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Estimation d’erreur d’hyper-réduction de problemes
élastoviscoplastiques

D. RYCKELYNCK
. Centre des materiaux MinesParitech, UMR CNRS 7633, 10 rue Henry Desbrueres, Corbeil Essonnes, France

Résumé :

Nous proposons un indicateur d’erreur pour les prévisions réalisées par hyper-réduction de modele dans le
cadre de simulations élastoviscoplastiques. Ces problemes sont décrits par des équations aux dérivées par-
tielles en espace et en temps, non linéaires. Nous considérons ici les modeles standards généralisés. Le ca-
ractere fortement non linéaire de ces problemes rend difficile I’ utilisation de calculs hors ligne permettant de
faciliter des calculs en base réduite. Il est alors nécessaire de proposer des méthodes de réduction de I’ordre
des modeéles qui soient peu coiiteuses en opération d’assemblage ou d’intégration en espace. L’ hyper-réduction
a été proposée afin de restreindre ces opérations a un sous-domaine spatial appelé Domaine d’Intégration Ré-
duit (RID). Un modele hyper-réduit consiste a résoudre une forme faible des équations sur une partie du
domaine, en exploitant une représentation en base réduite des déplacements. Il en résulte une prévision par-
tielle de 1’état mécanique. Nous proposons d’exploiter une base de contraintes en équilibre pour appliquer la
méthode de I’Erreur en Relation de Comportement. Nous exploitons une formulation incrémentale variation-
nelle pour obtenir une borne supérieure de I’erreur d’approximation. Cette approche est mise en ceuvre dans
le cadre d’une étude de sensibilité a des parametres d’une loi de comportement élastoviscoplastique. La borne
supérieure de I’erreur exacte permet d’estimer un intervalle d’erreur sur les sorties du modele, si I’on admet
que ces sorties sont des fonctions lipschitziennes des déplacements.

Abstract :

We propose an error indicator related to the hyper-reduction of elastoviscoplastic problems. The mechanical
variables are solution of partial derivative equations in space and in time. Here we restrict attention to gene-
ralized standard formulations. These equations are highly nonlinear. Therefore it is not possible to introduce
off-line computation in order to reduce the computational complexity of reduced-basis predictions. It turns
out that both assembly procedure and residual computations must have their complexity reduced by using a
convenient approach. By introducing a Reduced Integration Domain (RID), the hyper-reduction method aims
to restrain the assembly procedure to a sub-domain of the spatial domain. Internal variables and stress fields
are computed only over the RID. We propose to introduce a reduced basis of admissible stresses, fulfilling
the equilibrium equation, in order to apply the Constitutive Relation Error method. The incremental variatio-
nal formalism is considered. This enables to obtain an upper bound of the approximation error. A sensitivity
analysis is presented as numerical application. The parameter of concern are the material coefficients of the
constitutive equation. The output error-deviation is estimated thanks to the error indicator, providing that out-
puts are Lipschitz functions of displacements.

Mots clefs : POD, Reduced Order Model, Constitutive Relation Error, Incremental Variational For-
mulation

1 Introduction

In this paper, we present a method to solve reduced-order equations related to mechanical models involving
internal variables. The proposed approach is based on the classical snapshot Proper Orthogonal Decomposi-
tion (POD) [1] and on an original Petrov Galerkin formulation of the reduced governing equations [2]. The
Petrov Galerkin formulation aims to restrain predictions only to a subdomain, named the Reduced Integration
Domain (RID) [2,3]. The novelty of this work is the error estimation by using partial predictions, since they
are only available over the RID. We propose a set of assumptions related to the formalism of the Constitutive
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Relation Error [4,5]. If these assumptions are fulfilled, then the proposed error indicator is an upper bound of
a the approximation error. In case of model outputs extracted from the solution by Lipschitz functions, this
upper bound of the error provides bounds on the estimated outputs. These bounds on outputs are useful when
considering results of sensitivity analyses. They help to solve the following contradiction. When the parameter
variations are too small the output variations are too small compared to the output error. But, if the parameter
variations are too large, the reduced basis approximation becomes irrelevant.

The problem setting of the elastoviscoplastic problem is carefully chosen to get an upper bound of the ap-
proximation error. A time integration scheme is introduced prior to the weak formulation of the equations.
It is an implicite Euler scheme. Then we state the general initial-boundary value problem of a body under-
going quasi static loading conditions and infinitesimal strains. The constitutive laws are described by using an
incremental potential in the framework of the irreversible thermodynamic processes. Error estimator and in-
cremental variational formulations were introduced in [6] for mechanical problem of bodies undergoing large
dynamic deformations. Extensions of this approach were proposed in [7,8] for effective response predictions
of heterogeneous materials. The strain history is taken into account by using internal variables denoted by
a. These variables are the lump sum of the history of material changes. This approach has proven its ability
to cover a broad spectrum of models in viscoelasticity, viscoplasticity, plasticity and also continuum damage
mechanics.

