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Abstract
We discuss quantum key distribution protocols and their security analysis, considering a
receiver-device-independent (RDI) model. The sender’s (Alice’s) device is partially characterized,
in the sense that we assume bounds on the overlaps of the prepared quantum states. The receiver’s
(Bob’s) device requires no characterisation and can be represented as a black-box. Our protocols
are therefore robust to any attack on Bob, such as blinding attacks. In particular, we show that a
secret key can be established even when the quantum channel has arbitrarily low transmission by
considering RDI protocols exploiting sufficiently many states. Finally, we discuss how the
hypothesis of bounded overlaps can be naturally applied to practical devices.

1. Introduction

Quantum key distribution (QKD) [1, 2] allows two users to establish a secret key via a quantum channel
and an authenticated but public classical channel. QKD, together with the one time pad method, provides a
secure method of communication with information-theoretical security [3]. Indeed, unlike classical
schemes, the security of QKD protocols is physical: it only relies on some knowledge about the functioning
of the devices controlled by the communicating parties and the general laws of quantum mechanics.
Nevertheless, different approaches require different levels of detail in how the devices are modeled [4–7].
The ‘standard’ approach presumes a full description of different elements in the setup. Such QKD systems
are available commercially and can reach high rates over long distances.

However, relying on a detailed quantum model for characterizing the devices may open backdoors that
quantum hackers can exploit. Indeed a mathematical model always represents (at best) an idealization of a
practical device. For example, the well-known ‘blinding attacks’ exploit the fact that standard models for
describing photon detectors typically fail when the intensity of the incoming light falls outside their
working range [8, 9]. When a fair-sampling type assumption is used on top of this, the door is open to
attacks where an eavesdropper Eve obtains full information about the key, without introducing any
detectable level of errors (fair sampling assumes that the occurrence of no-detection events is independent
of the choice of the measurement setting [10–12]).

This motivates the investigation of the stronger, device-independent (DI) approach. Here, devices are
viewed as classically controlled black boxes, and the security of QKD protocols can be demonstrated
[13–16] assuming only that (i) the devices can be described accurately within quantum mechanics, and
(ii) no information about the secret key leaks out of the laboratories of Alice and Bob (the two
communicating parties). While this approach represents, in principle, the perfect solution to counter any
hacking attack, its practical implementation is highly challenging, requiring the distribution of high-quality
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entanglement and notably high detection efficiencies (the best current protocol demands 68.5% [17]). First
proof-of-principle experiments have recently been reported [17–19], but any practical implementation of
DI QKD is arguably still far out of reach.

Beyond the standard (device-dependent) approach and the DI one, there exists a broad range of models
that can be considered, where some of the devices are fully (or partially) characterized, while others are
treated as black boxes. The most well-known is arguably the measurement-DI (MDI) approach [20, 21],
which has been extensively studied and realized experimentally achieving record distances
(see, e.g., [22–25]).

In parallel, another approach has been investigated, considering an asymmetric scenario where one of
the end parties is trusted, while the other one is fully untrusted. Referred to as ‘one-sided DI’, this model
was first proposed in reference [26]. Establishing a connection to quantum steering, reference [27] then
investigated the practical limitations of such a protocol, in particular the resilience to noise and losses.
Unfortunately, an implementation turns out to be challenging, as the requirements in terms of detection
efficiencies (>65.9%) are only slightly relaxed compared to the full DI model. Other works [28, 29],
following up on reference [26], discussed the implementation in a prepare-and-measure scenario. While
considering the effect of noise and finite-size data, these works do however not take into account the effect
of losses. Instead, a fair-sampling type assumption is made, which opens the door to blinding attacks, as in
standard protocols; see, e.g., [30]. Hence these results cannot be applied to a practical QKD setup (where
losses are unavoidable) without sacrificing the one-sided DI security. Finally, another approach, termed
semi-DI [31–33], considered a prepare-and-measure scenario assuming an upper bound on the dimension
of the prepared quantum systems. Again, these protocols are unpractical, requiring detection efficiencies
comparable to the full DI model [34].

In this work we present QKD protocols that achieve one-sided DI security and that are amenable to a
practical prepare-and-measure implementation. We refer to these protocols as being
‘receiver-device-independent’ (RDI). A specific example of such a protocol was recently presented, along
with an experimental realisation, in the companion paper [35]. Here, we present a more general class of
RDI-QKD protocols and provide a detailed theoretical analysis, investigating the possibilities and limits of
QKD in RDI scenarios.

We thereby consider a prepare-and-measure scenario, where the sender (Alice) uses a partially
characterized device, while the receiver (Bob) uses an untrusted device. The protocol being black-box on
Bob’s side, it is therefore inherently secure against attacks on the receiver, notably blinding attacks [8, 9].
On Alice’s side, the characterisation we require consists in providing bounds on the (complex) overlaps of
the prepared states (given formally by a Gram matrix). We moreover discuss how this hypothesis can be
naturally applied to practical devices.

In practice, the RDI scenario can be quite naturally motivated. Consider for instance a large company
communicating with an end-user. The latter has essentially no means to test their cryptographic device,
which is therefore conveniently treated as a black-box. On the other hand, the company has access to
advanced technology and technical expertise, and can therefore regularly test and characterize their
cryptographic device. We note that the MDI approach is not applicable to this scenario, as both Alice and
Bob require a trusted device (while trust is then relaxed on an intermediate relay station).

The paper is organized as follows. In section 2 we present the scenario of RDI QKD and discuss the key
assumptions that are made, before outlining the RDI-QKD themselves in section 3. In section 4 we present
a detailed security analysis. In the noiseless case we present an analytical security proof, showing that our
protocols can achieve the maximal distance possible in an RDI scenario. Specifically, we show that it is
possible to obtain a positive key rate for any transmission η > 1/n, where n denotes the states prepared by
Alice, and corresponds also to the number of measurements performed by Bob. Our protocols can therefore
accommodate any amount of losses in principle (by considering sufficiently many states), and are optimal
in terms of robustness to losses, as no secret key can be obtained when η � 1/n [30]. When noise is present,
the security analysis relies on semidefinite programming, for which we adapt the method introduced in
reference [36], providing lower bounds on the key rate. Then, in section 5, we discuss the practical
relevance of our RDI approach, in particular how bounds on the overlaps (Gram matrix) can be estimated
and justified in practice. Finally, in section 6 we discuss how our protocol compares to other QKD protocols
and scenarios.
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Figure 1. Scenario: Alice and Bob can establish secret key based on the Gram matrix G of the set of states {|ψx〉}x prepared by
Alice and the observed data p(b|x, y). Eve has a complete control on the quantum channel, and can also have full knowledge of
the functioning of the devices of Alice and Bob.

