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To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate
that each engine and its air inlet system can operate throughout the flight power range of the
engine (including idling) in snow, both falling and blowing. This study is part of an effort
to develop models for snow accretion. More specifically, the focus is on the transport step,
taking into account both dynamic aspects (with the estimation of the particle trajectory) and
thermal effects (with possiblemelting of snow crystals/snowflakes). Experiments and numerical
simulations are compared for the estimation of the drag coefficient in the context of a free falling
snowflake. Thermal effects observed during the melting of a snowflake in forced convection
are also studied.

Nomenclature

m = Mass
deq = Volume equivalent diameter
v = Velocity
w = Relative velocity between air and particle
FD = Drag force
CD = Drag coefficient
Re = Reynolds number
ρ = Density
µ = Dynamic viscosity
A = Surface
T = Temperature
Φ = Sphericity
Φ⊥ = Crosswise sphericity
A⊥ = Projected surface of the particule normal to the airflow
k = Heat conductivity
L = Latent heat
D = Diffusivity
cp = Specific heat capacity
Sh = Sherwood number
Sc = Schmidt number
Pr = Prandtl number
e = Spheroid eccentricity

Subscripts

p = Particle
a = Air
i = Ice
w = Water

∗Corresponding author: boris.aguilar@airbus.com

1

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2021-2684&domain=pdf&date_stamp=2021-07-28


v = Vapour/Vaporization
0 = Initial value

Introduction
To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate that each engine and its air

inlet system can operate throughout the flight power range of the engine (including idling) in snow, both falling and
blowing, without adverse effect on engine operation (power or thrust loss, surge, stall or flameout).

Snow particles are precipitation sized ice particles that form in clouds and precipitate to the ground. Falling snow
formation has its origin in a complex interplay of microphysical processes and properties (vapor deposition, riming,
and aggregation, hydrometeor fall speed), which are governed by cloud dynamics (vertical and horizontal transport)
and thermodynamics (temperature and humidity vertical profiles). Snow particles have interested scientists since a
long time and the first systematic studies of snow crystals started with the pioneering work of Nakaya [1]. Numerous
studies about snow particles have been published in contemporary literature since these early studies. The terminology
of Pruppacher and Klett [2] is adopted here: ice particles grown by vapor deposition and/or riming are called snow
crystals and aggregates of snow crystals are referred to as snowflakes.

Due to the variability of atmospheric conditions prevailing in snow clouds, the shape, size, density, and related
properties such as drag and terminal fall speed of natural snow particles (snow crystal and snowflakes) are found to be
highly variable. Regarding the shape for instance, Fig. 1 presents samples of ice crystals (columns, columns with plates,
plates in the top row, planar dendrites in the third row, graupel (or snow pellets) in the fifth row) and snowflakes with
different degrees of riming in the three last rows. This point was not addressed by the European projects HAIC [4] and

Fig. 1 MASC picture of hydrometeor illustrating the variability in the shape and size of snow particles [3].

MUSIC-haic [5], where the models for trajectory, impact and erosion [6–22] were derived for ice particles with higher
densities and more regular geometric shapes. In the framework of these two previous projects [4, 5], models for mixed
phase and ice crystal icing (Appendix D) have been derived from academic [10, 16] and more applied experiments
[11, 15] to be integrated into numerical tools able to simulate the entire accretion process [14]. However, regarding the
risk of snow accretion or accumulation, there are currently no validated engineering tools (test facility and numerical
tools) available. This is one of the main objectives of the European project ICE-GENESIS [23].

This study is part of an effort to develop models for snow accretion. More specifically, the focus is on the transport
step, taking into account both dynamic aspects (with the estimation of the particle trajectory) and thermal effects (with
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possible melting of snow crystals/snowflakes). In a first part, two experiments are detailed. The first one is dedicated
to the measurement of the drag coefficient of a free falling snowflake. The second one is related to the melting of
a snowflake in forced convection. The procedure for post-processing images generated by the experiments is also
described. The second part presents the derivation of the models for the drag coefficient and the melting process adapted
to snowflakes. A comparison between the experiments and the numerical simulations is drawn in the third part. Finally,
conclusions are given.

I. Experiments: free fall and melting of a snowflake

A. Experimental Apparatus
For the experiments, artificial snowflakes are used. However, these artificial snowflakes are close to natural

snowflakes like those depicted in Fig. 1.

