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A Double Averaged Navier-Stokes k -ω turbulence model for wall flows over rough surfaces with heat transfer
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The discrete element (roughness) method developed a few decades ago is revisited using the double averaging technique applied to the Navier-Stokes equation. A k -ω based DANS turbulence model is thus derived to be able to account for roughness effects. Several closure relations are proposed to model all terms induced by the use of the double averaging. The momentum and energy equations are considered in their simplified forms adapted to a 1D channel code in accordance with the DNS results used for the validation. To reconcile the discrete element (roughness) method with the double averaged Navier-Stokes equations the notion of representative elementary roughness is introduced. A large validation dataset coming from various DNS configurations is then used to assess the predictions of the proposed DANS model. Yet not fully complete, especially regarding the dispersive terms due to a lack of data, the performed validation already proves the overall excellent behavior of the DANS model and demonstrates the relevance of the present methodology based on the representative elementary roughness.

Introduction

Roughness effects modeling is a challenging problem for turbulent flows and became a crucial issue at stake for several industrial applications over the last decades. The most widespread method to account for roughness effects is the equivalent sand grain approach derived from Nikuradse's studies [START_REF] Nikuradse | Laws of flows in rough pipes[END_REF]. Models [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF][START_REF] Hellsten | Extension of the k -ω shear-stress transport turbulence model for rough-wall flows[END_REF][START_REF] Aupoix | A general strategy to extend turbulence models to rough surfaces -Application to Smith's k -l model[END_REF][START_REF] Knopp | A new extension for k -ω turbulence models to account for wall roughness[END_REF][START_REF] Aupoix | Roughness Corrections for the k -ω Shear Stress Transport Model: Status and Proposals[END_REF], dedicated to RANS (Reynolds Averaged Navier-Stokes) computations, consist in an artificial increase of the eddy viscosity in the near wall region mimicing the friction increase of the roughness. The main drawback of this approach is that the definition of the equivalent sand grain k s depends on non-universal correlation and that k s depends on the Reynolds number outside the full rough regime. In other words, it is not possible to find a universal correlation only based on the surface topology and providing a unique k s covering all the rough regimes. This is all the more true when considering heat transfer since the Reynolds analogy does not hold in the equivalent sand grain approach [START_REF] Aupoix | Improved heat transfer predictions on rough surfaces[END_REF]. In addition, the governing parameters [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF] for heat transfer models are hardly extractable from surface topologies. Therefore, the limits of the equivalent sand grain approach for RANS computations kindled interest for the discrete element (roughness) method in a recent past. As, suggested by Schlichting [START_REF] Schlichting | Experimental investigation of the problem of surface roughness[END_REF], the roughness is directly accounted for in the boundary layer equations with the addition of blockage factors. Complementary source (sink) terms in the momentum and energy equations are the reflection of the form drag and heat transfer of the roughness elements. Pionneer works on this method are due to Finson [START_REF] Finson | A Reynolds stress model for boundary layer transition with application to rough surfaces[END_REF][START_REF] Finson | The effect of surface roughness character on turbulent reentry heating[END_REF][START_REF] Finson | A model for rough wall turbulent heating and skin friction[END_REF], Robertson [START_REF] Robertson | Surface resistance as a function of the concentration and size of roughness elements[END_REF] and Christoph [START_REF] Christoph | Predictions of rough-wall skin friction and heat transfer[END_REF][START_REF] Christoph | Experimental and computational study of roughness effects at M = 6 [Aiaa paper 84-1681 17 th fluid dynamics, plasma dynamics and laser conference[END_REF]. But the standard formulation may be attributed to Taylor et al. [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF], following the development of Lin and Biwater [START_REF] Lin | Turbulence models for high-speed, rough-wall boundary layers[END_REF] for the form drag. The discrete element model was improved over the years with important contributions by Hosni et al. [START_REF] Hosni | Measurements and calculations of fluid dynamic characteristics of rough-wall turbulent boundary layer flows[END_REF], Tarada [START_REF] Tarada | Prediction of rough-wall boundary layers using a low Reynolds number k -ε model[END_REF] or McClain et al. [START_REF] Mcclain | The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness[END_REF]. More recently Stripf et al. [START_REF] Stripf | Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[END_REF][START_REF] Stripf | Extended models for transitional rough wall boundary layers with heat transfer -Part I: Model formulations[END_REF] and Hanson et al. [START_REF] Hanson | Validation of the discrete element roughness method for predicting heat transfer on rough surfaces[END_REF] extended the approach by abandoning the mixing length model accompagnying the standard discrete element method in favour of two-equations turbulence models. However, the system of equations discribing the fluid motion is still derived from a force budget on a control volume in these extensions. In the last decade, the discrete element method was revisited through the prism of the volume averaging technique. The initial formulation, only applicable to boundary layer flows or channel (pipe) flows, was generalized and the associated set of equations is now often refered as the Double Averaged Navier-Stokes (DANS) equations [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF]. Except minor differences in some of the right hand side terms, the DANS equations are very close to those used by Stripf et al. or Hanson et al. but they rely on a more robust mathematical basis detailed by Whitaker [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF].

The DANS equations are obtained by applying the volume averaging technique [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF] to the RANS equations. In the context of rough surfaces, a plane average is used on a representative elementary plane (REP) as decribed in [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF][START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]. A discussion on the derivation of the DANS equations is given by Aupoix [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF]. and denote the mean and fluctuating quantities obtained with the Reynolds averaging, while for the intrinsic volume averaging we use f and ˜ . In the present context, the intrinsic volume average [START_REF] Whitaker | Flows in porous media I: A theoretical derivation of Darcy's law[END_REF] reduces to the plane average over the area S. For any quantity q, q f is given by 1 S f Sf qds, with S f the part of the surface S open to the flow. For an incompressible fluid, the resulting continuity and momentum equations read:

∂ u i f ∂x i = 0 ∂ u i f ∂t + u j f ∂ u i f ∂x j = - 1 ρ ∂ p f ∂x i + 1 β ∂ ∂x j ν ∂β u i f ∂x j - 1 β ∂ ∂x j β u i u j f - 1 β ∂ ∂x j β ũi ũj - ν β ∂β ∂x j ∂ u i f ∂x j -F di (1) 
The blockage coefficient β, also called plane porosity, stands for the fraction of the plane open to the flow and is given by β = S f S .

