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ract. In this Part 2 article of a two-part series, observations based on satellite missions

 used to evaluate the empirical consistency of model ensembles generated via stochastic

elling of ocean physics and biogeochemistry. A high-resolution Bay of Biscay

iguration was used as a case study to explore the model error subspace in both the open

oastal ocean. In Part 1 of this work, three experiments were carried out to generate mode

mbles by perturbing only physics, only biogeochemistry, and both of them simultaneously

rt 2 of this work, empirical consistency was checked, first by means of rank histograms

cting the data onto the model ensemble classes, and second, by pattern-selective

istency criteria in the space of “array modes” (eigenvectors of the representer matrix)

 histograms showed large dependency on geographical region and on season for sea

ce temperature (SST), sea-level anomaly (SLA), and phytoplankton functional types

), shifting from consistent model-data configurations to large biases because of mode

mble underspread. Consistency for SST array modes was found to be verified at large

l and coastal scales soon after the ensemble spin-up. Array modes for the along-track sea-

 showed useful consistent information at large scales and at the mesoscale; for the gridded

 was verified only at large scale. Array modes showed that biogeochemical mode

rtainties generated by stochastic physics, were effectively detected by PFT measurements

rge scales, as well as at mesoscale and small-scale. By contrast, perturbing only

eochemistry, with an identical physical forcing across the ensemble, limits the potential of

 measurements at detecting and possibly correcting small-scale biogeochemical mode

s. When an ensemble was found to be inconsistent with observations along a particular

tion (here, an array mode), a plausible reason is that other error processes must have been

e in the model, in addition to the ones at work across the ensemble. 

ords: stochastic modelling, ensembles, phytoplankton functional types, prior error

riances, array modes, Bay of Biscay 

Introduction 

e coastal parts of regional ocean models, many factors can complicate the assimilation of

 One of them is the characterization and specification of model errors, which are critica

y assimilation scheme, but extremely challenging in the coastal zone. Ocean model errors

gly depend on spatiotemporal scales, though any attempt at separation is confounded by

g nonlinearity in the dynamics that can couple variability at different frequencies and

numbers (Auclair et al., 2003). Another factor complicating data assimilation is the

ification of observational errors, which are made up of measurement (usually small) and

sentativity errors (usually large or unknown), and cross-correlations between observations

ally unknown) (Oke and Sakov, 2008). 

t studies point at the benefit of advanced assimilation methods with built-in error

agation (Kourafalou et al., 2015a; 2015b), such as the Ensemble Kalman Filter (EnKF
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ing forcing errors (e.g. uncertainties in boundary conditions; Ghantous et al., 2020) or due

ternal sources (e.g. model parameterizations; Brankart et al., 2015), and include realistic

 dynamics through stochastic modelling. For instance, depending on the wind regime, or

nal baroclinic instabilities of the slope current, shelf errors can be different in terms of

otemporal scales (Auclair et al., 2003). Biogeochemical model errors can also be differen

ming from unresolved scales and biodiversity (Garnier et al., 2015). It should be noted

stochastic modelling, in itself, may not yield realistic error dynamics, for example, it could

te the ensemble (Anderson, 2009). 

e companion article Part 1 (Vervatis et al., 2021), we configured a high-resolution (1/36°)

astic ocean model for the Bay of Biscay performing physical-biogeochemical ensemble

lations. We carried out quantitative assessment of model-data misfits and qualitative

ation of multivariate incremental analysis. We found that the skill of the perturbation

od to generate model errors was improved (in general) for physics compared with

eochemical perturbations in source and sink terms (i.e. larger ensemble spread when

ics is perturbed) and that the data assimilation performance to correct those model errors

largely dependent on the chosen multivariate analysis. On the other hand, the

eochemical model spread was found under-dispersive, leading to disjoint supports1 of the

el and data probability density functions (𝑝𝑑𝑓), and performance was mainly defined by

ssimilation of ocean colour data, possibly because of weak cross-covariances between

n physics and biogeochemistry. 

ht of these findings, in this companion article Part 2, we present two methods to evaluate

onsistency with respect to observations (hereafter empirical consistency) of a stochastic

led ocean model, which comes in the form of an ensemble of multivariate ocean states

focus on observational products including physics and biogeochemistry, derived from

lite missions monitoring upper-ocean properties, such as the sea surface temperature

), the sea-level anomaly (SLA) and an ocean colour product of phytoplankton functiona

 (PFT; Brewin et al., 2010; 2015; 2017). Several biogeochemical studies have focused on

oving the model’s predictive skill using remote sensing and in-situ observations

rporating data assimilation and probabilistic attribution (Candille et al., 2015; Song et al.

; Gharamti et al., 2017; Mattern et al., 2018; Ford, 2019). Here, we focus our analysis on

se of ocean colour PFT observations following recent advances in data assimilation to

ove marine ecosystem simulations (Ciavatta et al., 2018; 2019). 

probabilistic framework, the support of the joint 𝑝𝑑𝑓 of observed and forecast values

ld be non-null in order to enable data assimilation. In other words, the prior model state

the data must be compatible with each other given their respective uncertainties in order

ssimilation to be meaningful. Therefore, one important question we address in this study

 following: is the distribution of the forecast errors estimated from the ensemble (the prior

ibution) compatible with the distribution of the data to be assimilated? Another importan

tion is about how ensembles (e.g. the state of a stochastic model) can be validated – in

t, ensembles are not used solely for assimilation – other uses include: array design

abilistic forecasting, a learning base for artificial intelligence applications, etc. 

 first step, we assess the empirical consistency of ensembles by means of rank histograms

 referred to as Talagrand diagrams; Candille and Talagrand, 2005) projecting the data

                                          
 support of a probability density function (pdf) is the smallest closed set outside of which the pdf vanishes

 pdf defined in ℝ, the pdf envelope (i.e. here the ensemble envelope) is the range between the minimum and

um values of the support. 
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pply a consistency diagnostic on innovations inspired by the similarly-named diagnostic

loped in Andersson (2003) and Desroziers et al. (2005) in the framework of the assessmen

e well-posedness of data assimilation schemes. Our implementation is however specific

o ways: (1) we use that metric here outside of a data assimilation scheme, to check how

istent our ensembles are with respect to innovations; (2) we project the innovation

istency diagnostic on Array Modes, with the objective of permitting pattern-dependen

istency analysis. Our definition of array modes follows previous publications (Le Hénaf

., 2009; Lamouroux et al., 2016; and Charria et al., 2016). This is detailed below. 

 study is organized as follows. Section 2 describes the stochastic approach to generate

el ensembles, following the companion article Part 1. The specifications of the

rvational networks are presented in Section 3, including the description of the ocean colour

. A summary of the consistency analysis framework based on rank histograms and array

es is given in Section 4, which presents also a new criterion in “array space”. The results

onclusions are discussed in Sections 5 and 6. 

Stochastic modelling 

used the NEMO platform (Nucleus for European Modelling of the Ocean

//www.nemo-ocean.eu/; Madec, 2012) and its biogeochemical component PISCESv2

gic Interactions Scheme for Carbon and Ecosystem Studies volume 2; Aumont et al.

