysis 478 
The stochastic model skill is qualitatively evaluated by means of multivariate representers (defined 479 
below) and EnKF-type incremental analyses (Evensen, 2003). The incremental analysis corresponds to 480 
the correction step in the sequential data assimilation scheme; in other words, at a given date, we compute 481 
the correction to the controls using an estimate of the model and data errors and assuming a given value 482 
for the innovations, but then we do not restart the model from the corrected state. This is what makes it 483 
different from a data assimilation experiment. A by-product will be to illustrate the potential impact of 484 
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our ensemble-modelled uncertainties on data assimilation at analysis time. In all cases, we investigate the 485 
impact of observations on unobserved variables, such as other data types or subsurface variables. The 486 
novelty in this exercise is to showcase how stochastic modelling of different components in the coupled 487 
physical-biogeochemical system contributes to incremental analyses. We emphasize the fact that 488 
biogeochemical model errors in Eq. (6) have been generated in simulation experiments of increasing 489 
complexity, perturbing separately the physics and biogeochemistry. The calculations are conducted with 490 
SDAP (Sequoia Data Assimilation Platform, https://sourceforge.net/projects/sequoia-dap/), whose 491 
functions were expanded to interface with the NEMO platform and its biogeochemical component 492 
PISCESv2. 493 

Let us define 𝑯 to be the observational operator and 𝑷  the error covariance matrix of the prior controls. 494 
In this study, the controls are the following state variables: 𝑆𝑆𝐻,𝑇, 𝑆,𝐶ℎ𝑙. In an ensemble-based context, 495 
the prior error covariance matrix is approximated by 𝑁 samples (i.e. members) in a decomposed form as 496 
𝑷 𝑺 𝑺 , where 497 

𝑺
√

∏ 𝒙 𝒙           (10) 498 

is the square root matrix of the error-subspace, with ensemble mean 499 

𝒙 ∑ 𝒙 ,           (11) 500 

𝒙  being the control vector. 501 

The representers are the influence functions of single observations: the correction added to the forecast 502 
during the analysis step can be written as a linear combination of representers weighted by the innovation 503 
(Bennett et al., 1996). The matrix of representers is 𝑯𝑷 𝑯 . In Section 3.3, we analyze zero-lag 504 
representers, i.e. where observations and controls are at the same time (operator 𝑯 has no time 505 
component). 506 
The corrections are computed from the Kalman gain matrix 507 

𝑲 𝜚 ° 𝑷  𝑯   𝑯 𝜚 ° 𝑷  𝑯 𝑹         (12) 508 

multiplied by the member-dependent innovation vector 𝒅 𝒚 𝐻 𝒙 , where 𝒚  denotes the (member-509 
independent) observation vector. The symbol ° denotes the Schur (element-wise) product of two matrices 510 
and 𝜚 is the localization function (Gaspari and Cohn, 1999). Here, unlike the analysis step of a 511 
“stochastic” EnKF (and from the previous Section 2.5.1), we chose not to perturb the observations (i.e. 512 
as in a “deterministic” EnKF, cf. Sakov and Oke, 2008; Yu et al., 2018). There is a trade-off - using 513 
unperturbed observations does lead to the loss of statistical consistency for the second-order moments 514 
and forbids calculating innovation-based diagnostics, but properly calculated EnKF increments for 515 
individual members would be harder to interpret physically because of the observation noise. Convolution 516 
with a localization function in Eq. (12) constrains spurious long-distance correlations resulting from the 517 
small ensemble size. We used a localization Gaussian function with cut-off radius 3° and e-folding scale 518 
0.2°. Vertical localization is not applied to make results as “raw” and easy to interpret as possible. 519 