The hyper-reduced equations are a Petrov-Galerin formulation of the equilibrium equations, obtained by
using truncated test functions having zero values outside the RID. The vector form of the reduced equations
is similar to the one obtained by the Missing Point Estimation method [9] proposed for the Finite Volume
Method. The strength of hyper-reduction is its ability to reduce mechanical models in material science while
keeping unchanged the formulation of the constitutive equations [3]. The internal variables and the stresses are
predicted over the RID only. The smaller the RID, the lower the computational complexity and the higher the
approximation errors. These points have been developed in previous papers : for elastoplastic problems [10],
finite strain elasto-plastic models [3], hyperelastic viscoplastic simulations of damping [11], crystal plasticity
of microscopic aggregates [12], viscoelastic-viscoplastic unit cell homogenization problems [13], sintering
simulations [14]. In case of mechanical problems involving internal variables, these variables can be recovered
over the full domain € after being predicted in the RID. This is performed by using the gappy POD [15] as
explained in [11].

2 Incremental variational formulation

The continuous medium is occupying a domain €2. The displacement field at time ¢,,4; is defined on {2 and
is denoted by u,, 1. The boundary 052 of €2 is denoted by 0y Q2U 9p€2. On 9y €2, there is the Dirichlet condition
U,+1 = U.. On Op(), there is a given force field F. For the sake of simplicity, the dependence on n is omitted
for u. and F. The displacement field belongs to a function space u. + V), where V is a vector space defined by :

V={ue H(Q)|ug,q=0} (1)

The statement of the mechanical problem is the following. We seek an estimation of the displacement field
Un+1 € u. + V defined by the constitutive equations and the principle of virtual work :

/r—:(u*) DO A — / u" . Fdl'=0 VYu eV (2)
Q OrQ)
d
Cup = S (e(unn) VxeQ 3)

where u* is a test function, the product between two second-order tensor € and o is understood to be & :
o = g;;0;;, and wp is a condensed incremental potential. The convexity of wa has been proved in [7] under
the assumption that the free energy and the dissipation potential are convex functions. wa depends also on
internal variables. These variables are updated as functions of €(u,,41). In the sequel we restrict attention to
the Finite Element (FE) approximation, denoted by u,, 1, g, and the hyper-reduced approximation denoted by
U, 1/RpoM- The error approximation of interest is the distance between w,, 1 /pp € uc+Vand u,1/rom €
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u. + V. The equations of the Finite Element model are obtained by substituting V}, the space of the FE ansatz
functions, to V. The model output is denoted by y. It is provided by the Lipschitz function ¢ :

y = L(up; p) “4)

Here p is a vector of parameters of the condensed incremental potential. The purpose of the parametric study
is the prediction of the following response surface, related to the sensitivity of the output y to parameter
variations :

p=py £30% — oy = l(upp; p) — L(ure; p) ®)

The Finite Element simulation related to & = p is preformed to generate the reduced basis for the displace-
ments and the stresses. The error on the output prediction reads :

|0yroM — 6yl = [€(urom; 1) — L(urg; p)| < B lluronm — ure| 2@ (6)

where / is assumed to be a Lipschitz function and g is the Lipschitz constant of £.

3 Hyper-reduced prediction

We claim that the rank of the reduced system of equation can be preserved when the weak formulation
is retrained to a subdomain of €). Therefore, unique solutions of well-posed hyper-reduced problems can be
forecasted. This subdomain is the Reduced Integration Domain (RID). It is denoted by €2z. As proposed in
[2], the RID is reduced-basis dependent and it is constructed by off-line algebraic operations. In presence of
internal variables, the RID receives also the contributions of the modes dedicated to the internal variables,
as proposed in [3]. In a sense, these contributions make the RID construction physics dependent. The hyper-
reduced formulation reads, find the displacement field u,,1/ron € uc + Vrom defined by the constitutive
equations and the principle of virtual work :

/ e(thy) : Opi1d — ¥, . Fdl' =0 VYke{l,. N} )
QZ apﬂ
ow
Ont+l = &eA (e(Wpy1/ROM)) VX €L )

where Vron = span{¢y, ..., ox} C V. The truncated test function 1), have the same nodal values than the
reduced vector ¢;, excepted for nodes connected to the RID. For these nodes, the test function are set to zero.
We refer the reader to [3] for more details about the hyper-reduction method.

As proposed in [16] for constitutive relation error estimation in the framework of model reduction, we intro-
duce a reduced basis, denoted by (¢} )r=1,..n-, dedicated to stress fields fulfilling the following equilibrium
condition :

/s(u*) L PTdA=0 Yu eV, 9)
Q

A linear elastic solution of the equilibrium equation provide a stress field denoted oy that is not parameter
dependent, such that :

u® € WV (10)

/s(u*) condQ) — / u . Fdl'=0 Vu eV, (11)
Q o)

on = Ce(u) VxeQ (12)

The approximation errors are transferred to discrepancies on the constitutive equation (). Hence, the following
projection of the stresses forecasted by hyper-reduction provides stresses, denoted by &, 11, fulfilling the FE
equilibrium equation :

- =opN +ar min o —on — 0|72 13
nl = ON ga*espan{w,...,m}” ntl — ON I 22(022) (13)