). The ocean model domain encompasses the Bay of Biscay and the western part of the

ish Channel (Quattrocchi et al., 2014; Vervatis et al., 2016). The physical model is

led online (one-way with high coupling frequency for the conservation of tracers) with a

eochemical model at 1/36° horizontal resolution. 

e seasonal-range ensembles were carried out using stochastic modelling of ocean physics

iogeochemistry as part of the project SCRUM (Stochastic Coastal/Regional Uncertainty

elling; cf. companion article Part 1 by Vervatis et al. 2021). Perturbations were modelled

 first-order auto-regressive processes - AR(1) - in the context of stochastic perturbed

eterized tendencies (SPPT; Buizza et al., 1999) and stochastic perturbed parameters

; Ollinaho et al., 2017). The AR(1) processes were different for each perturbed tendency

arameter, and varied under the assumption of spatiotemporal correlated scales. A

ministic free run was performed from July 2011 to November 2011, to serve as a five-

th model spin-up starting from ocean analyses for the whole state vector, and then extended

 December 2011 to June 2012, to serve as reference for the main physical and

eochemical processes in the region and deduce the statistical properties for the AR(1)

astic parameterizations. The ensemble simulations were initialized from the five-month

up and carried out from December 2011 to June 2012. The 40-member ensembles were

 to estimate the forecast error covariance matrix perturbing different sources of mode

s. 

able 1, we summarize the stochastic protocol for the three ensembles, hereafter referring

em as: EnsP - perturbing physics under the assumption of atmospheric forcing

rtainties and model uncertainties in physical parameterizations; EnsB - perturbing

eochemistry under the assumption of model uncertainties in biogeochemical sources and

; and EnsPB - perturbing both physics and biogeochemistry. The biogeochemical mode

eters were not perturbed. The initial conditions were also not perturbed. The EnsPB is

tically identical to EnsP for model errors in ocean physics, because there is no feedback

e physics from the biogeochemical model. By contrast, EnsPB is statistically different to

 and EnsP because uncertainties in the physical forcing are found to have a large impac
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ensemble-based misfits, the reader is referred to the companion article Part 1. 

model uncertainties in physical and biogeochemical properties in the upper ocean are

ribed in Part 1. Here we illustrate the typical patterns that we obtained for the spread in

, sea surface height (SSH) and chlorophyll abundance at specific dates that will also serve

reference for the analyses in Section 5. Figure 1a shows, the Bay of Biscay SST from the

ministic simulation on May 31, 2012. Fig. 1b shows the EnsP model ensemble spread for

 on the same date. Figs. 1a-b show that the ocean model solution and its associated error

tures for SST are statistically consistent. In more detail, error regimes are linked to

ical processes controlling SST, for example, the extension of the Ushant thermal tidal fron

 of Brittany in the English Channel. At that time of the year, the stratification is strong and

reshwater front (due to the Loire and Gironde rivers runoff in the Armorican shelf) leads

large spread locally exceeding 0.8 °𝐶. Figs. 1c-d give an insight of the model circulation

rns on February 25, 2012, depicted by SSH and their error structures. After a two-month

up period, the maxima of SSH model spread are collocated with mesoscale eddies

rved in the abyssal plain, and with (most likely) inertial barotropic waves observed over

helves. The perturbation mechanism works throughout the whole period. Therefore, the

 spread continues to grow in the abyssal plain due to mesoscale decorrelation of eddies

s members (not shown). 

re 2a shows the total chlorophyll abundance of the deterministic simulation at the onset of

pring bloom on March 28, 2012. In Figs. 2b-d, and for the same date, we show mode

rtainties in total chlorophyll for the three ensembles EnsP, EnsB and EnsPB. We

hasize two important findings: first, the model errors in physics have a larger impact on

rophyll model uncertainties compared with those generated by perturbing the

eochemical model source and sink terms; second, the chlorophyll spread is increased when

el physics and biogeochemistry are perturbed simultaneously. However, there are also

ptions of decreasing spread (e.g. occurring locally in the presence of coherent eddies)

estingly, an uneven ensemble spread is also observed between nanophytoplankton and

ms chlorophyll (Figs. 2e-f). Model errors for each phytoplankton type follow the differen

rns of their chlorophyll concentrations, with large uncertainties observed in the abyssa

 for nanophytoplankton, and on the shelves and the English Channel for diatoms. 

Observational networks 

is study, although we examine the same broad categories of observations as in the

panion article Part 1, we have included more satellite products observing the upper-ocean

ical and biogeochemical properties. Therefore, for the sake of clarity, we have included a

escription of observations. We consider global and regional satellite products monitoring

ay of Biscay, using high-level L3 and L4 merged data from multi-missions for both real-

 and delayed modes. All datasets are provided at daily frequency. This level of data quality

en required in ocean forecasting systems for model validation and data assimilation. Table

marizes the datasets used for the empirical consistency analysis and their specifications

iven briefly in the paragraphs below. 

SST gridded observations 

hose two high-resolution SST L4 products, namely the OSTIA SST global dataset and the

nal Atlantic European north west shelf (NWS) SST. High-resolution SST data are

ssary when it comes to validate eddy-resolving model ensembles. Both networks are able
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OSTIA SST is provided on a global regular grid at 0.05𝑜 resolution (Donlon et al., 2012)

is by construction free of diurnal variability with a reference depth of 10 meters, referred

as foundation SST. The reconstructed fields consist of L4 daily gap-free maps. The produc

des multi-sensor measurements from both infra-red and microwave instruments, as wel

-situ observations retrieved from ships of opportunity, drifters and buoys. The data were

cessed using optimal interpolation and include a bias correction. 

NWS SST product is delivered at 0.04𝑜 high horizontal resolution and consists of L4 daily

free regional maps. Calculations are derived from infra-red measurements using only

t-time observations, and thus the NWS SST data are not affected by diurnal warming. 

SLA gridded and along-track observations 

elected two products based on different levels of processing. The L3 along-track sea-leve

uct is based on several altimetric missions, specifically on Envisat and Cryosat-2 satellites

L4 gridded product was generated by reprocessing multi-mission altimetry data over many

. 

the along-track data, we used the filtered sub-sampled L3 product with 14 km distance

een successive points along the altimetry track. The effective resolution of the data is

er than the aforementioned distance (Pujol et al., 2016). The inverse barometer response

he tides have been removed from the data (and the model, cf. companion article Part 1). 

L4 product is a merge of multi-mission satellites spanning the last two decades. The resul

omogenous and consistent gridded dataset at a resolution of 0.25𝑜. The scales resolved

e L4 gridded product depend on various factors, such as the quality of the L3 input data

ampling of the altimeter constellation and the optimal interpolation, which limits the

bility of the data to resolve part of the mesoscale (Chelton et al., 2011). 

Phytoplankton functional types ocean colour observations 

elected the regionally-tuned PFT satellite model of Brewin et al. (2017). The approach is

dification of the three-component model of Brewin et al. (2010; 2015) and produces

ates of the chlorophyll concentration of four phytoplankton groups (picophytoplankton

phytoplankton, diatoms and dinoflagellates), as a function of the total chlorophyl

entration, accounting for the influence of SST on model parameters. The model was tuned

validated using a large dataset collected in the North Atlantic, inclusive of our region of

est. The approach was run using ocean colour data from the ESA ocean colour climate

ge initiative (OC-CCI) and OSTIA SST data. Products were produced on a regular grid a
𝑜 resolution. The data has been used successfully in PFT data assimilation exercises in the

h Atlantic (Ciavatta et al., 2018; Skakala et al., 2018). The products were developed in

framework of the Copernicus Marine Environment Monitoring Service (CMEMS)

ards Operational Size-class Chlorophyll Assimilation (TOSCA)” Service Evolution

ct. 

mismatch between biogeochemical model variables and ocean colour products has been

lighted recently in an IOCCG Report No. 19 (IOCCG, 2020). The biogeochemical mode

ES distinguishes two classes of chlorophyll, namely the nanophytoplankton and diatoms

e two chlorophyll classes were given this name, as the traits of these modelled functiona

 are closest to these two abundant groups in the natural world. However, these two classes

esigned to be representative of the entire phytoplankton community, and therefore are far

der than the names imply. Each of the two model compartments encompasses a large range
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ed to follow a size class-based categorization (Sieburth et al., 1978) and group the four

n colour PFT into two phytoplankton types and keep the total chlorophyll concentration

e data unchanged (i.e. the sum of all four types). For this, we combined the concentrations

cean colour pico- and nano- PFT into one small class comparable with the PISCES

phytoplankton, and the diatoms and dinoflagellates ocean colour PFT into one large class

parable with the PISCES diatoms. This categorization took into consideration many

esses and biogeochemical cycles in the model, for example, not just the silicate cycle bu

the carbon and nitrogen cycles, and the size-selective feeding by microzooplankton and

zooplankton. However, it was unavoidable to combine one PFT with characteristic

te limitation with one without (i.e. diatoms and dinoflagellates; in supplementary materia

rovide also an analysis without this combination). The choice to include all four PFT was

orted by the fact that their sum ensures the total biomass (chlorophyll) and therefore

el and satellite total chlorophyll data can be compared like-for-like. In addition, the tota

rophyll concentration (sum of the four PFT) in the model is of the same magnitude as the

 chlorophyll of other ocean colour products used for the validation of our ensembles, as

n in the companion article Part 1 and in the supplementary material. 

