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Abstract : 
Shape memory alloys (SMA) are good candidates especially for being used as passive dampers. In order to 
develop the use of these alloys in structural vibrations control, the dynamical behavior of a NiTi helical 
spring is leaded, and the damping effect investigated. First, compression tests on the spring are carried out. 
These tests allow us to notice the effect of the maximal compression displacement, the cyclic behavior and 
the compression rate on its mechanical behavior. A finite element model analysis of the compression tests is 
then proposed. In consequence the materials parameters have been identified after a numerical convergence 
test. In order to characterize the dynamical behavior of the spring, the innovative tool called equivalent 
complex stiffness is developed and used. Finally, the one degree of freedom vibration equation is solved with 
this equivalent complex stiffness. The solution of this equation clearly shows the non linear dynamical 
behavior of the SMA spring and its damping potential. 

Mots clefs : Shape Memory Alloy, experimental compression test, phenomenological model, finite 
element analysis, equivalent complex stiffness, dynamical behavior. 

1 Introduction 
Shape memory alloys (SMA) are widely studied as smart materials because of their potentiality to be used as 
dampers, absorbers or actuators elements. For damping applications, an understanding of the material 
dynamic behavior is needed. One uses the loss of stiffness linked to the martensite transformation between 
the mother phase called austenite (A) and the product phase called martensite (M). In this case, the SMA 
elements are used as absorbers mainly for seismic applications [1-5]. In the present paper, the damping effect 
of a superelastic NiTi helical spring in compression is investigated.  One notices that the study of such a 
device has been studied in previous investigations, experimentally by Speicher et al. [6], numerically by 
Mirzaeifar [7]. Nevertheless, a lack of results on the damping effect is still present. Thus, an innovative 
model of the damping effect is proposed in this paper. To do this, in a first step, experimental compression 
test are leaded. In a second step, a three dimensional (3D) model implemented in ABAQUS is used to 
simulate the compression cycles. A comparison between the experimental and the numerical investigations is 
done in order to validate the 3D model implementation. In the third part, the equivalent complex stiffness is 
described and the damping evolutions are investigated. Finally, the dynamic behavior of the helical spring is 
quickly carried out with the Bode diagrams. 

2 Experimental investigations 

2.1 Experimental protocol 
By considering the geometrical parameters of the SMA helical spring on the figure 1(a), a specific 
compression tool designed for the spring was adapted on a 100 kN Zwick-Roell tensile test machine shown 
on the figure 1(b).  
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FIG. 1 – Design of the helical spring (a) and experimental compression tool (b). 
 
This specific tool allows the test machine to be used in tensile configuration with maximum of safety for the 
operator. The tests performed are as following: monotonic compression protocol with various maximum 
deformation, influence of the number of compression cycles and influence of the loading rate. 

2.2 Compression tests 
The evolution of the resulting compression force versus the displacement of the moving plate is given on the 
figure 2. A quasi-static loading rate for the testing was set at 2.5 mm/s to eliminate dynamic 
(thermomechanical coupling) effects. Additionally, all experiments were carried out under ambient 
temperature in the range of  21-23 °C. 
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FIG. 2 –Resulting force versus the displacement of the moving plate for different displacement levels. 

 
The typical non linear behavior with hysteresis mechanical of SMA is shown on theses curves. This non 
linear behavior with hysteresis is explained by the transformation phase (A ↔ M) which operates where the 
local stress is upper than the beginning forward (reverse) transformation stress. Consequently, this device 
appears to be a good passive damper. 

2.3 Influence of the number of cycles and the loading rate 
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FIG. 3 – Influence of the number of cycles (a) and the loading rate (b). 
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 30 cycles for three different maximum displacements (17.5 ; 30 and 57.5 mm) are shown on the figure 3(a). 
Theses curves clearly show that the number of cycles does not affect the mechanical behavior of the helical 
spring. Furthermore, three different loading rates (0.5 ; 5 and 10 mm/s, 0.3 f Hz≈ ) for the same three 
maximum displacements are tested. Theses curves highlight that the loading rate has no influence on the 
mechanical behavior too. It is known that the forward transformation (A→M) is exothermal and the reverse 
transformation (M→A) endothermal. For high loading rates, the helical spring is nevertheless able to quickly 
evacuate the heat due to the transformation phase.  

