
HAL Id: hal-03441341
https://hal.science/hal-03441341

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Représentation quasicontinue d’un crystal phononique
unidimensionnel en un métamatériau acoustique.

Miguel Charlotte, Joseph Morlier

To cite this version:
Miguel Charlotte, Joseph Morlier. Représentation quasicontinue d’un crystal phononique unidimen-
sionnel en un métamatériau acoustique.. CFM 2013 - 21ème Congrès Français de Mécanique, Aug
2013, Bordeaux, France. �hal-03441341�

https://hal.science/hal-03441341
https://hal.archives-ouvertes.fr
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Résumé :

L’optimisation des structures à travers le choix ou la conception de (méta-)matériaux multifonctionnels

comme la miniaturisation des dispositifs d’ingénierie requièrent une meilleure compréhension analy-

tique des propriétés dynamiques – collectives, anti-continues ou filtrantes – des systèmes complexes

(i.e. à microstructures) impliqués et nécessitent de choisir ou proposer des modélisations continues lo-

cales et/ou homogénéisées plus pertinentes et réalistes que celles utilisées actuellement dans les milieux

industrielles et académiques. Pour illustration, nous présentons et analysons les propriétés spectrales

et temporelles d’un modèle de châıne diatomique servant de filtre d’ondes acoustiques pour en déduire,

notamment selon la méthode de continualisation proposée récemment par Charlotte et Truskinovsky,

ses modélisations quasicontinues multi-échelles, équivalente (nonlocale en espace et en temps, et multi-

champs) et homogénéisée (locale en espace et nonlocale en temps et mono-champ). En particulier, nous

montrons que ces modèles continus enrichis permettent d’éviter les interprétations matérielles effec-

tives “irréalistes” (par exemple, de masse ou de raideur élastique négative) de la théorie des milieux

continus classiques rencontrées dans la littérature. Ces types de modélisation sont des briques essen-

tielles pour obtenir des métamatériaux acoustiques phoniquement optimisés, notamment en utilisant

un couplage direct avec des outils d’optimisation topologique (distribution optimale de matière pour

atteindre un objectif, ici atteindre un gabarit spécifique de fonction de transfert).

Abstract :

Optimizing structures through the selection or design of multifunctional (meta-)materials as well

as miniaturizing engineering devices require a good analytical understanding of the collective, anti-

continuous, or filtering dynamic properties of the involved complex systems with microstructures. They

also need to choose or propose continuous modelings that are more pertinent and realistic than those

currently used. This work focuses on the basic physics and acoustic bandgap properties of Phononic

crystals in order to extract their main mechanical features from homogeneous and enhanced continuum

viewpoints. We notably revisit the Born’s diatomic chain model in order to clarify certain aspects of

its temporal and spectral properties and proposes an equivalent multi-scale quasicontinuum (that is

nonlocal in both space and time, and multi-fields) and homogenized one (that is local in space and

nonlocal in time, and monofield) which may help to bridge the gap between standard continuum model

and granular (or atomic) physics used as acoustic-wave filters.

Mots clefs : cristaux phononiques ; métamatériaux acoustiques ; continualisations.
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Figure 1 – The 1D-diatomic crystal lattice and its 3D counterparts. In the 3D cases, ā = 2a represents

the interreticular plane distance towards which the plane-waves propagate parallely to the wave-vector

direction e (oriented according to the NaCl-[111] and CsCl-[100] crystallographic plane directions).
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(a) 1D diatomic PnC case
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(b) Effective active AMM case

Figure 2 – The complex structure of the dispersion relation of the 1D diatomic PnC intercepted by

the domain B0 × ω2
∗R+ in (a) is formed by overlapping the acoustic dispersion curve

(

λo(ωr), ω2
r

)

of

the effective active monoatomic AMM in (b) with the one-half intercepted portions of the two optical

dispersion curves
(

λo(ωr) ± π/a, ω2
r

)

that lie inside the strip B0 × ω2
∗R+ ; ωr ∈ ω∗R.