Observational errors 

stimate of the observational error is given by the measurement and representativity errors

ally unknown) (Desroziers et al., 2005; Oke and Sakov, 2008; Janjić et al., 2018). The

urement errors are usually small and refer to the instrument’s sensor accuracy and data

essing. The representativity errors are usually large and can account for different mode

bservation sampling schemes, or for the physical-biogeochemical signal that is contained

e observations but is not represented in the model. Some of the data used here were

ved from archives and included a spatial distribution of their errors. While this

mation is important for a dynamically heterogeneous system such as the Bay of Biscay

hose not to use it because it would be hard to interpret pattern-dependent consistency

ts. Instead, we used a representative constant error for each observational network

ided by the CMEMS infrastructure and the data providers. 

ming that errors are uncorrelated and that the innovation variance is therefore close to the

of model and data error variances, we considered an error standard deviation for SST equa

5 𝑜𝐶, for SLA equal to 0.05 𝑚, and for PFT equal to 0.3 𝑚𝑔/𝑚3 (Table 2). The satellite

rophyll a data are provided with a scaled (%) observational error in comparison to the

l and therefore, the error has spatial distribution. We chose this constant PFT error over

rror that scales with the satellite chlorophyll a signal for the reason explained in the

graph above. The static PFT error is representative for the region, though moderately larger

tal chlorophyll and nanophytoplankton in the open ocean, and underestimated for diatoms

 the shelves, if compared with the PFT errors estimated by Brewin et al. (2017). 

e following Section 4, and for each of the consistency analysis methods, we discuss the

rbation of observations to generate data distributions and the anamorphosis functions

ied to transform those distributions in the proper space (Simon and Bertino, 2009). 

Consistency analysis framework 

is study, we implemented two empirical consistency analysis methods to evaluate mode

mbles with respect to observations. The first approach was based on rank histograms and

econd on array modes. The calculations were performed with a toolbox (nicknamed

mcat”: SCRUM consistency analysis toolbox) built upon the Sequoia Data Assimilation
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Rank histograms 

rank histogram (Talagrand diagram; Candille and Talagrand, 2005) is a verification metric

g the empirical consistency between model samples and observations. An ensemble of 𝑚
bers defines 𝑚 + 1 ranks including the rank of one observation sorted within the mode

mble. The steps to calculate rank histograms are (1) project ensemble samples in data space

 an observation operator, (2) sorting the ensemble samples by value, (3) ranking the

rved value within the sorted ensemble at each observation location, (4) tally over many

rvations in space and time. We note that for the rank histograms the observations are no

rbed and the model ensemble distributions are not checked for gaussianity. 

rank histogram is useful for determining the reliability of ensemble forecasts (Hamill

) and is often used as a tool to infer systematic biases of an ensemble prediction system

ell as differing spreads between model and data (e.g. small spread translates into most data

g into the outer classes of the rank histogram). The rank histogram flatness is a measure

e reliability of the ensemble prediction system and is estimated according to the definition

atistical consistency by Anderson (1996) and Candille and Talagrand (2005): 

∑ (𝑆𝑖 −
𝑝

𝑚+1
)

2
𝑚+1
𝑖=1 , 𝛥𝜊 =

𝑝∗𝑚

𝑚+1
, 𝛿 =

𝛥

𝛥𝜊
~1,      (1) 

e 𝑝 is the number of observations, 𝑚 the number of ensemble members, 𝑆𝑖 the outcomes

ch rank (i.e. number of observations of rank 𝑖), 𝛥 the deviation of the histogram from

ess, 𝛥𝜊 the expectation for a reliable system and 𝛿 the ratio measuring the reliability for a

r variable of the ensemble prediction system. 

Ensemble consistency in array space 

 histograms provide a way to check ensemble empirical consistency in a global

ibution-like manner. In a complementary manner, we wish to complete the global analysis

 pattern-selective consistency analysis, using patterns which would be (A) hierarchized

epresentative of error covariances (as estimated from the ensemble) and (C) observable

e data array. To that end, we chose to assess consistency in the space of Array Modes

fter nicknamed “array space”. 

se whenever possible the unified notations of data assimilation as in Ide et al. (1997). We

e array modes 𝝁 as the eigenmodes of the scaled representer matrix 𝝌 defined as: 

𝑹−
𝟏

𝟐𝑯𝑷𝒇𝑯𝑻𝑹−
𝟏

𝟐 = 𝝁𝝈𝝁𝑻 (2) 

e 𝑷𝑓 is the forecast (prior) error covariance matrix, here approximated as an ensemble

riance, 𝑹 is the observational error covariance matrix, and 𝑯 is the “classic” linear

rvation operator. Because an observing array will not be concomitant, all operators are

dimensional in that they span time in addition to space. 

e array modes have been discussed in several articles in the literature. First, Le Hénaff e

009) presented the theoretical background for the representer matrix spectra methodology

ng at assessing the performance of observational networks at detecting model errors. In

 study, prior model errors were generated via stochastic modelling of the wind forcing and

us altimetry and in-situ array deployment strategies were tested. Two other studies

wed, based on array modes, by Lamouroux et al. (2016) and Charria et al. (2016), where

ors designed optimal observation network experiments based on array modes, for the

e implementation of efficient integrated ocean observing systems monitoring the coasta
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rn definition criteria (A-C) above. 

matrix 𝝌 in Eq. (2) expresses how the array “sees” the model uncertainties; the diagona

ix 𝝈 = 𝑑𝑖𝑎𝑔{𝜎𝑘} offers the same information as 𝝌 in array space, but in a diagonal form

the array mode spectrum. Intuitively, the higher the eigenvalues in 𝝈, the better the array

detect (and help correct) errors of a prior estimate. Le Hénaff et al. (2009) show that a

l choice of a discriminating spectral value is 1. In order to clarify this choice, let us

ider the innovation vector 𝒅 and its second-order statistics: 

𝒚𝒐 − 𝑯𝒙𝒇 (3) 

〉 = 𝑹 + 𝑯𝑷𝒇𝑯𝑻 (4) 

e 𝒚𝑜 is the observation vector and 𝒙𝑓 is the forecast (prior) state vector. Equation (4) is

ame as Eq. (1) in Desroziers et al. (2005). An intuitive criterion of array performance is

llows: 

 observational errors 𝑹 dominate in Eq. (4), then most of the model-data discrepancies in

 attributable to observational error, and observations are not being very useful at detecting

el uncertainties. 

f prior state errors 𝑯𝑷𝑓𝑯𝑇 (the representer matrix) dominate, then most of the

epancies are attributable to model uncertainties, and observations can be expected to be

l at identifying and correcting them. 

s examine this criterion in array space. Using the orthogonality of array modes, it is easy

ow that the innovation covariance in Eq. (4) projected into array space, becomes: 

𝝁𝑻𝑹−
𝟏

𝟐 < 𝒅𝒅𝑻 > 𝑹−
𝟏

𝟐𝝁 = 𝑰 + 𝝈, (5) 

e the choice of 1 as a discriminating spectral value. It follows: 

rion ArM1: Array performance is measured by the number of ranks 𝑘 for which: 