1. Free fall experiment
The experimental setup used for the measurement of snowflake drag is schematically shown in Fig. 2. The entire

Camera 1:
front view

Camera 2:
Side view

Camera 3:
Bottom view

Mirror

PMMA plate

Backlight 2

Backlight 1

Backlight 3

PMMA tube

Fig. 2 Schematic view of the experimental setup used to measure snowflake drag.

setup and measurement equipment is mobile and can be operated at ambient temperatures down to −20 °C. The setup
consists of a large PMMA tube with a diameter and height of 150mm and 300mm, respectively. Through a baffle
(opening of 10mm) at its top, free falling snowflakes enter the PMMA tube, which has the purpose of shielding them
from possible external gusts influencing their trajectory. Immediately after a snowflake falls out of the PMMA tube, its
movement is captured using high-speed cameras in a front, side and bottom view. The resolutions of the front, side and
bottom views are 24.1 µm/pixel , 34.6 µm/pixel and 51.7 µm/pixel, respectively. The side view has the largest field of
view and is primarily used for measuring the free fall velocity. After the measurement of their terminal velocity, the
snowflakes are caught and melted on a transparent, superhydrophobic coated PMMA plate, forming nearly spherical
liquid drops. These drops are captured using the front view camera, which allows measurement of the drop diameter
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and therefore, the computation of the snowflake mass. Measurement of the snowflake projected area in three nearly
orthogonal views, as well as measuring their mass, allows the calculation of the snowflake drag coefficient corresponding
to its characteristic terminal velocity. Figure 3 shows example images of a snowflake in the front view, falling with a
terminal velocity of 1.36m/s and finally landing on the PMMA plate. As shown in Fig. 3, a snowflake might be very

Fig. 3 Example images of a snowflake recorded with camera 1 (front view) having a resolution of 24.1µm/pixel.
The snowflake’s maximum dimension is 3.5mm and its terminal velocity is 1.36m/s.

fragile and shatters when it impinge the PMMA plate, even if it falls with a rather moderate terminal velocity. In the case
of fragmentation, all fragments are collected and melted together, using a stream of hot air directed toward the bottom of
the PMMA plate. As a result, an almost spherical drop is formed on top of the superhydrophobic PMMA plate, an
example which can be seen in Fig. 4. The diameter of the drop is 0.795mm and its mass is computed as 0.263mg.

Fig. 4 Image of the melted snowflake, having a mass of 0.263mg and a diameter of 0.795mm.
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acoustic levitator

warm air stream

cameratemperature and humidity sensor

Fig. 5 The setup for the experimental investigation of the melting of single snowflakes in forced convection.

(a) Before melting (b) After melting

Fig. 6 Exemplary snowflake before melting levitating in the acoustic levitator and resulting drop with enclosed
air bubbles.

Using the snowflake images of the front, side and bottom view, characteristic size and shape parameters can be derived.

2. Melting
A setup for the experimental investigation of the melting of single snowflakes has been developed that enables the

observation of melting snowflakes in forced convection. The setup is built such that it prevents the melting flakes from
having contact to any solid structure and thus, simulates the melting in falling or blowing snow conditions. Figure 5
illustrates the setup. Its main component is the acoustic levitator, which utilizes a standing ultrasonic wave to levitate
the snowflake. The snowflakes are caught with a nylon net and placed into the acoustic levitator. A warm air stream,
well defined in terms of temperature, humidity and volume flow rate, is then used to melt the snowflake. The melting
processes as well as the size of the melted snowflake are captured in a side-view using a high-resolution video camera.
The warm air flow is provided by a controllable hot air blower attached to a pipe. In this pipe, shortly before the exit, the
temperature and humidity of the air flow are measured. The hot air blower runs for a sufficient duration for the device
and the pipe to heat up and reach steady state. During this period, the warm air is not directed toward the snowflake, but
is redirected through a hose.

Due to the irregular shape of the snowflakes, their orientation in the acoustic levitator was rather instable.
Consequentially, snowflakes were often ejected out of the levitator and it proved difficult to adjust the settings to observe
them throughout the full melting process. An exemplary photograph of a snowflake before melting is shown in Fig. 6a.

When no more ice is visible in the liquid drop, the volume of the drop is calculated by rotating the projected shape.
The volume of the drop is taken to estimate the initial mass of the snowflake. Finally, the time it takes for the snowflake
to melt is determined by finding the first image in which no residual ice can be detected.

As soon as the flake is exposed to the warm airflow, its arms start to melt and the melt water is drawn to the flake
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centre due to surface tension. This results in a decrease in the visible size. This decrease flattens when the snowflake
arms are melted and the remaining ice and water form a more compact shape. This transformation to a more compact
shape results in a more spherical shape. The melt water then forms a drop, which completely encloses the remaining ice.
In many cases, small bubbles of air can be observed in the resulting liquid drop, which then coalesce. An exemplary
drop with enclosed air bubbles is shown in Fig. 6b.