3 Numerical investigations 

3.1 A thermomechanical model for the superelasticity 

3.1.1 Statement of thermomechanical dynamical problem 
Under the assumptions of small strain and displacements, the thermomechanical problem satisfies the 
following fundamental equations: 

• The mechanical equilibrium : 

u fρ σ−∇⋅ =






  (1) 
Where ρ represents the material density and σ the Cauchy stress tensor. 

• The first thermodynamic principle (energy conservation without source term) : 

e q rρ σ ε−∇ ⋅ = +




 :  (2) 

Where e is the total energy, q  the vector of thermal flux and ε  the Green-Lagrange strain sensor. 
• The second thermodynamic principle: 

1 0Ts r q q T
T

ρ ρ− ⋅ +∇ ⋅ − ⋅∇ ≥
 

 

  (3) 

Where s represents the specific entropy of the material. 

3.1.2 Shape memory alloy behavior 
The behavior considered in this paper is related to the phase change of SMA. At stress-free state, the material 
is supposed to be fully austenitic. During the load, the phase can change locally to martensite. The model 
presented in this paper is motivated by the work of Peultier et al. [8] and improved by Chemisky [9] and 
Duval [10]. The expression of the Gibbs free energy is defined to describe the two key features described 
above, which are the introduction of path-dependent transformation strain and the description of the twin 
accommodation mechanisms.  
Two internal variables are used as well: the volume fraction of martensite f and the average mean strain T

ijε  
which can be defined by the following equations : 

/Mf V V=  et 
1 ( )

M

T T
ij ijV

M

r dV
V

ε ε= ∫  (4), (5) 

The transformation strain T
ijE  can be expressed as follow: 

T T
ij ijE f ε=  (6) 

Considering an additive decomposition of strain, the total macroscopic strain ijE  is written : 
el th T

ij ij ij ijE E E E= + +  (7) 

Where elE et thE are respectively the elastic and thermal strain tensor. The derivation of the 
phenomenological constitutive models for SMA begins with the choice of a thermodynamic free energy  
potential. As it is developed in Chemisky [8], the following Gibbs free energy potential variation is defined : 

( ) ( ) 2 2
0

1 1 1
2 2 2

A T T T
ij ijkl kl ij ij ij ij ref f ij ijG TS B T T f S f T T H f H fεε αδ ε ε∆ = −∆ + − − Σ Σ − Σ −Σ − + +  (8) 
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Where AS  is the entropy of the austenite phase, B S= −∆ is the difference between the entropy of the 
austenite and the martensite phases, T is the temperature, fH  and Hε  are interactions parameters, Σ is the 
macroscopic stress tensor, S is the elastic tensor and α is the thermal expansion coefficient. Thus, driving 
force variables linked to the internal variables are defined by : 
 

( )
ij

T
ijkl kl ij ref ij

ij

GF S T T fαδ εΣ

∂∆
= − = Σ + − +

∂Σ
, ( )T

ij

dev T e
ij ij ijT

ij

GF f Hεε
ε λ

ε
∂∆

= − = Σ − −
∂

 

( )0 0 1
1
2

T T T
f ij ij ij ij f

GF B T T H H f
f εε ε ε λ λ∂∆

= − = − − +Σ − − − −
∂

 

 

(9) (10) 
 
 

(11) 

Where  dev
ijΣ  is the deviatoric part of the stress tensor. The coefficients 0λ , 1λ et ij

ελ  are Lagrange multipliers 
due to the physical limitations. They are defined by the following equations :  

( )0 0
1ff a

f
λ −

= , ( )1 1 1
ff a

f
λ =

−
 et function of T T Sat

ij ij eq
ελ ε ε ε= , ,  (12) 

3.2 Finite element model description and numerical implementation 
The composition of the SMA used in the numerical application is NiTi. Its characteristic phase 
transformation temperatures measured by electrical resistance evolution are : 0