2. Scenario

We consider a prepare-and-measure scenario as shown in figure 1. Alice sends, over a public quantum
channel, one state out of a set of n states {|ψx〉}n−1

x=0. Bob chooses among n measurements labelled by
y = 0, . . . , n − 1. All measurements have binary outputs b = 0, 1. After many rounds, Alice and Bob can
estimate the probability distribution p(b|x, y). Bob’s measurement device is completely uncharacterized and
can be seen as a black box with an input y and an output b. The black box feature is a requirement if we aim
to design a protocol robust to attacks where Eve controls Bob’s device. The key assumption we make on the
setup is about Alice’s preparations. Namely, we assume that all inner-products γij = 〈ψi|ψj〉are bounded.
These assumptions do not fix the total dimension of the Hilbert space and only partially characterize Alice’s
device.

The assumption that Alice prepares pure states with known inner-products γ ij simplifies the
presentation and analysis of the protocol, but is evidently impossible to fulfill exactly in practice. In
section 5 we revisit this assumption on Alice’s preparation device and show how the presence of noise,
unavoidable in experiments, can also be analyzed within our framework in several ways. In particular, we
show that the general situation where the preparation device is subject to fluctuating noise, which remains
within a certain parameter window, can be analyzed by taking inequality constraints on (the real and
imaginary parts of) the values γ ij.

Besides the assumption on Alice’s preparation device, specific to our protocol, we also make the
standard QKD assumptions, also made in the DI scenario: (i) Alice’s input x and Bob’s measurement
setting y are completely uncorrelated from Eve; (ii) Eve only has access to the classical and quantum
communication specified by the protocol, she cannot gather any additional information about x and y;
(iii) we assume the validity of quantum physics. In the following, Eve is restricted to collective attacks. She
interacts with each round independently and can store her system in a quantum memory.

As we will see, a lower bound on the raw secret key rate, can be computed solely from the observed
statistics p(b|x, y), given that the setup satisfies the assumptions detailed above. For some ideal cases (no
noise), we derive analytical bounds. More generally, e.g. in the presence of noise, we obtain bounds via
semi-definite programming (SDP) adapting the methods introduced in reference [36].

3. Protocols

In this section we describe the general structure of the RDI-QKD protocols we consider and give a family of
concrete examples.

3.1. General structure
We begin by presenting the general structure of our RDI-QKD protocols.

Consider a given ensemble of states {|ψx〉}n−1
x=0 that Alice is able to prepare and binary measurements

{B0|y, B1|y}n−1
y=0 that Bob can perform. We can now define protocols with a general structure as follows,

where the steps 1 and 2 are repeated sufficiently many times in order to guarantee a final key of desired
length.

3
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Algorithm 1. RDI-protocol. Steps to generate a secret key
between Alice and Bob.

Alice and Bob share an authenticated classical channel
as well as a quantum channel. Steps 1 and 2 are repeated
sufficiently many times, before proceeding to steps 3 and 4.

1. Raw key generation
1: Alice randomly chooses a pair of integers r = (r0, r1)

with 0 � r0 < r1 � n − 1 and a bit k = 0, 1.
According to her choice she sends the state
|ψx=rk

〉 over the quantum channel to Bob.
2: Bob randomly chooses an integer y with

0 � y � n − 1 and performs the binary measurement
{B0|y , B1|y} on the state received from Alice.

2. Sifting
Alice and Bob use the classical channel to communicate.
1: if b = 1 then
2: Bob tells Alice to discard the round.
3: else if b = 0 then
4: Bob asks Alice to reveal r.
5: Alice reveals r.
6: if y = r0 or y = r1 then
7: Bob tells Alice the round is conclusive.
8: else
9: Bob tells Alice to discard the round.

10: end if
11: end if

3. Parameter estimation
4. Error correction and privacy amplification

This structure defines a broad class of protocols specified by the choices of n, the states {|ψx〉}n−1
x=0, and

the measurements {B0|y, B1|y}n−1
y=0. In general, the idea is to choose states and measurements such that, in

step 2.7, Bob can readily infer from the observed outcome b what the key bit k of Alice is. Below we will
describe in more detail some specific examples, which will clarify the principles behind the RDI protocols
we describe.

Here, we are not going to describe the classical steps 3 and 4 in detail, as under the assumption of
collective attacks these steps can be performed with standard techniques. In step 3 Alice and Bob reveal
their registers for a subset of rounds chosen at random, allowing them to estimate the probability p(b|x, y).
In step 4, Alice and Bob perform standard one-way error correction followed by privacy amplification
protocols, enabling them to extract the final secret key from the raw key available after step 2. Detail of such
protocols can be found in the reviews of references [4, 7]. For the security analysis presented in the next
section we thus focus on the raw key, under the assumption of collective attacks and a known probability
distribution p(b|x, y). The security analysis under coherent attacks is left for future work.

3.2. Ideal qubit protocol
We describe a class of protocols based on qubit states and measurements. As we will see later, these
protocols can be considered ideal in the sense of being optimal from the point of view of robustness to loss.
At this point, however, we present the protocol in the case of no loss and no noise.

Alice prepares states from a set of n single-qubit states {|ψx〉}n−1
x=0 with

|ψx〉 = cos(θ/2)|0〉+ e
i2π
n x sin(θ/2)|1〉 (1)

for some given θ. Following the general protocol outlined above, to encode the raw key bit Alice chooses a
pair of integers r = (r0, r1) with 0 � r0 < r1 � n − 1, among

( n
2

)
possible pairs. For a key bit k, Alice sets

x = rk. Note that every state x can encode the bit value 0 or 1. Alice sends |ψx=rk
〉 via the quantum channel

to Bob. Bob has y = 0, . . . , n − 1 measurements and each measurement has a binary output b = 0, 1. The
output b = 1 corresponds to a projection onto |ψy〉 while b = 0 corresponds to the projection on the
orthogonal subspace 𝟙− |ψy〉〈ψy|. If Bob observes b = 0, he can with certainty exclude the state x = y. We
refer to the rounds where b = 0 as conclusive rounds. If the round is conclusive, Bob asks Alice to reveal r.
If y = r0 or y = r1, Bob is able to infer the raw key bit and announces to Alice that the round is successful;
otherwise he tells Alice to discard the round.