The corresponding energy equation, written for the total enthalpy h t , reads:

∂ h t f ∂t + u j f ∂ h t f ∂x j = 1 ρ ∂ p f ∂t + 1 β ∂ ∂x j ν u i f ∂β u i f ∂x j + λ ∂β h t f ∂x j - 1 β ∂ ∂x j β u i f u i u j f + β h t u j f - 1 β ∂ ∂x j β ht ũj - λ β ∂β ∂x j ∂ h t f ∂x j -F t
(2) In eq. ( 1), F di and F t arise from the volume averaging and stand for the drag and heat transfer induced by the roughness with :

F di = 1 S f Ifs pn i ds - Ifs ν ∂ ũi ∂x k n k ds F t = - 1 S f Ifs λ ∂ ht ∂x k n k ds (3) 
where I f s is the fluid/solid interface and n i the unit normal vector. This specific writing, involving the spatial fluctuations of the pressure and the viscous shear stress due to spatial velocity fluctuations, comes with a term representing the inhomogeneity of the roughness distribution in eq. ( 1). It results from the homogeneity hypothesis, i.e. the REP characteristic size is small enough compared to the length scale of the rough surface, and from the equality

∂β ∂x i = - 1 S n i ds.
The momentum equation in the DANS formulation makes appear three terms requiring models. The first one F di is related to the mean form drag of the roughness elements and concentrated a lot of efforts in the past because of its major role on wall friction. For many years, the model proposed by Taylor et al. [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF] was used without questioning but recent studies by Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF] or Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] proved the necessity to use more advanced models. From these drag models, the last two terms can then be examined. There are composed of the volume averaged Reynolds stresses u i u j f and the so-called dispersive stresses ũi ũj . Kuwata et al. [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF] used a second moment closure to compute the Reynolds stresses, based on the two-component limit pressure-strain model [START_REF] Craft | A Reynolds stress closure designed for complex geometries[END_REF], and choose to drop the dispersive stresses. They argued that a previous study by Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF][START_REF] Kuwata | Direct numerical simulation of turbulence over systematically varied irregular rough surfaces[END_REF] confirmed the validity of omitting the dispersive stresses by analyzing the budget terms in the turbulent kinetic energy transport equation from DNS over randomly distrbuted rough surfaces. They successfully applied their model to several semi-complex rough surfaces composed of randomly distributed hemispheres, including potential overlappings, and to real marine paint rough surfaces. This model can be considered as the most advanced implementation of the DANS equations for roughness configurations. Altough very promising, the recourse to second moment closure makes it hard to implement in some industrial workflow. In addition, heat transfer are not accounted for in this model. There is a need for a DANS model based on a first order closure for the Reynolds stresses and capable of predicting heat transfer. Therefore, this paper focuses on a first order DANS model associated with the drag model derived by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] and a specific closure for the energy equation to include heat transfer in presence of roughness. The proposed model is based on the k -ω SST model [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] and can be seen as an extension of the latter to rough surfaces without boundary conditions modifications, contrary to equivalent sand grain corrections. Although in this paper a 1D approach is sufficient to describe the studied flows, the extension of the present work to 2D/3D configurations is straightforward. The forms of the closure relations, presented in section 4, can be directly implemented in standard Navier-Stokes solvers, considering the wall distance instead of the wall-normal coordinate. The main difficulty is presumably related to the introduction of the geometrical inputs as functions of the wall distance, which is not necessarily a common option in CFD codes. The paper is organized as follows. First, the channel code used for the development of the different closures is presented. The notion of representative element roughness is then introduced before the developed closure relations are analyzed. Finally, a validation section describes the selected dataset for this purpose and present the major results obtained with the present DANS model.

Channel code description

It is well established [START_REF] Jiménez | Turbulent flows over rough walls[END_REF][START_REF] Flack | Examination of a critical roughness height for outer layer similarity[END_REF] that wall-similarity [START_REF] Raupach | Rough-wall turbulent boundary layers[END_REF][START_REF] Townsend | The structure of turbulent shear flow[END_REF], assuming similarity of the turbulence statistics in the logarithmic and outer regions of a given type of wallbounded flow, holds for rough surfaces independently of the roughness morphology. For this reason, a complete description of the inner region is sufficient to capture all induced roughness effects on a wall flow. Therefore, to limit CPU resources, almost all DNS studies on rough surfaces were performed on channel flow configurations, without any loss of generality on conclusions about roughness effects, at least for first order turbulent statistics. The validation database of section 5 is thus only composed of DNS of fully developed turbulent channel flows and the development code is adapted to this situation. For such flows, the inertial forces can be neglected and the initial 3D system of equation (1) reduces to a single equation. We use (x, y, z) to designate the longitudinal, wall-normal and transverse directions. The pressure drop balances the wall efforts, i.e. both contributions of friction and pressure drag, which reads:

∂ p f ∂x = ρu 2 τ h e (4) 
with u τ the friction velocity as thus defined and h e = h -h m the effective channel height starting at the melt-down surface y = h m to account for the roughness volume in the channel [START_REF] Busse | Direct numerical simulation of a turbulent flow over a rough surface based on a surface scan[END_REF][START_REF] Forooghi | Toward a universal roughness correlation[END_REF]. Finally, in wall variables + , the resulting equation is:

0 = 1 Re τ + 1 β ∂ ∂y + β(1 + ν + t ) ∂ u f + ∂y + + u f + β ∂ 2 β ∂y + - 1 β ∂ ũṽ + ∂y + -F + dx ( 5 
)
where Re τ = h + e = u τ h e ν . The Boussinesq hypothesis was used to model the plane averaged Reynolds stresses with the introduction of the eddy viscosity ν + t = ν t ν such that:

-u v f + = ν t ∂ u f + ∂y (6)
The associated energy equation is derived similarly for a perfect gas with constant heat capacities and is written for the dimensionless temperature difference

θ + = T w -T T τ , T τ = -φ w ρC p u τ
being the friction temperature. The incompressibility hypothesis used for the momentum equation is in accordance with the DNS of Forooghi et al. [START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF] that will serve for validation of thermal effects of roughness and still holds for the energy equation. According to the DNS procedure [START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF], a mixed-type boundary condition [START_REF] Piller | Direct numerical simulation of turbulent forced convection in a pipe[END_REF] is considered, which determines the writing of the energy source term in the equation:

0 = u f + u + b Re τ + 1 β ∂ ∂y + β(1 + λ + t ) ∂ θ f + ∂y + + θ f + β ∂ 2 β ∂y + - 1 β ∂ θṽ + ∂y + -F + t (7) with u + b = 1 h + h + 0 u f + dy + the bulk velocity.
The eddy conductivity λ + t is directly deduced from the eddy viscosity

λ + t = ν + t P r t ,
where the turbulent Prandtl number is classically fixed to 0.89. The dispersive heat flux -θṽ + and the additional roughness induced heat transfer given by F + t are modeled in section 4.4. To solve the above-mentioned equations, a dedicated open-channel 1D code was developed. It is based on a second order finite volume formulation and uses a grid with a geometrical progression. The first grid point is placed around 0.1 -0.2 wall units, depending on the channel height h + , and the geometrical reason is fixed between 1.02 -1.03. The equations, including eq. ( 21), are solved iteratively until the maximum of the uniform norms of the error for each profile is below 10 -8 . The computations are initialized with profiles obtained with smooth walls.

The representative elementary roughness

Aupoix [START_REF] Aupoix | Revisiting the discrete element method for predictions of flows over rough surfaces[END_REF] showed the correspondance between the system of equations of the discrete element method and that of the DANS equations. To fully reconcile the discrete element method and the DANS approach, the notion of representative elementary roughness (RER) can be introduced. Let's consider a random rough surface S whose topology is known, meaning that the wall-normal profiles of the blockage β(y) and of an equivalent diameter d(y) are accessible. The procedure given by Kuwata et al. [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF] is one possible example. From β and d, that contain the necessary information on the shape of the representative elementary roughness, the surfacic distribution characterized by the spacings between elements can be deduced from the definition of β for roughness with circular cross-sections. Hence:

β = 1 - πd + 4L + z L + x ( 8 
)
where L x and L z are the longitudinal and transverse spacings between RERs. Therefore, in the DANS approach, the initial surface is reduced to an arrangement of RER placed on square areas L x ×L z over the REP. The RER may evolve with the REP or be different between REPs. Due to the choice made for the C d models in subsection 4.1, based on experiments for staggered arrangements, the resulting surface corresponds to a staggered configuration as shown in figure 1.

Note that according to the above definition of the RER, the lower bound for β is 1 -π 4 since L x and L z must be greater or equal to d(y) for all y values. The choice of the RER has a strong impact on the results of the DANS model as it controls the different closure relations, detailed in the subsection 5.1.

Closure relations

Improved drag coefficient model

To model the drag term in equation ( 5), we introduce the drag coefficient C d as:

F + dx = (1 -β) 2 πd + 2 C d u f + u f + = f d u f + (9)
where d + is a dimensionless diameter, representative of the roughness distribution at altitude y. The drag coefficient is deduced from experiments by Žukauskas [START_REF] Zukauskas | Heat transfer from tubes in crossflow[END_REF] for banks of tubes in a channel following the procedure given by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF]. It is reminded thereafter. The drag coefficient C d is related to the pressure drop in the channel through:

1 2 ρ u f 2 C d d = L z ∆P (10) 
The pressure difference is itself expressed under the form of a kinetic energy, introducing the velocity u and a parameter ξ:

∆P = 1 2 ρu 2 ξ (11)
leading to:

C d = u u f 2 ξ L z d (12) 
Figure 64 of Žukauskas paper plots the ratio ξ χ with respect to the Reynolds number

Re 0 = βRe d = β u f d ν .
Curves are parametrized by the dimensionless spacing a = L z d .

Function χ characterizes the effect of the spacing ratio b a = L x L z . We remark that aξ χ is conserved between curves and we choose to consider the curve obtained with a = 1.5.

In addition, for a = 1.5, χ a=1.5,b ≈ 1 for b > 1, ∀Re 0 < 1000. As a result, we get:

C d = 1.5 u u f 2 ξ a=1.5 (13) 
The expression for ξ = ξ a=1.5 is provided by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] and recap hereinafter:

log ξ = (0.58f -0.86) log Re 0 + 1.82 -1.1f Re 0 ≤ 116883 ξ = 0.2 Re 0 ≥ 116883 ( 14 
)
where the blending function f is:

f = 0 Re 0 ≤ 60 f = 1 - 60 Re 0 60 ≤ Re 0 ≤ 200 f = 1 - 1 Re 0 10 0,4 + Re 0 10000 2,78 200 ≤ Re 0 ≤ 116883 (15) 
At last, according to the definition given by Žukauskas, we have u = αβ u f where

α = a a -1 = L z L z -d
. In other words, ratio φ = u u f in eq. ( 13) can be seen as a shape function since φ = αβ. Applied to roughness configurations of Forooghi et al. [START_REF] Forooghi | A systematic study of turbulent heat transfer over rough walls[END_REF], it was found in [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] that φ = √ 2 β 2 is a satisfying approximation. In the present context, we decided to leave φ being a function of β and L z to generalize the approach and to be able to consider a larger variety of roughness configurations. The final expression for C d is thus:

C d = 1.5 (αβ) 2 ξ (16)
So far, the C d model was designed to reproduce the drag induced by a circular obstacle of diameter d in a plane, and mainly due to pressure efforts. However, for some rough configurations with truncated top surfaces, an addition drag component due to friction exists. Several options can be contemplated. A possible natural route is to increase the representative surface over which the discrete element is placed. However, this would affect the spacing parameters as detailed in section (5.1) and will have undesirable side effects. Another simple possibility is to account for this boundary effect through a source term as we already do with F + dx that actually stands for a surfacic integral. A decaying exponential function is used with a coefficient equal to the ratio of the top diameter d(k r ) = d t to the bottom diameter d(y = 0) = D. The correction for truncated rough elements is then:

C d = C d (k r )e - d + t D + y + -k + r , ∀y > k r (17) 
Obviously for non-truncated element having d t = 0, the correction is zero since

C d (k r ) = 0.

Source terms for k and ω equations

To validate the drag coeffcient model [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF], it was necessary to make use of an ad-hoc mixing lenght model for the eddy viscosity, calibrated on DNS results by Forooghi et al. [START_REF] Forooghi | A systematic study of turbulent heat transfer over rough walls[END_REF]. Now, we are interested in a more general approach based on a standard twoequations turbulence model. Menter's k-ω SST [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] is adopted. Instead of applying the double averaging to k and ω equations, which will inevitably introduce new dispersive fluxes that would be hardly modeled, we prefer to consider the original k and ω equations with additional source terms so that the relation (6) holds. In effects, in the present context of channel flows, equations in wall variables reduce to:

0 = P + k -β * k + ω + + ∂ ∂y + 1 + σ k ν + t ∂k + ∂y + + F + k 0 = γ ν + t P + k -β * ω + 2 + ∂ ∂y + 1 + σ ω ν + t ∂ω + ∂y + + 2(1 -F 1 ) σ ω2 ω + ∂k + ∂y + ∂ω + ∂y + + F + ω (18)
The production term is due to the mean strain, doubly averaged and is given by

P + k = ν + t ∂ u f + ∂y + 2 .
Menter's dimensionless blending functions F 1 and F 2 are unchanged, and the eddy viscosity ν + t is still obtained by:

ν + t = a 1 k + max a 1 ω + , F 2 ∂ u f + ∂y + (19) 
Before expliciting the retained models for F + k and F + ω , the calibration of the model's constants is revisited. Depsite all the merit of the standard k -ω SST, its calibration provides bad trends for the eddy viscosity near the centerline of a channel with smooth walls. From Cazalbou et al. [START_REF] Cazalbou | On the behavior of two-equation models at the edge of a turbulent region[END_REF], the admissible range for the model constants is restricted to:

σ k > 0.5 , 0 < σ ω -σ k + σ ω2 < σ k σ ω , σ k > σ ω2 (20) 
If κ = 0.39 is imposed, it is found that the set of constants of eq. ( 21) improved the prediction of the k -ω SST model.

σ k1 = 0.5 , σ ω1 = 0.6 , β 1 = 0.063 , σ k2 = 0.5 (21) 
Figures 2a and2b plot the velocity and eddy viscosity profiles for channel flows at Re τ = 550 and Re τ = 4200. UPM DNS database [START_REF] Hoyas | Scaling of velocity fluctuations in turbulent channels up to Re τ = 2000[END_REF][START_REF] Jimnez | Turbulent fluctuations above the buffer layer of wall-bounded flows[END_REF][START_REF] Jimnez | Turbulent fluctuations above the buffer layer of wall-bounded flows[END_REF] is used for comparisons. The modified set of constant [START_REF] Stripf | Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[END_REF] only slightly alters the velocity profiles u f + but drastically improves the behavior of ν + t near the centerline. In the following the modified k -ω SST model will be considered for computations on rough surfaces. However, and as proved in several figures in the validation section 5, results are weakly affected by this modification. Predictions given by the present DANS model are not driven by this change, but a slight improvement is observable on the profiles, especially in the upper part of the open-channel.

For decades, it is well known [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren[END_REF] that above the roughness sublayer, a logarithmic behavior can be observed for velocity profiles, indicating that a linear evolution of the turbulent length scale still remains over rough surfaces. In other words, constrains already imposed to the k -ω SST model to recover the proper behavior of a standard boundary layer in the inner region do not have to be amended when considering rough walls. Only the roughness sublayer must be modified for k and ω, in the same manner that C d modifies the behavior of the velocity profile in this region. In the present description C d is always positive, justified by the fact that we consider the drag to be essentially due to the wake behind the roughness and is mainly composed by pressure drag. For this reason, a minus sign was introduced in the momentum equation [START_REF] Knopp | A new extension for k -ω turbulence models to account for wall roughness[END_REF]. The associated source term F k is thus expected to be positive, with a plus sign in the k equation [START_REF] Stripf | Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils[END_REF]. This is corroborated by the mixing length profiles [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] obtained from DNS results that show a plateau region with large values below the roughness crest, i.e. in the roughness wake region. At first approximation, the distribution of F k is supposed to be linear with k and is aligned with that of F + dx [START_REF] Schlichting | Experimental investigation of the problem of surface roughness[END_REF]. The model is thus:

F + k = c k f + d k + (22) 
The sensitivity to coefficient c k is weak and can be compensated by the model for F ω .