B. Image post-processing
In this part we briefly present the processing of the images acquired during the experiments described in section

I.A.1. Umbroscopic measurements provide grayscale or black and white images of the projected surface in the direction
of the camera. An image processing tool has been developed to provide the maximum fmax and maximum orthogonal
f ⊥max diameters of Feret ( f ⊥max is defined as the largest diameter among all diameters orthogonal to fmax , in green in
Fig. 7b). It should be noted that A⊥ is almost never the projected area perpendicular to the flow. It has been chosen to
ensure consistrency with the definition usually found in the literature but in practice it is often not possible to know the
direction of the flow with respect to the image. Using Feret’s diameters it can be deduced an ellipse of major semi axis
a = fmax/2 and minor semi axis f⊥max/2. From the axes of the ellipse we can construct either an oblate spheroid or a

(a) Grayscale image of a snowflake (b) Post processed image

Fig. 7 Data post-processing illustration

prolate spheroid of volume Vspheroid = π/6A2C. For an oblate spheroid A = 2a and C = 2c. For a prolate spheroid
A = 2c and C = 2a. Using these parameters, the following characteristics can be deduced:

dV =
(6Vspheroid

π

)1/3
, Φ =

πd2
V

Aspheroid
, Φ⊥ =

π
4 d2

V
A⊥

, Rep =
ρawdV
µa

(1)

where Aspheroid = 2πa2+π c2

e ln
(

1+e
1−e

)
for an oblate spheroid and Aspheroid = 2πa2 (

1 + c
ae arcsin e

)
for a prolate spheroid.

The eccentricity of the ellipse is written e = 1 − a2

c2 .
The test case configurations for the snowflake free fall study (Sec. I.A.1) are summarized in Tab. 1. Regarding the

melting experiment (Sec. I.A.2), the configurations are given in Tab. 3.
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II. Models for particle trajectory and melting

A. Snow particle trajectory
For the computation of the snow particle trajectory, since snow particle density is much higher than air density, it is

possible to neglect the influences of the virtual mass force, the Basset force, the pressure gradient force and the lift force
compared to the drag force in the momentum equation. Hence, the particle motion equation simply reads:

mp
dvp
dt
= FD + mpg, FD = −

1
2
ρa | |w | |wArefCD,ref(Rep) (2)

where mp is the snow particle mass, vp its velocity, FD the drag force, g the gravity, ρa the air density and w = vp − va
denotes the relative velocity between air and the particle. In the following, | |w | | will simply be denoted w. The drag
coefficient CD,ref is defined with respect to the reference surface Aref. It is a function of the particle Reynolds number
Rep =

ρawdref
µa

where µa is the air dynamic viscosity, dref a characteric length scale and ρa the air density. Note that in
the case of a snowflake with a complex shape (for instance aggregates, see Fig. 1) the definition of ρp has to be specified
and may refer to the bulk density for instance.

Two sets of definitions will be used to define ρp, dref, Aref and CD,ref. The first one is drawn from the Hölzer
and Sommerfeld correlation [24] for non-spherical particles (section II.A.1). The second one is obtained from the
Heymsfield and Westbrook modeling [25] (section II.A.2).

1. The Hölzer and Sommerfeld model [24]
Among the several general expressions that can be found in the literature for the expression of the drag coefficient

CD,ref for non-spherical particles, we can mention the models of Haider et al. [26], Ganser [27] and Hölzer et al. [24].

For these models, dV is the volume equivalent diameter dV =
(

6Vp
π

)1/3
of a sphere having the same volume Vp as the

non-spherical particle. The reference surface is defined as Aref = πd2
V/4.

The Hölzer et al. model has been selected in this study since it is valid for a wide range of shapes. Moreover,
compared to the Haider et al. and Ganser models, it is based on the influence of the crosswise sphericity in the
asymptotic expression of the drag coefficient in the Newton regime . This regime is typical for accretion scenarios
during helicopter flight.

For the Hölzer and Sommerfeld model [24], the drag coefficient can be written:

CD,ref =
8

Rep
√
Φ⊥
+

16
Rep
√
Φ
+

3√
RepΦ0.75

+
0.421
Φ⊥

100.4(− logΦ)0.2 (3)

Sphericity Φ and crosswise sphericity Φ⊥ are defined as:

Φ =
πd2

V
Aspheroid

, Φ⊥ =
π
4 d2

V
A⊥

(4)

where Aspheroid denotes the surface of the approximated spheroid and A⊥ is the projected surface of the particle in the
considered view.

In practice, the volume Vp is not obtained directly from the experimental data. This is why Vp is estimated from a
reconstructed oblate or prolate spheroid from planar images of the particle. It should also be noted that the density of
the particle becomes a bulk density defined as the mass contained in the spheroid:

ρp =
mp

VSpheroid
(5)

where mp is the mass of the particle that has to be provided either by the experiments or by a correlation (Baker and
Lawson [28]). The procedure is detailed in Sec. I.B.