1 ≤ 𝜎𝑘 

 that (1) this first criterion is only based on the space-time sampling scheme and on the

mble covariance; it does not require the actual values of observations; (2) it is not ye

essed as an empirical consistency criterion for our ensemble. Now, when we have the

es of observations, Eq. (4) can be used to derive an empirical ensemble consistency

rion. Innovation Eq. (3) can be formed, and 〈𝒅𝒅𝑇〉 can be calculated empirically and

pared to the right-hand side of Eq. (4). In effect, the innovation spread is the result of prior

rtainties of both the model and observations; therefore, that spread should be statistically

istent with the sum of prior model uncertainty estimates and observational uncertainty

ates. 

bove, this criterion is more advantageously examined in array space, i.e. in the form of Eq

Since 𝑰 + 𝝈 is diagonal, we focus on the diagonal of 𝑬𝒊 = 𝑑𝑖𝑎𝑔{𝑒𝑘
𝑖 }, i.e. the innovation

nce in array space. Our second criterion writes:  Jo
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1 − 𝜏 ≤
𝑒𝑘

𝑖
≤ 1 + 𝜏 

with 𝜏 the user-selected tolerance (e.g. 𝜏 = 0.1 for 10% tolerance). 

is study, we use the ArM1 and ArMCA1 criteria as implemented in the ArM tools library

Mey-Frémaux, pers. comm., 2020), distributed as open source within the SDAP

ilation platform (De Mey-Frémaux, 2020: https://sourceforge.net/projects/sequoia-dap/)

heck consistency in array space, also qualifying consistency results with their associated

ivariate patterns in observation space. In short, criterion ArM1 is an “array performance”

rion based on how the observational array “observes” model uncertainties; criterion

CA1 tests ensemble empirical consistency in terms of variances; other criteria are presen

e ArM tools but are not used here. 

approach can be seen as an extension of the Desroziers et al. (2005) consistency diagnostic

novations (their Eq. (1)), which we project on the space of array modes. 

remove ensemble averages prior to analysis. In contrast to rank histogram analysis

rvations are perturbed, using a Gaussian random number to generate data distributions

 proper error estimates for each network (Table 2). Although the methodology allows for

iagonal observational error covariance matrix, we consider it to be diagonal in this study

ing that observational errors are considered statistically independent from each other. In

of non-Gaussian distributions, an anamorphosis transformation is applied so as to

late array modes in the transformed space. For instance, in this study, model and data

rophyll samples are log-transformed prior to computing array modes. 

Results 

Rank histograms consistency analysis 

gs. 3-5, we show Hovmöller plots of rank histograms as a means to analyse space-time

mble consistency. Under-dispersive rank histograms are characterized by a U-shape

am, since observations fall mostly in the outer ranks of the ensemble. In the context of a

möller plot of rank histograms, under-dispersion is illustrated by contrasting colours

een outer and central ranks (Fig. 3). In the same line of thinking, bias is depicted by having

 values only on one side of the histogram and flatness (i.e. 𝛿~1) is verified for evenly

ibuted 𝑝𝑑𝑓 values at 
1

41
~0.024 across all ranks. Rank histograms for SST verify that EnsP

nerally under-dispersive and biased, though results vary depending on seasons and on the

f different networks (Fig. 3). On the other hand, there are cases where observations are

ly distributed within the ensemble spread despite persistent under-dispersion. The rank

grams are in close agreement with the consistency analysis based on the OSTIA SST

vation samples, presented in the companion article Part 1. 

der to illustrate dependency based on geographical region, we focus on three distinct areas

e Bay of Biscay, namely the abyssal plain, the Armorican shelf and the English Channe

 3). There is evidence of local error regimes where EnsP is either warm or cold biased

 respect to observations. From the latter we can link SST observational biases and

restimated model errors potential to local dynamics. For instance, rank histogram flatness

casionally verified in the abyssal plain, whereas in the Armorican shelf and the English

nel the ensemble is shifting from being warm biased in winter to cold biased in spring

 respect to observations. The results are associated with the spring shoaling of the

ocline in the open ocean, as well as to coastal processes controlled by frontal activity of
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ate consistency against EnsP. The OSTIA SST fits better within the ensemble classes

g winter, whilst the consistency for the NWS SST is improved during spring. Overall, the

 is notably under-dispersive and on average warm biased with respect to observations

st cold biased in the English Channel. 

re 4a shows a Hovmöller plot of rank histograms and Fig. 4b a map of ranks as a means to

se space-time ensemble consistency for sea-level. The SLA model equivalent is

lated using a mean dynamic topography as in the companion article Part 1. The gridded

 product appears to be under-dispersive having a bias against the ensemble shifted between

ns (Fig. 4a). This bias is most likely attributed to the seasonal steric cycle contributing to

evel variability being weak in the observations. As a consequence, rank histogram flatness

t verified throughout the series. 

lar results are presented in the map of rank histograms for the along-track SLA produc

 4b). As in the companion article Part 1, we focus our analysis in late-winter for a few

ecutive days after having a model ensemble statistical spin-up for EnsP (Fig. 1d) and also

rving noticeable sea-level variability in the satellite observations. Strong biases are

rent, both in the deeper areas of the domain and in the shelves. These biases also coincide

 the location of inconsistent tidal residual signals (both in the model and data) in the

ish Channel. Contrasting colours in the Celtic Sea and near the shelf break hint at the

nce of high-frequency error processes currently unaccounted for in the model ensemble

er-dispersion and missing errors in the high-frequency band (e.g. open boundary

itions in the shelves, which do not deal properly with high-frequency processes), is also

irmed by the fact that there are only a few central ranks depicted in the map. 

ig. 5, we present Hovmöller plots of rank histograms as a means to analyse ensemble

istency with respect to different classes of chlorophyll. For this, we use the PFT dataset

st the model ensemble EnsPB which has the largest spread among the three ensembles

. 2b-d). Rank histograms for EnsPB verify that all ensembles are under-dispersive, with

 being the least dispersive and EnsPB the most dispersive. The chlorophyll rank

grams for EnsP (not shown) are comparable to those of EnsPB (Fig. 5), but with lower

s of consistency. Rank histograms indicate a rather long statistical biogeochemical spin-

eriod, on the order of 3 months (verified by rank histogram flatness for evenly distributed

 values), and persistent model underestimation of chlorophyll abundance. The spin-up

d corresponds only to the winter season characterised by low primary production. After

pin-up period, the consistency is in general improved for total chlorophyll, as a result of

nset of the nanophytoplankton spring bloom. On the other hand, diatoms appear to

nerate the consistency of total chlorophyll. During successive spring blooms

nsistencies are seen in the peak, but better agreement in the onset and relaxation of the

ms. This is explained by the fact that ocean colour peak values are of an order of magnitude

r compared with model outputs, whilst PFT data fall within the ensemble spread during

nset and relaxation phases of a bloom event. Overall, the most consistent configurations

he nanophytoplankton in early-spring (i.e. primary bloom mainly in the abyssal plain) and

iatoms in late-spring (i.e. secondary bloom mainly coastal and over the shelves). 