FM = 191 K, 0
SM  = 213 K, 

0
SA  = 205 K and 0

FA  = 221 K, according to the provider. The material parameters are identified by fitting the 
experimental curves given in the figure 2 and previous tensile test of the material given in [6], considering a 
numerical convergence test. The stress distribution is considered converged  by using 49731 degrees of 
freedom.  
An appropriate user subroutine (UMAT) is written by C language in the commercially available finite 
element program ABAQUS. The spring is modeled three dimensionally with three dimensional quadratic 
brick elements with reduced integration C3D8R (figure 4(a)). Two rigid surfaces in contact with the spring 
ends are considered. The lower rigid surface is constrained in all directions and a time varying displacement 
boundary condition is defined for the upper surface for modeling compression. The supporting shaft in the 
experiments is modeled with a cylindrical rigid surface inside the helical spring. The automatic time 
increment option in ABAQUS is used with an initial guess of dividing the loading and unloading steps into 
1000 increments and the non-linear geometry option is activated.  
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FIG. 4 – Finite element model of the SMA spring in the initial configuration (a) and comparison between the 
numerical and the experimental investigations. 

3.3 Numerical Results 
The load-displacement response for both numerical and experimental cycles is given on the figure 4(b). This 
first numerical result shows a good correlation between the experimental and the numerical results. It 
validates the identification of the material parameters and the implementation of the 3D model. The 
displacement magnitude, the von Mises stress and the volume fraction of martensite are respectively shown 
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on the figure 5 (a,b,c), for a displacement of the movable plate about 60 mm. One can notice that the 
transformation phase occurs at this compression level, but no area is totally transformed ( f =max 0.64). 
Nevertheless, this is sufficient to confer to the spring the typical non linear hysteresic behavior, oberserved in 
the experimental part. Now, it is possible to simulate many cycles with different compression ratio, in order 
to investigate the dynamical behavior of the spring and its damping effect. 
 

   
(a) Displacement magnitude [mm] (b) von Mises stress [MPa] (c) Volume fraction of martensite 
FIG. 5 – Numerical results at the end of the loading phase (compression displacement about 60 mm). 

4 Dynamical behavior and damping effect 

4.1 Equivalent complex stiffness 
In the mono axial case, the constitutive relation between the resulting compression force F and the 
displacement of the movable rigid surface u for a damping material subject to steady state harmonic 
excitations can be written as: 

( )  with  1K iF K u K η= ⋅ = +  (13) 

Where K is the equivalent complex stiffness, K the storage stiffness and η the loss factor. Typically, the loss 
factor is an image of the damping effect of such a device. 
By considering the Valanis endochronic theory [11] and the approximation of the harmonic balance, it is 
possible to define the storage stiffness and the loss factor. After calculations, their expressions are 
respectively: 

( )( ) ( )( )2 2
2

0 0
1 ( ) co s ( )sin

T T

m

K f t t dt f t t dt
u
ωη ω ω

π
+ = +

⋅ ∫ ∫ , 

( )
( )

0

0

( ) cos

( )sin

T

T

F t t dt

F t t dt

ω
η

ω
= ∫
∫

 

 
(14) 
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FIG. 6 – Equivalent complex stiffness : storage stiffness (a) and loss factor (b) versus the resulting force. 
 
Computed for each cycles (numerical and experimental ones) with a Matlab subroutine, the figure 6 shows 
the evolution of the storage stiffness (a) and the loss factor (b) versus the compression force. An increase of 
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the loss factor (thus the damping effect) and a decrease of the storage stiffness is noticed with the resulting 
compression force.  

4.2 Dynamic behavior 
With this definition of the equivalent complex stiffness, the vibration equation (eq. 16) is solved, with m = 1 
kg. The Bode diagrams are given on the figure 7. A typical non linear dynamical behavior is noticed. 

( )( ) 1 ( ) ( )m u t k i u t F tη⋅ + + ⋅ =  (16) 
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FIG. 6 – Bode diagrams : gain (a) and phase (b) 

5 Conclusion 
In this communication, experimental and numerical compression tests on a SMA helical spring are presented. 
These investigations lead to investigate the damping effect with the innovative equivalent complex stiffness 
tool. Consequently, the dynamical behavior of such a device is performed and the non linear dynamical 
behavior of the spring is noticed. This new numerical modeling tool allows us to improve the non linear 
modeling of SMA devices in order to develop and optimize applications for control in civil engineering. 
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