We choose c k = 2. The determination of F ω is more open to speculation. With the model of eq. ( 22) for F k , and adopting a linear variation with respect to ω similarly to F k , i.e. F + ω = c ω f + d ω + , numerous numerical tests indicated that F ω should depend on the shape of the representative element and the roughness density. In other words, c ω must be a function including these effects of shape and density. The turbulence levels encounter in the wake region are controlled by the separations occurring on the roughness. The slope of the area facing the wind has a large impact on separations. Additionally, the roughness density, i.e. the density of the roughness distribution, also plays an important role on the wake turbulence levels. On dense configurations, roughness sheltering can occur and dead water zones may exist between roughness. From these considerations, we choose to use the 'effective element slope' (EES) ϕ = 2S w S b , with S w and S b the projected frontal area facing the wind and the wall-parallel projected area respectively, to drive the shape effect. The dependency of F ω to roughness density is controlled by the mean blockage value β m = 1 h + h + 0 βdy + . Thus, c ω is defined as the product of two functions depending respectively on ϕ and β m . Finally, we take:

F + ω = c ω1 + c ω2 1 -ϕ ϕ   1 + c ω3 e -1 1 -β m    f + d ω + (23) 
with c ω1 = 2.7, c ω2 = 0.1 and c ω3 = 30.

Modeling the dispersive stresses

Recent studies pointed out the role played by the dispersive stresses on the momentum equation [START_REF] Knopp | A new extension for k -ω turbulence models to account for wall roughness[END_REF]. DNS by Busse and Jelly [START_REF] Busse | Influence of surface anisotropy on turbulent flow over irregular roughness[END_REF][START_REF] Jelly | Reynolds number dependence of reynolds and dispersive stresses in turbulent channel flow past irregular near-gaussian roughness[END_REF] showed that the dispersives stresses can exhibit strong levels beneath the roughness crest, overpassing their Reynolds stress counterpart. The dispersive stresses were shown to be "form-induced" stresses and that the dominant source of spatial heterogeneity are wake-occupied regions. This was confirmed by Toussaint et al. [START_REF] Toussaint | Analysis of the different sources of stress acting in fully rough turbulent flows over geometrical roughness elements[END_REF] through a quadrant analysis for high Re τ configurations. But the overall contribution to the friction remain weak compared to the influence of the Reynolds stresses. This is all the more true as the Reynolds number increase. Few attemps of modelling the dispersives stresses are found in the litterature. Jelly and Busse [START_REF] Jelly | Reynolds number dependence of reynolds and dispersive stresses in turbulent channel flow past irregular near-gaussian roughness[END_REF] successfully compared their double averaged DNS results with the phenomenological model of Moltchanov and Shavit [START_REF] Moltchanov | A phenomenological closure model of the normal dispersive stresses[END_REF] for the streamwise dispersive stress ũũ + . However, there is no similar model able to reproduce the behavior of the shear dispersive stress ũṽ + .

Here, considerations about characteristic scales are adopted. The characteristic length scale of ũṽ + is assumed to be equal to that of the reciprocal shear stress u v f +

. We take l 2 disp = ν + t / ∂ u f + ∂y + . We then assumed that there are two characteristic time scale for spatial fluctuations ũ+ and ṽ+ . For the time scale of ũ+ , the same reasoning as for l disp is invoked and t u disp is thus related to the streamwise velocity gradient ∂ u f + ∂y + . However, the dispersive stresses are mainly produced by the wake region, especially concerning ṽ. The wake region is governed by the turbulent kinetic energy growth.

The characteristic time scale for ṽ+ is then t v -1 disp = ∂ √ k + ∂y + . As a result, we have:

-ũṽ + = F disp ν + t ∂ √ k + ∂y + (24) 
In order to limit the extend of the proposed model ( 24), a damping function F disp is used to ensure a rapid decrease of ũṽ + above the roughness sublayer, just like the van Driest function does for the Prandlt mixing length model near the wall. It reads

F disp = e - y + k + r -1 .
Although this model is just a first attempt that truly lacks of validation test cases, it contains the basic ingredients and provides physically relevant results while slightly improving the velocity profiles (see section 5). Additionally, its simplicity makes it easy to implement and it is an interesting candidate to evaluate. Remark that, because of its dependency to k + , the model of eq. ( 24) is rather dedicated to dense configurations where roughness wakes dominate the roughness effects. For sparse distributions of roughness with low effective slopes, viscous drag is more predominant and spatial fluctuations of the vertical velocity ṽ+ are less susceptible to be correlated to k + .

Thermal closure

The classical approach [START_REF] Taylor | Prediction of turbulent rough-wall skin friction using a discrete element approach[END_REF] to close the energy equation in the discrete element method is to model the Nusselt N u distribution similarly to the drag coefficient C d .

F + t = 4 (1 -β) N u P rd + 2 θ f + = f + t θ f + (25) 
To ensure coherence with the C d closure of eq. ( 16), Žukauskas work could be used again. But, as claimed by the author [START_REF] Zukauskas | Heat transfer from tubes in crossflow[END_REF], the Nusselt levels highly depends on the choice of the reference temperature. Žukauskas used the mean flow temperature for the sake of simplicity but this is not consistent with the implicit definition used in eq. ( 25) for N u where the reference temperature lies between the wall temperature and the mean flow temperature with a recovery factor. A careful analysis of the DNS database provided by Forooghi et al. [START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF] showed that a simple relationship exists between the drag coefficient and the local Stanton number

St = N u ReP r
. It is found that St Cd ≈ 0, 09 on the most part of the roughness sublayer, whatever the configuration, resulting in the following model for f + t :

f + t = 2π 11 f + d (26) 
In other words, at each altitude in the boundary layer, we use a kind of Reynolds analogy, relating the drag coefficient C d to the local Stanton number St, but with a much lower ratio differing from that observed at the wall on smooth surfaces. This drop may be attributed to the role of the wake region in the heat transfer. Instead of only having a contribution coming from the convection process at the roughness walls, the increase of the turbulent levels in the wake region enhance the mixing and reduces the ratio

St C d .
Although very attractive because of its simplicity, relation ( 26) should be used carefully as it only rely on a single set of DNS. A wider analysis involving more data would be welcome to support this proposal. But, as mentioned earlier, there is a lack of information, especially DNS, on heat transfer over rough walls.