1 Introduction

Phononic crystals (PnCs) are composite periodic structures with modulated material properties that

produce frequency (or phononic) bandgaps (PnBGs), i.e. frequency regimes where the elastic or

acoustic waves can not propagate [10]. In recent years, increasing effort has been devoted to the

development of artificial PnCs that similarly suppress, control, guide or localize elastic or sound wave

vibrations, while focusing the analysis mainly on the propagation of classical waves in such media.

These PnCs can be either passive filters that are usually built with periodic composite materials or

active filters that are built from actuators (e.g. PZT). In view of their growing potential applications

as beam splitters, sound or vibration protection devices, or waveguides, it may become important to

identify from a sound continuum viewpoint the most fundamental concepts and rules that govern the

behavior of these materials in order to use its powerful analytical and numerical tools. Only few works

have attempted to provide a consistent continuous modeling to these frequency-filtering materials,

which can be viewed as acoustic metamaterials (AMMs), i.e. artificially tuned materials that display

unusual macroscopic properties or homogenized material parameters as negative mass densities or

elastic stiffnesses [7, 8]. As it is outlined here, such an analysis may be relevant for developing enhanced

continuum models [3, 5, 6, 8, 9, 11, 12] that are more suitable at nano- and meso-scales [4] and allow

to avoid the inconsistent interpretations of the classical homogenized continuum theories.
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2 Diatomic (phononic) chain model

The simplest natural PnCs for which an exact (one-dimensional) quasi-continuum modeling can be

derived corresponds to Born’s unbounded diatomic chain model (cf. Fig. 1) for waves propagating in

ionic crystals such as NaCl or CsCl [1]. In this unbounded chain of identical cells of atoms, each cell

is made of two types of atoms : within the kth unit-cell (with k ∈ Z), ρpa (with p = 0, 1) denotes

the mass of atom indexed with (k, p), while ρp > 0 represents some lineic mass density along the

chain direction e. For simplicity, each atom interacts only with its nearest neighbors through linear

elastic interaction bond modeled as weightless springs with (strictly positive or negative) their stiffness

αa defined with an elastic modulus α > 0. The previous material constants are introduced with an

arbitrary (small or large) lattice length scale a > 0 and arbitrary lineic mass densities but we consider

without loss of generality the mass ratio γ
def
=
√

ρ0

ρ1

> 1. We can define from these material constants the

first acoustic cut-off angular frequency ω∗ which set the reference time ω−1
∗

def
= a

2

√

2ρ0

α = a
2ĉ∗

, for waves

propagating in the diatomic chain at the characteristic acoustic velocity ĉ∗
def
=
√

α
2ρ0

over a primitive

diatomic cell of size ā
def
= 2a. Two other interesting reference times characterize waves propagating

at optical velocities over the unit-diatomic cell that are related with the minimal optical angular

frequency ωm
def
= γω∗ =

2ĉm
a and the maximal optical angular frequency ωh

def
=
√

γ2 + 1ω∗ =
2ĉh
a .

The time-dependent displacements and velocities of the kth-unit cell atoms ((k, p))p∈{0,1}, and the

related couple of external forces that are arbitrary imposed on those atoms, are respectively denoted

uk(t) =

[

uk,0(t)

uk,1(t)

]

, Dtuk(t) =

[

Dtuk,0(t)

Dtuk,1(t)

]

and afk(t) =

[

afk,0(t)

afk,1(t)

]

for (k, t) ∈ Z× ω−1
∗ R.