The security analysis of this protocol in the presence of noise and loss, is described below in section 4.2.
Moreover, in section 4.3 we show that this protocol is optimal within RDI-QKD protocols in the sense that
it yields a positive key rate for any η > 1

n , arbitrarily close to the threshold of 1/n beyond which no secret
key can be established [30].

4
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3.3. Towards practical protocols
While the above ideal qubit protocol is useful to test the limits of model, the RDI approach can also be used
quite naturally, and give good protocols, in more realistic setups.

Firstly, the requirement that Alice prepares pure states is not necessary. Indeed, the case of mixed states
can naturally be encompassed by considering purifications of the states Alice prepares. We discuss how to
take into account the overlap assumption on Alice’s device in this case in section 5.1.

Secondly, the qubit protocol described above can be adapted quite naturally to an optical setup, where a
dimension bound on the states Alice prepares is unrealistic. This is because only the overlaps of the
prepared states is required (their Gram matrix), but not their Hilbert space dimension. One can therefore
consider a protocol where polarized coherent states of light are prepared, as reported recently in the
companion paper [35]. Therein a proof-of-principle implementation of such a protocol was reported,
achieving finite-size key over a 4.8 km optical fiber.

4. Security analysis

Eve’s information about the secret bit k is bounded by assuming that the Gram matrix G of the set of
encoding states is fully characterized and that the probabilities p(b|x, y) are perfectly estimated by Alice and
Bob. The Gram matrix G is a Hermitian matrix whose entries are given by

Gij = 〈ψi|ψj〉. (2)

We do not bound the dimension of the Hilbert space associated to the system sent by Alice. However, under
the assumption that Alice prepares pure states the rank of the Gram matrix equals the dimension of the
subspace spanned by these states. Recall that this assumption is not indispensable for our analysis, and will
be relaxed in section 5. Furthermore, no characterization of the exact encoding, transmission channel nor
measurement device is needed. Eve can correlate herself to the states prepared by Alice, she can design Bob’s
measurement device by the means of an ancilla and a unitary operation, and she can use a quantum
memory to keep her ancilla until the end of the classical post-processing (cf figure 1). In fact, she can keep
her ancilla until any later time and wait until the reconciliation between Alice and Bob is over in order to
perform a measurement allowing her to extract as much information as possible about the secret bit k.

The asymptotic key rate (per round) is lower bounded by [37][
H(k|Eve, succ) − H(k|Bob, succ)

]
p(succ), (3)

where H(k|Eve(Bob), succ) is the entropy of k conditional on Eve(Bob) and the fact that a round is not
discarded, and p(succ) is the probability that a round is not discarded. Bob’s entropy can be upper-bounded
as H(k|Bob, succ) � h2(QBER), where h2(·) is the binary entropy and QBER is the quantum bit error rate.
Eve’s conditional entropy can be lower-bounded by the conditional min entropy

H(k|Eve, succ) � Hmin(k|Eve, succ)

= −log2

(
pg(e = k|succ)

)
,

which is in a one-to-one relation with the maximal probability pg(e = k|succ) that Eve guesses the bit k
correctly [38] if the round was not discarded. Combing the two arguments, we can lower bound the key rate
by the quantity

R =
[
−log2

(
pg(e = k|succ)

)
− h2(QBER)

]
p(succ). (4)

The QBER and p(succ) are extracted from the observed statistics p(b|x, y) while the guessing probability
pg(e = x|succ) needs to be upper bounded in order to give a lower bound on R. Note that p(succ) > 0: if
p(succ) = 0 there is no raw key generation and hence nothing for Eve to guess. The guessing probability is
given by

pg(e = k|succ) =
p(e = k, succ)

p(succ)

=

∑( n
2 )−1

r=0 pR(r)
∑1

k=0 pK(k)
∑n−1

y=0 pY (y)tr(ρBE
rk

M1|yEk|r)(δy,r0 + δy,r1 )∑( n
2 )−1

r=0 pR(r)
∑1

k=0 pK(k)
∑n−1

y=0 pY (y)tr(ρBE
rk

M1|y𝟙)(δy,r0 + δy,r1 )
, (5)

where Mb|y are Bob’s measurement operators with b = 0, 1 and y = 0, . . . , n − 1, and Ek|r are Eve’s
measurement operators with k = 0, 1 and r = 0, . . . ,

( n
2

)
− 1. pR(r), pY(y) and pK(k) are the probabilities of

choosing the inputs r, y and k. Hence,
∑

r pR(r) =
∑

k pK(k) =
∑

y pY(y) = 1, pK(k) � 0∀ k, pY(y) � 0 ∀ y

5
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and pR(r) � 0∀ r. Here we will always we take the input probabilities to be uniformly random over all
inputs. As already mentioned, the dimension of the problem is not bounded, so without loss of generality
we can, using Naimark’s dilation theorem, assume that Bob’s and Eve’s measurements are projectors
satisfying the following properties:

Mb|yMb′|y = δb,b′Mb|y ∀ y∑
b

Mb|y = 𝟙 ∀ y

Ee|μEe′|μ = δe,e′Ee|μ ∀ μ∑
e

Ee|μ = 𝟙 ∀ μ

[Mb|y, Ee|μ] = 0 ∀ b, e, y,μ.

(6)

The last property comes from the fact that Bob and Eve act on two different Hilbert spaces. Note that we do
not perform any fair-sampling type assumption on Bob’s measurement. The cases were no clicks are
recorded at Bob will be included in one of the outputs b; see section 4.2.

4.1. Semidefinite programming approach
Since p(succ) is extracted from the observed statistics, to upper bound pg(e = k|succ) we need just to upper
bound p(e = k, succ). To do this, we will use the method presented in [36]. In particular, we use the
approach described therein which provides a semidefinite programming (SDP) hierarchy giving increasingly
tight outer approximations of the set of quantum correlations in discrete prepare-and-measure scenarios
compatible with a given Gram matrix. The hierarchy is known to converge to the actual set of quantum
correlations, whereas for a fixed level it provides a tractable method of bounding the guessing probability
over correlations compatible with the observed statistics. This problem would, without the hierarchy, be
computationally intractable since no bound on the Hilbert space dimension is assumed.

