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Experimental and numerical investigations of snow accretion

To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate that each engine and its air inlet system can operate throughout the flight power range of the engine (including idling) in snow, both falling and blowing. This study is part of an effort to develop models for snow accretion. More specifically, the focus is on the transport step, taking into account both dynamic aspects (with the estimation of the particle trajectory) and thermal effects (with possible melting of snow crystals/snowflakes). Experiments and numerical simulations are compared for the estimation of the drag coefficient in the context of a free falling snowflake. Thermal effects observed during the melting of a snowflake in forced convection are also studied. 

Nomenclature

Introduction

To ensure safe flight under snowy conditions, aircraft manufacturers must demonstrate that each engine and its air inlet system can operate throughout the flight power range of the engine (including idling) in snow, both falling and blowing, without adverse effect on engine operation (power or thrust loss, surge, stall or flameout).

Snow particles are precipitation sized ice particles that form in clouds and precipitate to the ground. Falling snow formation has its origin in a complex interplay of microphysical processes and properties (vapor deposition, riming, and aggregation, hydrometeor fall speed), which are governed by cloud dynamics (vertical and horizontal transport) and thermodynamics (temperature and humidity vertical profiles). Snow particles have interested scientists since a long time and the first systematic studies of snow crystals started with the pioneering work of Nakaya [START_REF] Nakaya | Simultaneous observations of the mass, falling velocity and form of individual snow crystals[END_REF]. Numerous studies about snow particles have been published in contemporary literature since these early studies. The terminology of Pruppacher and Klett [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF] is adopted here: ice particles grown by vapor deposition and/or riming are called snow crystals and aggregates of snow crystals are referred to as snowflakes.

Due to the variability of atmospheric conditions prevailing in snow clouds, the shape, size, density, and related properties such as drag and terminal fall speed of natural snow particles (snow crystal and snowflakes) are found to be highly variable. Regarding the shape for instance, Fig. 1 presents samples of ice crystals (columns, columns with plates, plates in the top row, planar dendrites in the third row, graupel (or snow pellets) in the fifth row) and snowflakes with different degrees of riming in the three last rows. This point was not addressed by the European projects HAIC [START_REF] Dezitter | HAIC-High Altitude Ice Crystals[END_REF] and [START_REF] Villedieu | MUSIC-haic: 3D multidisciplinary tools for the simulation of in-flight icing due to high altitude ice crystals[END_REF], where the models for trajectory, impact and erosion [START_REF] Hauk | Investigation of the Impact and Melting Process of Ice Particles[END_REF][START_REF] Kintea | Hydrodynamics and Thermodynamics of Ice Particle Accretion[END_REF][START_REF] Baumert | Experimental and numerical studies on ice crystal icing of civil aircraft[END_REF][START_REF] Hauk | Theoretical and Experimental Investigation of the Melting Process of Ice Particles[END_REF][START_REF] Kintea | Shape evolution of a melting nonspherical particle[END_REF][START_REF] Baumert | Experimental and numerical investigations on aircraft icing at mixed phase conditions[END_REF][START_REF] Trontin | A comprehensive numerical model for mixed-phase and glaciated icing conditions[END_REF][START_REF] Aouizerate | Ice crystals trajectory calculations in a turbofan engine[END_REF][START_REF] Trontin | A comprehensive accretion model for glaciated icing conditions[END_REF][START_REF] Norde | Eulerian and Lagrangian Ice Crystal Trajectory Simulations in a Generic Turbofan Compressor[END_REF][START_REF] Hauk | Ice crystal impact onto a dry solid wall. Particle fragmentation[END_REF][START_REF] Roisman | Impact of a crushing ice particle onto a dry solid wall[END_REF][START_REF] Kintea | On the influence of surface tension during the impact of particles on a liquid-gaseous interface[END_REF][START_REF] Kintea | Oblique water entry of rigid spheres[END_REF][START_REF] Kintea | Transport processes in a wet granular ice layer: Model for ice accretion and shedding[END_REF][START_REF] Kintea | Numerical investigation of ice particle accretion on heated surfaces with application to aircraft engines[END_REF][START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[END_REF] were derived for ice particles with higher densities and more regular geometric shapes. In the framework of these two previous projects [START_REF] Dezitter | HAIC-High Altitude Ice Crystals[END_REF][START_REF] Villedieu | MUSIC-haic: 3D multidisciplinary tools for the simulation of in-flight icing due to high altitude ice crystals[END_REF], models for mixed phase and ice crystal icing (Appendix D) have been derived from academic [START_REF] Kintea | Shape evolution of a melting nonspherical particle[END_REF][START_REF] Hauk | Ice crystal impact onto a dry solid wall. Particle fragmentation[END_REF] and more applied experiments [START_REF] Baumert | Experimental and numerical investigations on aircraft icing at mixed phase conditions[END_REF][START_REF] Norde | Eulerian and Lagrangian Ice Crystal Trajectory Simulations in a Generic Turbofan Compressor[END_REF] to be integrated into numerical tools able to simulate the entire accretion process [START_REF] Trontin | A comprehensive accretion model for glaciated icing conditions[END_REF]. However, regarding the risk of snow accretion or accumulation, there are currently no validated engineering tools (test facility and numerical tools) available. This is one of the main objectives of the European project ICE-GENESIS [START_REF] Huet | Description and Overview of the ICE GENESIS Research Project[END_REF].