In Section 3.3, we compute and analyse the multivariate EnKF-type incremental analyses 𝑲 ∙ 𝒅 for the 520 
first two members (001/002) of the three long-range ensembles (EnsP, EnsB and EnsPB), as well as for 521 
different subsets and seasons, using multiple observations together. Thinning techniques are applied to 522 
high density SST and ocean colour L4 observational networks (Zuo et al., 2019), in order to reduce the 523 
computational time and optimize data assimilation performance. 524 
We define specific criteria to assess the skill of the multivariate representers and the incremental analyses, 525 
in the context of different perturbation methods (i.e. Ens0 and EnsP, EnsB, EnsPB). First, we examine 526 
whether the increment correction is large constraining the model ensemble. A subsequent criterion is 527 
whether the increment (regardless of its magnitude) has a physical-biogeochemical meaning attributed to 528 
specific dynamical processes in the area, showing also potential to constrain the ensemble. Additional 529 
criteria are used to investigate the consistency of the increments (a) when calculated from a smaller 530 
number of members (testing whether we have convergence of covariances), (b) for different periods (e.g. 531 
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flow dependent errors relevant to different seasons), (c) when assimilating different datasets (e.g. SST 532 
and chlorophyll a) and (d) their impact on unobserved variables (e.g. SSS). 533 
3 Results 534 
3.1 Ensemble sensitivity experiments 535 
To assess error patterns prior to the seasonal-range ensemble simulations, we ran a series of medium-536 
range ensemble simulations. These small ensembles are useful for tuning the stochastic parameterizations 537 
and to verify that their spreads are moderate compared to the seasonal-range ensembles with longer spin-538 
up period. 539 
In Fig. 4, we present maps for April 30, 2012, of model uncertainties for all medium-range ensembles, 540 
S1-5, SP, SB and SPB, after a one-month spin-up. If we compare the effect on SST of wind perturbations 541 
alone (Fig. 4a) to all perturbations together (Fig. 4f) we see little difference; likewise, for the SSH (Figs. 542 
4g, l). This implies that error regimes for SST and SSH are mainly driven by the wind forcing. Wind 543 
uncertainties have a large impact on upper-ocean uncertainties for both the geostrophic and the Ekman 544 
components, defined by Sverdrup dynamics. Imposing the same perturbation field for both u and v wind 545 
velocities, i.e. not changing the wind azimuth, results in similar uncertainties for the vorticity and Ekman 546 
pumping, further enhancing model errors. 547 
The rest of the perturbed variables locally augment the ensemble spread in filament-like patterns in the 548 
periphery of eddies, near river plumes and over the shelf slope due to energy trapping (cf. Fig. 4 with 549 
respect to Fig. 3). After the wind, air temperature uncertainties have the next greatest impact on SST (Fig. 550 
4b) and chlorophyll (Fig. 5b). Uncertainties in the wind drag coefficient have moderate impact on the 551 
wind stress and consequently on the spread of surface variables. Compared to the spread associated with 552 
uncertainties in the wind forcing they are approximately an order of magnitude smaller (Figs. 4d, j). This 553 
is because the expression for the wind drag coefficient 𝑐  has a correction dependency based on the 554 
different wind speed regimes (i.e. discrete 𝑐  values that the perturbation may be ineffective to change 555 
the class of these values). The ocean response to 𝑆𝐿𝑃 forcing has two components: the first-order Inverse 556 
Barometer (IB), which is isostatic and dominant at large scales, and the second-order non-IB, which 557 
depends mostly on the geographic region. The IB response to 𝑆𝐿𝑃 perturbations has spatial scales that 558 
are equal to or larger than the external Rossby radius and the IB pumping on the abyssal plain (Tai, 1993). 559 
Subtracting the IB response from the SSH leaves us with the non-IB, which in our case has a limited 560 
impact on SST and SSH (Figs. 4c, i). Uncertainties in the bottom drag coefficient amplify error regimes, 561 
mostly for SST and less for SSH, along the shelf break and on the shelves, and especially on the macrotidal 562 
area of the English Channel dynamically controlled by strong tidal currents and fronts (Figs. 4e, k). 563 
Biogeochemical uncertainties arise from the ecosystem model’s intrinsic errors and from errors in the 564 
physical state variables (Fig. 5). All sensitivity experiments perturbing the physics leave an imprint on 565 
chlorophyll uncertainties, which are sometimes significant compared to the values of the control run and 566 
to other model variables, like for instance the SSH and SST. When perturbing only the biogeochemical 567 
model, we implement an identical stochastic pattern across all variables and vertical levels in order to 568 
increase the impact of the method. Since the physics are not perturbed, the biogeochemical uncertainties 569 
are passively advected via the ocean circulation. In all cases, physical model errors are found to have a 570 
larger impact on chlorophyll spread than those of the biogeochemical perturbations. It is straightforward 571 
to see why: if the ocean physics are identical for all members (as is the case for the SB ensemble) it 572 
behaves as a strong dynamical attractor for the system; vertical nutrient fluxes are of course sensitive to 573 
the velocity field and in particular its divergence, the latter scaling over the continental shelf break 574 
(Karagiorgos et al., 2020), a process which might dominate other sources of uncertainty, such as those 575 
of the 𝑆𝑀𝑆 of the biogeochemical model. In general, the spread is largest in SPB where both physics and 576 
biogeochemical perturbations are applied simultaneously. Biogeochemical uncertainties resulting from 577 
errors in the coupled system depend on the geographic location as well. An example is the chlorophyll 578 
uncertainties in the English Channel compared to the mesoscale field in the abyssal plain. 579 
There is a stark geographic difference in spread between nanophytoplankton chlorophyll and diatom 580 
chlorophyll (Figs. 5i-n). This is expected from the different model parameters of the phytoplankton 581 
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classes and the additional requirements in nutrient supply of Si for the primary production of diatoms. 582 
Larger uncertainties are observed for the nanophytoplankton, especially in the open-ocean, whilst diatoms 583 
have larger uncertainties over the shelves and in the English Channel, where errors are dynamically 584 
controlled by tides. It is evident that the uncertainty regimes for each class follow the different size class 585 
chlorophyll abundance patterns in the region (cf. Fig. 5 with respect to Fig. 3), especially during the spring 586 
bloom. 587 
Interestingly, even though model uncertainties are in general larger when both physical and 588 
biogeochemical models are perturbed, a small decrease in chlorophyll spread may be observed over the 589 
abyssal plain in the presence of coherent eddies. This effect is attributed to two facts: (i) the ensembles 590 
are not constrained by data assimilation and therefore model errors with long forecast lead time from 591 
different periods, may partially overlap or even cancel each other with “flow-dependent” errors (also 592 
called “errors of the day”); (ii) sub-mesoscale physical and biogeochemical processes with length scales 593 
smaller than 10 km can be resolved in the abyssal plain (Levy et al., 2012a; 2012b; Charria et al., 2017), 594 
therefore not contributing to the mesoscale error patterns being different in EnsB and EnsPB. This does 595 
not change the fact that the dominant spatial scales in the abyssal plain are characteristic of the underlying 596 
quasigeostrophic mesoscale features, due to the mesoscale vertical velocity field. 597 
3.2 Quantitative evaluation of stochastic model skill 598 
3.2.1 SST L4 gap-free gridded observations 599 
Figure 6 shows examples of consistency metrics, as defined in Section 2.5.1, based on daily innovation 600 
samples. An ensemble of OSTIA SST is compared with EnsP (Figs. 6a, c). The EnsPB ensemble is 601 
statistically identical, since there is no feedback from the biogeochemical model into the circulation 602 
model. The calculations are carried out through the whole period of the seasonal-range ensemble. For the 603 
SP ensemble in Figs. 6b, d, calculations are performed for April 2012. 604 
The model and data ensembles in both regions are consistent with each other since the supports of the 605 
pdfs overlap (Figs. 6a, c). Assimilating these observations, with these error estimates, with an ensemble 606 
or Bayesian filter would probably be well-posed, at least in data space (additional criteria to the pdf 607 
supports may need to be verified). In both regions, the model error estimate is lower than the innovation 608 
spread 𝐷𝑂𝑚𝐸, and the ensemble mean innovation vector 𝑂𝑚𝐸  is mostly contained within the 609 
observational error interval 0.5 °C (Figs. 6b, d), showing that the ensemble is consistent. The spread 610 
indicator slowly evolves in time, mainly increasing, consistently with the fact that the perturbation 611 
mechanism remains active throughout the period. However, there are occasions where the EnsP spread is 612 
reduced and the ensemble envelope is under-dispersive and sometimes biased with respect to the 613 
observational pdf. This occurs over a short period during the spring shoaling of the thermocline and 614 
mainly over the Armorican continental margin. This model overconfidence could be associated with 615 
missing re-stratification processes in our stochastic protocol, such as the vertical subgrid scale physics 616 
like the vertical eddy viscosity and diffusivity coefficients calculated in the turbulent closure scheme, 617 
which are not perturbed. 618 
An interesting feature when comparing the seasonal-range EnsP and medium-range SP ensembles, is that 619 
the SST model errors over the abyssal plain increase with similar rates given a forecast lead time of a few 620 
days (Fig. 6d), despite the fact that they have different numbers of members and initial conditions (i.e. 621 
December 2011 for EnsP and April 2012 for SP). The stochastic restarts in these two experiments are 622 
identical and therefore the stochastic fields applied in the perturbed variables and parameters are alike. 623 
However, after this initial period of a few days’ forecast lead time the model errors appear to increase 624 
with different rates, pertaining to the different ocean-atmosphere states during December for EnsP and 625 
April for SP. The latter is more apparent in the Armorican margins area (Fig. 6b). 626 
In Figs. 6b, d, we compare the EnsP SST spread with the reference ensemble Ens0 (Vervatis et al., 2016). 627 
Both stochastic approaches in Ens0 and EnsP ensembles can be considered as variants of the perturbed 628 
tendency scheme. In the case of the AR(1) processes we have the option to perturb several variables in 629 
EnsP, compared to the stochastic modelling of only the wind forcing in Ens0. Therefore, the former yields 630 
a larger SST spread during winter and at the end of the run, with their differences ranging between about 631 
0.05 °C to 0.1 °C, and with larger differences observed in the open-ocean. At the end of the run, both 632 
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ensembles become biased with respect to the observations (more so over the shelves; cf. also Vervatis et 633 
al., 2016 for Ens0 and Figs. 6b, d for EnsP), since they are not constrained by data assimilation. During 634 
spring, in the presence of a strong thermocline, the spread is reduced in both ensembles and regions 635 
(though more over the shelf), suggesting that there are missing error processes in both stochastic protocols 636 
(i.e. in addition to the wind for Ens0 and all variables perturbed in EnsP). 637 
3.2.2 SLA L3 along-track observations 638 
The data space consistency analysis for EnsP SSH is carried out with the sea-level L3 along-track product 639 
in Table 2. Figure 7a shows the distributions corresponding to averages of all SLA along track 640 
observations crossing the BISCAY36 domain, as well as the EnsP and Ens0 supports of pdfs in data space. 641 
Both model ensembles appear to have more energy at the weekly timescale, occasionally at shorter 642 
timescales, and overall at the seasonal timescale compared to the observations. The minimum levels of 643 
spread in both model and data are reached in mid-February, 2012; for the rest of the simulation the SLA 644 
model equivalent shows larger variability than the data. There is a notable difference in spread between 645 
the EnsP and Ens0 ensembles, with the former’s being greater possibly because of the SLA response to 646 
𝑆𝐿𝑃 perturbations, as well as the different stochastic approaches in the wind perturbations. EnsP model 647 
uncertainties are comparable with those of the observational error at 0.05 m, reaching a few cm in 648 
magnitude. 649 