Let {Si}s−1
i=0 be a set of measurement operators and define the moment matrix Γ of size ns × ns as

Γ =

n−1∑
x,x′=0

Γxx′ ⊗ |̂ex〉〈̂ex′ |, (7)

where {|̂ex〉}n−1
x=0 is an orthonormal basis of Rn and we recall that n is the number of states prepared by

Alice. The sub-blocks Γxx′ are defined as

Γxx′ =

s−1∑
i,j=0

〈ψx|S†i Sj|ψ′
x〉 ⊗ |̂̂ej〉〈̂̂ej|, (8)

where {|̂̂ei〉}s−1
i=0 is an orthonormal basis of Rs. It is easily shown that the moment matrix Γ is positive

semidefinite. The elements of the set {Si}s−1
i=0 are monomials of the operators Bb|y and Ee|μ. This set of

operators can be chosen arbitrarily but the aim is to have as many linearly independent operators as
possible in the moment matrix. By taking all monomials of measurement operators up to a given order, we
can define different levels of the hierarchy. The first two levels are given, e.g., by the two following sets of
operators:

S1 = {𝟙, Bb|y, Ee|μ},

S2 = S1 ∪ {Bb|yBb′ |y′ , Ee|μEe′ |μ′ , Bb|yEe|μ},
(9)

and the levels Sn for n > 2 can likewise be defined inductively. Reference [36] proved that as n goes to
infinity (i.e., in the infinite level limit), the hierarchy converges to the set of quantum correlations.

For the sake of clarity, we define ΓST
xx′ := 〈ψx|S†T|ψx′ 〉 with S, T ∈ S and x, x′ = 0, . . . , n − 1. The SDP

upper bounding p(e = x, succ) is given by

max
Γ

1

(n − 1)n2

( n
2 )∑

r=0

1∑
k=0

n−1∑
y=0

Γ
B0|yErk |r
rkrk (δy,r0 + δy,r1 ) (10a)

s.t. Γ𝟙𝟙
xx′ = 〈ψx|ψx′ 〉 = γxx′ ∀ x, x′ (10b)

Γ
𝟙Bb|y
xx = p(b|x, y) ∀ b, x, y (10c)

6
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Figure 2. Raw key rate for our RDI-QKD protocol. The graph shows the lower bound on the raw key rate R as a function of the
transmission for different number of states and QBER’s. For n states, the noiseless protocol has a positive key rate down to
η = 1/n, which is the minimal transmission for which this is possible in any prepare-and-measure scenario. The protocol is also
tolerant to noise in state preparation.

tr(Γxx′Fk) = fk k = 0, . . . , m, ∀ x, x′ (10d)

Γ 
 0. (10e)

The overlap constraint between the set of states is enforced by equation (10b). Equation (10c) enforces the
moment matrix Γ to be compatible with the observed correlations p(b|x, y). In equation (10d) Fk are
Hermitian matrices and fk complex coefficients which are defined in order to encode the constraints on
Bob’s and Eve’s operators given by equation (6), as well as the constraints between elements of Γxx′ implied
by the fact that ΓST

xx′ = ΓS′T′
xx′ whenever S†T = S′†T ′ (cf proposition 4 of reference [39]).

4.2. Security analysis of the ideal qubit protocol
Here, we will analyze the security of the idealized qubit protocol presented in section 3.2, including in the
presence of loss and noise. We will model noise by the means of a depolarizing channel with parameter
λ ∈ [0, 1], which replaces the transmitted state with a maximally mixed state with probability λ [40]. Loss is
modeled by a binary erasure channel [40] with erasure probability (1 − η), η ∈ [0, 1]. Such a model of loss
assumes that loss is orthogonal with respect to the encoding, which is typically the case if one considers,
e.g., the polarization of photons for the encoding of the secret bit.

The Gram matrix G corresponding to the set of states (1) prepared by Alice is given by

Gij = cos2(θ/2) + ei 2π(i−j)
n sin2(θ/2) (11)

with i, j = 1, . . . , n. The probability distribution is then given by

p(b = 0|x, y) = η

(
λ

2
+ (1 − λ)sin2(θ) sin2

(
π(x − y)

n

))
. (12)

Given the Gram matrix G of (11) and the observed probability distribution one can upper bound the
secret key rate as shown previously. Figure 2 shows the raw key rate as a function of the transmission η for
different QBER’s and values of n. For each η we numerically optimized over θ to obtain the optimal R. We
notice that the lower-bound on the key rate goes asymptotically to zero as η → 1/n. This is optimal because
at η = 1/n, Eve can break the security by intercepting the states sent by Alice and forcing Bob’s detector
according to her outcome and Bob’s input (see section 4.3). Therefore, for any prepare-and-measure
protocol, the key rate is null for η � 1/n.

Interestingly, B92 [41] is a special case of the proposed protocol with n = 2 and a fixed θ = π
4 . Under

the same assumptions, our protocol outperforms B92 with respect to the transmission and the noise
tolerance, see figure 3. Also, BB84 [42] under the same assumptions is outrun by our protocol with three
states.

7
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Figure 3. Comparison of our RDI-QKD protocol with other protocols under the same assumptions. The RDI protocol with
n = 2 outperforms BB84 and B92.

4.3. Analytical bounds
In this section we prove analytically that, if Alice prepares sufficiently many states, the protocol can in
principle tolerate arbitrary small transmission η. First, with an explicit attack from Eve we lower bound the
transmission η required to have R > 0. (Proposition 1). Secondly, we show that this bound is tight as long
as G is chosen to obey an additional natural condition (proposition 2). That is, for any transmission η

exceeding the threshold, Eve is unable to guess the secret bit with certainty in all rounds, giving rise to a
positive key rate.

Transmission loss in the line (scaling with distance) and finite detection efficiency are the bottlenecks in
most QKD protocols. Both effects give rise to a loss channel and contribute to the total transmission η. In
this section we assume that this loss is the only imperfection in the setup. This captures the main limiting
factor of real QKD setups and allows us to derive relatively simple analytical bounds. We assume that loss is
orthogonal with respect to the secret bit encoding, such that with probability η the system sent by Alice is
lost and Bob observes a third outcome (e.g., a no-click event b = ∅). Bob then attributes it the value b = 1,
such that the rounds where the system sent by Alice is lost are rejected in the protocol.

In this case any protocol with a Gram matrix Gij = 〈ψi|ψj〉 with i, j = 0, . . . , n − 1 and the honest
measurements B1|y = |ψy〉〈ψy| with B0|y = 𝟙− B1|y leads to measurement probabilities

p(b = 0|x, y) = η(1 − |Gxy|2),

p(b = 1|x, y) = 1 − p(b = 0|x, y),
(13)

with x, y = 0, . . . , n − 1. One notes that with such probabilities p(0|x = y) = 0: Bob’s bits are perfectly
correlated to Alice’s after the sifting, i.e. h2(QBER) = 0. For the following, we define λmin(G) as the
minimal non-zero eigenvalue of the Gram matrix G.