To complete the model, a closure relation is formulated to account for the dispersive heat flux -θṽ + in the energy equation [START_REF] Aupoix | Improved heat transfer predictions on rough surfaces[END_REF]. To apply the same idea used for the dispersive stresses, it would require to replace ν + t by λ + t and k + by

θ +2 2 .
There are some models providing the ratio of the turbulent characteristic time scales for the velocity and temperature fluctuations R = t u t θ , but there exists no available model providing directly θ + with respect to k + . Then, it is assumed that the turbulent fluctuations ratio θ +2 k + behaves like

θ f + u f + .
The velocity u f + and temperature θ f + profiles are known to be proportional each other in a ratio κ T κ in the logarithmic region where κ T is the inverse of the slope of θ f + . This ratio differs below the logarithmic region and in the roughness sublayer, where the dispersive stresses act, it reaches 2.

As a consequence, the chosen formulation for -θṽ + simply reads:

θṽ

+ = - θ f + P r t u f + ũṽ + ≈ - 2 P r t ũṽ + ( 27 
)

Validation

An in-depth validation of the present model would require to access the description of the whole velocity profile in the inner region, including the roughness sublayer, the temperature profile, the Reynolds and dispersive shear stresses and eventually their thermal counterparts, for a large variety of rough surfaces. Additionally, the model also requires the definition of a RER as an input for the computations. Only a few DNS on academic configurations fit these requirements, partly. All are channel flow configurations. The validation is thus partial, in the sense that it must be extended to more configurations, in particular randomly distributed rough surfaces. Moreover, the friction Reynolds numbers Re τ of the DNS are limited to quite low values. [START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF]), (b) case KSK3 (credits Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]) including overlapping between hemispheres

We selected three DNS databases constituting a set of 22 configurations. Among them, only configurations of Forooghi et al. include heat transfer at walls. These configurations were already investigated for the validation of the drag coefficient model [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF]. The 14 configurations of Forooghi et al. allow to explore the effects of the roughness shapes, since two different roughness patterns were used with varying aspect ratios and effective slopes. For the sake of conciness, only 5 configurations that bound the domain explored by Forooghi et al. will be presented in this paper. DNS by Wu et al. [START_REF] Wu | Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging innerouter interactions and principal component analysis[END_REF] are obtained from arrangements of hemispheres. The roughness distributions were designed to explore density effects with or without Reynolds number modifications. At last, the results of Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF] were used because they hold several merits. First, although academic, the roughness distributions are closer to random rough surfaces, necessitating a more global RER definition. Second, these configurations were sucessfully tested with Kuwata et al. model [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF], which constitute an additional source of comparison for the present model. Figures 3a and3b are two examples of the considered roughness distributions.

None of these DNS give the profiles of the dispersive stresses. In this regard, Jelly and Busse [START_REF] Jelly | Reynolds number dependence of reynolds and dispersive stresses in turbulent channel flow past irregular near-gaussian roughness[END_REF] DNS constitute interesting configurations but it was not possible to find well-defined RERs for these cases, only the blockage factor β profile being accessible.

The choice of the RER

The definition of the RER is determinant for the predictions of the model. Four parameters drive the geometry of the RER : β, d + , L +

x and L + z . Since we choose to only have RERs with circular cross-section (8) with a staggered arrangement, a relation between β, d + and the product L +

x L + z is imposed, and only three parameters need to be extracted from experiments. However, for dense and randomly distributed rough surfaces, assuming L + x = L + z is a reasonable approximation. This assumption is also supported by the fact the ratio

L + x L + z
was proved to have a weak influence on C d in Žukauskas analysis (see subsection 4.1). Finally, only two parameters remain needed. The definition of the RER is straighforward for the uniformly distributed hemispherical roughness configurations of Wu et al. Profiles of d + is trivial, L + x and L + z are known for all 6 configurations. Forooghi et al database was already exploited and it was proved by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] that the statistically mean roughness is a relevant RER for these configurations. The mean roughness is easily determined since roughness overlapping was no permitted when generating the distributions [START_REF] Forooghi | Toward a universal roughness correlation[END_REF] as illustrated on figure 3a. On the other hand, choices are less obvious regarding Kuwata et al. cases. We adopted a similar strategy to those authors by using the profiles of the blockage factor and of the mean hydraulic diameter defined by Kuwata and Kawagushi [START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]. To be consistent with our definition of eq. ( 8), β is bounded by 1 -π 4 and lower values are not accounted for. This is equivalent to having f + d = 0 for L + z ≤ d + . A comparison with the concept of effective height, introduced by McClain et al. [START_REF] Mcclain | The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness[END_REF], may also be made. Above β = 1 -π 4 , fluid region can be considered a dead water zone which do not participate in the wall transfer. For the three considered cases, profiles of β and d + are plotted on figure 4. Table 5.1 gathers the main parameters that describe the studied roughness configurations. More details are available in the original papers describing the DNS [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF][START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF][START_REF] Forooghi | Toward a universal roughness correlation[END_REF][START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF][START_REF] Wu | Modelling smooth-and transitionally rough-wall turbulent channel flow by leveraging innerouter interactions and principal component analysis[END_REF].