We also find that in about one-third of cases the 𝑂𝑚𝐸  stays within the observational error interval 650 
(Fig. 7b). The most consistent configuration is over the abyssal plain, where the spread is increased due 651 
to mesoscale decorrelation of eddies after spin-up. In contrast, the largest statistical biases are observed 652 
in coastal regions and in the English Channel. This is also confirmed by the box-and-whisker plots that 653 
are plotted for several regions (Figs. 7c-e). These serve as a means to visualize both the distributions and 654 
their consistency. There are many cases where the joint uncertainty associated with both sources of 655 
information is clearly nonzero. However, several instances of strong bias are evident in two of the regions, 656 
sometimes to the point that the supports of the pdfs become disjoint, e.g. during the week between 06 to 657 
12 March, 2012 (Figs. 7c-e). If those pdfs are used in an Ensemble filter, disjoint supports will lead to ill-658 
posed assimilation problems, meaning that a solution will be obtained since all analysis schemes are 659 
convex, but the result will be meaningless. 660 
When inconsistencies occur, it is generally because other error processes are active in the model in 661 
addition to the ones generated by the range of EnsP perturbations. This is more apparent in Ens0, since 662 
in this particular ensemble there are no perturbations in 𝑆𝐿𝑃. Both ensembles appear to be occasionally 663 
under-dispersive. In the English Channel, there are missing error processes such as the residual tidal error, 664 
which is enhanced by the presence of local tidal fronts and occasional Kelvin waves propagating along 665 
the coasts, and the non-isostatic response to atmospheric pressure (e.g. the non-IB response). The missing 666 
error sources are also particularly evident in the English Channel, hinting at the presence of high-667 
frequency errors currently unaccounted for, although we cannot currently identify them with the tools at 668 
hand. Another possible reason for the observed statistical inconsistency is the low coverage of altimeter 669 
observations. This is exacerbated by the larger errors which altimetric data are subject to in coastal areas, 670 
which leads to less available data there. Future wide-swath altimetry products (e.g. SWOT, 671 
https://swot.jpl.nasa.gov/) are likely to provide better coverage in coastal regions and stronger constraints 672 
on models overall. 673 
3.2.3 Ocean colour L4 gridded observations 674 
Figure 8 shows results of biogeochemical ensembles and innovation statistics in the data space assuming 675 
an observational error of 0.3 mg/m3. Innovation statistics are calculated in log space applying an 676 
anamorphosis function to transform chlorophyll lognormal distributions into Gaussian distributions. The 677 
lognormal assumption for chlorophyll a has shown advantages in data assimilation systems (Song et al., 678 
2012). Among the seasonal-range ensembles the EnsPB exhibits the largest chlorophyll spread, with EnsB 679 
being the least dispersive, as seen in the medium-range ensembles (Fig. 5). The model ensemble in the 680 
Armorican shelf shows a strong bias with respect to the ocean colour data, with disjoint pdfs supports that 681 
may lead to an ill-posed assimilation problem if those error estimates were used in a data assimilation 682 
system. On the other hand, in Fig. 8c, the EnsPB model-data samples appear to be marginally compatible 683 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



15 
 

with each other over the abyssal plain (also for EnsP and EnsB, not shown). There are also periods with 684 
disjoint pdfs supports with the most prominent in late March. During this period, observations show a 685 
strong phytoplankton bloom in the open-ocean, weakly present in all ensemble members (but with the 686 
correct phase), resulting in disjoint pdfs. Subsequent, less intense blooms in the open-ocean just before 687 
and after this event are also found in both model and data samples, and in those cases the pdfs overlap 688 
partially. Just as with the previously discussed SST and SLA networks, assimilating these ocean colour 689 
observations with these error estimates in the open-ocean would probably be marginally well-posed, in 690 
the sense that the joint probability associated with both sources of information appears to be nonzero only 691 
at times. The most consistent configuration for EnsPB after the spin-up period appears to be May-June 692 
and only for the abyssal plain. 693 
In Figs. 8b, d, we illustrate the innovation metrics defined in Section 2.5.1. All biogeochemical model 694 
ensembles are under-dispersive during the first three months of the simulation, associated also with the 695 
fact that primary production is low in winter. After this period dispersion slowly increases over time. 696 
Towards the end of the run chlorophyll uncertainties in the Armorican shelf exceed 0.15 mg/m3 (Fig. 8b). 697 
These model errors are small compared with the chosen observational error and with ocean colour data 698 
measured by satellite, often yielding a model-data misfit at about ~1 mg/m3. However, considering that 699 
chlorophyll has a lognormal distribution with near-zero positive values, they are not small with respect 700 
to the model’s overall chlorophyll concentration of about 0.3 mg/m3. In the abyssal plain, the model-data 701 
ensemble mean misfit expressed by the 𝑂𝑚𝐸  metric, is well defined within the observational error 702 
interval for most of the period, except during the phytoplankton bloom observed in spring (Fig. 8d). In 703 
general, the control run underestimates chlorophyll abundance compared with ocean colour data and 704 
subsequently leads to under-dispersive biogeochemical model ensembles. Inconsistency is mostly 705 
attributed to the low bias. An examination of the temporal evolution of the spread resulting from different 706 
stochastic protocols, reveals that chlorophyll uncertainty variations are mainly controlled by physical 707 
processes and their errors. Biogeochemical processes and their uncertainties have only a moderate impact 708 
on model errors, one reason could be the unaccounted errors in nutrient initial conditions (cf. 709 
supplementary material using the world ocean atlas nutrient climatology; Garcia et al., 2018), except 710 
during periods of phytoplankton blooms where both components of the coupled system are important. In 711 
line with this, biogeochemical model errors are higher during periods of high biological productivity, than 712 
in periods of low biological productivity (e.g. comparison of EnsPB and SPB in Figs. 8b, d). 713 