2. The Heymsfield and Westbrook model [25]
The second model studied is that of Heymsfield and Westbrook [25], which is an improvement of the models based

on the Abraham’s drag coefficient of a sphere[29].
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The Abrahammodel for spherical particles In Abraham [29], the problem is considered as an assembly of a smooth
sphere of radius a plus a thin boundary layer of thickness δ in a moving fluid of density ρa at a velocity v. The assembly
is then assumed to evolve in an asymptotic low viscosity aerodynamic flow in a regime where the drag coefficient is
independant of Rep. These assumptions lead to the following expression for the drag force of a sphere of radius a + δ:

FD =
ρav

2

2
π(a + δ)2CD0 (6)

where CD0 is a constant parameter to be adjusted. Equation (7) may be re-written as:

FD =
ρav

2

2
πa2CD0

(
1 +

δ

a

)2
(7)

which is the drag force for the particle of radius a with CD0
(
1 + δ

a

)2 as drag coefficient. The boundary layer thickness is
given by δ

a =
δ0√
Rep

where δ0 is a dimensionless coefficient. This leads to the following drag coefficient definition for
the particle:

CD = CD0

[
1 +

δ0√
Rep

]2

(8)

where CD0 and δ0 are taken to ensure CD0δ
2
0 = 24 (Stokes regime) and δ0 = 9.06.

Extension to non-spherical particles Many authors have used this relationship for non-spherical particles. In the
case of free fall, one can rewrite Eq. (2) alongside the direction of fall with the Best or Davies number:

X = Cd,refRe2
p =

2mpgρad2
ref

µ2
a Aref

(9)

The corresponding Rep(X) relationship is given by Bohm [30]:

Rep =
δ2

0
4


(
1 +

4
√

X
δ2

0
√

CD0

)1/2

− 1


2

(10)

with CD0 = 0.35 and δ0 = 8. Choosing dref = dmax as the maximum Feret diameter and Aref = A⊥ and introducing the
area ratio, which is the ratio of the particle’s projected area to the area of a circumscribing circle Ar =

A⊥

πd2
max/4

, we can

write X = 8mpgρa

µ2
a πAr

. Mitchell, Heymsfield, Khvorostyanov and Curry (MHKC) [31–35] used this method to calculate the
drag coefficient and compared the resulting fall velocities to a very wide range of particles. Planar and columnar-type,
graupel and aggregates with a size range from 250 µm to 8mm were studied. More recently, Heymsfield and Westbrook
found that fall velocity estimates were overestimated for particles with a low area ratio. In some cases the relative
error exceeded 100 % and this effect appears to be strongest at low Reynolds number. Needles, dendrites, stellars and
aggregates are key particle types that are affected by this bias. To mitigate this high sensitivity to the area ratio, they
considered the following modified drag coefficient:

C∗D = CDA1/2
r , X∗ =

8ρampg

µ2
aπA1/2

r
, Rep =

δ2
0
4


(
1 +

4
√

X∗

δ2
0
√

CD0

)1/2

− 1


2

(11)

In this model, the density ρp is defined as:
ρp =

mp

πd3
max/6

(12)

The particle mass mp may be obtained either from an experimental measurement or, if not available, from an empirical
mass-diameter correlation.
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B. Snow particle melting
For the sake of completeness, the model is briefly described in this section. For a more detailed description, see

[12]. The general form of the heat equation reads:

mpcp,i
dTp
dt
= Apht (Ta − Tp) − ÛmevLv(Tp) − ÛmsubLs(Tp) − ÛmfLf(Tp) (13)

where cp,i denotes the specific heat capacity of the ice, Tp is the particle temperature (supposed to be almost uniform
inside the particle), ht is the mean heat transfer coefficient and Ta is the air temperature. Lv, Ls and Lf are respectively
the latent heat of evaporation, sublimation and fusion. Ûmf is the melting rate. The evaporation and sublimation rates
( Ûmev and Ûmsub)) can be written as:

Ûmev = ρaAphm(y
liq
v,s(Tp, pa) − yv,∞) (14a)

Ûmsub = ρaAphm(ysolv,s (Tp, pa) − yv,∞) (14b)

where hm is the mean mass transfer coefficient, yv,∞ is the freestream steam mass fraction and y
liq
v,s(Tp, pa) (resp.

ysolv,s (Tp, pa)) is the saturated steam mass fraction at the surface of the particle computed above liquid water (resp. solid
water). Depending on the particle temperature three cases can be considered:

1) The particle is fully glaciated and its temperature is lower than the melting temperature (Tp < Tf). There is no
melting ( Ûmf = 0) and no evaporation ( Ûmev = 0) during this phase.

2) The particle is at the melting temperature (Tp = Tf). During the melting process the liquid water is assumed to
cover the ice core so that there is no sublimation ( Ûmsub = 0).

3) The particle is fully liquid and its temperature is larger than the melting temperature (Tp > Tf). There is no
melting ( Ûmf = 0) and no sublimation ( Ûmsub = 0) during this phase.

Two different models are compared to define ht and hm, namely a model based on a modified definition of the Nusselt
and Sherwood numbers (II.B.1) and the Mitra’s model (II.B.2).