For conciseness here the chain is assumed initially at rest, the evolution of the chain from any arbitrary

given initial atomic positions and velocity will be presented elsewhere ; the external forces are causal,

with their time-support on ω−1
∗ R+, and sufficient decreasing with respect to the time variable t ≥ 0

and lattice space variable ka ∈ aZ. Lately, we assume that no atomic collision and singular time-

impulse loading are allowed in our analysis for simplicity and clarity. The dynamic motion of the

chain can be described within the framework of the generalized function theory of causal evolutions,

as the solution of the following Cauchy’s evolution problem for (k, p, t) ∈ Z× {0, 1} × ω−1
∗ R+

ρpD
2
t uk,p =

α

a2
[

uk+p,1−p + uk+p−1,1−p − 2uk,p
]

+ fk,p , with uk(0) = ω−1
∗ Dtuk(0) = 0 . (1)

The solution {uk(t)}k∈Z and the dynamical material properties of the chain can be characterized by

combining the Laplace’s transform in time and a Discrete Fourier’s transform in space, yielding then

uk,p(t) ≡
∑

q=0,1

ũ2k+p,q(t) ;

[

ũk,0(t)

ũk,1(t)

]

def
=

∑

(q,j)∈Z2

∫ t

0

1

ρ0
G((k − j)a, t − t̂)

[

fq,0(t̂)δ(j−2q,0)

fq,1(t̂)δ(j−2q,1)

]

dt̂ (2)

with for (s, t) ∈ aR× ω−1
∗ R and C def

=
]

−∞,−ωh

]

∪
[

− ωm,−ω∗

]

∪
[

ω∗, ωm

]

∪
[

ωh,∞
[

G(s, t)
def
=

1

2π

∫ −iωb+∞

−iωb−∞

[

g0,0(s, ω) cos
2(sπ/ā) γ g0,1(s, ω) sin

2(sπ/ā)

γ g1,0(s, ω) sin
2(sπ/ā) γ2g1,1(s, ω) cos

2(sπ/ā)

]

e
iωt

dω , (3)

gp,q(s, ω)
def
=

e
i|s|λ0

[

1− δp,q + δp,1δq,1

√
ω2

∗
−ω2√

ω2
m
−ω2

+ δp,0δq,0

√
ω2

m
−ω2√

ω2
∗
−ω2

]

iω
√

ω2
h − ω2

, for ω ∈ ω∗C \ (C ∪ {0}) (4)

λ0(ω)
def
=

i

a
log

(
√

1− ω2

ω2
∗

√

1− ω2

ω2
m

+ i
ωhω

ω∗ωm

√

1− ω2

ω2
h

)

, for

{

ω ∈ ω∗C \ C
with |ℜe(λ0)|a ≤ π

.(5)
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Here ωb < 0 is an arbitrary constant real number with sufficiently large amplitude to ensure the

Green function G(s, t) in (3) is causal ; δp,q with (p, q) ∈ Z2 represents Kronecker’s delta symbol ; the

principal determinations of the complex multiform square-root and logarithm functions are used, with

notably i
def
=

√
−1 ; ℜe(·) represents the real part of the complex function or number in argument. The

complex function λ0(ω) describes for ω ∈ ω∗R the dispersion curves depicted in Fig. 2(b). Its image

stands over the complex strip domain B0
def
=
{

λ = λr + iλi ∈ a−1C s.t. (λra, λia) ∈ R2 with λr ∈ K0

}

that contains both the first Brillouin zone K0
def
= [−π/ā, π/ā] of the diatomic chain with unit cells of

size ā and the one K0
def
= [−π/a, π/a] of a homogeneous monoatomic chain with unit cells of size a ;

here, λ0(ω) and its translations λ0(ω) ± π/a generate over K0 respectively the well-known acoustic

and optical branches of the dispersion curves of the diatomic PnC that are plotted in Fig. 2(a).

According to that solution, the waves with angular frequencies ω in the PnBG domain C are attenua-

ted/evanescent, while those with ω ∈ ω∗R \ C are allowed to propagate through the chain.