Proposition 1. Given a Gram matrix G ∈ Cn×n and measurement probabilities of equation (13), a necessary
condition for R > 0 is that η > 1

n−λmin(G) .

Proof. Let us assume that with probability q Eve intercepts the state sent by Alice and makes an
unambiguous state exclusion measurement Mi = μ(𝟙− |ψi〉〈ψi|) with i = 0, . . . , n − 1, μ ∈ [0, 1] and
Mn = 𝟙−

∑n−1
i=0 Mi.

If Eve obtains an outcome i < n, she can exclude with certainty the state |ψi〉, whereas if she gets the
outcome n she cannot conclude anything. In order to have as many conclusive outcomes as possible Eve
maximizes μ under the constraint Mn � 0:

max
μ

μ

s.t. 𝟙 (nμ− 1)

μ
�

n−1∑
i=0

|ψi〉〈ψi|,

μ � 0.

(14)

8
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The first constraint in equation (14) is satisfied if the eigenvalues of
∑n−1

i=0 |ψi〉〈ψi| are all larger than (nμ−1)
μ

.
But the eigenvalues of

∑
i |ψi〉〈ψi| coincide with the nonzero eigenvalues of the Gram matrix G. Hence, the

above maximization is satisfied if (nμ−1)
μ � λmin(G). This leads to an optimal μ∗ = 1

n−λmin(G) and

p(i|x) = μ∗(1 − |Gxi|2). The result i of Eve’s measurement is then sent to Bob’s detector which only outputs
b = 0 if y = i, i.e. p(b = 0|y, i) = δy,i. The resulting probability observed by Bob is

p(b = 0|x, y) =
n∑

i=0

p(b = 0|i, y)p(i|x) = μ∗(1 − |Gxy|2). (15)

With probability (1 − q) Eve does not intercept the message, and Bob’s detector is instructed to perform the
ideal measurement p(b = 0|x, y) = (1 − |Gxy|2). Eve wants to remain undetected and hence needs to
reproduce the expected statistics of equation (13). Her attack must thus satisfy the equality

η(1 − |Gxy|2) = qμ∗ (1 − |Gxy|2
)
+ (1 − q)(1 − |Gxy|2) ) (16)

for all x, y. This implies that Eve cannot intercept the message more often than in a fraction q = 1−η
1−μ∗ of

rounds. In particular, if q = 1−η
1−μ∗ � 1 or η � 1

n−λmin(G) she can intercept the message in every round
resulting in p(y = i|succ) = pg(e = k|succ) = 1 and R = 0. �

More generally, this attack gives a lower bound on Eve’s guessing probability as

pg(e = k|succ) � q + (1 − q)
1

2
=

1

2

(
1 +

1 − η

η (n − (1 + λmin(G))

)
, (17)

with equality if pg(e = k|succ) = 1
2 for the honest implementation at η = 1.

For the considered family of protocols the proposed attack allows Eve to guess the secret bit k of Alice
perfectly whenever one has η � 1

n−λmin(G) . The converse question is whether, for any transmission exceeding
this value, there exists a protocol (with a given n and λmin(G)) yielding a strictly positive key rate. We will
now show that this is indeed the case by considering a qubit protocol with rank(G) = 2, as discussed in
section 3.2.

Proposition 2. Consider a Gram matrix G, with rank(G) = 2, leading to measurement probabilities in
equation (13). If the transmission exceeds η > 1

n−λmin(G) , then one can obtain a positive key rate, i.e., R > 0.

Proof. Since in our case h2(QBER) = 0, from equation (4) one sees that the condition R > 0 is equivalent
to pg(e = k|succ) < 1, that is Eve cannot always guess the secret bit with certainty. Thus, we want to prove
pg(e = k|succ) < 1. To do so we will proceed by assuming pg(e = k|succ) = 1 and reach a contradiction.

To start, it is convenient to replace our prepare-and-measure scenario by an equivalent
entanglement-based scenario. Alice prepares an entangled state

|Φ〉AA′ =
1√
n

n∑
x=1

|x〉A|ψx〉A′ , (18)

sends out A′ and measures A in the computational basis {|x〉〈x|}n−1
k=0 to obtain x. Since the states {|ψx〉}x

span a two-dimensional space, by the Schmidt theorem the state |Φ〉AA′ ∈ C2 ⊗ C2 is a two qubit state.
Without loss of generality an attack performed by Eve starts with an isometry U mapping A′ onto

systems B and E of arbitrary dimension

U : |Φ〉AA′ �→ |Ψ〉ABE = 𝟙A ⊗ UA′ |Φ〉AA′ . (19)

In addition Eve chooses a set of binary measurements {B0|y, B1|y} acting on B. The combinations of the
isometry and the measurements on B define the measurements on the system A′ via

Mb|y = U†
A′
(
Bb|y ⊗ 𝟙E

)
UA′ . (20)

Furthermore these measurements are constrained to satisfy 〈ψx|Mb|y|ψx〉 = p(b|x, y) by the probabilities
observed by Alice and Bob in equation (13). From 〈ψy|M0|y|ψy〉 = 0, one concludes that
M0|y ∝ 𝟙− |ψx〉〈ψx|. Any of the remaining probabilities 〈ψx�=y|M0|y|ψx�=y〉 implies

M0|y = η(𝟙− |ψy〉〈ψy|) = η|ψ⊥
y 〉〈ψ⊥

y |. (21)

9
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This form of M0|y is very restrictive for Eve. In particular, it projects |Φ〉AA′ into a product state

𝟙A ⊗
√

M0|y|Φ〉AA′ =
√

p(b = 0|y)|ξ(0|y)〉A|φ(0|y)〉A′ , (22)

with p(b = 0|y) = 1
n

∑
x p(b = 0|x, y). This identity can be put in the form

√
B0|y ⊗ 𝟙AE|Ψ〉ABE =

√
p(b = 0|y)|ξ(0|y)〉A|Ψ(0|y)〉BE. (23)

From here we can define the marginal state of Alice and Eve conditional to Bob measuring y and
obtaining 0

ρ
(0|y)
AE|B = |ξ(0|y)〉〈ξ(0|y)|A ⊗ ρ

(0|y)
E

with ρ
(0|y)
E = trB|Ψ(0|y)〉〈Ψ(0|y)|BE.