1. Model based on modified Nusselt and Sherwood numbers (mNS moddel)

Introducing the sphericity Φ = πd2
V

Aspheroid
, the Nusselt number Nu = ht ·dV

ka
and the Sherwood number Sh = hm ·dV

Dv,a
where ka is the air conductivity and Dv,a is the vapor diffusivity. Equations (13) and (14) may be rewritten as:

mpcp,i
dTp
dt
= πdV

Nu
Φ
(Ta − Tp) − ÛmevLv(Tp) − ÛmsubLs(Tp) − ÛmfLf(Tp) (15)

Ûmev = πdV
Sh
Φ
ρaDv,a(y

liq
v,s(Tp, pa) − yv,∞) (16a)

Ûmsub = πdV
Sh
Φ
ρaDv,a(y

sol
v,s (Tp, pa) − yv,∞) (16b)

In [22], using a Reynolds-type analogy, the following Nusselt and Sherwood correlations are proposed:

Nu(Φ, Rep) = 2
√
Φ + 0.55Pr1/3

Φ
1/4√Rep (17)

Sh(Φ, Rep) = 2
√
Φ + 0.55Sc1/3

Φ
1/4√Rep (18)

where Pr and Sc are respectively the Prandlt and Schmidt numbers. During the melting phase, the following set of
equations is solved:

Lf(Tf)
dmp,i

dt
= − ÛmfLf(Tf) = −πdV

Nu
Φ
(Ta − Tp) + ÛmevLf(Tf) (19)

dmp

dt
= − Ûmev = −πdV

Sh
Φ
ρaDv,a(y

liq
v,s(Tp, pa) − yv,∞) (20)

dV =
[
6
π

(
mp − mp,i

ρw
+

mp,i

ρp0

)]1/3
(21)
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1
ρp
=

1
ρp0

mp,i

mp
+

1
ρw

[
1 −

(
mp,i

mp

)]
(22)

Φ =

(
mp,i

mp

)
Φ0 +

[
1 −

(
mp,i

mp

)]
(23)

where Φ0 denotes the value of the particle sphericity at the beginning of the melting phase, mp,i is the ice core mass, ρp0
and ρw are respectively the densities of the fully frozen snowflake (before the melting process starts) and liquid water.
Equations (22) and (23) are replaced by:

ρp = ρp0 +
(
ρw − ρp0

) [
1 − exp

(
−2.55

Yw
1 − Yw

)]
(24)

Φ = Φ0 + (1 − Φ0)

[
1 − exp

(
−2.55

Yw
1 − Yw

)]
(25)

The justification of the form of Eq. (24) for particle density during melting is given in Sec. III.B.

2. Mitra’s model [36]
The procedure described in the previous section is identical for the Mitra model. Equations (19) and (20) are

replaced by the following equations :

Lf(Tf)
dmp,i

dt
= − ÛmfLf(Tf) = −4π fvCi(Ta − Tp) + ÛmevLf(Tf) (26)

dmp

dt
= − Ûmev = −4π fvCiρaDv,a(y

liq
v,s(Tp, pa) − yv,∞) (27)

To derive this set of equations it is necessary to assume that thermal and mass diffusivities behave in the same way
around the particle (Pr = Sc). The ventilation coefficient fv is introduced for the steam heat and mass transfers as well
as the capacitance of the melted flake Ci (see Pruppacher and Klett [2]). The ventilation coefficient is calculated using
the Hall and Pruppacher correlation [37] which can be written as a function of χ = Rep

Sc :

fv =

{
1 + 0.14χ2, χ 6 1.0

0.86 + 0.28χ, χ > 1.0
(28)

From the geometrical point of view the Mitra’s model assumes an oblate spheroid for the idealized snowflake. The
capacitance Ci is computed from the linear relation:

Ci = (0.8 + 0.2Yw)Ci,0 (29)

where Yw =
mp,w
mp

is the water mass fraction. The initial capacitance of the snowflake Ci,0 is given by :

Ci,0 =
aie

sin−1e
, ai = 3

√
3mp,i

4π(AR)iρp
(30)

where (AR)i = c
a denotes the spheroid axis ratio. During the melting phase, Mitra assumes that (AR)i and ρp also vary

linearly with respect to the water mass fraction Yw according to the following relations:

(AR)i = 0.3 + 0.7Yw (31)

ρp = 20 + 980Yw (32)

III. Comparison between the experiments and the numerical simulations
In this section, comparisons between the numerical simulations and the experiments are proposed (free fall of a

snowflake (section I.A.1) and particle melting (section I.A.2)). For the numerical simulations, the two drag models of
Hölzer and Sommerfeld (H&S) (section II.A.1) and Heymsfield and Westbrook (H&W) (section II.A.2) are compared.
For the melting experiment, the model based on the modified Nusselt and Sherwood numbers (Sec. II.B.1) and the
Mitra’s model (Sec. II.B.2) are evaluated.
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A. Snowflake free fall velocity
Terminal free fall velocities for 17 snowflakes are mesured with the experimental method described in Sec. I.A.1.