Results and discussion

roughness shape effects

First, configurations of Forooghi et al. are computed and analyzed. The dataset is composed of two roughness shapes (A and B) which effective slopes and aspect ratio are varied, the roughness height k + r remaining constant. A full decription of these configurations and the associated DNS results is available in [START_REF] Forooghi | Toward a universal roughness correlation[END_REF][START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF]. Figures 5a to 5e present the velocity and temperature profiles obtained from the DANS computations using the aforementioned closure relations. It is first observed that the constant set for the k -ω SST model play a slight role in the results but do not alter the general behavior. With both constant sets, results are in fair agreement with the DNS all over the channel height. A remarkable agreement is even obtained in the roughness sublayers (y + < 3k + r ) for the velocity profiles u f + , except for the case As-5. The agreement is due to the C d model ( 16) that enables to perform a good pressure drag prediction. However, for case As-5, since the effective slope of the roughness element is very weak, the drag is equally composed of a friction drag and a pressure drag. The C d model derived from Žukauskas correlations is not made to predict such cases and should be preferably used on rough surfaces generating essentially pressure drag. It must be mentioned that in the previous work by Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF], the agreement was better thanks to the use of an had-oc shape function φ = αβ in eq. ( 16). The generalization of φ proposed in this paper do not make use of an artificial compensation and consequently it is not possible to properly consider roughness having low effective slopes anymore. Above the roughness sublayers, the blendings with the logarithmic regions and the outer regions are ensured by the turbulent closures of eq. ( 22) and most importantly of eq. ( 23). The models for F + k and F + ω give satisfaction and allow good predictions of the roughness functions ∆u + since the logarithmic regions are well recovered. In particular, the influence of the roughness effective slope is accounted for in the expression of F + ω through the use of ϕ.

+ r D + L + z h + Re τ ref. Ad-
Another important achievement of the proposed DANS model is the thermal closure provided by eq. ( 25). Depsite some discrepancies, a satisfactory agreement is observed on most temperature profiles θ f + . Differences occur where velocity profiles fail to reproduce the good trends. In addition, results also pointed out the importance of the dispersive contributions -θṽ + on the temperature profiles, whereas a weaker role is noticed for the dispersive stress -ũṽ + on the velocity profiles. It must be reminded that the thermal closure of the present DANS model was developed only from this database and that a further validation is required before to conclude on the extent of the model accuracy. It can be considered as a first step toward the final objective.

On figures 6a and 6b the dispersive and total shear stresses and the dispersive and total heat fluxes are plotted for cases Ad-1 and Bd-1. A linear scale for the wall distance y + is adopted to point out the good behavior of the model in the logarithmic region where a linear decrease is expected for the total shear stress. Discrepancies with the DNS results occur below the roughness crests for the total shear stress and the total heat flux. However, this does not affect dramatically the velocity and temperature profiles since in the roughness sublayer equations are essentially governed by the source terms F + d and F + t . Moreover, figures show the good behavior of the dispersive stresses and fluxes that stretch all over the roughness sublayers. Similar results are observed for all the configurations studied by Forooghi et al. At last, results obtained with the standard set of constant of the k -ω SST model confirm the limited effect of the constant modifications. The predictions of the model are not driven by the constant modifications but are the fruits of the addition of the different sources terms in the equations of turbulent motion. Now, we focus on the hemispherical rough surfaces computed by Wu et al. Although very academical, these rough surfaces present a highly interesting validation dataset. The very simple topology of the roughness ensures a rigorous definition of the RERs while the different configurations enable to test several important closure relations of the DANS model. Their 5 configurations demonstrate the influence of the spacings (density) at a given friction Reynolds number and the effect of the Reynolds with fixed spacings. Note that L +

x and L + z are linked for these roughness distributions with L + z = 2L + x . Figure 7a drag levels, especially on figure 7a where φ is varied between each curves. The second lesson gained from figure 7a is that the drop of the roughness function ∆u + with the increase of the spacings is well captured by the model. This effect is taken into account using β m in eq. ( 23) for F + ω . Third, the weak impact of Re τ on the velocity profiles is well reproduced by the model as shown on figure 7b. Here k + s = 51 which indicates that these three configurations lie in the transitional rough regime. As a consequence, this result is far from being obvious and it is remarkable that the DANS model is able to capture it. More precisely, these configurations highlight the good behavior of the C d model and of its dependency with respect to the Reynolds number. Lastly, the randomly distributed rough surfaces defined by Kuwata and Kawagushi [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF] are examined. With these cases, the influence of the choices made for the RERs, and plotted on figure 4, is investigated. Interestingly, since the choices are identical to those made by Kuwata et al. to successfully validate their own DANS model, these cases also demonstrate the relevance of the present approach based on a k -ω model compared to an approach relying on a second order turbulent closure. Results are shown on figure 9 using linear and logarithmic scales for the wall distance y + . Two points may be highlighted. First, as for the hemispherical cases of Wu et al. , the drop of the roughness density, visible on the modifications of the β distributions on figure 4, induces a rise of the roughness function. The source term F + ω controls this effect through the use of the mean blockage value β m and the calibration given in eq. ( 23) is adpated to both Wu et al. configurations and cases of Kuwata et al. The second important point concerns RER definitions. There is no obvious choice for these cases because of the roughness overlapping contrary to the previously studied configurations. Following the ideas of Kuwata et al. [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF] to extract d and β from the surface topologies, we were able to define RERs for which the results provided by the proposed DANS model are in a very satisfactory agreement with the DNS data. This paves the way to a general definition of RERs for any kind of randomly distributed rough surface and only based on geometrical considerations. It is worth mentioning that this process provides identical RERs to those defined in subsection 5.1. In other words, this process includes all the three definitions used in this paper and is seen as a promising tool for a generalization of the methodology. To illustrate the scope of the present DANS model, three representative configurations are plotted on figure 8. The friction Reynolds number Re τ varies from 300 to 500 and the roughness height k + r from 20 to 85. The shape functions φ of the RERs also completely differ for these three cases as it can be seen from the velocity profiles in the different roughness sublayers. It is remarkable that the DANS model is able to reproduce the onsets and the slopes of velocity profile growths that strongly depend on the rough surface topologies. Interestingly, configuration Bd-5, which roughness height is k + r = 65, exhibits the strongest roughness function ∆u + whereas configuration KSK-3 corresponds to k + r = 85. Beyond the physical mechanisms behind this result, and that are included in the DANS model, this comparison points out the ambiguity of the notion of equivalent sand grain and strengthen the interest of the proposed approach. 