Array-space empirical consistency analysis 

ig. 6a, we show in a Hovmöller plot the variations in time of OSTIA SST array mode

tra vs. modal rank (i.e. the rank of the array mode), including an EnsP consistency check

st OSTIA SST data. We used 39 array modes, corresponding to the 39 “degrees of

om” characterizing a 40-member de-biased ensemble. The ensemble spin-up period
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cting” model uncertainties, as per criterion ArM1, appears satisfactory from spin-up time

e end of the series, with values above 1 across the spectra. Eigenvalues get larger in the

two months, likely reflecting both the onset of a seasonal thermocline and upper-ocean

esses within the error subspace generated by our stochastic protocol (e.g. in response to

 uncertainties). The loss of empirical consistency of EnsP with respect to OSTIA SST as

riterion ArMCA1 appears as white “pixels”. Consistency appears to be almost always

ied along the dominant array modes, mostly associated with large-scale patterns (as

trated in Fig.7). The number of ensemble inconsistency cases increases as one moves to

ails of the spectra, mostly associated with smaller-scale and coastal patterns. Overall

rn consistency is fairly good with OSTIA SST. 

re 6b shows the impact of subsampling the OSTIA data, mimicking the impact of using a

r-resolution SST product for ensemble validation. However, although the general pattern

ilar, the statistical significance of the consistency analysis degrades significantly; only

 of the array modes pass the ArM1 criterion (many more than with the product withou

ampling) and appear inconsistent in the ArMCA1 criterion. It is important to note that this

adation is also felt for the dominant array modes, mostly associated with large-scale

rns, except possibly near the end of the time series. Such a (random and systematic)

ampling leads to a significant loss of information that could be used to constrain the high-

ution model ensemble, if EnsP was to be used as an estimate of the model errors. Also

-resolution SST products appear necessary when it comes to validating eddy-resolving

mbles, such as 1/36° here. 

s degradation dependent upon the data product? The NWS SST observations are of higher

ution compared with the OSTIA SST and therefore are able to “detect” a broader range of

el errors, including in the tail modes (not shown). A subsampling rate of one-sixth brings

 resolution similar to the one-fifth subsampling of OSTIA dataset (~25 km). The

istency analysis results were found to be comparable for both networks (Figs. 6b, c). 

s now turn to data-space patterns of array modes, i.e. the eigenvectors over which our

irical ensemble consistency analysis of EnsP is carried out. Figure 7 shows examples of

 patterns for both one-fifth subsampled OSTIA (7a-c) and one-sixth NWS (7d), along with

esult of the ArMCA1 criterion for each mode. We focus on May 31, 2012 which is

cterized by a slightly higher energy in the spectra compared with neighbouring periods

. 6b-c). Unlike rank histograms depicted in Fig. 3, the OSTIA and NWS array modes are

 similar (as illustrated in Figs.7a, d for mode 1), because the subsampled observationa

mes are similar, but consistency analysis results do not have to be. Not surprisingly for a

larly-spaced dataset, the first array mode patterns (Fig.7a, d) resembles the structure of the

 spread (Fig. 1b). 

he datasets at hand, the dominant patterns appear to be mostly typical of large-scale and

scale processes (Figs.7a, b); seeing zero amplitudes in low-order modes for the English

nel indicates that the array will not be able to correct the SST statistically dominant mode

s. The spatial scales appear to decrease as one moves to the tail of the spectrum, and the

tal features become more pronounced (as illustrated in Fig.7c); simultaneously, the

mble consistency is verified less frequently. 

n an ensemble is found to be inconsistent with observations along a particular direction

, an array mode), a plausible reason is that other error processes must be active in the

el in addition to the ones which are at work across the ensemble. This can be verified by

king for model underdispersion. However, as is the case in the examples above
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ig. 8a, we show a Hovmöller plot of variations in time of the gridded SLA array mode

tra, including an EnsP consistency check against gridded SLA data. Again, we used 39

 modes. The dataset is relatively coarse at ~25 km resolution and therefore is no

ampled. As before, spectral values smaller than one (light grey in Fig.8a) are associated

 poor array performance at “detecting” model uncertainties as per the ArM1 criterion, and

e areas depict inconsistent array modes as per ArMCA1 criterion. On average, on the order

 array modes sit above the observational noise floor. However, only a fraction of those

es, on the order of 10 on average, show pattern consistency as per ArMCA1 criterion

all, consistency of EnsP with respect to the gridded SLA product is not as good as it was

 respect to the SST product. 

s turn to the patterns of eigenvectors in an effort to explain the weak consistency. In Figs

, we show examples of consistent and inconsistent patterns of gridded SLA array modes

pril 30, 2012. Consistency is verified for the first two array modes shown (ranks 1 and 5)

ring large-scale sea-level gradients over the whole domain including the shallow Celtic

nd the Eastern Biscay shelf (Fig. 8b-c). Both higher array modes (ranks 10 and 20) shown

gs. 8d-e are inconsistent – they seem to be dominated by mesoscale and submesoscale sea-

 signals (or at least, their 0.25° representation) as well as regional-scale sea-level signals

 the shelves and in the English Channel. Small-scale inconsistent higher array modes in

byssal plain can be explained by the mesoscale low-frequency decorrelation between

bers, generating phase differences between mesoscale features. From these results we can

 that assimilating the 0.25° gridded product in EnsP would probably lead to unsatisfactory

ts at the mesoscale and in coastal areas, since error vicinities in the model ensemble and

servations seem at least partly inconsistent with each other in that scale range. Of course

an introduce representativity errors in the observational error covariance matrix to make

s consistent again, but small scales are expected to be inadequately controlled by

ilation. 

ow check the consistency of EnsP against the along-track sea-level data. We focus on the

 period and on the same tracks as in the rank histograms analysis with the same dataset

ing on February 25, 2012, for 10 consecutive days. The analysis is performed considering

her all tracks that would be assimilated in a 10-day assimilation cycle. Therefore, each

 mode, characteristic of the 10-day multi-track network, spans both space and time. Figure

ows the array mode spectrum over the 10-day period. As per criterion ArM1, almost al

values are larger than the observational noise threshold (except a few tail modes) and as

riterion ArMCA1 most of them are consistent. This is significantly improved compared

e consistency of EnsP with respect to the gridded sea-level product. 

rder to get a bit further into which patterns and underlying processes appear to be

onsistent, we examine the corresponding eigenvectors. Figures 9b-c show the first two

s of array modes for the multi-track network; Figs. 9d-e are the same for the higher array

es with ranks 19 and 20 respectively. Both Figs. 9b and 9c show large-scale sea-leve

ients, encompassing open-ocean and shelf regions. The patterns in Fig. 9b are generally of

olar nature with near zero amplitudes along the continental shelf break for most of the

s in the region, hinting at shelf/open-ocean exchange processes at work in the model’s

 subspace. In Figs. 9d-e, we show two examples of higher array modes, with ranks 19 and

eing consistent and inconsistent, respectively. Higher array modes show a wide range of

al scales, including large-scale over the shelves and tracks characteristic of mesoscale

ls in the open-ocean, with gradients more pronounced than in the gridded product. In mos
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 data could, if assimilated using EnsP for covariances, bring useful consistent information

ge scales and at the mesoscale. 

ral to this work is the consistency of biogeochemical model ensembles against our PFT

uct as derived from satellite ocean colour measurements. In Fig. 10, we show Hovmöller

 of variations in time of univariate PFT array mode spectra, including EnsP, EnsB and

B consistency analysis against PFT data, using again 39 array modes. Calculations were

rmed in log array space (i.e. involving log transformation from data space prior to array

e calculations), without subsampling data. The array mode spectra in Fig.10 exhibit strong

tions in time, with several peaks corresponding to differential blooms across ensembles

he various chlorophyll classes during the onset and relaxation of those events. We note

ever that this is a gridded product with gaps, so part of those variations are also explained

e spatial data coverage variations with time (Fig. 10a; superimposed black line). This does

uestion our statistical approach, since poor data coverage will logically lead to poorer

 performance at detecting ensemble variance; but that dependency must be kept in mind

 interpreting the results in terms of processes. 

 the ensemble strategy we adopted, one can examine the array performance and the

istency individually for physical (EnsP) and biogeochemical (EnsB) uncertainties, and for