Conditions are described in Tab.1. Figure 8 shows the comparison between the experimental and numerical results for

N Fall speed
m/s

Mass
mg

BL Mass
mg

dV,pro
mm

ρpro
kg/m3

ρpro(BL)
kg/m3

Φpro
-

Φ⊥
pro
-

dV,obl
mm

ρobl
kg/m3

ρobl(BL)
kg/m3

Φobl
-

Φ⊥
obl
-

dmax
mm

ρmax
kg/m3

ρmax(BL)
kg/m3

Ar
-

1 0.67 0.063 0.105 1.042 117.0 180.0 0.95 1.05 1.248 64.8 103.2 0.93 1.51 1.505 38.1 62.4 0.34
2 1.83 1.480 0.924 2.571 192.5 100.2 0.95 1.02 3.098 102.1 56.2 0.93 1.51 3.745 55.2 32.4 0.45
3 2.40 16.790 3.907 4.977 265.0 61.1 0.96 1.08 5.880 158.4 36.7 0.95 1.51 6.953 95.4 22.2 0.43
4 1.47 0.576 0.532 2.340 97.2 83.8 0.98 1.47 2.599 65.9 58.1 0.97 1.82 2.898 45.6 41.3 0.47
5 1.49 0.132 0.155 1.143 174.1 195.5 0.98 1.11 1.263 131.1 145.9 0.98 1.35 1.396 99.2 109.3 0.57
6 1.44 0.546 1.217 3.018 40.4 83.6 0.98 1.14 3.369 28.3 59.5 0.98 1.42 3.763 19.9 42.7 0.56
7 1.07 0.170 0.314 1.653 75.1 135.8 0.98 1.09 1.882 51.8 93.2 0.97 1.42 2.144 35.9 64.3 0.49
8 1.80 0.298 0.236 1.493 184.6 138.2 0.97 1.26 1.672 124.2 95.2 0.97 1.56 1.880 86.7 68.3 0.52
9 0.92 0.047 0.085 0.862 188.0 265.7 0.92 0.82 1.075 83.3 127.5 0.90 1.25 1.352 40.8 66.8 0.51
10 1.38 0.243 0.528 2.109 54.7 108.5 0.98 1.12 2.330 38.1 78.0 0.98 1.37 2.583 27.1 57.6 0.56
11 1.69 0.459 0.515 1.994 113.1 125.0 0.97 1.04 2.317 75.6 82.6 0.96 1.39 2.697 51.6 55.7 0.47
12 1.28 0.157 0.191 1.300 168.5 168.0 0.94 0.92 1.591 81.8 87.4 0.92 1.40 1.957 41.2 47.5 0.42
13 1.49 0.134 0.148 1.127 227.4 199.8 0.93 0.87 1.407 109.4 100.4 0.91 1.37 1.766 54.3 52.2 0.57
14 1.64 0.349 0.246 1.487 203.4 143.1 0.98 1.10 1.644 150.9 106.1 0.98 1.35 1.818 112.0 78.7 0.59
15 1.41 0.578 0.582 2.150 178.1 111.2 0.98 1.13 2.386 130.9 81.7 0.98 1.39 2.648 96.2 60.0 0.59
16 1.51 0.266 1.201 3.195 18.5 71.4 0.95 1.15 3.728 10.3 42.5 0.94 1.58 4.391 6.1 27.4 0.36
17 1.21 0.150 0.482 2.017 38.9 114.3 0.97 1.10 2.296 24.1 74.9 0.96 1.43 2.628 15.8 51.7 0.45

Table 1 Snowflake free fall study. Experimental data.

the snowflake terminal velocity. Different models for the drag coefficient are compared (H&S and H&W) as well as
different definition for the spheroid reconstruction (prolate or oblate) in the case of the H&S drag model. The mass of
the snowflakes used in Eq. (2) is given by the experiments. Each snowflake being described by three views (front, side
and bottow, Sec. I.A.1), the inputs for the snowflake geometric description (reference surface Are f and oblate/prolate
spheroid reconstruction) are obtained by the arithmetic average of the input data measured from the three views. Both
H&S and H&W models are able to reproduce the terminal free fall velocity with a relative accuracy of 30%. Regarding
H&S model, the spheroid reconstruction (prolate or oblate) has a small influence on the terminal velocity. Thus, drag
models validated for higher density ice crystals (ρp = 917 kg.m−3 [22]) remain valid for snowflakes by defining the
particle density as a lower bulk density built from a convex geometric volume enveloping the particle as a prolate/oblate
spheroid.

In Tab. 2, the relative errors between the numerical and experimental velocities are shown when only one view is
used for the snowflake geometric description (either front, side or bottom), without averaging among the three views.
The error does not depend on the chosen view, which validates the average procedure over the three views used in Fig. 8

L2 Relative error
w.r.t experimental

fall velocity
H&S prolate H&S oblate H&W

Front view 0.21 0.20 0.19

Side view 0.20 0.20 0.20

Bottom view 0.24 0.23 0.23

Table 2 Relative error between numerical and experimental terminal velocities. Only one view is used for the
snowflake geometric description (either front, side or bottom).

and the absence of a privileged direction of the particle during the free fall.
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Fig. 8 Snowflake free fall velocity. Comparison between the experimental (abscissa) and numerical (ordinate)
results for the snowflake terminal velocity (see Tab. 1 for the test case description). Main diagonal means a
perfect agreement. ± 30% relative error regions are shown. Different models are compared to evaluate the drag
coefficient (H&S and H&W) as well as different definition for the spheroid reconstruction (prolate or oblate) in
the case of the H&S drag model. The mass of the snowflakes used in Eq. (2) is given by the experiments.