(24)

Remarkably, Eve’s state is no longer influenced by any manipulations done by Alice, and in particular by her
measurement result x. That is, conditionally on y Eve’s state is independent of x. This means that after the
sifting Eve can only guess x perfectly (pg(e = k|succ) = 1), if she can guess y perfectly. Formally,

pg(e = k|succ) = 1 ⇒ 1

2

∥∥∥ρ(0|y)
E − ρ

(0|y′)
E

∥∥∥ = 0 ∀ y �= y′. (25)

Let us now show that this imposes some conditions on the probabilities p(b = 0|y). To do so consider the
trivial inequality

ρE = p(b = 0|y)ρ(0|y)
E + (1 − p(b = 0|y))ρ(1|y)

E , (26)

where ρE = trAB|Ψ〉〈Ψ|ABE and (1 − p(b = 0|y))ρ(1|y)
E = trAB

[
(B1|y ⊗ 𝟙AE)|Ψ〉〈Ψ|ABE

]
, which implies

ρE − p(b = 0|y = 0)ρ(0|0)
E � 0. (27)

But because the state ρ(0|0)
E and ρ

(0|1)
E have orthogonal support, we also obtain

ρE − p(b = 0|y = 0)ρ(0|0)
E − p(b = 0|y = 1)ρ(0|1)

E � 0. (28)

By recursion we obtain the bound

ρE −
∑

y

p(b = 0|y)ρ(0|y)
E � 0

1 −
∑

y

p(b = 0|y) � 0

∑
y

p(b = 0|y) � 1

(29)

on the average probability of the b = 0 outcome. With the help of equation (13) this bound can be written
as

η � 1
1
n

∑
x,y(1 − |Gxy|2)

. (30)

This bound is, however, worse that the one in the statement of the theorem. Let us now show how to
match the two. For this we consider a thought experiment where Alice prepares some pure state

|Φ̃AA′ 〉 ∈ C
2 ⊗ C

2. (31)

As M0|y = η|ψ⊥
y 〉〈ψ⊥

y | is proportional to projector on a state, one has, analogously to equations (22)
and (23), (√

B0|y ⊗ 𝟙AE

)
UA′ |Φ̃〉AA′=

√
p̃(0|y)|ξ̃(0|y)〉A|Ψ(0|y)〉BE,

with the same state |Ψ(0|y)〉BE. Hence the marginal state ρ(0|y)
E are also the same, and satisfy

ρ̃E = p̃(b|y)ρ(0|y)
E + (1 − p̃(0|y))ρ(1|y)

E (32)

10
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for ρ̃E = trAB[UA′ |Φ̃〉〈Φ̃|AA′U†
A′]. We can now repeat the arguments of equations (28) and (29) to obtain the

bound ∑
y

p̃(0|y) � 1, (33)

valid for the sum of probabilities

∑
y

p̃(0|y) = trAA′

⎡
⎣
⎛
⎝𝟙A ⊗

∑
y

M0|y

⎞
⎠ |Φ̃〉〈Φ̃|AA′

⎤
⎦ = trA′

⎡
⎣
⎛
⎝∑

y

M0|y

⎞
⎠ ρA′

⎤
⎦ (34)

coming from any state ρA′ . Choosing the state which maximizes the bound
maxρA′ tr[ρA′(

∑
yM0|y)] = ‖

∑
yM0|y‖, one obtains

∥∥∥∥∥∥
∑

y

M0|y

∥∥∥∥∥∥ � 1

η

∥∥∥∥∥∥
∑

y

(𝟙− |ψy〉〈ψy|)

∥∥∥∥∥∥ � 1

η (n − λmin(G)) � 1

η � 1

n − λmin(G)
,

(35)

where we used the fact that G and
∑

y |ψy〉〈ψy| have the same eigenvalues. Hence, having

pg(e = k|succ) = 1 and η > 1
n−λmin(G) is impossible, which concludes the proof. �

Propositions 1 and 2 imply that, for any transmission η, there exists a RDI-QKD protocol involving
n > 1

η
different measurements performed by Bob which yields a positive key rate. In particular, as follows

from the proof of proposition 2, this is achieved by the ideal qubit protocol of section 3.2 by choosing
λmin(G) < n − 1

η
. Conversely, in the RDI setting where Bob can do n different measurements labeled by the

settings y, Eve can always perform a ‘blinding’ attack and obtain a perfect copy of Bob’s registers. To do so
she performs one of the possible measurements y′ at random, records the outcome e, and sends a copy of e
and y′ to Bob’s detector. When Bob performs his measurement with a setting y, the detector reveals b = e if
y = y′ and pretends that the system was lost b = ∅ otherwise. Since p(y′ = y|y) = 1/n, for η < 1

n Eve is left
with a perfect copy of Bob’s registers (b, y) whenever the detection is successful b �= ∅.

4.4. Importance of the choice of the Gram matrix
As we saw in the previous section, if one chooses the n states {|ψx〉}x well then one can obtain R > 0, and
thus a positive key rate, whenever η > 1/n. In this section, we show that it is indeed important to choose
the Gram matrix constraining the preparations with some care. In particular, we show that for a seemingly
natural choice of Gram matrix the critical transmission, below which no key can be obtained, is
significantly worse: Alice and Bob will not be able to provide a nontrivial lower bound on the key rate if
there is more than 50% loss, i.e. if η > 1/2.

We assume thus that Alice prepares a set of n quantum states compatible with the Gram matrix
Gxx′ = 〈ψx||ψx′ 〉 = d with d ∈ (0, 1) for all x �= x′ and that the observed statistics are given by
equation (13). Since rank(G) = n, the states she prepares are necessarily linearly independent. As a result,
there exists an unambiguous state discrimination (USD) measurement [43]. Because of the symmetry, we
consider an equiprobable USD and the probability of a conclusive discrimination is given by the smallest
eigenvalue of the Gram matrix which is in our case equal to 1 − d [44].

We assume that Eve performs an intercept-resend attack such that with a probability 0 � q � 1 she
performs USD and forces Bob’s detection, and with a probability 1 − q she leaves the state untouched and
guesses at random. Given that x �= y, if Eve attacks the USD is conclusive with a probability 1 − d and if she
does not intercept the state Bob gets b = 0 with a probability η(1 − d2). Eve wants her attack to remain
unnoticed and this fixes the probability q of intercepting the state to q = (1+d)(1−η)

d .

11
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The probability that Eve successfully guesses the secret bit is then given by

pg(e = x|succ) =
1 − η(1 − d)

2dη
. (36)

Eve thus has entire knowledge of the secret bit string, i.e., pg(e = k|succ) = 1, for η = 1
1+d > 1

2 . Hence,
considering identical real overlaps prevents Alice and Bob from obtaining a positive key rate for more than
50% loss.