Examining the mean model spread for all ensembles against the mean spread of the innovation 𝐷𝑂𝑚𝐸, 714 
the former is always contained within the latter (Figs. 8b, d). However, this is not sufficient to verify 715 
consistency. This is because there is a constant bias of greater amplitude than the model dispersion, 716 
especially in coastal regions.  717 
3.3 Qualitative assessment of stochastic model skill through its impact on multivariate 718 
incremental analysis 719 
3.3.1 Ensemble-based single observation representers 720 
In Figs. 9a-f, we illustrate examples of zero-lag representers for three individual observations in different 721 
locations on May 07, 2012. In order to address the qualitative criteria in Section 2.5.2, the representers 722 
are calculated from 40 members of EnsP (Figs. 9a-d), also from a 20-member subset of EnsP (Fig. 9e) 723 
and finally from 40 members of Ens0 (Fig. 9f), and are shown as correlations between SST and other 724 
surface variables of the control vector. The correlation structures reveal differences between the abyssal 725 
plain and coastal areas, as well as between variables. In the English Channel and over the south Armorican 726 
shelf, the filament-shaped structures for SST, SSS and surface chlorophyll are linked to near-shore 727 
features, such as river discharges (e.g. Loire river plume), mid-shelf thermal fronts and tidal fronts. The 728 
SSS pattern is dipolar, which could be explained by meridional plume displacement (Fig. 9b). Spring 729 
bloom is suggested by the negative correlation between SST and chlorophyll over the shelf (Fig. 9d). As 730 
the surface layers heat up during spring plankton depletion follows the bloom. 731 
SST and SSH are largely decorrelated in the domain, probably because of the large-scale atmospheric 732 
forcings directly influencing SST in the spring, as well as low-frequency mesoscale variability (Fig. 9c). 733 
Due to the mixed conditions over the inner shelf at that time of year, the SSH response is relatively large-734 
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scale as it is associated with barotropic processes at the scale of the external Rossby radius. In the case of 735 
smaller ensembles, i.e. 20 members (Fig. 9e) or under-dispersive ensembles, i.e. SSH in Ens0 (Fig. 9f), 736 
correlations due to partially-converged statistics increasingly contaminate the pattern of representers. 737 
These patterns are however not very different from those of larger or more dispersive ensembles, at least 738 
in their general shapes and signs, and mostly the correlations or negative correlations are amplified. 739 
Similar results of rather broad and symmetrical structures are also found in the case of SSH single 740 
observation representers (not shown). Model errors associated with SST and SSH, at that time of the year 741 
and for those ensembles, may have a limited impact on the ensemble model skill. 742 
Zero-lag representers of single-observation ocean colour data are calculated from EnsPB. The most 743 
important finding is that correlations behave differently in the open-ocean and over the shelves (Figs. 9g-744 
i). Chlorophyll autocorrelation structures appear broad and symmetrical (with respect to the single-745 
observation location) in the open-ocean, with scales dictated by the vertical velocity field of the 746 
underlying mesoscale features. This is in agreement with the biogeochemical model error regimes for the 747 
medium-range ensembles depicted in Fig. 5. Over the shelves, chlorophyll correlations are more dipolar 748 
in nature, when calculated for instance with respect to the SST and SSS fields, representing smaller-scale 749 
local conditions. Filament-shaped structures of negative correlations between chlorophyll and SST are 750 
seen again with the EnsPB stochastic protocol, indicating that model errors in primary production are 751 
mainly controlled by model uncertainties in physical processes, implying once again the possibility to 752 
improve ecosystem model skill performance by perturbing the physics alone. 753 
3.3.2 Incremental analysis using SST L4 754 
In this section, we qualitatively assess the data assimilation impact of the stochastic model in correcting 755 
the surface variables at analysis time. In Figs. 10a, b, we illustrate the SST correction of the first two 756 
members 001 and 002 on May 07, 2012, using the prior error covariance matrix 𝑷  (in a decomposed 757 
form of the square root matrix 𝑺  as in Eq.(10)) from all 40 members of EnsP and assimilating the OSTIA 758 
SST dataset. SST corrections are consistent between members, suggesting that they are meaningful and 759 
that they could enhance model skill. The increments reveal a large-scale north-south pattern, which is 760 
consistent with the dynamics of the region and the model’s cold bias with respect to the observations for 761 
this period over the Irish shelf and the English Channel. They also correct mesoscale processes over the 762 
abyssal plain and shelf processes near the river plumes. An interesting feature is the correction of the Bay 763 
of Biscay sub-gyre located between 4°-6°W and 44°-46°N, confirmed by consistent increments in SSH, 764 
SSS and especially in surface total chlorophyll, this last hinting at sub-gyre scale changes in the vertical 765 
velocity (Figs. 10c-e). Increments of opposite signs for SST and chlorophyll indicate that physical 766 
processes in the Bay of Biscay, such as tidal mixing, slope currents, river plumes and open-ocean 767 
mesoscale activity, play an important role in the biological productivity of the area. Nonzero chlorophyll 768 
corrections, calculated by cross-covariances of the coupled system, offer potential for improving 769 
ecosystem model skill, even if only physical data are assimilated. 770 
In order to qualitatively evaluate the impact of EnsP on the 3D temperature, salinity and chlorophyll 771 
model update, we examine the increment profiles for the first member 001 at two specific locations over 772 
the abyssal plain and the Armorican shelf (Fig. 11). The increments are able to capture the region’s 773 
spatiotemporal variability over two different seasons and in areas with different characteristics, 774 
suggesting that model skill performance depends on flow-dependent errors in the physics and 775 
biogeochemistry. The correction profiles reflect a fairly deep mixed layer in winter and a shallower mixed 776 
layer in spring, with chlorophyll changes at sub-surface layers hinting at ongoing bloom-related changes. 777 
The increments are associated with the shallow thermocline depth during spring (~10-30 m) and with the 778 
depth of the euphotic layer (~40-50 m) influencing the sub-surface vertical corrections of chlorophyll. 779 
Over the abyssal plain, at depths greater than 1000 m the vertical T/S corrections are possibly linked to 780 
the upper-ocean low-frequency mesoscale circulation, which affects the deep vortex dynamics. This is an 781 
intriguing result showing that deep model errors can be controlled by ensemble-based data assimilation 782 
methods, in which model ensembles are generated by perturbing surface variables and assimilating data 783 
of near-surface ocean properties. 784 
3.3.3 Incremental analysis using ocean colour L4 785 
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In Fig. 12, we see that most of the total chlorophyll correction on May 07, 2012, as seen from the 786 
increments of the first member, arises from uncertainties in the physics (i.e. EnsP and EnsPB), though 787 
biogeochemical model uncertainties in most areas in the domain are still significant. We focus on that 788 
specific date, because of the good spatial data coverage (ensembles are projected in data space in Figs. 789 
12d-f), in order the analysis to be meaningful. When the physics are not perturbed (i.e. EnsB) one can see 790 
coherent mesoscale features in the correction (e.g. over the abyssal plain), since the physics and hence 791 
the dynamics are the same for all members. At 15 m depth, a signature of the ocean bottom relief can be 792 
seen in the correction fields, perpendicularly to the seabed features (resulting in a parallel crest signal) 793 
over the Celtic shelf near 7°-8°W and 48°-49°N. Biogeochemical processes and consequently ecosystem 794 
model performance are sensitive to bottom Ekman flow transport due to nutrient upwelling, especially in 795 
shallow shelf regions, and possibly to internal tides and waves induced by barotropic tides and winds. 796 
High positive increments over the shelves for all three ensembles suggest that chlorophyll abundance is 797 
underestimated in those areas during subsequent spring blooms (Figs. 12a-c). This holds true over the 798 
continental shelf break near 3°-4°W and 46°-47°N, an area dynamically controlled by both barotropic 799 
and baroclinic tidal processes, which contribute to vertical mixing and enhance primary production. It is 800 
worth noting that in some coastal areas where the coupled system appears to underestimate chlorophyll 801 
abundance, a very small correction is applied instead, due to model overconfidence (i.e. under-dispersive 802 
ensembles lacking model skill) with respect to observational errors. In order to qualitatively assess the 803 
ensemble model skill, we may compare the chlorophyll increments contributed by different observational 804 
networks. Figure 10e and Fig. 12a present different correction patterns when different observations are 805 
assimilated, hinting at dissimilar processes captured by the prior error covariance matrices in combination 806 
with each network, in these cases by SST or ocean colour respectively. Here the chlorophyll correction is 807 
rather small when ocean colour is not assimilated, possibly because of weak cross-covariances between 808 
ocean physics and biogeochemical properties. Interestingly, we observe different signs in the increments, 809 
e.g. over the Celtic shelf, as calculated from the different model ensembles of the coupled system (Figs. 810 
12a-c), and in particular between EnsP perturbing only physics and EnsB perturbing only 811 
biogeochemistry sources and sinks. In the present configuration, we conclude that the assimilation of 812 
ocean colour is important, and the specific stochastic method less so, when we seek to enhance model 813 
performance in marine ecosystems. 814 
3.3.4 Incremental analysis using both SST L4 and ocean colour L4 815 
In this section, we qualitatively assess the multivariate impact of the stochastic model in both temperature 816 
and total chlorophyll, from two different observational networks assimilated simultaneously, namely the 817 
OSTIA SST L4 and the ocean colour L4 (cf. Table 2). The changes that the extra observation network 818 
brings to the analyses vary from moderate to locally large for all variables. In Figs. 13a-d, we depict the 819 
correction fields for May 07, 2012 of the state vector surface variables for the first member, based on 820 
ensemble covariances of EnsPB with 40 members. 821 
The north-south SST correction pattern is not as distinct as that when assimilating only OSTIA SST, 822 
especially in the English Channel area (Fig. 13a vs. Fig. 10a). In addition, the increments are greater, 823 
especially over the Irish shelf. This last aspect is also true for other surface variables, such as the SSH 824 
and SSS (Figs. 13b-c vs. Figs. 10c-d). We attribute this effect to the presence of ocean colour data in a 825 
situation where error pdfs might be disjoint, even when the data assimilation problem is convex, which 826 
suggests weak ensemble model skill. In these situations, the analysis scheme possibly impacts 827 
biogeochemical properties more than the ocean physics do. Similarly, chlorophyll correction values are 828 
moderately decreased when both observational networks are assimilated, compared to the analysis when 829 
assimilating only ocean colour (Fig. 13d vs. Fig. 12c). Compared to the correction of physical properties, 830 
the chlorophyll increments seem to be less sensitive to changes when multivariate observing networks 831 
are brought together. Thus, the ensemble ecosystem model skill appears to be less sensitive compared to 832 
the ocean model skill when ocean colour is assimilated, along with other more traditional networks like 833 
SST. 834 
We investigated the convergence of covariances and its impact on the incremental analysis to assess 835 
model performance, incorporating different ensembles and ensemble sizes (i.e. how effective are the 836 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