B. Snowflake melting
Melting times for 7 snowflakes are measured with the experimental method described in Sec. I.A.2. Conditions are

described in Tab. 3.

N Melting time
s

mass
mg

BL mass
mg

Air Temp.
K

Air speed
m/s

RH
-

dV ,pro

mm
ρpro

kg/m3
ρpro (BL)
kg/m3

Φpro

-
dV ,obl

mm
ρobl

kg/m3
ρobl (BL)
kg/m3

Φobl

-
dmax

mm
ρmax

kg/m3
ρmax (BL)

kg/m3
Ar

-

1 17.1 0.972 0.418 308.9 1.02 0.04 2.147 187.5 80.7 0.9 3.061 64.7 27.9 0.8 4.363 22.3 9.6 0.3
2 9.2 0.396 0.189 309.1 1.02 0.11 1.432 257.7 122.8 0.8 2.295 62.6 29.8 0.7 3.677 15.2 7.2 0.2
3 15.1 0.723 0.304 301.5 1.02 0.06 1.761 252.8 106.4 1.0 2.115 145.9 61.4 0.9 2.541 84.2 35.4 0.4
4 8.0 0.318 0.152 306.2 0.88 0.04 1.231 325.2 155.6 0.9 1.614 144.4 69.1 0.9 2.116 64.1 30.7 0.4
5 4.4 0.106 0.085 308.4 0.88 0.02 1.123 142.2 114.9 0.9 1.417 70.8 57.2 0.9 1.788 35.3 28.5 0.3
6 10.1 0.240 0.122 305.5 0.88 0.01 1.195 268.7 136.9 0.9 1.514 132.2 67.4 0.9 1.918 65.0 33.1 0.4
7 6.2 0.228 0.142 310.1 0.88 0.02 1.236 230.3 144.1 1.0 1.414 153.9 96.3 1.0 1.617 102.8 64.3 0.5

Table 3 Snowflake melting study. Experimental data.

First, the evolution of the snowflake density during the melting process is studied. In Fig. 9, time evolution of
the density of snowflake No3 from Tab. 3 is shown. Blue symbols represent the densities ρp obtained from the ratio
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Fig. 9 Time evolution of the density of snowflake No3 from Tab. 3. Blue symbols represent the densities ρp
obtained from the ratio ρp = mp/Vspheroid. The volume Vspheroid is estimated from the post processing of the
projected views of the particle described in Sec. I.B (prolate reconstruction). The mass of the particle mp is
assumed to be constant along the trajectory (mass loss due to evaporation neglected). It is estimated from the
final spherical shape of the liquid droplet once the whole snowflake is melted. In the model’s formulation (black
solid line), ρp,0 stands for the initial density of the fully glaciated snowflake while ρw is the liquid water density.

ρp = mp/Vspheroid. The volume Vspheroid is estimated from the post processing of the projected views of the particle
described in Sec. I.B (prolate reconstruction). The mass of the particle mp is assumed to be constant along the trajectory
(mass loss due to evaporation neglected). It is estimated from the final spherical shape of the liquid droplet once
the whole snowflake is melted. For intermediate times (6s ≤ t ≤ 11s), the reconstructed value for ρp is larger than
ρw, the limit value of the density of the final spherical liquid droplet. This may be explained by Fig. 10 where the
projected views of the particle used to reconstruct the prolate Vspheroid (Sec. I.B) are shown for different times. The
ratio Vspheroid/Vref is specified, where Vref is the volume of the final spherical liquid droplet once the whole snowflake is
melted. The left column represents the digitized pictures from the grayscale images generated by the experiments (right
column). At times 7.50s and 7.55s, which belong to the time interval where Vspheroid < Vref (or equivalently ρp > ρw,
Fig. 9), the particle is not yet fully melted or spherical. However it is relatively compact and close to a sphere. Thus,
given the small gap between Vspheroid and Vref, the error due to the 2D/3D geometric reconstruction may allow values
of Vspheroid smaller than Vref, and thus ρp > ρw. At shorter times (t < 5s), the difference between Vspheroid and Vref is
greater than the difference between the exact volume of the particle and the reconstructed volume Vspheroid from the 2D
projected view. Finally, the following law is chosen for the particle density during the melting process (mNS model):

ρp (Yw) = ρp0 +
(
ρw − ρp0

) [
1 − exp

(
−β

Yw
1 − Yw

)]
(33)

where ρp0 is the density of the fully frozen snowflake (before the melting process starts) and β a constant to be adjusted.
From Fig. 9, a minimization procedure leads to β = 2.55.
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Fig. 10 For snowflake No3 (Tab. 3), projected views of the particle used to reconstruct the prolate Vspheroid
(Sec. I.B) at different times. The ratio Vspheroid/Vref is specified, where Vref is the volume of the final spherical
liquid droplet once the whole snowflake is melted. Left column: digitized pictures from the grayscale images
generated by the experiments (right column).