5. Bridging the gap between the protocols and practical implementations

Our receiver-device independent setting assumes the characterization of Alice’s state preparation device,
given by the Gram matrix

Alice � G. (37)

When Alice prepares pure states, as we have assumed so far, the Gram matrix gives an exhaustive
description of the state preparation for our purpose. That is, in the considered RDI setting, additional
information on the states does not help restricting Eve further. In particular, any common unitary
transformation or isometry on the states can be cancelled by Eve and does not affect the attacks she can
perform.

In practice the pure state assumption is always an idealization. Here, we discuss how a more realistic
model of Alice’s setup can be analysed with our protocols.

5.1. Mixed state models
Here we consider the setting where Alice’s preparation device sends out a mixed state ρx for each possible
value of x. That is the preparation box is modeled by a set of mixed states

Alice � {ρx}n−1
x=0. (38)

An ensemble of mixed states of a system A
′

can be jointly purified onto a larger system A′ ⊗ Aaux to
obtain a set of pure states {|ψx〉}n−1

x=0 with |ψx〉 ∈ HA′ ⊗ HAaux and

ρx = trAaux |ψx〉〈ψx| ∀ x.

Because the system Aaux remains inside Alice’s lab by assumption, any security guarantee obtained for a
Gram matrix G{|ψx〉} induced by the set of pure states {|ψx〉}n−1

x=0 is valid for the original mixed states. In this
case one is interested in finding the best-case purification maximizing the key rate. This gives a
straightforward way to apply our protocols to noisy preparation devices modeled by equation (38). The
resulting bounds are not necessarily tight, because in the analysis the purifying system Aaux is given to the
eavesdropper, but are secure.

An interesting open question is whether there exists a compressed representation of the mixed state
ensemble {ρx}n−1

x=0, analogous to the Gram matrix, that specifies all the relations between the states useful
for our purpose. Notably, in the case of two states the fidelity between them F(ρ0, ρ1) precisely corresponds
to the maximal fidelity between their purifications (see e.g. [45]). However, for larger ensembles the
knowledge of pairwise fidelities is known to be insufficient to characterize the joint purification [46]. As a
simple example note that even in the case of three pure states the pairwise fidelities disregard the complex
phases of the Gram matrix entries, which can be crucial for the security analysis as we have seen in
section 4.4.

5.2. Fully characterized correlated noise models
Next, let us consider the general situation where Alice’s preparation device is well described by pure states
that are however subject to noise, e.g., coming from drifts and fluctuations of some parameters (laser
amplitude, phase noise etc). In such a case the preparation box is modelled by a parametric set of states

Alice � {|φx(λ)〉}n−1
x=0, (39)

where p(λ) is the distribution of the noise parameter λ. In contrast to equation (38), this model allows for
correlated noise affecting the preparation device for all measurement settings. Notably, the model in
equation (39) reduces to equation (38) when the hidden variable λ = (λ0, . . . ,λn−1) is composed of
random variables λx that only influence the preparation for the respective setting x and are distributed
independently.

12
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Each set of pure states labeled by λ corresponds to a Gram matrix G(λ). Here, it is important to realize
that the correlations p(b|x, y) observed by Alice and Bob do not constrain each λ (unless the distribution
p(b|x, y) is extremal) but are only respected on average, i.e.

p(b|x, y) =

∫
dλ p(λ) p(b|x, y,λ) (40)

for some hidden p(b|x, y,λ). Hence, one cannot simply verify the security of the protocol for each G(λ).
Instead, we recover a pure state situation by explicitly including the hidden noise parameter λ in the

state. That is, we consider Alice preparing states of the form

|ψx〉 =
∫

dλ
√

p(λ)|φx(λ)〉|λ〉, (41)

with the ‘label’ states for the hidden noise parameter respecting 〈λ||μ〉 = δ(λ− μ). By doing so we give the
noise label λ to Eve who can control it coherently but is bound to respect our noisy model of the device
given by p(λ). It is straightforward to see that the resulting Gram matrix for the states {|ψx〉}n−1

x=0 is simply
the average

G =

∫
dλ p(λ) G(λ). (42)

Consequently, verifying the security of the protocol for G guarantees its security for the original model.

5.3. Partially characterized correlated noise models
In some situations the full model with the knowledge of the distribution p(λ) might not be appropriate, as
it requires a complete, precise characterization of the noise mechanisms present. Instead one can only
guarantee (with the desired level of confidence) that in each round the preparation device obeys to the
model

Alice � {|φx(λ)〉}n−1
x=0 with λ ∈ Λ, (43)

where Λ specifies the range of possible λ. From there we can recover the previous case by noting that any
realization of such model corresponds to the states {|ψx〉}n−1

x=0 in equation (41) for some probability density
p(λ) on Λ. The resulting average Gram matrix then necessarily belongs to the set

G ∈ ĜΛ

GΛ = {G(λ)|λ ∈ Λ},
(44)

where the hat ĜΛ denotes the convex hull of the set GΛ. In principle, it remains to determine the worst case
G inside the set, with respect to the key rate it implies, in order to guarantee the security for the noise
model.

Practically, this problem is however computationally hard. And instead of solving it directly it is
convenient to further relax the constraints on G to a form that one can easily include in the security analysis
described in section 4. This can be done by constraining each entry of the Gram matrix Gij independently.
Concretely, the set GΛ can be relaxed to a collection of constraints

rij � Re[Gij] � Rij

iij � Im[Gij] � Iij,
(45)

on the real and imaginary parts of each entry of the matrices G ∈ GΛ. Being linear these constraints remain
valid for the convex hull set ĜΛ. Most importantly, they are very simple to include in the SDP. The equality
constraint Γ11

ij = Gij in equation (10b) translates in two inequalities on the real and imaginary part of Γ
for i �= j

rij � Re[Γ𝟙𝟙
ij ] � Rij

iij � Im[Γ𝟙𝟙
ij ] � Iij.

