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Abstract Long reads and Hi-C have revolutionized the field of genome assembly as they
have made highly contiguous assemblies accessible even for challenging genomes. As hap-
loid chromosome-level assemblies are now commonly achieved for all types of organisms,
phasing assemblies has become the new frontier for genome reconstruction. Several tools
have already been released using long reads and/or Hi-C to phase assemblies, but they all
start from a set of linear sequences and are ill-suited for non-model organisms with high
levels of heterozygosity. We present GraphUnzip, a fast, memory-efficient and flexible tool
to unzip assembly graphs into their constituent haplotypes using long reads and/or Hi-C
data. As GraphUnzip only connects sequences that already had a potential link in the as-
sembly graph, it yields high-quality gap-less supercontigs. To demonstrate the efficiency of
GraphUnzip, we tested it on the human HG00733 and the potato Solanum tuberosum. In
both cases, GraphUnzip yielded phased assemblies with improved contiguity.
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Introduction

The field of genomics is thriving and chromosome-level assemblies are now commonly achieved for
all types of organisms, thanks to the combined improvements of sequencing and assembly methods.
Chromosome-level assemblies are generally haploid, regardless of the ploidy of the genome. To obtain
a haploid assembly of a multiploid (i.e. diploid or polyploid) genome, homologuous chromosomes
are collapsed into one sequence. However, assemblers often struggle to collapse highly heterozygous
regions, which leads to breaks in the assembly and duplicated regions [1]. Furthermore, haploid as-
semblies provide a partial representation of multiploid genomes: ideally, multiploid genomes should
be phased rather than collapsed if the aim is to grasp their whole complexity [2].

The combination of low-accuracy long reads, such as Oxford Nanopore Technologies (ONT) reads
and Pacific Biosciences (PacBio) Continuous Long Reads (CLRs), with proximity ligation (Hi-C)
reads has made chromosome-level assemblies accessible for all types of organisms. The latest devel-
opment of PacBio, high-accuracy long circular consensus sequencing (CCS) reads (a.k.a. HiFi), is
now starting to deliver highly contiguous phased assemblies [3,4,5]. Hi-C sca↵olding is commonly
used in genome assembly projects to obtain chromosome-level sca↵olds. This approach relies on the
interaction frequency in the genome and these interactions are heightened between loci belonging to
the same chromosome [6]. Based on this principle, alleles can be associated using their interaction
frequencies.

A first approach to phase assemblies is called trio-binning and uses sequencing data from the in-
dividual and its parents to retrieve haplotypes [7]; yet this method is unavailable when the parents
cannot be identified, or for asexual species. Existing tools are able to use either long reads (Falcon-
Unzip [8], WhatsHap [9]) or Hi-C reads (Falcon-Phase [10], ALLHiC [11]) for phasing assemblies, but
they are limited to phasing local variants or well-identified haplotypes and are not suited for complex,
highly heterozygous genomes. WhatsHap takes as input a collapsed assembly and searches for alterna-
tive haplotypes. As collapsing haplotypes can be too difficult for highly heterozygous regions, it seems
more intuitive to phase these assemblies de novo. FALCON-Unzip and FALCON-Phase o↵er this
alternative, yet they are dependant on the output of the FALCON assembler and cannot be combined
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with other assemblers.

We present GraphUnzip, a new tool to phase assemblies using long reads and/or Hi-C. GraphUn-
zip implements a radically new approach to phasing that starts from an assembly graph instead of
a set of linear sequences. In an assembly graph, heterozygous regions result in bubbles every time
the assembler is unable to collapse the haplotypes or to choose one of them. GraphUnzip ”unzips”
the graph, meaning that it separates the haplotypes by duplicating homozygous regions that have
been collapsed and partitioning heterozygous regions into haplotypes. This tool is based on a simple
principle that was implemented in many sca↵olders since SSPACE [12]: long-range data (mate-pair
reads, long reads, linked reads, proximity ligation...) provide information on the linkage between con-
tigs that can be used to group and orient them into sca↵olds. As GraphUnzip takes as input and
produces as output assembly graphs, it only connects contigs that are actually adjacent in the genome
and yields gap-less sca↵olds, i.e. supercontigs. GraphUnzip is compatible with any assembler that
produces an assembly graph. We tested GraphUnzip on the genomes of the human HG00733 and the
potato Solanum tuberosum. GraphUnzip is available at github.com/nadegeguiglielmoni/GraphUnzip.