 (EnsPB) together, all in the same PFT data space; in that manner, we can see the individua

ombined effects of both components (Fig. 10). As already noted in Part 1 article, it appears

physical perturbations (EnsP) have greater impact on biogeochemical model errors than

eochemical sources and sinks perturbations. The higher EnsP ensemble variance for PFT

bles explains also the shorter statistical spin-up period on the order of 1 month, whereas

 shows a spin-up period on the order of 3 months, shown as overly inconsistent (i.e. the

three months in Figs. 10a-c vs. 10d-f). It also appears that visually “adding” the

phytoplankton and diatoms spectra does not come close to describing the total chlorophyl

tra, in particular for EnsP and EnsPB (Figs. 10a-c and 10g-i), whilst being partially verified

nsB (Figs. 10d-f). The spectra derived from diatoms in EnsP and EnsPB appears not to

ribute to the total chlorophyll spectra, the latter having eigenvalues similar to those of

phytoplankton. 

see three possible classes of explanations to this result: (1) it is likely that the constan

rvational error of 0.3 𝑚𝑔/𝑚3 over the whole domain and for all classes, is unrealistic

cularly for diatoms exhibiting higher local uncertainties in the shelves and coastal regions

 is possible that our decomposition of total chlorophyll into two size classes (or four binned

two as discussed in Section 3.3) is not entirely relevant process-wise (i.e. combining one

 with characteristic silicate limitation with one without), effectively leading to a statistica

sed issue; (3) total chlorophyll as resulting from a variety of processes (especially when

ical perturbations are applied) will have higher statistical complexity (higher number of

rees of freedom”) than either nanophytoplankton or diatoms taken independently, leading

urple” spectra with more tail modes not represented on Figs. 10a and 10g, while Figs. 10c

0i show “redder” diatoms spectra. 

re 11 shows examples of low and high gridded PFT array modes and consistency status of

 and EnsB vs. the PFT dataset (EnsPB eigenvectors are similar to EnsP; not shown). Le

cus on March 28, 2012, where for this specific date the PFT are gap-free over the Bay of

ay facilitating our analysis at all scales. As for rank histogram analyses, we choose to

stigate the period during early spring, because consistency can be easily explained by the

t of the chlorophyll abundance primary bloom (Fig. 2). In effect, for a positive oriented
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y different result compared to rank histograms which show degraded consistency during

ms. This is because rank histograms are sensitive to model-data biases amplified during

ms (in contrast to array modes free from biases). The latter is also supported by the fac

the biogeochemical model ensembles are under-dispersive, due to model underestimation

lorophyll abundance. 

PFT first array modes using EnsP and EnsB show consistent patterns and are compatible

ructure with the model’s second-order statistical moments respectively (Figs. 11a, f vs

 2b, c). Another remark is that the first array modes using EnsP and EnsB are differen

. 11a-c vs. Figs. 11d-f). When physics is perturbed (i.e. EnsP) the total chlorophyl

vectors appear as large-scale open ocean patterns controlled by nanophytoplankton

ary production (Figs. 11a-b). When biogeochemical source and sink terms are perturbed

EnsB) we observe mesoscale patterns for all classes, with nanophytoplankton again

ing the eigenvectors of total chlorophyll (Figs. 11d-e). For both ensembles, diatom

urements appear to detect model errors mostly on the shelves, but their contribution for

irst array mode for total chlorophyll is limited (Figs. 11c, f). 

he higher modes we observe several combinations of consistent and inconsistent modes

s phytoplankton types and total chlorophyll. In general, when both phytoplankton types

ound to be consistent (inconsistent), then total chlorophyll is also likely to be found

istent (inconsistent). Mixed consistency results between chlorophyll classes are also

rved (less frequently), but the non-mixed examples are the most informative to investigate

. 11g-l). When physics is perturbed the PFT array mode 25 is able to detect model errors

oth chlorophyll classes at small-scale (Figs. 11g-i). Surprisingly, for the higher array

es using EnsP the diatoms appear to contribute to the spatial variability of total chlorophyl

all-scale, especially in the shelves (Figs. 11g-i). By contrast, when biogeochemical source

ink terms are perturbed the model-based PFT array mode 25 appears not to be consisten

 PFT data at the mesoscale (Figs. 11j-l). The fact that EnsB generates chiefly eigenvectors

 mesoscale patterns, implies that having identical ocean physics across all members limits

otential of the PFT measurements to detect biogeochemical model errors at small-scale

hown for example for EnsP in Figs. 11g-i). 

Discussion and conclusions 

 study is Part 2 of a two-part series following a companion article Part 1 aimed a

rating ocean model ensembles. Part 2 article focuses on: (1) sophisticated ensemble

el-data comparison methods, one of them published here for the first time based on a new

rion in the space of array modes, and (2) applying those methods for the first time with

oplankton functional type data derived from ocean colour. 

empirical consistency analysis focused on satellite observations (SST, SLA and ocean

ur), in concert with model ensembles of ocean physics and biogeochemistry. We used a

-resolution configuration for the Bay of Biscay, as a means to investigate the model error

pace generated by our stochastic protocol in a companion article Part 1, both in the open

coastal ocean. In order to better understand the couplings between physics and

eochemistry we examined three model ensemble experiments: perturbing only physics

rbing only biogeochemical source and sink terms, and perturbing both simultaneously

w, we synthesize results from the two consistency methods in an attempt to assess the

bility of model ensembles with respect to observations. 
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 biases between model and data, and were limited because of model ensemble underspread

because of weak variability in the observations. In addition, there were high-frequency

s in the observations that were not present in the model ensemble. Rank histograms for

ocean colour PFT showed persistent model underestimation and underspread for

rophyll abundance, with some improvement for nanophytoplankton after a spin-up period

e order of 3 months during the winter low primary productivity. Rank histograms have

 used successfully as a reliability tool identifying on several occasions consistent model-

configurations and attributing this result to physical and biogeochemical processes, such

e spring shoaling of the thermocline, the frontal activity in the shelves explained by river

e migration, the tidal mixing in the English Channel (Karagiorgos et al., 2020), and to a

r extent the chlorophyll abundance during spring, mainly on the onset and relaxation of

m events. 

y modes were performed using innovation samples in array space and therefore, model-

distributions were free from biases hindering empirical consistency of error patterns (as

me cases for the rank histograms). A typical result using array modes in the context of

astic modelling is that insufficient resolution of the verifying observations can lead to

tical inconsistency, impacting mostly small and coastal scales. High-resolution datasets

 model ensembles) can improve array modes consistency at small-scale, as long as the

wing assumptions are valid: (a) data errors are uncorrelated, (b) data errors are small in

parison to model-data misfit and (c) the model ensembles are not under-dispersive. When

mbles are found to be inconsistent with observations along an array mode, a plausible

n is that other error processes must be active in the model, in addition to the ones at work

s the ensemble. For instance, model errors in physical processes currently unaccounted

re attributable to residual tidal errors (due to local tidal fronts and occasional Kelvin waves

agating along the coasts), to the non-isostatic response of atmospheric pressure, and to

-frequency errors in open boundaries over the shelves (Vervatis et al., 2021). In addition

plex processes in the biogeochemical model are simplified by making use of only a few

el parameters. Biogeochemical parameterizations controlling the growth rate and grazing

ytoplankton classes in the model are based on approximations and therefore, stochastic

elling of these parameters may improve model performance (Garnier et al., 2015).  

y modes for both SST networks (i.e. OSTIA and NWS) showed that despite their

rences in production and resolution, if subsampled, can provide comparable information

tect model errors, from shortly after the ensemble spin-up to the end of the series (in

rast to rank histograms). Their consistency was verified for the large-scale and open ocean

lso for the small-scale and coastal SST patterns. Array modes pattern consistency between

odel ensemble perturbing physics and the sea-level datasets was in general verified a

-scale. The gridded SLA product showed unsatisfactory results at the mesoscale and in

tal areas, whereas the along-track sea-level showed that, if assimilated, can bring

ntially useful information at the mesoscale. 