3 Equivalent multifield quasicontinuum

The methodology developed in [2] allows to identify the following nonlocal multi-field quasi-continuum

(QC) modeling for the canonic displacements ũk(t) =

[

ũk,0(t)

ũk,1(t)

]

of the previous PnC

∫ t

0

∫

aR[ΦL(s− ŝ, t− t̂) +ΦNL(s− ŝ, t− t̂)
]

u(ŝ, t̂) dŝ dt̂ = f(s, t) , for (s, t) ∈ aR× ω−1
∗ R

with u(s, 0) = ω−1
∗ Dtu(s, 0) = 0 ,

(6)

what reminisces those in [3, 6, 11, 12]. Eq. (6) relates the displacement field vector u(s, t) =

[

u0(s, t)

u1(s, t)

]

to the spatially localized loading force density vector f(s, t) =
∑

q∈Z[ fq,0(t)δ(s/a − 2q)

fq,1(t)δ(s/a − 2q − 1)

]

defined

with the Dirac’s generalized function δ(s)
def
= D2

s

|s|
2
, while using a couple of generalized field matrices

{

ΦL(s, t)

ΦNL(s, t)

}

def
=

1

2π

∫ −iωb+∞

−iωb−∞

{

ΦL(s, ω)

ΦNL(s, ω)

}

e
iωt

dω , for (s, t) ∈ aR× ω−1
∗ R (7)

as spatially-local and -nonlocal integro-differential operators, with

ΦL(s, ω)
def
=

ω

2λ0

√

ω2
h − ω2

ω2
∗ω

2
m







γ
√

ω2

∗
−ω2√

ω2
m
−ω2

(

λ2
0 − π2

2a2 +D2
s

)

π2

2a2

π2

2a2

√
ω2

m
−ω2

γ
√

ω2
∗
−ω2

(

λ2
0 − π2

2a2 +D2
s

)






δ(s) (8)

ΦNL(s, ω)
def
=

ω

2λ0

√

ω2
h − ω2

ω2
∗ω

2
m







γ
√

ω2
∗
−ω2√

ω2
m
−ω2

−1

−1

√
ω2

m
−ω2

γ
√

ω2
∗
−ω2







π2

a2
D2

se
i|s|

√
λ2

o
−π2/a2

i
√

λ2
o − π2/a2

, (9)

for ℑm(ω) < 0, ℑm(·) representing the imaginary part of the complex function or number in argument.

This elastodynamic model of generalized functions can further be decomposed into specific generalized

mass and elastic density matrices, following [2]. More interestingly, Eq. (6) is solved by

u(s, t) =

∫ t

0

∫

aRG(s − ŝ, t− t̂) f(ŝ, t̂)
dŝ

ρ0a
dt̂ , for (s, t) ∈ aR× ω−1

∗ R , (10)

which provides exact interpolations of the discrete displacement vectors in (2), with u(ka, t) = ũk(t)

and u((2k + p)a, t) = uk,p(t), while u(s, t)
def
= u0(s, t) + u1(s, t) and (k, s, t) ∈ Z× aR× ω−1

∗ R.
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4 Effective monofield homogeneization and continualization

Effective homogeneous chain with simple structures. Dealing with infinite domains of inter-

action as in the previous QC model may not be very convenient for some numerical applications.

As an alternative, we have investigated the possibility of deriving an effective model of homogeneous

monoatomic chain with a time-dependent elastic modulus ᾱ(t) and a lattice parameter (i.e. reference

interstice distance) a separating representative atoms (repatoms) for cells of mass ρ̄ a, with a lineic

mass density ρ̄
def
= ρ0 + ρ1 . Here these repatoms/cells are not necessary physical and must be defined

with respect to the diatomic unit cells. Bearing in mind that every choice of repatoms/cells may play

a crucial role in the dynamic micro-movement to reproduce, for comparison we leave free the local

definitions of these repatoms while imposing the global equivalence
∑

k∈Zaf̄k ≡ ∑

k∈Za(fk,0 + fk,1) for

the effective external loads af̄ = {af̄k(t)}k∈Z that act on them, with af̄k as the load exerted on the

kth repatom : for instance, a simple common choice of repatom is the symmetric cell centered at the

atom type with the mass ρpa (with p = 0 or 1) and including two one-halves of the neighbouring

atom type with the mass ρ1−pa (e.g. as in [1]), so that the natural load to apply on the kth repatom is

af̄k = a[fk,p + (fk+p,1−p + fk+p−1,1−p)/2] ; another common choice is the asymmetric cell centered at

the center of mass of a diatomic unit cell (e.g. as in [6]), so that the natural load to apply on the kth

repatom is af̄k = a(fk,p + fk+p,1−p) .

