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Bayesian Inference of Normal Distribution Parameters with Aggregate Data Technical Note

This note extends standard Bayesian inference of normal distribution parameters to aggregate observed data points. It considers the case where data points cannot be observed directly but only through sum or average. As a result, the posterior and predictive posterior distributions can be derived by simply adapting the sample variance to aggregate data. Thus, the posterior follows a normal-gamma distribution while the posterior predictive has a non-standardized Student's t-distribution.

Introduction

Extensive literature exists on Bayesian parameter inference for the Normal distribution (e.g. [START_REF] Minka | Inferring a gaussian distribution[END_REF][START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF]). It consists in estimating the unknown distribution parameters µ and σ 2 given (conditionally i.i.d.) observed data points X i |µ, σ ∼ N (µ, σ 2 ) . In this technical note, we considered the case where data points cannot be observed directly but only aggregated (sum or average). More specifically, an observation k ∈ [1, K] is the sum S k of n k data points:

S k := n K k=1 X i . ( 1 
)
As a result, a total of N data points are observed in K measurements.

As detailed in section 2, the natural conjugate prior is used for the mean and variance. The obtained posterior and marginal posterior distributions are detailed in section 3. Finally, section 4 focuses on the posterior predictive distribution, the distribution of possible unobserved values conditional on the observed ones.

Prior information

To alleviate the notation, let τ be the precision defined as the reciprocal of the variance:

τ := 1 σ 2 (2) 
We use the natural conjugate priors for the mean µ and precision τ : (µ, τ ) has a normal-gamma distribution [START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF]. More specifically, given a shape prior α 0 > 0, a rate prior β 0 > 0, a mean prior µ 0 and n 0 > 0, we assume that

       S k | µ, τ ∼ N n k µ, n k σ 2 µ | τ ∼ N µ 0 , σ 2 n 0 τ ∼ Γ(α 0 , β 0 ) (3) 
We further assume that (S k | µ, τ ) k=1,••• ,K are conditionally independent.

Posterior and marginal posteriors

This section details the posterior and posterior marginal distributions. We will see that having the data aggregated mainly comes down to adapting the sample variance. Let μ be the sample mean and s 2 be the sample variance. The data being aggregated, while the sample mean, μ remains identical to the usual case, the sample variance becomes:

s 2 = 1 K -1 K k=1 S k -n k μ √ n k 2 with μ := 1 N K k=1 S k N := K k=1 n k . ( 4 
)
Note that, even without the normal assumption, if (n k ) k are bounded and if the fourth moment of X i is finite, then s 2 is an unbiased, weakly consistent estimator of the variance σ 2 . In this case, with the normal assumption, similarly to the non-aggregated case, the sample variance has a scaled chi-square distribution.

Lemma 1. Sample variance

D -1 σ 2 s 2 | µ, σ 2 , (n k ) k has a χ 2 distribution with D -1 degrees of freedom.
Furthermore, the sample variance and sample mean are conditionally independent.

Proof. The proof is a variant of the standard proof adapted for batch measurements. It is a direct consequence of Cochran's theorem. For i ∈ [1, D] let:

Y i = S i -n i µ σ √ n i ∼ N (0, 1)
The random variables

(Y i ) i∈[1,D] are i.i.d. standard normal random variables. Let Y = (Y i ) i∈[1,D] ∼ N (0, Id D ).
Let P be the orthogonal projector of rank 1 defined as:

P := 1 N    √ n 1 . . . √ n D    ( √ n 1 • • • √ n D )
Then P ⊥ = Id D -P . According to Cochran's theorem, P ⊥ Y 2 has a χ 2 distribution with D -1 degrees of freedom:

P ⊥ Y 2 ∼ χ 2 (D -1) (5) 
Furthermore , P ⊥ Y 2 and , P Y 2 are independent. In the following, P ⊥ Y 2 is calculated.

P Y = 1 N    √ n 1 . . . √ n D    ( √ n 1 • • • √ n D )    Y 1 . . . Y D    = 1 N σ D i=1 (S i -n i µ)    √ n 1 . . . √ n D    = μ -µ σ    √ n 1 . . . √ n D    (6) 
Hence,

P ⊥ Y =    Y 1 . . . Y D    - μ -µ σ    √ n 1 . . . √ n D    = 1 σ        S 1 √ n 1 - √ n 1 μ . . . S D √ n D - √ n D μ      
Therefore, the squared norm is given by:

P ⊥ Y 2 = 1 σ 2 D i=1 S i √ n i - √ n i μ 2 = D -1 σ 2 s 2 (7) 
In a nutshell, (5) and (7) yield

D -1 σ 2 s 2 ∼ χ 2 (D -1)
Furthermore, the Cochran's theorem also yield: P ⊥ Y 2 and P Y 2 are independent. According to (7),

P ⊥ Y 2 = D-1 σ 2 s 2 .
Based on (6),

P Y 2 = (μ -µ) 2 N σ 2 μ = P Y σ √ N + µ
The posterior and marginal posterior distribution are obtained by adapting the standard Bayesian normal parameter estimation (e.g. [START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF] equations ( 85) to ( 91)) to aggregated data points.