(46)

Through the SDP the Gram matrix is constraint to be positive semidefinite. Hence, the set of states
described by the Gram matrix which maximizes pg(e = k|succ) remains physical.
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6. Comparison to other QKD models

In this section we present a brief comparison of our RDI protocols with other models for partially DI QKD.
Let us start with the one-sided DI model first proposed in reference [26]. The model applies to a

prepare-and-measure scenario, where the receiver is untrusted (as in the RDI model), while the sender uses
a fully characterized device. Reference [26] demonstrates security with the help of generalized tripartite
uncertainty relations, but no practical considerations are discussed. Subsequent works [28, 29] discussed the
practical requirements of such an approach, considering the effect of noise and finite-size data; see also
references [47, 48] for similar analysis based on different proof techniques. However, the effect of losses is
either not discussed [26, 48], or their analysis is based on a fair sampling type assumption [28, 29, 47],
where the detection of the photon is assumed to be independent from the choice of measurement made by
the receiver. Note that the fair sampling assumption allows one to attribute the non-detection events to a
filter applied on the system before the measurement and essentially discard the no-click events in the
security analysis [12]. In practice, however, such an assumption is hard to justify in adversarial scenarios
like QKD, as it opens the door to blinding attacks exploiting the fact that Eve can steer Bob’s detector to
click or not depending on the measurement setting [8]. Therefore, the results of references [28, 29] (and
also [47, 48]) cannot be applied to a practical QKD setup without sacrificing the one-sided DI security.
Another notable point is that the security analysis of [28, 29] relies on an entropic uncertainty relation for a
pair of measurements. In the prepare-and-measure setting this approach thus applies to protocols where
Alice prepares four states (grouped in two pairs of orthogonal states), and Bob performs two measurements.
It is unclear to us whether such an approach can tackle more general protocols [49], with more states and
measurements. Indeed, these cases are important, as the number of measurements of Bob must become
large in order to accommodate for low transmissions. Notably, the protocols that we analyze here using the
overlap method, where Alice prepares an increasing number of qubit states, can allow for an arbitrarily low
transmission.

The one-sided DI model can also be investigated in an entanglement-based scheme where one of the
parties is trusted while the other is considered as a black-box [26]. This approach was discussed in reference
[27], establishing a connection with the effect of quantum steering. Here, both noise and losses are taken
into account. The requirements in terms of detection efficiency are high (η > 65.9%), hence providing only
minor improvements over the DI model. In practice, entanglement-based one-sided DI QKD has never
been implemented.

Our RDI protocols therefore provide a number of improvements over previous works on the one-sided
DI scenario. First, our protocols are shown to be secure in a prepare-and-measure scenario taking into
account both noise and losses; note that the companion paper [35] considers also finite-size effect for the
proof-of-principle experiment. In particular, RDI protocols can in principle allow for an arbitrarily low
transmission, as we discussed. Compared to the approach of reference [27], the experimental realisation is
greatly simplified, as no source of entanglement is necessary, and much lower detection efficiencies can be
tolerated. Moreover, in our case, the characterized party (Alice) acts as a sender, while in the one-sided
model Alice holds a measurement device. Having to trust a preparation device instead of a measurement
device is arguably an advantage.

Another SDI approach presented in references [31, 32] shares more similarities with our approach. The
authors consider prepare-and-measure scenario where Alice’s device is assumed to prepare quantum states
of bounded Hilbert space dimension (for instance qubits), while Bob’s device is completely black-box. This
represents a very different type of assumption on the preparations, which is however arguably difficult to
justify in practice; indeed a photon is not a qubit, and has many other degrees of freedom than (say)
polarisation [50]. In this sense, we believe that our RDI approach is more naturally tailored to experiments,
as it can deal with systems of arbitrary (possibly infinite) dimension. Another important advantage in
practice, is the robustness to losses. Indeed, dimension-based SDI protocols are also sensitive to
detection-loophole-type attacks and thus require detection efficiencies comparable to Bell tests [34]. This
renders their practical implementation challenging. To the best of our knowledge, no experiment has been
reported so far. Another related approach was developed in reference [33], considering an
entanglement-based QDK setup assuming only the dimension of the entangled state prepared by the source.
Again, practical implementation is challenging due to high detection efficiency requirements.

Finally, we compare our RDI model to the MDI approach [20, 21]. Both approaches aim at relaxing
trust on the measurement device. While we do this in the prepare-and-measure scenario, the MDI model
considers an additional party (Charlie), located in between Alice and Bob and who acts as a relay. Charlie’s
(measurement) device is then fully untrusted, while Alice’s and Bob’s (preparation) devices must be well
characterized. In practice, a strong advantage of the MDI approach is its robustness to losses, leading to
record-distance experiments [22–25]. In a scenario where both end parties, Alice and Bob, have means to
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characterize and test their devices (or good reasons to believe the devices function correctly), the MDI
approach is a good choice. However, in a scenario where one of the parties does not have the resources (or
the expertise) for testing and characterizing their device (or reasons not to trust their devices, for instance a
possible malfunctioning due to ageing), the RDI approach provides a good solution. In contrast, the MDI
approach cannot be used here, as Bob’s (nor Alice’s) device can be described by a black-box; some level of
trust on both Alice and Bob will always be required in the MDI case.

7. Conclusion

We have discussed QKD protocols considering a RDI model. We presented a security analysis and
investigated limitations of these protocols. Notably, we showed that our protocols can in principle allow for
an arbitrarily low transmission (detection efficiency). We also provided a detailed discussion concerning the
relevance of our approach in a practical context, in particular discussing how the overlap assumption can be
justified. These results complement a recent (companion) paper, where a proof-of-principle RDI QKD
experiment has been reported [35].

To conclude, we discuss a number of open questions. A first interesting question is to derive stronger
bounds on the secret key rate. This may be possible using techniques recently developed in reference [51]
providing lower bounds on the conditional von Neumann entropy (instead of the conditional min-entropy,
as we consider here) from observed data. Elements from the approach used in reference [52] might also be
useful here.

Another question is to turn our asymptotic key rate into a finite key length when a finite number of
systems are exchanges between Alice and Bob. A natural route towards this goal consists in using the
entropy accumulation theorem [53], although it is still unclear whether this approach can be adapted to the
prepare-and-measure scenario.

An important direction to pursue is to look for RDI protocols that can achieve long distance and are
practical. Here we presented protocols that can tolerate the minimum possible transmission (depending on
the number of measurements n made by Bob) in the RDI model. In practice, the drawback of our protocols
is the sifting, which, for large n, renders the protocols inefficient. Developing more efficient protocols would
represent significant progress.

Finally, we note our approach shares similarities with the recent work of reference [54], where the
author investigates correlations in a prepare-and-measure scenario with bounded distrust in the
preparations. Specifically, the fidelity of the prepared states with respect to some reference state is lower
bounded. Hence the distance between the actual and ideal states is bounded. In our approach we bound the
distance between the prepared states via their pairwise overlaps.
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