Figure 11 shows a comparison between the experimental and numerical results for snowflake melting times. The
model based on the modified Nusselt and Sherwood numbers (referred to as mNS model, Sec. II.B.1) and the Mitra’s
model (Sec. II.B.2) are compared. For the mNS model, different definitions for the spheroid reconstruction (prolate or
oblate) are proposed. The mass of the snowflakes used in Eq. (13) is given by the experiments. For every snowflake, the
results are shown for each view (front, side or bottom). Both models are able to compute the melting time with a relative
accuracy of 30%. Regarding the mNS model, the spheroid reconstruction (prolate or oblate) has a small influence on
the final melting time.
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Fig. 11 Snowflake melting time. Comparison between the experimental (abscissa) and numerical (ordinate)
results for the snowflake melting time (see Tab. 3 for the test case description). Main diagonal means a perfect
agreement. ± 30% relative error regions are shown. The model based on the modified Nusselt and Sherwood
numbers (referred to as mNS model, Sec. II.B.1) and the Mitra’s model (Sec. II.B.2) are compared. For the
mNS model, different definitions for the spheroid reconstruction (prolate or oblate) are proposed. The mass of
the snowflakes used in Eq. (13) is given by the experiments.

C. Mass-diameter model for mass estimation
So far, it has been assumed that the mass of the snowflakes is known as an experimental input for the experiments

dedicated to snowflake free fall velocity and melting times. We are now interested in the impact of using a mass-diameter
correlation to predict snowflake mass. The Baker and Lawson relationship is used [28]. It is based on the two Feret
diameters fmax and f⊥max (Sec. I.B) and allows the estimation of the mass of the particle using only one single view. It is
defined as:

BLmass = 0.135CSP0.793, CSP =
A⊥f⊥max(2fmax + 2f⊥max)

P
(34)

where P denotes the perimeter and A⊥ the projected area of the particle (in the considered view).
Figure 12 shows a comparison between the measured experimental mass of the snowflake and the mass derived from

the Baker and Lawson mass-diameter correlation. Data from both the snowflake terminal fall velocity and the melting
time experiments are shown. Note that, for a given particle, the differences observed between the mass estimated by
the Baker and Lawson mass-diameter correlation and the reference mass given by the experiments amount to defining
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Fig. 12 Comparison between the measured experimental mass of the snowflake (abscissa) and the mass derived
from the Baker and Lawson mass-diameter correlation (ordinate). Main diagonal means a perfect agreement.
Data from both the snowflake terminal fall velocity and the melting time experiments are shown.

a different bulk density for the particle since the calculated volume remains the same (based on the same spheroid
reconstruction). For a given volume, using the Baker and Lawson law for the particle mass is therefore equivalent to
making an average error of 70% on the bulk density.

Figure 13 shows the influence of the use of the Baker and Lawson mass-diameter correlation on the particle’s
dynamics and thermics. Figure 13a focuses on the estimation of the particle terminal free fall velocity. The use of an
approximated value for the particle mass does not induce additional errors on the estimation of the terminal velocity.
This has to be confirmed for more realistic trajectories and not only for terminal fall velocities.

Regarding melting times (Fig. 13b), the use of the Baker and Lawon law for the particle mass leads to an
underestimation of the snowflake melting time. Thermal behavior of the particle seems to be sensitive to its bulk density.

Conclusions
In the framework of the modeling of snowflake trajectory and heat and mass transfers, a method for reconstructing

the volume input parameters of the models has been proposed. It is based on image post-processing and allows to build
a convex hull around the particle defined by a prolate or oblate spheroid. Volume reconstruction is possible from a
single view of the snowflake. This leads to a definition for the snowflake bulk density much smaller than the densities
usually used for ice particles. The approach is validated with two experiments, namely the estimation of the terminal
free fall velocity of a snowflake and the typical melting times. Different models from the literature are tested to evaluate
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(a) Snowflake terminal free fall velocity experiment (b) Snowflake melting time experiment

Fig. 13 Influence of the use of the Baker and Lawson (B&L) mass-diameter correlation on the particle’s
dynamics and thermics.

the drag coefficient and heat and mass transfers during the melting process. Provided that the snowflake mass is known
accurately, the predictions for the terminal fall velocity and the melting time are acceptable. Discrepancies appear
when a correlation is used to evaluate the mass of the snowflake (typically a mass-diameter correlation). This has to be
improved in future works.
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