It is a gappy-POD reconstruction of an admissible stress field. The RID must be large enough to get a well-
posed minimization problem, with unique solution.
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4 Convexity and Constitutive Relation Error
The Legendre transformation provides a Constitutive Relation Error [4] :

ne,(Ugom, O Z/Q e(Uni1/rom)) + WA(Gnt1) — €(Wnp1/ROM) 1 Onp1 d >0, (14)
with

U}*A(a-nJrl) = SUpPg- (E* : a’nJrl - ’LUA(E*)) (15)

The following properties hold :

~ - owa
e, (Wror, 8) =0 & Furr = 5= (e(Wn1/rom)) VX € Qz V0 (16)
Owx

54 €(un+1/ROM) 90 (O'n+1) Vx € QzVn a7)

Thanks to convexity of w}, a pseudo distance between & and o can be proposed. This pseudo distance is
denoted by d, (&, o). It reads :

m
N Ow; .
:Z/ Wi (8) — wi(e) — 2 () (6 — &) d2 > 0 (18)
0 Jo
n=1 z
It is not a symmetric bilinear form. Similarly, a pseudo distance between € and € is also proposed :
- ow
de(€,€) = Z/ wa () — wale) — =2(e): (E—€)dQ2 >0 (19)
f—t Qz Oe
A schematic representation of the pseudo distance d, is shown in Figure 1.
Wy
EIPAN /
W, (O) +—4 ~
do(0,0)
-
| -
-~ ‘ * * AN
. 7 W, (O) + 9aW)(O0): (0 — O)
W,(O)
-
- ‘
0*
N
o o

FIGURE 1 — Schematic view of the pseudo distance d,,.

S Upper bound of the approximation error

The pseudo distance d:(e(uron ), €(urg)) is substituted for the norm of the approximation error [[uron — Urgll12(q,)
restricted to €)z. Therefore, the upper bound of the approximation error rely on the following assumption :

Z/@ 0 (Wps1/ROM — Wng1/FE)(Ong1/pE — 0)ndl (20)

n=1 R86Z
< c.d-(e(urom), e(urg)) (21)
+co da(&a UFE) (22)

with0 < ¢, <1,0 < ¢, < 1and 9Ny = 9,27 U 0pz U OrSlz. The upper bound reads :
1 _ ~ e
d-(e(ugom),e(urg)) < - na,(Wror, o) Yugpom Euc+V, Vo coy+ span(gbk)kN:l (23)
€
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The proof reads :
m
o, (WroM, T) = Z/Q wa(e(Upi1/r0M)) + WA(Tnt1) — €(Wnt1/ROM) * Tnp df2
n=1 z

= Z/ﬂ wa(e(Upi1/rom)) + WA(Tnt1/rE) + WA(Tn+1) — WA(Ony1/FE) — €(Wni1/ROM) © One1 dS2
n=1 z

= d.(e(upom), e(urg)) +ds (0, oFE)

+ Z/Q Ont1/FE* E(un+1/ROM —Upi1) + Ont1/FE * e(Unt1) +€(Un+1) 1 (Opt1 — Un+1/FE)
n=1 z

€(Uny1/ROM) @ Tnt1 dS2
= d-(e(urom), €(urg)) +do (0, oFE)

+ Z/ﬂ Oni1/FE P €(Uny1/rRoM — Unt1) + €(Unt1) : Tnt1 — €(Wyp1/ROM) Ot d2
n=1 z
= dc(e(uponm), e(urp)) + do(0, orE)

m
+ Y0 [ @niryrn — ) elttniynons — wnsn) d2
n=1 Qz
Finally, since u,,11/ronm — Upt1/rE € Ve and 0,11 /pp — Ont1 € span(¢p7 )", then :

/ (Un+1/FE —0Ont1): €(un+1/ROM - un+1/FE) dQ

z

= /a 0 (un+1/ROM - un+1/FE) (0n+1/FE — Opy1)ndl,
R3LZ
where n is the outward normal on the boundary 0 7.

6 Output bounds and conclusion
A last assumption upon the approximation error is proposed in order to obtain bounds on the output forecas-
ted by the hyper-reduced model. This assumption reads : 3 5 > 0 such that,

[uronm — urgllf2q) < 3 d-(e(uron ), e(urg)) (24)

It can be interpreted by the following sentence. The approximation error over the RID is a representative esti-
mate of the approximation error over the full domain. If the FE solution belongs to the subspace spanned by the
reduced basis vectors, and if Equations (7)) is not rank deficient, then the solution of the hyper-reduced equation
is unique and it is upg. Hence, ||uron — uFEHLQ(Q) = 0 and d.(e(uronm),e(urg)) = 0. If the reduced
basis related to the stress can represent Oni1/FE — ON, then & = o pg. It turns out that g, (uron, o) = 0.

Finally we obtain the following bounds :

1
1—

1
1 —

((upg; p) € [((aron; p) — BB - e, (Wrom: @), ((uron; k) +Bp — 0, (uron, @)] (25)
() €
where 3, B and c. are not parameter dependent. Therefore, the product v = /3 E ﬁ can be estimated by using

one additional FE solution related to & = o 7# ;.
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