Conclusion

A k -ω based DANS model was derived with adapted closure relations for all terms requiring modeling efforts. To reconcile the discrete element (roughness) method and the DANS equations, the notion of representative elementary roughness (RER) was introduced. Given that all the accessible DNS validation cases concerned only fully developed turbulent channel flows, a 1D dedicated channel code was developed to solve the DANS equations. The drag coefficient model is taken from Chedevergne and Forooghi [START_REF] Chedevergne | On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects[END_REF] and is generalized to any roughness shapes. One of the main interest of this model is its capability of describing the wake region behind the roughness.

The model is indeed build on Žukauskas experiments and designed to reproduce the pressure drag generated by the roughness wake. Therefore, it is convenient to use this basis to developed the required closure relations of the remaining equations. In particular, the additional source terms introduced in the turbulent scalar equations are made proportional to f + d . Specific corrections complete the model for F + ω to include the observed effects of the roughness shape and density. Lastly, observations made on the DNS configurations of Forooghi et al. [START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF] lead to the conclusion that there exist a simple relationship between the local Stanton number and the drag coefficient. A thermal closure is then extracted from this observation. Although still exploratory, an attempt to model the dispersive contributions to the momentum and energy equations is made based on scales considerations. The resulting DANS model was tested on a large set of DNS results for which rigorous definitions of the RERs were taken. Very good agreements were noticed on almost all the tested configurations, except two where friction drags effects are important. This DANS model is based on the k -ω SST model [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF] and is an alternative to the second order turbulence DANS model developed by Kuwata et al. [START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF]. For both models, further validation is required but data are missing especially on boundary layer cases including pressure gradients. This is all the more true for heat transfer predictions were only very few data can be exploited to this end. However, as a preliminary stage, the present model can be used on more complex configurations for which only global measurements were made in order to assess the reliability of the approach. The main difficulty will then lie in the definition of RERs.
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 1 Figure 1. Top view of an arrangement of RERs with d(y = 0) = D and spacings Lx and Lz.

Figure 2 .

 2 Figure 2. Velocity u + ≡ u f + and eddy viscosity ν + t for channel flows with smooth walls at Reτ = 550 and Reτ = 4200. • symbols are DNS results, full lines ( )are the modified (21) DANS k -ω computations and dashed lines (-) are k -ω computations with the standard set of constants.

Figure 3 .

 3 Figure 3. Examples of surfaces with randomly distributed roughness : (a) configuration Ad1 without overlapping (credits Forooghi et al[START_REF] Forooghi | A modified parametric forcing approach for modelling of roughness[END_REF]), (b) case KSK3 (credits Kuwata and Kawagushi[START_REF] Kuwata | Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness[END_REF]) including overlapping between hemispheres
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 4 Figure 4. RER parameters d + (orange lines) and β (blue lines) used to compute the DNS cases of Kuwata et al. [26]. symbols : KSK-1, symbols : KSK-2, symbols : KSK-3. The dashed line is β = 1 -π 4 .
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 55 Figure 5. Velocity u + ≡ u f + (blue) and temperature θ + ≡ θ f + (orange) profiles for Forooghi et al. configurations. • symbols are for DNS results and lines shows the present DANS results. Dashed lines are used to plot the DANS results obtained with the standard constant set of the k -ω SSDT model.

Figure 6 .

 6 Figure 6. Total and dispersive shear stresses (blue lines) and heat fluxes (orange lines) for configurations Ad-1 and Bd-1. • symbols are DNS results by Forooghi et al. Solid lines and long dashed lines correspond to results obtained with the present DANS model. Dashed lines and dash-dotted lines show results obtained with the standard constant set of the k -ω SST model.

Figure 7 .

 7 Figure 7. Comparison of velocity profiles between DNS of Wu et al. [50] (symbols) and the DANS model (lines). (a): configurations RH400-20-4 (green ) , RH400-20-3 (orange ) and RH400-20-2 (blue ) are plotted. (b): configurations RH200-10-4 (orange ), RH400-20-4 (green ) and RH600-30-4 (blue •) are depicted.

Figure 8 .

 8 Figure 8. Velocity profiles of configurations KSK-1 (blue), KSK-2 (orange) and KSK-3 (green). Symbols ( , , , see figure4) are DNS results from Kuwata et al.[START_REF] Kuwata | An extension of the second moment closure model for turbulent flows over macro rough walls[END_REF]. Solid lines are results obtained with the DANS model.

Figure 9 .

 9 Figure 9. Comparison of three velocity profiles, representative of the validation range. Symbols are DNS results and DANS results are plotted as solid lines: Bd-5 (blue •), RH400-20-2 (orange ) and KSK-3 (green ).

Table 1 .

 1 Parameters of the roughness configurations

	1	65, 26 100, 4	124	527	502	[36,37]
	Ad-5	65, 26 100, 4	257, 5	507	500	[36,37]
	As-5	65, 26 380.83 470.35	526	500	[36,37]
	Bd-1	65, 26	69, 8	131, 3	524	500	[36,37]
	Bd-5	65, 26	69, 8	257, 54	507	501	[36,37]
	RH200-10-4	20	40	80	210, 5	200	[50]
	RH400-20-4	20	40	80	410, 5	400	[50]
	RH400-20-3	20	40	60	410, 5	400	[50]
	RH400-20-2	20	40	40	410, 5	400	[50]
	RH600-30-4	20	40	81, 6	610, 7	600	[50]
	KSK-1	28, 25	∅	∅	300	278, 4 [25,26]
	KSK-2	53, 75	∅	∅	300	276, 3 [25,26]
	KSK-3	84, 93	∅	∅	300	271, 8 [25,26]
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