Methods

Inputs

GraphUnzip requires an assembly graph in GFA (Graphical Fragment Assembly) format. The
Hi-C input is a sparse matrix, such as the one obtained when processing the reads with hicstu↵ [13].
hicstu↵ also provides a module to convert other file formats (e.g. cool, a common Hi-C format) to a
sparse matrix. The long reads are mapped to the assembly graph using GraphAligner [14].

Overview of GraphUnzip

In an assembly graph, contigs that are inferred to be adjacent or to overlap in the assembly are
connected with edges. However, some of these connections between contigs may be artefacts. To
discriminate correct edges from erroneous ones, GraphUnzip relies on long reads and/or Hi-C data.
These data are translated into interactions between contigs: the strength of interaction between two
contigs is defined as the number of long reads bridging both contigs when using long reads as input;
and as the number of Hi-C contacts between the two contigs when using Hi-C as input. In both cases,
a strong interaction is a sign of proximity on the genome.

GraphUnzip first builds one or two interaction matrices containing all pairwise interactions be-
tween contigs, depending on whether long-read data, Hi-C data or both are provided (Figure 1). In
the next step, GraphUnzip iteratively reviews all contigs and their edges. The strength of an edge
i is computed based on the strength of interaction between the contigs it connects. A high strength
supports the reality of the link, while a low strength may signal an artefactual edge. When a con-
tig has several edges at one of its extremities, these edges are compared in a pairwise fashion. This
comparison uses two user-provided thresholds: the rejection threshold TR and the acceptance thresh-
old TA, where TR < TA. Considering two edges X and Y and their respective strengths i(X) and
i(Y ), if i(X) < i(Y ), Y is considered strong; if i(X)/i(Y ) < TR, then X is considered weak, else,
if TR  i(X)/i(Y ) < TA, X is flagged as dubious. X is labelled as strong when i(X)/i(Y ) ≥ TA.
The algorithm thereafter considers weak edges as artefacts that do not actually exist in the genome,
whereas strong edges represent true connections. If both long reads and Hi-C input data are provided,
strengths based on long reads are used first because they are more reliable locally, and strengths based
on Hi-C are only used if some edges are flagged as dubious.

Edges identified as weak in the previous calculation are removed. Then, every contig that has more
than one strong edge and no dubious edge at one end is duplicated as many times as the number of
these strong edges. Such contigs are typically collapsed homozygous regions that need to be present
in several copies to be included in every haplotypes. All the copies retain the edges of the original
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contig at its other end. This entails that the duplication of contigs creates many new (and potentially
artefactual) edges. Contigs that are unambiguously linked are merged in supercontigs that will be
handled as regular contigs thereafter.

When assessing the strength of two putative edges (S1,S2) and (S1,S3) connecting the supercontigs
S1, S2, and S3, the strength of these edges are calculated as the strength of interaction between contigs
in S1 and contigs present in S2 but not in S3 (and vice versa). For example, in the third step of Figure
1, when trying to associate supercontig a-b to either d-e or d’-f, only the interactions between the
supercontig a-b and the contigs e and f are considered. Interactions between the supercontig a-b and
the contigs d and d’ are not considered in the calculation because d and d’ actually originate from the
duplication of a collapsed region.