MUSIC-haic

This study is part of an effort to develop models for snow accretion. More specifically, the focus is on the transport step, taking into account both dynamic aspects (with the estimation of the particle trajectory) and thermal effects (with possible melting of snow crystals/snowflakes). In a first part, two experiments are detailed. The first one is dedicated to the measurement of the drag coefficient of a free falling snowflake. The second one is related to the melting of a snowflake in forced convection. The procedure for post-processing images generated by the experiments is also described. The second part presents the derivation of the models for the drag coefficient and the melting process adapted to snowflakes. A comparison between the experiments and the numerical simulations is drawn in the third part. Finally, conclusions are given.

I. Experiments: free fall and melting of a snowflake

A. Experimental Apparatus

For the experiments, artificial snowflakes are used. However, these artificial snowflakes are close to natural snowflakes like those depicted in Fig. 1.

Free fall experiment

The experimental setup used for the measurement of snowflake drag is schematically shown in Fig. 2. The entire setup and measurement equipment is mobile and can be operated at ambient temperatures down to -20 °C. The setup consists of a large PMMA tube with a diameter and height of 150 mm and 300 mm, respectively. Through a baffle (opening of 10 mm) at its top, free falling snowflakes enter the PMMA tube, which has the purpose of shielding them from possible external gusts influencing their trajectory. Immediately after a snowflake falls out of the PMMA tube, its movement is captured using high-speed cameras in a front, side and bottom view. The resolutions of the front, side and bottom views are 24.1 µm/pixel , 34.6 µm/pixel and 51.7 µm/pixel, respectively. The side view has the largest field of view and is primarily used for measuring the free fall velocity. After the measurement of their terminal velocity, the snowflakes are caught and melted on a transparent, superhydrophobic coated PMMA plate, forming nearly spherical liquid drops. These drops are captured using the front view camera, which allows measurement of the drop diameter and therefore, the computation of the snowflake mass. Measurement of the snowflake projected area in three nearly orthogonal views, as well as measuring their mass, allows the calculation of the snowflake drag coefficient corresponding to its characteristic terminal velocity. Figure 3 shows example images of a snowflake in the front view, falling with a terminal velocity of 1.36 m/s and finally landing on the PMMA plate. As shown in Fig. 3, a snowflake might be very fragile and shatters when it impinge the PMMA plate, even if it falls with a rather moderate terminal velocity. In the case of fragmentation, all fragments are collected and melted together, using a stream of hot air directed toward the bottom of the PMMA plate. As a result, an almost spherical drop is formed on top of the superhydrophobic PMMA plate, an example which can be seen in Fig. 4. The diameter of the drop is 0.795 mm and its mass is computed as 0.263 mg. Using the snowflake images of the front, side and bottom view, characteristic size and shape parameters can be derived.

Melting

A setup for the experimental investigation of the melting of single snowflakes has been developed that enables the observation of melting snowflakes in forced convection. The setup is built such that it prevents the melting flakes from having contact to any solid structure and thus, simulates the melting in falling or blowing snow conditions. Figure 5 illustrates the setup. Its main component is the acoustic levitator, which utilizes a standing ultrasonic wave to levitate the snowflake. The snowflakes are caught with a nylon net and placed into the acoustic levitator. A warm air stream, well defined in terms of temperature, humidity and volume flow rate, is then used to melt the snowflake. The melting processes as well as the size of the melted snowflake are captured in a side-view using a high-resolution video camera. The warm air flow is provided by a controllable hot air blower attached to a pipe. In this pipe, shortly before the exit, the temperature and humidity of the air flow are measured. The hot air blower runs for a sufficient duration for the device and the pipe to heat up and reach steady state. During this period, the warm air is not directed toward the snowflake, but is redirected through a hose.

Due to the irregular shape of the snowflakes, their orientation in the acoustic levitator was rather instable. Consequentially, snowflakes were often ejected out of the levitator and it proved difficult to adjust the settings to observe them throughout the full melting process. An exemplary photograph of a snowflake before melting is shown in Fig. 6a.