Besides, the displacements of those repatoms ū(t) = {ūk(t)}k∈Z are simultaneously constrained by

specific linearly elastic, time varying interactions between nearest neighboring (NN) atoms. More ex-

plicitly, these interactions are set so as to allow a perfect match with the acoustic branches of the

dispersion curves defined by the complex wavenumber function λo(ω) in (5) and depicted on Fig. 2(b).

The equation of motion for this effective AMM comes then as follows for (k, t) ∈ Z× ω−1
∗ R

ρ̄D2
t ūk(t) =

∫ t

0

1

a2
[

ūk+1(t− t̂) + ūk−1(t− t̂)− 2ūk(t− t̂)
]

Dtᾱ(t̂) dt̂+ f̄k(t) ,

with ūk(0) = ω−1
∗ Dtūk(0) = 0 , for k ∈ Z (11)

the time-dependent elastic modulus being like ᾱ(t)
def
=

ρ̄a2

4π

∫ −iωb+∞

−iωb−∞

iω e
iωt

cos(λ0a)− 1
dω ≥ 0 (12)

and asymptotically tends to ᾱ(+∞) = α. The solution of Eq. (11) is obtained as in [2] and reads like

ūk(t) =
∑

p∈Z∫ t

0
G
(

(k − p)a, t− t̂
) f̄p(t̂)

ρ̄
dt̂ , for (k, t) ∈ Z× ω−1

∗ R (13)

with G(s, t)
def
=

1

2π

∫ −iωb+∞

−iωb−∞

1− cos(λ0a)

ω2 sin(λ0a)
ie

i(ωt+λ0|s|)
dω , for (s, t) ∈ aR× ω−1

∗ R . (14)

Equivalent acoustic QC model. Applying the continualization or continuumization process in [2]

on the model of active AMM in (11) yields the following equivalent Cauchy’s problem

∫ t

0

∫

aRΦL(s− ŝ, t− t̂) ū(ŝ, t̂) dŝ dt̂ = f̄(s, t) , for (s, t) ∈ aR× ω−1
∗ R

with ū(s, 0) = ω−1
∗ Dtū(s, 0) = 0 , for s ∈ aR (15)

where the scalar elastodynamic generalized function

ΦL(s, t)
def
=

1

2π

∫ −iωb+∞

−iωb−∞
ΦL(s, ω) e

iωt
dω , for (s, t) ∈ aR× ω−1

∗ R (16)

5
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with ΦL(s, ω)
def
=

ρ̄ω2a2

cos(λ0a)− 1

sin(λ0a)

2λ0a

[

D2
s + λ2

0

]

δ(s) , for (s, ω) ∈ aR× (ω∗C \ C) (17)

can further be decomposed into specific generalized mass and elastic densities, by following [2].

The displacement field that solves the Cauchy problem in (15)

ū(s, t) =

∫ t

0

∫

aRG(s − ŝ, t− t̂) f̄(ŝ, t̂)
dŝ

ρ̄a
dt̂ , for (s, t) ∈ aR× ω−1

∗ R , (18)

represents an exact interpolation of the discrete displacement vector in (2), with ū(ka, t) = ūk(t) when

the spatially localized loading force densities is singular like f̄(s, t) =
∑

k∈Z f̄k(t) δ(s/a − k).

5 Conclusions

This paper shortly outlines the main results regarding the continualization of a simple PnC model

into an AMM while ensuring the consistence of the model with respect to both the classical stability

criteria and physical material interpretations. While the details about the derivation of these models of

PnCs and AMMs will be presented in a forthcoming publication, some features of their elastodynamics

and rheologic normal stress will be illustrated at the CFM 2013.
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