All contigs and edges are iteratively processed s times to phase the assembly, where s is a user-
provided parameter. Because extremely long contigs tend to share a significant number of Hi-C
contacts even if they are not adjacent, we observed that in extreme cases the algorithm could join
two chromosomes by their telomeric ends. The Hi-C matrix is used at the end of the process to de-
tect such chimeric connections in the assembly graph, based on low Hi-C interactions, and break them.

Homo sapiens HG00733 assemblies

We used HiFi, ONT and Hi-C reads from [15]. HiFi reads were assembled using hifiasm with the
parameter -l 0, and the resulting p utg assembly graph was used for downstream analyses. All HiFi
reads and the ONT reads longer than 30 kb were mapped to the assembly using GraphAligner with the
parameter -x vg. Hi-C reads were processed with hicstu↵ using the parameters --aligner bowtie2

--enzyme 200 --iterative. GraphUnzip was run with parameters --accept 0.10 --reject 0.05

--exhaustive --whole match --minimum match 0.8. All non-ambiguous paths in the GFA were
merged using Bandage. The assemblies were compared to the DipAsm reference [16] using QUAST
v5.0.2 [17] with the parameters -m 0 --eukaryote --large --min-identity 99.9.

Solanum tuberosum assemblies

HiFi, ONT and Hi-C reads published in [18] were retrieved from the NCBI Sequence Read
Archive with the Bioproject accession number PRJNA573826. The HiFi reads were assembled us-
ing hifiasm with the parameter -l 0, and the p utg assembly graph was used for downstream anal-
yses. All HiFi reads and the ONT reads longer than 25 kb were mapped to the assembly using
GraphAligner with the parameter -x vg. Hi-C reads were processed with hicstu↵ using the parameters
--aligner bowtie2 --enzyme MboI --iterative. GraphUnzip was run with parameters --accept
0.40 --reject 0.10 --exhaustive --whole match --minimum match 0.8. All non-ambiguous paths
in the GFA were merged using Bandage. To check the output of GraphUnzip, we mapped the published
assembly to the assembly graph using GraphAligner. We used calN50 (available at github.com/lh3/calN50)
to compute the NG50 against the published assembly size of 1.67 Gb [18]. BUSCO v4 [19] was run
with parameters -m genome --long against the dataset viridiplantae odb10.

Computational performance

RAM usage and CPU time were measured with the command /usr/bin/time -v on a desktop
computer with 128 GB of RAM and a i9-9900X 3.5 GHz processor.
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Fig. 1. Description of GraphUnzip: workflow of the program (left), interaction matrix (top right), and overview
of the algorithm to discriminate links (bottom right). This example algorithm analyzes the potential links
between the segments a, b, c, d, e, f, g. The red arrows represent the intensity of interactions between the
segments, computed based on the values in the matrix.
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Tab. 1. Assembly metrics of Homo sapiens HG00733 compared with the DipAsm reference.
Assembly GraphUnzip Size N50 NA50 Misassemblies CPU RAM

Reference - 5.9 Gb 27.8 Mb 27.8 Mb 84 - -
hifiasm - 5.5 Gb 397 kb 343 kb 9146 - -

ONT + Hi-C 6.2 Gb 1.5 Mb 1.2 Mb 8091 33min 46s 23.5 GB

Results

Homo sapiens HG00733

We compared the hifiasm + GraphUnzip assembly of the human HG00733 genome with a published
reference obtained using DipAsm, based on the N50, the NA50 and the number of misassemblies. The
N50 represents the contiguity of the assembly: it is defined as the length of the largest contig for which
50% of the assembly size is contained in contigs of equal or greater length. The NA50 is the N50 of
the assembly broken at every misassembly (compared to a reference). GraphUnzip increased the size
of the hifiasm assembly (from 5.5 Gb to 6.2 Gb), and the N50 rose as well (from 397 kb to 1.2 Mb)
(Table 1). The NA50 was improved while the number of misassemblies decreased in the GraphUnzip
supercontigs. Notably, the reference assembly size is only 5.9 Gb, while the GraphUnzip assembly
reaches 6.2 Gb, which is the expected size for a phased human genome.