18 
 

ensembles EnsP vs. EnsPB and 10 vs. 40 members at extracting reliable covariances; Figs. 13a, d, e-h). 837 
Differences in the SST analyses between EnsPB and EnsP with 40 members in a multivariate context are 838 
minor (Fig. 13a vs. Fig. 13e). If we use fewer ensemble members, the analyses for both ocean physics 839 
and biogeochemistry properties resemble the correction patterns of larger ensembles. However, the 840 
increments are noticeably less smooth because covariances are calculated from partially converged 841 
statistics (Figs. 13e-f vs. Figs. 13g-h). As a final remark, we note that when chlorophyll is assimilated in 842 
conjunction with OSTIA SST, the analysis scheme moderately affects small scale processes for all 843 
variables, augmenting the increment values around coherent ocean dynamical features; this is suggestive 844 
of good stochastic model skill. 845 
4 Discussion and conclusions 846 
In this paper, Part 1 of a two-part series, we evaluated the skill of a NEMO-based physical-847 
biogeochemical stochastic model. To build this stochastic model, existing NEMO stochastic modules 848 
were complemented by integrating a 2D Gaussian function to introduce spatial correlations in the 849 
stochastic perturbations. Brankart et al. (2015) generated correlations by applying a spatial filter in global 850 
and regional coarse domains. Here, the correlations have variable and anisotropic spatial scales, which is 851 
of particular importance in high-resolution coastal configurations. Another option would have been to use 852 
a tensor form that would make those patterns coast-aware (Barth et al., 2009). We decided not to follow 853 
that route here, since this would have added significant complexity while, we felt, not being critical for 854 
the specific BISCAY36 configuration (e.g. there are not many islands and islets) and for the variables we 855 
chose to perturb (e.g. atmospheric forcing). Recursive filters and Gaussian functions have been used in 856 
the literature to calculate correlation lengths, but most of them focused on large spatial scales in coarse 857 
global domains and few of them have been used recently for biogeochemistry (Storto et al., 2014; Kuhn 858 
et al., 2019). 859 
Our stochastic implementation was based on the SPPT and SPP schemes, and first-order autoregressive 860 
processes (Brankart et al., 2015; Ollinaho et al., 2017), applied to several sources of model uncertainties 861 
in the coupled system. These uncertainties emerge mainly from atmospheric forcing uncertainties, model 862 
errors in physical parameterizations and biogeochemical model sources and sink term uncertainties. Wind 863 
uncertainties were found to dominate all other atmosphere-ocean sources of model errors. 864 
Biogeochemical model uncertainties resulting from perturbations in physics were greater than those 865 
perturbing the 𝑆𝑀𝑆 concentration of the biogeochemical tracers. 866 