Proposition 1. The posterior mean probability verifies:

µ | τ, (S k , n k ) k=1,••• ,K ∼ N n 0 µ 0 + N μ n 0 + N , σ 2 n 0 + N (8) Besides, τ | (S k , n k ) k=1,••• ,K
, the posterior marginal of the precision, has a gamma distribution with a shape parameter α K and an inverse scale (rate) parameter β K :

τ | (S k , n k ) k=1,••• ,K ∼ Γ (α K , β K ) (9) 
where

α K = α 0 + K 2 , β K = β 0 + N n 0 2(N + n 0 ) (μ -µ 0 ) 2 + 1 2 (K -1)s 2
Thus posterior distribution has a Normal-Gamma distribution:

µ, τ | (S k , n k ) k=1,••• ,K ∼ NormalGamma n 0 µ 0 + N μ n 0 + N , n 0 + N, α K , β K (10)
The posterior marginal of the mean has a non-standardized Student's t-distribution with 2α K degrees of freedom:

µ | (S k , n k ) k=1,••• ,K ∼ t 2α K n 0 µ 0 + N μ n 0 + N , β K α K 1 n 0 + N (11)
where

n 0 µ 0 + N μ n 0 + N
is the mean and

β K α K 1 n 0 + N
is the square of the scale parameter.

Proof. The proof is very similar to the one for normal parameter estimation.

P µ | τ, (S k ) d∈[1,K] ∝ µ P (S k ) d∈[1,K] | µ, τ P (µ | τ ) (12) 
Random variables (S k | µ, τ ) d∈ [1,K] are independent variables.

According to equation (3), S k | µ, τ ∼ N (n k µ, τ /n k ), then,

P (S k ) i∈[1,K] | µ, τ ∝ µ exp - τ 2 K k=1 1 n k (S k -n k µ) 2 ∝ µ exp - τ 2 K k=1 S 2 k n k -2µS k + n k µ 2 ∝ µ exp - τ 2 K k=1 -2µS k + n k µ 2 ∝ µ exp - N τ 2 -2μµ + µ 2 ∝ µ exp - N τ 2 μ2 exp - N τ 2 -2μµ + µ 2 ∝ µ exp - N τ 2 (µ -μ) 2 ∝ µ P (μ | µ, τ ) As a result, equation (12) yields: P µ | τ, (S k ) i∈[1,K] ∝ µ P (μ | µ, τ ) P (µ | τ )
By the way note that:

P (µ | τ, (S k ) k=1,••• ,K ) ∝ µ P (µ | μ, τ ) P µ | τ, (S k ) i∈[1,K] ∝ µ exp - N τ 2 (µ -μ) 2 exp - n 0 τ 2 (µ -µ 0 ) 2 ∝ µ exp - (N + n 0 )τ 2 µ 2 -2µ N μ + n 0 µ 0 N + n 0 ∝ µ exp - (N + n 0 )τ 2 µ 2 - N μ + n 0 µ 0 N + n 0 2
As a result, equation (8) holds.

To prove (9), we will express P(τ, µ | S k ) and marginalize out µ.

P (τ, µ | (S k ) k=1,••• ,K ) ∝ µ,τ P ((S k ) k=1,••• ,K | µ, τ ) P(µ | τ )P(τ ) ∝ µ,τ τ D 2 exp - τ 2 K k=1 S k -n k µ √ n k 2 • τ 1 2 exp - n 0 τ 2 (µ -µ 0 ) 2 • τ α-1 exp (-βτ ) ∝ µ,τ τ α+ D 2 -1 exp -τ β + 1 2 K k=1 S k -n k µ √ n k 2 • τ 1 2 exp - n 0 τ 2 (µ -µ 0 ) 2 Since K k=1 S k -n k µ √ n k 2 = K k=1 (S k -n k μ) + (n k μ -n k µ) √ n k 2 = K k=1 S k -n k μ √ n k 2 + K k=1 n k (μ -µ) 2 + 2(μ -µ) K k=1 (S k -n k μ) = K k=1 S k -n k μ √ n k 2 + N (μ -µ) 2

As we integrate out µ, we get:

As a matter of fact,

Injecting this result in (13) yields:

This proves that the posterior of the precision has a gamma distribution with shape α K and inverse scale β K .

As a result, by definition of the normal-gamma distribution, the posterior probability is a normal-gamma distribution (equation (10)).

As for the posterior marginal µ | (S k , n k ) k=1,••• ,K , using equation (2.159) in section 2.3.7 of [START_REF] Christopher | Pattern recognition and machine learning[END_REF], marginalizing out τ leads a non-standardize Student t-distribution with 2α K degrees of freedom where

is the mean and

is the square of the scale parameter.

This yields equation (11).

Posterior predictive distribution

This section focus on the distribution of possible unobserved values conditional on the observed one. The posterior predictive follows a non-standardized Student t-distribution with 2α K degrees of freedom.

Proposition 2. Let S be the sum of n data points, then:

where n n 0 µ 0 + N μ n 0 + N is the mean and n

is the square of the scale parameter.

Proof. Since,

) the scaling property of the Gamma distribution yields:

Similarly to the posterior marginals, using equation (2.159) in section 2.3.7 of [START_REF] Christopher | Pattern recognition and machine learning[END_REF], marginalizing out τ leads a non-standardized Student t-distribution with 2α K degrees of freedom

is the square of the scale parameter. Equations ( 14) has thus been proved. Note that for n = 1, this gives the same result as equation (100) in [START_REF] Murphy | Conjugate Bayesian analysis of the Gaussian distribution[END_REF].

Conclusion

To conclude, this note extends standard Bayesian inference of normal distribution parameters to aggregate observed data points. It assumes that the data points are only observed through the sum of batches of points. With a normal-gamma conjugate prior, the posterior distribution is the same as the non-aggregated case by simply adapting the sample variance term to aggregate data points. Similarly, the posterior predictive has a non-standardized Student's t-distribution.