We also tried an assembly of the HiFi reads with Flye, but the draft assembly was only 2.9 Gb,
little below half the expected size, which indicates that the haplotypes were nearly completely col-
lapsed. A good candidate assembly for GraphUnzip should have uncollapsed heterozygous regions,
as GraphUnzip is not able to retrieve a missing haplotype in collapsed heterozygous regions and can
only duplicate the collapsed region, leading in that case to a suboptimal result.

Solanum tuberosum

Tab. 2. Assembly metrics of Solanum tuberosum. The NG50 values were computed based on an estimated
genome size of 1.67 Gb.

Assembly GraphUnzip Size NG50
BUSCO

CPU RAM
Single Dup.

Reference - 1.67 Gb 66.1 Mb 21.6% 76.9% - -
hifiasm - 1.51 Gb 2.2 Mb 21.2% 77.9% - -

HiFi 1.69 Gb 3.7 Mb 7.1% 91.5% 16s 0.2 GB
ONT 1.67 Gb 3.4 Mb 6.8% 92.2% 52s 0.2 GB
Hi-C 1.69 Gb 5.6 Mb 7.8% 91.5% 38min 27s 11.5 GB
HiFi + Hi-C 1.69 Gb 4.9 Mb 9.4% 89.4% 39min 59s 11.5 GB
ONT + Hi-C 1.73 Gb 5.9 Mb 7.3% 91.8% 39min 10s 11.5 GB

We tested GraphUnzip on the diploid genome of the potato Solanum tuberosum RH89-039-16, for
which a phased assembly of 1.67 Gb [18] was recently published. We assembled the HiFi reads with
hifiasm and then ran GraphUnzip using the HiFi, ONT and/or Hi-C reads. The draft assembly was
1.51 Gb, and after phasing with GraphUnzip, the assembly size rose to 1.67-1.73 Gb (Table 2). In this
case, we compared the NG50s, a value similar to N50 but based on a reference genome size rather than
the assembly size. GraphUnzip increased the contiguity: from 2.2 Mb, the NG50 reached 3.4 to 5.9
Mb. The combination of both ONT and Hi-C reads yielded the highest NG50. Hi-C reads improved
the contiguity better than long reads. The overall BUSCO completeness of the GraphUnzip super-
contigs was slightly improved compared to the reference: 98.6-99.3% against 98.5% for the reference,
and the number of duplicated BUSCO features was higher as well (89.4-92.2% against 76.9%). We
mapped the published assembly to the GraphUnzip assembly graph obtained when using Hi-C and
ONT reads. We found that there were no di↵erences in phasing between the two assemblies. However,
some regions that were phased by hifiasm and GraphUnzip were collapsed in the published assembly.
This result, in conjunction with the higher number of duplicated features, indicates that GraphUnzip
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led to an improved phased assembly.

Computational performance

For both the human and Solanum tuberosum genomes, GraphUnzip required limited computational
resources as it ran in less than 1 hour on a single thread and used up to 23.5 GB of memory. For
Solanum tuberosum, the run time was also shorter when using only long reads (less than a minute).
The longer run time when using Hi-C reads was due to the building of the interaction matrix. As
this interaction matrix is outputted by the program, this file can be reused for other runs, which will
consequently finish faster. Therefore, users can try several sets of parameters to optimize the result,
with short runtimes.

Conclusion

GraphUnzip is a flexible tool that can phase assemblies of high-accuracy long reads with long
reads and/or Hi-C. A limitation of GraphUnzip is that it does not necessarily reach chromosome-level
assemblies like most Hi-C sca↵olders do, but it aims instead to produce more contiguous gap-less
supercontigs by fully exploiting assembly graphs. As genome projects now usually include long reads
and Hi-C to obtain chromosome-level assemblies, GraphUnzip can easily be integrated in assembly
projects to obtain de novo phased assemblies for non-model organisms.
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