Sensitivity studies of the stochastic model, e.g. with respect to (1) initial and boundary conditions (biases 867 
in this stochastic context), (2) parameter lognormal perturbations (Ollinaho et al., 2017), and (3) 868 
perturbations of the unresolved scales, would be an ulterior step and are not included in this study. 869 
The quantitative assessment of ensembles with respect to the gridded gap-free OSTIA SST L4, assuming 870 
an observational Gaussian error of 0.5 °C standard deviation, suggests that the seasonal-range ensembles 871 
where only the physics were perturbed are fairly consistent with the data distribution. Analysing the 872 
consistency of the ensembles with respect to the along-track SLA L3 CMEMS product (observational 873 
Gaussian error of 0.05 m standard deviation), we could see the presence of strong biases between the 874 
model and along-track data distributions. All ensembles were under-dispersive for sea-level, especially 875 
in coastal regions. The sea-level model-data misfits were found to be associated with strong SSH spatial 876 
gradients, in particular in the shelf regions such as the English Channel and Celtic Sea. High-frequency 877 
error processes are currently unaccounted for in the English Channel (e.g. open boundary conditions in 878 
the English Channel, which do not deal properly with high-frequency processes). Probabilistic attribution 879 
approaches (see e.g. Hannart et al., 2016), in addition to the quantitative assessment presented in this 880 
study, may provide more insight. 881 
Our consistency analysis in log-space showed a statistical spin-up time for chlorophyll on the order of 3 882 
months. During this spin-up period the biogeochemical model ensembles EnsP, EnsB and EnsPB were 883 
under-dispersive and biased with respect to gridded ocean colour L4 data to which a log-transformed, 884 
observational Gaussian error of 0.3 mg/m3 standard deviation was applied. Statistical consistency was not 885 
always maintained for chlorophyll as it was for SST and, to a lesser extent, for SSH. It is difficult to 886 
attribute those error patterns to specific physical or biogeochemical processes, without a further 887 
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probabilistic attribution analysis. The investigation of uncertainty regimes for other state variables of 888 
PISCESv2 is beyond the scope of this study, however we mention in passing that the observed error 889 
patterns in upper-ocean ecosystem properties, for instance for zooplankton and nutrients, are similar to 890 
those of chlorophyll (not shown). 891 
The low chlorophyll bias may be a sign that the biogeochemical model’s initial conditions for our 892 
ensembles (after the 5-month control run spin-up) are incorrect (cf. supplementary material using the 893 
world ocean atlas nutrient climatology; Garcia et al., 2018). Perturbing the physical forcing and the 894 
biogeochemical 𝑆𝑀𝑆 terms cannot properly account for uncertainties in the initial biogeochemical state. 895 
These initial uncertainties could lead to unrealistic adjustments in the properties that are being perturbed. 896 
Finally, we used the stochastic model output to generate multivariate increments, by means of representers 897 
and EnKF-type analyses with the aim to provide a qualitative assessment step towards developing an 898 
assimilation scheme. One objective was to assess the impact of observations on unobserved variables, 899 
such as other data types or subsurface variables. Specific qualitative criteria were used to assess the 900 
stochastic model skill at analysis time. 901 
Based on these qualitative criteria, we summarize here the most important findings in the incremental 902 
analysis, arranging them into three broad categories. (i) Concerning the physics alone: corrections to 903 
physical properties are associated with large-scale biases between the open-ocean and the shelves; small 904 
scale local corrections are mainly visible over the shelves in near-shore coastal areas, which may be 905 
explained by meridional river plume migration, mid-shelf thermal fronts, barotropic tides and possibly 906 
baroclinic tides. (ii) Concerning the vertical profiles: incremental analysis on the water column structure 907 
reveals vertical changes linked to seasonal variability of the thermocline, such as for example the extended 908 
mixed layer depth in winter and the spring shoaling of the thermocline; increments are also observed at 909 
depths near the euphotic layer (~40-50 m) controlling the sub-surface vertical corrections of chlorophyll. 910 
(iii) Concerning the interplay between the physics and the biogeochemical model: the scales of the 911 
correction patterns in the abyssal plain are often characteristic of the underlying quasigeostrophic 912 
mesoscale features associated with vortices; most of the chlorophyll correction arises from uncertainties 913 
in the physics, but biogeochemical model errors tend to enhance this effect; as expected, assimilating 914 
chlorophyll has a measurable impact on physical variables, e.g. when assimilating both ocean colour and 915 
SST datasets, the increments are larger than when assimilating SST only. 916 
Results from the two assessment approaches in Sections 3.2 and 3.3 are analysed together in an attempt 917 
to evaluate the model skill in physics and biogeochemistry. The skill of the perturbation method at 918 
properly estimating model errors is in general improved for physics, though data assimilation performance 919 
to correct these errors depends strongly on the multivariate analysis. The biogeochemical model is not as 920 
sensitive as the physical model to the multivariate analysis and its skill is mainly defined by the 921 
assimilation of chlorophyll. The biogeochemical model errors appear to be complementary to those of the 922 
dynamical model alone and they contribute moderately to the incremental analysis. However, both 923 
increments derived from stochastic physics and biogeochemistry have marked differences in their spatial 924 
patterns. In some specific areas, the stochastic perturbations in physics and biogeochemistry lead to an 925 
under-dispersive spread. This is a weakness of the stochastic model which results in a limited impact of 926 
data assimilation in these areas, especially on the biogeochemical variables. 927 
As our ensembles were sometimes found to be under-dispersive, for future efforts additional approaches 928 
should be envisaged to augment ensemble spread, in particular for biogeochemical variables; to list just 929 
a few: (a) inflation techniques (Hamill et al., 2001; Anderson, 2009) in the initial conditions may open 930 
some degrees of freedom in the first few time-steps of the model run, (b) perturbing the biogeochemical 931 
parameters (see also Garnier et al., 2016) in addition to 𝑆𝑀𝑆 concentrations, (c) activation of the feedback 932 
of biology onto the physics in the NEMO-PISCESv2 coupled system, and (d) incorporating atmospheric 933 
ensembles, such as the ECMWF Ensemble Prediction System (https://apps.ecmwf.int/archive-934 
catalogue/). 935 
Uncertainties in the open boundary conditions, either in the numerical scheme or in the prescribed values 936 
for active boundaries, are expected to contribute significantly to the model error budget (see also Kim et 937 
al., 2011). So, it is natural to consider perturbing the open boundary conditions. This would very likely 938 
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lead to an increase in the ensemble spread from the surface to at least 1500 m. However, perturbing the 939 
open boundaries is not straightforward: first because of the need to ensure physical consistency between 940 
the perturbed variables, and second because the errors in the prescribed fields at the open boundaries are 941 
usually unknown. A favorable solution is when an ensemble of nesting (or parent) solutions is available 942 
and provides an estimate of open boundary uncertainties to the child model (Ghantous et al., 2020). 943 
However, in the absence of a larger-scale ensemble to force the boundaries, a boundary error would 944 
appear to the stochastic model as a systematic error (bias) across all members, which was beyond the 945 
scope of this paper, but will be important to address in the future. 946 
The success of physical-biogeochemical data assimilation will also depend on different observational 947 
networks brought together, e.g. remote sensing in synergy with in-situ observations, and their multivariate 948 
nature (Song et al., 2016; Verdy and Mazloff, 2017; Mattern et al., 2017; Mattern et al., 2018; Kaufman 949 
et al., 2018; Ford, 2019; Goodliff et al., 2019). Regarding  in-situ observations, the increasing availability 950 
of high-resolution profiles provided by Biogeochemical-Argo floats (http://biogeochemical-argo.org), 951 
enables us to investigate the ocean interior across a wide range of spatiotemporal scales. The development 952 
of the Biogeochemical-Argo network is expected to substantially improve the quality of biogeochemical 953 
models, by incorporating vigorous validation, improved parameterizations (Wang et al., 2020), and novel 954 
data assimilation techniques, including ensemble-based methods (Yu et al., 2018). 955 
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Appendix A: Spatial correlation length scales 969 
The response function of the first-order Shapiro filter (Shapiro, 1970) measures the skill of the filter to 970 
attenuate noise and is given by the equation 𝑅 𝑐𝑜𝑠 ∙ 𝜋 ∙ 𝑑𝑥 𝐿⁄ , where 𝑑𝑥 the mesh grid resolution 971 
and 𝐿 the correlation length scale produced after repeated iterations 𝑚. Figure A1 shows the performance 972 
of the Laplacian-Shapiro filter to attenuate noise for two different mesh grid resolutions. Figure A1a refers 973 
to a coarse-resolution domain at 1 4°⁄  (e.g. ORCA025, 𝑑𝑥~25 km) and Fig. A1b refers to a high-974 
resolution domain at 1 36°⁄  (e.g. BISCAY36, 𝑑𝑥~2.5 km). For the coarse-resolution domain the Shapiro 975 
filter is able to attenuate noise efficiently (e.g. in most cases more than 50%) and produce long-range 976 
correlations of a few hundreds of kilometres. For the high-resolution domain the Shapiro filter may 977 
introduce length scales of a few tens of kilometres, but the noise is not attenuated for the large scales (cf. 978 
also Fig. 2h). 979 
Figure A2 shows the first and second order statistical moments of two different methods for performing 980 
stochastic modelling of the wind forcing. In this study, we introduced wind uncertainties by means of 981 
SPPT AR(1) processes and a 2D Gaussian function with length scales 𝜎 , ~1° (Fig. A2a). In a previous 982 
study, we used EOF modes to generate wind forcing uncertainties (Vervatis et al., 2016). The most 983 
important attribute of both methods is that they have similar ensemble means (and their ensemble means 984 
are also similar to the unperturbed wind; not shown), whilst there are marked differences in their ensemble 985 
spreads. 986 Jo
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 987 
Figure A1 Response function 𝑅  (no units) and noise attenuation (%) of the Laplacian-Shapiro filter 988 
for different number of iterations 𝑚, as a function of the correlation length scale L (km) and for different 989 
model resolutions: (a) 𝑑𝑥~25 km, (b) 𝑑𝑥~2.5 km. 990 

 991 
Figure A2 (a, b) EnsP and Ens0 wind ensemble spread, and (c, d) wind ensemble mean on May 07, 992 
2012. Stochastic modelling in EnsP is by means of SPPT AR(1) using a 2D Gaussian function with length 993 
scales 𝜎 , ~1° and in Ens0 by using EOF modes (Vervatis et al., 2016). Colorbar units in m/s. 994 

Appendix B: Computational resources and performance 995 
We briefly present here the most recent setup compiling and running the code at ECMWF HPCF. The 996 
model ensembles were generated on CCA and CCB clusters, which are Cray XC40 systems integrating 997 
Intel Broadwell nodes, with 36 cores per node and 128 GB (2400 MHz DDR4) memory per node. The 998 
code was compiled under the Intel Broadwell software environment using the Cray Development Toolkit 999 
(CDT) cdt/17.03, with intel/17.0.3.053 compiler, and the following libraries: cray-netcdf-1000 
hdf5parallel/4.4.1.1 and cray-hdf5-parallel/1.10.0.1. The same environment was used for the compilation 1001 
of XIOS version 2.0. We used -O3 optimization in the FCFLAGS of the compilation architecture file. 1002 
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The model output consists of daily files of the ocean state vector and the two classes of chlorophyll, as 1003 
well as three-day averages of 14 3D-biogeochemical variables. 1004 
We made used of NEMO’s enhanced MPI strategy whose features allow for parallelization in both the 1005 
spatial domain and across ensemble members (Bessières et al., 2017). Ensemble simulations were then 1006 
carried out by just one call of the executable of the coupled NEMO-PISCESv2 system. BISCAY36 scales 1007 
out using 96 processor cores of domain decomposition per ensemble member, excluding land processors. 1008 
The configuration used the NEMO I/O and was connected to an external server (i.e. XIOS controlled by 1009 
an XML file), thus increasing the total number of processors for the ensemble simulations, including 1010 
those handling the I/O specifications (i.e. model variables, domains, grid, output frequencies etc.). Our 1011 
ensemble experiments were designed to fit the scalability limits encountered in current operational 1012 
systems. Vervatis et al. (2016) showed that with increasing ensemble size, results for BISCAY36 1013 
converge in the range of 20 to 40 members. We used the same range of members resulting in a scalability 1014 
problem of the order of 10  cores. 1015 