most important findings for the array modes using PFT against ocean biogeochemica

mbles can be summarised as follows. A large ensemble variance can lead to an improved

 array performance, considering biogeochemical model uncertainties stemming mainly

 stochastic physics. Consistency results can be further enhanced if we consider a two-way

ling and a feedback from the bio-optical model (due to changes in chlorophyll, leading to

ased model spread) to the physical model for the solar radiation penetration in the water

mn. We performed a few simulations (not shown) but we decided not to activate the two-

coupling, because the onset and relaxation of the spring bloom may occur earlier and more
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plausible explanation is that EnsP and EnsB state vectors (i.e. their anomalies from the

mble mean) are not statistically independent (perhaps as an artefact of the limited ensemble

. This is proven also by the fact that ensemble variance for EnsPB sometimes can be

pectedly small, as if physics and biogeochemistry processes compensated, cf. companion

le Part 1. Consequently, there is no reason for array mode eigenspectra to be additive on a

-by-rank basis nor hierarchised in the same way (in contrast to other spectra, e.g. Fourier

Wavelet Transform). Another point is that there is no reason our ensembles should be

gonal, because they are not built this way. The array mode spectra give an idea of the

ber of “degrees of freedom” of the ensembles in data space, and of the very high tempora

bility of that number. For instance, the bloom periods are characterized by larger numbers

degrees of freedom”, apparently peaking at 39 (40 minus mean). Other plausible

anations may be the unrealistic observational error set globally at 0.3 𝑚𝑔/𝑚3 for all PFT

also, the total chlorophyll decomposition of four PFT binned into two not being entirely

ant process-wise. 

neral, the data PFT errors are not negligible and are related to the size-class (Brewin e

017; Laiolo et al., 2021). Errors are lower for the small size classes and higher for the

 size classes (with dinoflagellates having the higher errors of all PFT), and increased with

asing chlorophyll. This is owing to the nature of how the satellite PFT error is computed

rophyll a uncertainties (e.g. root mean square error and bias) for each PFT are assigned

d on optical water type membership at a given satellite pixel (Brewin et al., 2017). It is

cted that observational errors are cross-correlated, both across functional types and

ally for each PFT. In fact, each PFT is computed as a function of the same total chlorophyl

uct, and the same procedure is adopted to compute the errors of the different PFT (Brewin

., 2017). The total chlorophyll product itself is expected to have spatially correlated errors

 is due to both atmospheric effects (e.g. cloud cover) and in-water sources of errors, in

cular in the coastal zone, due to the coloured dissolved organic matter (CDOM) inputs tha

ade ocean colour near the coast (e.g. terrestrial CDOM in river plumes). This is also

irmed by the PFT spatial error gradients and the gradients of the concentrations

selves, being stronger for diatoms than nanophytoplankton in the coastal zone (Brewin e

017; Ciavatta et al., 2018). Cross-correlations are expected to be lower in the open ocean

eeper areas. The representation of such uncertainty and correlated errors has been so far

ected in ocean colour data assimilation (IOCCG, 2020). In our application, if we used such

 uncertainties and data correlations, the array modes consistency would have been

aded, pertaining to the fact that ocean colour datasets are provided in high-resolution (and

fore, spatial data correlations may not be negligible). 

rn-selective consistency analysis showed that low-rank eigenvectors appear as large-scale

mesoscale, mainly controlled by nanophytoplankton in the open ocean; diatom

urements appear to detect model errors mostly on the shelves. For the higher modes

eochemical model errors appear to be detected at small-scale only when physics is

rbed. By contrast, when only biogeochemical source and sink terms are perturbed, the

el-based high-rank modes appear not to be consistent with PFT data at the mesoscale

ing also the potential to detect model errors at small-scale due to identical physica

esses across all members. 

ecommend using methods adapting and estimating the 𝑹 and 𝑸 observational and mode

 covariance matrices, respectively. The ArM methodology can provide pattern- and scale-

ndent ensemble consistency checks, facilitating the qualification of ensembles to provide

l error covariance estimates in regional systems for ulterior coastal downscaling. 
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 SST vs. total chlorophyll), and between phytoplankton size classes, using information for

spatial distribution of observational errors; and (2) taking into account correlated

rvational errors. To that end, an additional criterion will be introduced to check the

nality of the innovation covariance matrix in the space of array modes. 
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Table 1. Stochastic model ensembles (cf. companion article Part 1 by Vervatis et al., 2021). 898 

Ensemble SPPT/SPP-AR(1) 

Ens

Ens

Ens

abbr  899 

pertu  900 

- air  901 

- bot902 

Tab903 

OS

grid

 
NW

grid

SLA

alon
 

SLA

grid

Chl

grid
3 

*All904 

Journal Pre-proof
21

P Physics 
Atm. forcing 𝑈𝑎𝑖𝑟 , 𝑇𝑎𝑖𝑟 , 𝑆𝐿𝑃 

Parameters 𝑐𝑑, 𝑐𝑒 , 𝑐ℎ, 𝑐𝑏 

B Biogeochemistry 
sources-minus-sinks of 24 prognostic variables 

𝑆𝑀𝑆(𝐶) 

PB 
Physics & 

Biogeochemistry 
EnsP & EnsB 

eviations: SPPT - stochastic perturbed parameterized tendencies; SPP - stochastic

rbed parameters; AR(1) - first-order autoregressive processes; 𝑈𝑎𝑖𝑟 - wind velocities; 𝑇𝑎𝑖𝑟

temperature; 𝑆𝐿𝑃 - sea level pressure; 𝑐𝑑, 𝑐𝑒 , 𝑐ℎ - wind drag and turbulent coefficients; 𝑐𝑏

tom drag; 𝑆𝑀𝑆(𝐶) - sources minus sinks of biogeochemical tracers 𝐶. 

le 2. Observational networks. 

CMEMS Product Identifiers (http://marine.copernicus.eu/)* Error 

TIA SST L4 

ded 0.05𝑜 
SST_GLO_SST_L4_NRT_OBS_010_001 

0.5 𝑜𝐶
S SST L4 

ded 0.04𝑜 
SST_ATL_SST_L4_REP_OBS_010_026 

 L3 

g-track 14 𝑘𝑚 
SEALEVEL_GLO_PHY_L3_REP_OBS_008_062 

0.05 𝑚
 L4 

ded 0.25𝑜 
SEALEVEL_GLO_PHY_L4_REP_OBS_008_047 

orophyll a 

ded 0.05𝑜 

Phytoplankton Functional Types - PFT 

(Brewin et al., 2017) 
0.3 𝑚𝑔/𝑚

 datasets are provided at daily frequency.  
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re 1 (a-b) Deterministic run SST and model ensemble EnsP spread (°𝐶) on May 31

. (c-d) Same for SSH (𝑚) on February 25, 2012. Fig. 1a depicts the characteristic areas

e Bay of Biscay discussed in the text: 1-abyssal plain, 2-Armorican shelf, 3-English

nel, 4-Celtic shelf. Black line denotes the 200 m isobaths.  
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re 2 (a-d) Total chlorophyll deterministic run and model ensembles spreads EnsP

, EnsPB (𝑚𝑔/𝑚3) on March 28, 2012. (e-f) Same with (d) model ensemble spread EnsPB

anophytoplankton and diatoms chlorophyll (𝑚𝑔/𝑚3) respectively. 
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re 3 Hovmöller plot of rank histograms (x-axis: rank, y-axis: time, colorbar: 𝑝𝑑𝑓)

een ensemble EnsP and SST L4 datasets: (a-c) OSTIA, (d-f) NWS. Regional consistency

ecked for the (left to right): abyssal plain, Armorican shelf and English Channel. Rank

gram flatness is verified for 𝑝𝑑𝑓 values at 
1

41
~0.024 (green-yellow in colorbar). 
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re 4 (a) Hovmöller plot of rank histograms (x-axis: rank, y-axis: time, colorbar: 𝑝𝑑𝑓)

een ensemble EnsP and SLA L4 gridded dataset for the Bay of Biscay, and (b) map of

s for along-track SLA L3 dataset with respect to the ensemble EnsP (colorbar: rank)

ing on February 25, 2012, and for 10 consecutive days, including ascending and

ending tracks in the domain.  
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re 5 Hovmöller plot of rank histograms (x-axis: rank, y-axis: time, colorbar: 𝑝𝑑𝑓)

een ensemble EnsPB and PFT dataset: (a) total chlorophyll, (b) nanophytoplankton and

iatoms chlorophyll.  
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re 6 Hovmöller plot of variations in time of SST array mode spectra vs. modal rank

the rank of the array mode), including an EnsP consistency check against (a-b) OSTIA and