Taking into account the ECMWF's hardware and software specifications, we tested the following resource 1016 
geometries: (a) for 10 members, we used 960 NEMO processors and 48 XIOS servers filling a total of 28 1017 
nodes, and (b) for 20 members, we used 1920 NEMO processors and 24 XIOS servers filling a total of 1018 
54 nodes. The ensemble simulations were submitted as batch jobs for a 30-day run. For these examples, 1019 
the ECMWF's job epilogue during production indicated a runtime average of about 489 minutes, with 1020 
runtime standard deviation of approximately 29 minutes, including the first and last reading and writing 1021 
time-steps. 1022 
Appendix C: Notation for ensemble-based innovation metrics 1023 

Let us note 𝑌 𝑦 , 𝑦 ,  the ensemble mean of the innovation for observation 𝑛 as: 1024 

𝑌 ∑ 𝑦 , 𝑦 ,           (C1) 1025 

where 𝑗 1, … ,𝑁 the size of the ensemble and 𝑛 1, … ,𝑝 the number of observations. With this 1026 
notation, 𝑂𝑚𝐸  in Eq. (7) writes: 1027 

𝑂𝑚𝐸 ∑ 𝑌            (C2) 1028 

as the sum over 𝑝 observations of the ensemble mean of the innovation. From Eq. (8) the square of 𝑂𝑚𝐸 1029 
writes: 1030 

𝑂𝑚𝐸 ∑ ∑ 𝑦 , 𝑦 ,         (C3) 1031 

We now take the square of 𝐷𝑂𝑚𝐸 from Eq. (9) using the 𝑌  notation in (C1) as: 1032 

𝐷𝑂𝑚𝐸 ∑ ∑ 𝑦 , 𝑦 , 𝑌        (C4) 1033 

This can be written: 1034 

𝐷𝑂𝑚𝐸 ∑ ∑ 𝑦 , 𝑦 , ∑ 𝑌       (C5) 1035 

and using Eq. (C3) we get: 1036 

𝐷𝑂𝑚𝐸 𝑂𝑚𝐸 ∑ 𝑌          (C6) 1037 

If 𝑂𝑚𝐸 0 then from Eq. (C2) we get ∑ 𝑌 0. In general, this yields ∑ 𝑌 0 and 1038 
subsequently 𝐷𝑂𝑚𝐸 𝑂𝑚𝐸 as seen from Eq. (C6), unless we have an unbiased system, i.e. no biases 1039 
between model and observations with 𝑌 0, ∀𝑛. 1040 
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amplitude (1std: 𝜎 no units) of the 2D Gaussian distributions (prior to the anamorphosis function if 1277 
applied). The spatial correlation value for the bottom drag coefficient 𝑐  is an approximation after 100 1278 
passes of the Laplacian operator. Ens0 is a seasonal-range ensemble performing stochastic modelling of 1279 
the wind forcing based on EOF modes (Vervatis et al., 2016). 1280 

experiment perturbed 
variables 

uncertainty 
amplitude (𝜎) 

correlation 
timescales (𝜏) 

spatial scales 
(𝜎 , ) distribution 

CR one-year unperturbed free run (July 2011-June 2012) 
Ens0 wind perturbations based on EOF modes (Vervatis et al., 2016) 
 atmospheric forcing 

S1 𝑈  0.3 3 days 1° Gaussian 

S2 𝑇  0.1 15 days 2° Gaussian 

S3 𝑆𝐿𝑃 0.01 5 days 3° Gaussian 

 ocean model parameterizations 

S4 𝑐 , 𝑐 , 𝑐  0.1 3 days 0.5° Gaussian 

S5 𝑐  0.2 30 days 0.2° Laplace flt* 

 synthesis of ocean-atmosphere model uncertainties 

SP S1-5 medium range ens (April 2012; 20 mem) 
EnsP SP seasonal range ens (December 2011–June 2012; 40 mem) 
 biogeochemical state 

 ocean-atmosphere state identical to the CR for all members 
 0.6 10 days 0.5° Lognormal** 

SB 𝑆𝑀𝑆 𝐶  medium range ens (April 2012; 20 mem) 

EnsB SB seasonal range ens (December 2011–June 2012; 40 mem) 
 synthesis of coupled ocean-biogeochemical model uncertainties 

SPB SP+SB medium range ens (April 2012; 20 mem) 
EnsPB EnsP+EnsB seasonal range ens (December 2011–June 2012; 40 mem) 

abbreviations: flt-filter; ens-ensemble; mem-members; 𝑈 -𝑢, 𝑣 wind velocities; 𝑇 -air temperature; 1281 
𝑆𝐿𝑃-sea level pressure; 𝑐 , 𝑐 , 𝑐 -wind drag and turbulent coefficients; 𝑐 -bottom drag; 𝑆𝑀𝑆 𝐶 -sources 1282 
minus sinks of biogeochemical tracers 𝐶. *100 passes of the Laplacian filter in a Gaussian distribution 1283 
per model grid point (spatial scales estimated by the response function of the first-order Shapiro filter). 1284 
**A lognormal anamorphosis function is applied to the 𝑆𝑀𝑆 𝐶  of the 24 PISCESv2 prognostic variables. 1285 
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Table 2. CMEMS observation product identifiers (http://marine.copernicus.eu/). 1286 

daily frequency  Error 

SST gridded 0.05° SST_GLO_SST_L4_NRT_OBS_010_001 0.5 °C 

SLA along track 14 km SEALEVEL_GLO_PHY_L3_REP_OBS_008_062 0.05 m 

8-day frequency   

Chl a gridded 4 km OCEANCOLOUR_GLO_CHL_L4_REP_OBS_009_093 0.3 mg/m3 

  1287 
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 1288 
Figure 1 BISCAY36 model domain and bathymetry (m). Black line denotes the 200 m isobath. 1289 
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 1290 
Figure 2 Stochastic uncertainty patterns (no units) explicitly calculated by applying a 2D Gaussian 1291 
function in first-order autoregressive processes: (a) initial stochastic wind pattern 1 𝛼 ∙ 𝜉  as in Eq. 1292 
(3) of member-001; all other subplots as in (a) for: (b-c) second and third day respectively, (d) member 1293 
002, (e) air temperature, (f) sea level pressure, (g) stochastic pattern 1 𝛼 ∙ 𝜉  as in Eq. (4) of wind 1294 
drag and turbulent coefficients, (h) bottom drag coefficient by applying a Laplacian filter, (i) stochastic 1295 

pattern 𝑒  as in Eq. (5) of sources-minus-sinks biogeochemical tracers. 1296 
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 1297 
Figure 3 Control run ocean model surface variables on April 30, 2012: (a) SSH (m), (b) SST (°C), 1298 
(c) SSS, (d-f) left to right: total surface chlorophyll, nanophytoplankton and diatoms (mg/m3). 1299 
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 1300 
Figure 4 Model uncertainties (i.e. 1std ensemble spread) of medium-range ensembles S1-5 and SP 1301 
on April 30, 2012: (a-f) SST spread (°C) and (g-l) SSH spread (m) perturbing the (a, g) wind, (b, h) air 1302 
temperature, (c, i) sea level pressure, (d, j) wind drag and turbulent coefficients, (e, k) bottom drag 1303 
coefficient, (f, l) all variables together. Note the different colorbars with units varying up to 0.2 °C in SST 1304 
and up to 0.02 m in SSH. 1305 
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 1306 
Figure 5 (a-f) S1-5 and SP model uncertainties (i.e. 1std ensemble spread) of total surface 1307 
chlorophyll (mg/m3) perturbing physics (PHY), (g) SB chlorophyll spread perturbing 𝑆𝑀𝑆 𝐶 , (h) SPB 1308 
chlorophyll spread perturbing all physical-biogeochemical variables. (i-k) and (l-n) are the same as (f-h) 1309 
but for nanophytoplankton and diatom spread. 1310 
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 1311 
Figure 6 (a, c) OSTIA SST L4 (°C) observation distribution and EnsP ensemble inter-quantile 1312 
ranges in data space averaged over the Armorican shelf and the abyssal plain, (b, d) innovation statistics 1313 
and spread for the two regions, respectively; the thin horizontal line denotes the observational error 0.5 1314 
°C (the legend is split across two subplots). 1315 
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 1316 
Figure 7 (a) SLA along track L3 observation distribution (m) and EnsP and Ens0 ensembles in data-1317 
space, (b) 𝑂𝑚𝐸  map using EnsP for the period starting on February 25, 2012 and for three consecutive 1318 
weeks, (c) EnsP box-whisker plots and observation error bars averaged over the abyssal plain, (d) the 1319 
Armorican shelf and (e) the English Channel. 1320 
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 1321 
Figure 8 Same as Fig. 6 for ocean colour L4 total surface chlorophyll observations and 1322 
biogeochemical model ensembles, with innovation statistics calculated in log space. Observational error: 1323 
0.3 mg/m3. 1324 
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 1325 
Figure 9 Zero-lag single observation representers for three different surface locations (black 1326 
markers) in the abyssal plain [9°W 45.6°N], the Armorican shelf [2.6°W 46.3°N] and the English Channel 1327 
[2.9°W 49.9°N], calculated as correlations between OSTIA SST L4 and all surface variables in the control 1328 
vector, derived from 40 members of EnsP ensemble on May 07, 2012: (a) cor(SST,SST), (b) 1329 
cor(SST,SSS), (c) cor(SST,SSH), (d) cor(SST,CHL), (e) same as (d) for 20 members, (f) same as (c) for 1330 
Ens0. Correlations between ocean colour L4 chlorophyll observations and surface variables in EnsPB 1331 
control vector: (g) cor(CHL,SST), (h) cor(CHL,SSS) and (i) cor(CHL,CHL). A localization Gaussian 1332 
function is applied with cut-off radius 3° and e-folding scale 0.2°. 1333 Jo
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 1334 
Figure 10 Incremental analysis using OSTIA SST L4 on May 07, 2012 and EnsP 40 members: (a, b) 1335 
SST correction (°C) for the first two members 001 and 002, (c-e) correction for the first member for SSH 1336 
(m), SSS and surface total chlorophyll (mg/m3); (a) two locations illustrated in Fig. 11 for the abyssal 1337 
plain (green square [7°W 45°N]) and the Armorican shelf (green rhombus [2.6°W 46.3°N]). 1338 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



40 
 

 1339 
Figure 11 Incremental analysis using OSTIA SST L4 on February 01, 2012 (grey lines) and on May 1340 
07, 2012 (black lines), using EnsP 40 members; (a-c) vertical correction of member 001 on, respectively, 1341 
T (°C), salinity and total chlorophyll (mg/m3) over the Armorican shelf, and (d-f) the same for the abyssal 1342 
plain (cf. Fig. 10a). 1343 
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 1344 
Figure 12 Incremental analysis using ocean colour L4 on May 07, 2012 and ensemble covariances 1345 
from 40 members for three different ensembles, EnsP, EnsB, and EnsPB (left to right): (a-c) correction 1346 
of the first member for total chlorophyll (mg/m3) at a depth of 15 m, (d-f) prior model ensemble spread 1347 
in data space of total chlorophyll (mg/m3), as a mean value of the first 5 m of the water column. 1348 
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 1349 
Figure 13 Incremental analysis using OSTIA SST L4 and ocean colour L4 on May 07, 2012: (a-d) 1350 
ensemble covariances are calculated from EnsPB with 40 members; correction of member 001 on (from 1351 
left to right) SST (°C), SSH (m), SSS, and surface total chlorophyll (mg/m3), (e, f) same as (a) and (d) 1352 
calculated from EnsP with 40 members, (g, h) same as (e, f) calculated from EnsP with 10 members. 1353 
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Highlights 

• Ocean model errors are mainly driven by wind forcing uncertainties 

• Uncertainties on physical forcing have a large impact on ecosystem model errors 

• Data assimilation on physics largely depends on multivariate analysis 

• The biogeochemical model skill is mainly defined by the assimilation of chlorophyll 

• Most of the chlorophyll correction arises from uncertainties in the physics 
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Supplementary material 974 

Fig. S1 presents the temporal variability of the PFT data in the Bay of Biscay, during the period 975 
December, 2011 to June, 2012. We also show the ocean colour L4 total chlorophyll product 976 
used in the Part 1 article (Vervatis et al., 2021) and we verify that concentrations are of the 977 
same order to those of the PFT total chlorophyll. According to this, we categorised the four 978 
satellite PFT (pico, nano, diatoms and dino) into the two broad size groups in PISCES (nano 979 
or diatoms), in a manner most representative, ensuring that the total biomass (chlorophyll) from 980 
the model and satellite data can be compared like-for-like. 981 

PFT diatoms and nanophytoplankton contribute together approximately more than 80% in total 982 
chlorophyll, whereas picoplankton contributes at about 10% and dinoflagellates less than 10% 983 
(Fig. S1). PFT diatom chlorophyll concentration is an order of magnitude larger compared with 984 
dinoflagellates and nanophytoplankton is about three times larger than picoplankton 985 
chlorophyll concentration (Fig. S1). In Fig. S2, we show the spatial distribution of the four 986 
satellite PFT and the total chlorophyll during the peak of the spring bloom on March 28, 2012. 987 
We confirm that the satellite micro class (i.e. diatoms and dino) is driven primarily by diatoms, 988 
far more abundant in the satellite data, with the two functional types being highly correlated in 989 
spatial. Fig. S3 presents scatter plots of combined vs. non-combined PFT chlorophyll, verifying 990 
the close relationship between functional types in a size class-based approach. 991 

We also present results from one-on-one comparisons between model and PFT data, as opposed 992 
to the size class-based categorization merging different functional types. Figure S4 shows 993 
Hovmöller plot of rank histograms between EnsPB and PFT, in the same way as Figs. 5b-c, 994 
with one main difference: in Figs. S4a-b we do not combine the nano functional type with pico, 995 
nor we combine diatoms with dino. Rank histogram results for the nano class are degraded 996 
when pico and nano PFT data are not combined together in late-winter and early-spring when 997 
a primary bloom occurs (Fig. 5b vs. Fig. S4a). The latter may suggest that PISCES nano can 998 
be representative of a broader phytoplankton community, accounting also for smaller size 999 
classes. Rank histogram results are almost identical throughout the whole period for the micro 1000 
class, regardless of whether dino and diatoms are combined together or not (Fig. 5c vs. Fig. 1001 
S4b). Model-data one-on-one array mode consistency results (not shown) are in practice 1002 
indistinguishable by visual inspection with the results presented in Figs. 10 and 11, confirming 1003 
the validity of the size class-based approach.  1004 
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 1005 
Figure S1 Ocean colour L4 (8-day frequency) and PFT (daily) chlorophyll concentration 1006 
(𝑚𝑔/𝑚3) in the Bay of Biscay from December, 2011 to June, 2012. 1007 

 1008 
Figure S2 Spatial distribution of (a) PFT total chlorophyll and (b) pico, (c) nano, (d) 1009 
diatoms, (e) dino concentrations (𝑚𝑔/𝑚3) on March 28, 2012.  1010 
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 1011 
Figure S3 Scatter plots of chlorophyll concentrations in 𝑚𝑔/𝑚3 on March 28, 2012: (a) 1012 
PFT (nano and pico) vs. only nano, (b) PFT (diatoms and dino) vs. only diatoms. r is the 1013 
correlation coefficient, RMSE the root mean square error (𝑚𝑔/𝑚3) and with red the 1:1 line. 1014 

 1015 
Figure S4 Hovmöller plot of rank histograms (same as in Figs. 5b-c) between EnsPB and 1016 
PFT (a) nano not combined with pico, and (b) diatoms not combined with dino. 1017 