WS SST data. Colorbar: array mode spectra as of criterion ArM1; eigenvalues smaller

 one (the observational noise floor in array space; grey pixels) denote error modes

inally detectable by the array. White pixels depict inconsistent array modes as per criterion

CA1 (the higher modes are also mostly inconsistent as per criterion ArM1). (a) No data

ampling, (b) one-fifth subsampling rate (i.e. one data point every fifth OSTIA poin

ned), and (c) one-sixth subsampling rate.  
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re 7 (a-c) Array modes 1, 12 and 34 for EnsP as “seen” from OSTIA SST on May

012, using one-fifth subsampling rate, and (below as text) corresponding results of the

CA1 consistency criterion using OSTIA SST observations; the 1st and 12th array modes

onsistent; array mode 34 is inconsistent. (d) Same as (a) for NWS SST and one-sixth

ampling rate. Colorbar: array mode amplitude (no units) on (subsampled) data grid. 
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re 8 (a) Hovmöller plot of variations in time of gridded SLA array mode spectra vs

al rank, including an EnsP consistency check against gridded SLA data. (b-e) Examples of

istent and inconsistent gridded SLA array modes on April 30, 2012 for EnsP. Colorbars

nits as in Figs. 6 and 7.  
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re 9 (a) Along-track SLA L3 array mode spectrum for the same period as in Fig. 4b

idering all tracks that would be assimilated in a 10-day assimilation cycle. Black and red

ers for eigenvalues above the observational noise floor (= 1 in array space) denote

istent and inconsistent modes respectively. (b-c) Multi-track network consistent array

es of ranks 1 and 2 respectively (no units; all times “flattened”, i.e. 2D representation of

 modes including time space); (d-e) same as (b-c) for a higher consistent array mode of

 19 and for an inconsistent array mode of rank 20 respectively. Colorbar and units as in

 6 and 7.  
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re 10 (a-c) Hovmöller plots of variations in time of PFT array mode spectra vs. moda

, including EnsP consistency checks against PFT data for total chlorophyll

phytoplankton, and diatoms respectively as shown; (d-f) same as (a-c) for EnsB; (g-i)

 as (a-c) for EnsPB. Chlorophyll distributions have been log transformed. Colorbars and

 as in Fig. 6. Fig. 10a superimposed black line: number of data with largest values

sponding to full data coverage of the domain i.e. #obs ~(4 ∙ 104). 
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re 11 Examples of array modes for EnsP and EnsB on March 28, 2012, as “seen” from

 data points, and (below as text) corresponding results of the ArMCA1 consistency

rion using PFT data: (a-c) array modes at rank 1 using EnsP (all consistent); (d-f) array

es at rank 1 using EnsB (all consistent, but different); (g-i) array modes at rank 25 using

 (all consistent); (j-l) array modes at rank 25 using EnsB (all inconsistent). PFT gridded

(gappy in general) have no gaps on that particular date in the Bay of Biscay. (left column)

l chlorophyll; (center) nanophytoplankton; (right column) diatoms. No data subsampling

y modes calculated in log array space. Colorbar and units as in Fig. 7. 
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Highlights 

•

•

•

•

•

Journal Pre-proof
 Model-data biases and model underspread revealed in rank histograms 

 Consistent SST array modes at large scales and at small-scale 

 Along-track array modes showed useful consistent information at the mesoscale 

 Consistent PFT array modes at small-scale perturbing physics 

 Additional error processes active in the model for inconsistent configurations 
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Supplementary material 974 

Fig. S1 presents the temporal variability of the PFT data in the Bay of Biscay, during the period 975 

December, 2011 to June, 2012. We also show the ocean colour L4 total chlorophyll product 976 

used in the Part 1 article (Vervatis et al., 2021) and we verify that concentrations are of the 977 

same order to those of the PFT total chlorophyll. According to this, we categorised the four 978 

satellite PFT (pico, nano, diatoms and dino) into the two broad size groups in PISCES (nano 979 

or diatoms), in a manner most representative, ensuring that the total biomass (chlorophyll) from 980 

the model and satellite data can be compared like-for-like. 981 

PFT diatoms and nanophytoplankton contribute together approximately more than 80% in total 982 

chlorophyll, whereas picoplankton contributes at about 10% and dinoflagellates less than 10% 983 

(Fig. S1). PFT diatom chlorophyll concentration is an order of magnitude larger compared with 984 

dinoflagellates and nanophytoplankton is about three times larger than picoplankton 985 

chlorophyll concentration (Fig. S1). In Fig. S2, we show the spatial distribution of the four 986 

satellite PFT and the total chlorophyll during the peak of the spring bloom on March 28, 2012. 987 

We confirm that the satellite micro class (i.e. diatoms and dino) is driven primarily by diatoms, 988 

far more abundant in the satellite data, with the two functional types being highly correlated in 989 

spatial. Fig. S3 presents scatter plots of combined vs. non-combined PFT chlorophyll, verifying 990 

the close relationship between functional types in a size class-based approach. 991 

We also present results from one-on-one comparisons between model and PFT data, as opposed 992 

to the size class-based categorization merging different functional types. Figure S4 shows 993 

Hovmöller plot of rank histograms between EnsPB and PFT, in the same way as Figs. 5b-c, 994 

with one main difference: in Figs. S4a-b we do not combine the nano functional type with pico, 995 

nor we combine diatoms with dino. Rank histogram results for the nano class are degraded 996 

when pico and nano PFT data are not combined together in late-winter and early-spring when 997 

a primary bloom occurs (Fig. 5b vs. Fig. S4a). The latter may suggest that PISCES nano can 998 

be representative of a broader phytoplankton community, accounting also for smaller size 999 

classes. Rank histogram results are almost identical throughout the whole period for the micro 1000 

class, regardless of whether dino and diatoms are combined together or not (Fig. 5c vs. Fig. 1001 

S4b). Model-data one-on-one array mode consistency results (not shown) are in practice 1002 

indistinguishable by visual inspection with the results presented in Figs. 10 and 11, confirming 1003 

the validity of the size class-based approach.  1004 
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 1005 

Figure S1 Ocean colour L4 (8-day frequency) and PFT (daily) chlorophyll concentration 1006 

(𝑚𝑔/𝑚3) in the Bay of Biscay from December, 2011 to June, 2012. 1007 

 1008 

Figure S2 Spatial distribution of (a) PFT total chlorophyll and (b) pico, (c) nano, (d) 1009 

diatoms, (e) dino concentrations (𝑚𝑔/𝑚3) on March 28, 2012.  1010 
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 1011 

Figure S3 Scatter plots of chlorophyll concentrations in 𝑚𝑔/𝑚3 on March 28, 2012: (a) 1012 

PFT (nano and pico) vs. only nano, (b) PFT (diatoms and dino) vs. only diatoms. r is the 1013 

correlation coefficient, RMSE the root mean square error (𝑚𝑔/𝑚3) and with red the 1:1 line. 1014 

 1015 

Figure S4 Hovmöller plot of rank histograms (same as in Figs. 5b-c) between EnsPB and 1016 

PFT (a) nano not combined with pico, and (b) diatoms not combined with dino. 1017 