When no more ice is visible in the liquid drop, the volume of the drop is calculated by rotating the projected shape. The volume of the drop is taken to estimate the initial mass of the snowflake. Finally, the time it takes for the snowflake to melt is determined by finding the first image in which no residual ice can be detected.

As soon as the flake is exposed to the warm airflow, its arms start to melt and the melt water is drawn to the flake centre due to surface tension. This results in a decrease in the visible size. This decrease flattens when the snowflake arms are melted and the remaining ice and water form a more compact shape. This transformation to a more compact shape results in a more spherical shape. The melt water then forms a drop, which completely encloses the remaining ice. In many cases, small bubbles of air can be observed in the resulting liquid drop, which then coalesce. An exemplary drop with enclosed air bubbles is shown in Fig. 6b.

B. Image post-processing

In this part we briefly present the processing of the images acquired during the experiments described in section I.A.1. Umbroscopic measurements provide grayscale or black and white images of the projected surface in the direction of the camera. An image processing tool has been developed to provide the maximum f max and maximum orthogonal f ⊥ max diameters of Feret ( f ⊥ max is defined as the largest diameter among all diameters orthogonal to f max , in green in Fig. 7b). It should be noted that A ⊥ is almost never the projected area perpendicular to the flow. It has been chosen to ensure consistrency with the definition usually found in the literature but in practice it is often not possible to know the direction of the flow with respect to the image. Using Feret's diameters it can be deduced an ellipse of major semi axis a = f max /2 and minor semi axis f ⊥ max /2. From the axes of the ellipse we can construct either an oblate spheroid or a 

d V = 6V spheroid π 1/3 , Φ = πd 2 V A spheroid , Φ ⊥ = π 4 d 2 V A ⊥ , Re p = ρ a wd V µ a ( 1 
)
where

A spheroid = 2πa 2 + π c 2 e ln 1+e
1-e for an oblate spheroid and A spheroid = 2πa 2 1 + c ae arcsin e for a prolate spheroid. The eccentricity of the ellipse is written e = 1 -a 2 c 2 . The test case configurations for the snowflake free fall study (Sec. I.A.1) are summarized in Tab. 1. Regarding the melting experiment (Sec. I.A.2), the configurations are given in Tab. 3.

II. Models for particle trajectory and melting

A. Snow particle trajectory

For the computation of the snow particle trajectory, since snow particle density is much higher than air density, it is possible to neglect the influences of the virtual mass force, the Basset force, the pressure gradient force and the lift force compared to the drag force in the momentum equation. Hence, the particle motion equation simply reads:

m p dv p dt = F D + m p g, F D = - 1 2 ρ a ||w||w A ref C D,ref (Re p ) (2) 
where m p is the snow particle mass, v p its velocity, F D the drag force, g the gravity, ρ a the air density and w = v pv a denotes the relative velocity between air and the particle. In the following, ||w|| will simply be denoted w. where µ a is the air dynamic viscosity, d ref a characteric length scale and ρ a the air density. Note that in the case of a snowflake with a complex shape (for instance aggregates, see Fig. 1) the definition of ρ p has to be specified and may refer to the bulk density for instance.

Two sets of definitions will be used to define ρ p , d ref ,

A ref and C D,ref .
The first one is drawn from the Hölzer and Sommerfeld correlation [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF] for non-spherical particles (section II.A.1). The second one is obtained from the Heymsfield and Westbrook modeling [START_REF] Heymsfield | Advances in the estimation of ice particle fall speeds using laboratory and field measurements[END_REF] (section II.A.2). [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF] Among the several general expressions that can be found in the literature for the expression of the drag coefficient C D,ref for non-spherical particles, we can mention the models of Haider et al. [START_REF] Haider | Drag coefficient and terminal velocity of spherical and nonspherical particles[END_REF], Ganser [START_REF] Ganser | A rational approach to drag prediction of spherical and nonspherical particles[END_REF] and Hölzer et al. [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF].

The Hölzer and Sommerfeld model

For these models, d V is the volume equivalent diameter d V = 6V p π 1/3
of a sphere having the same volume V p as the non-spherical particle. The reference surface is defined as

A ref = πd 2
V /4. The Hölzer et al. model has been selected in this study since it is valid for a wide range of shapes. Moreover, compared to the Haider et al. and Ganser models, it is based on the influence of the crosswise sphericity in the asymptotic expression of the drag coefficient in the Newton regime . This regime is typical for accretion scenarios during helicopter flight.

For the Hölzer and Sommerfeld model [START_REF] Hölzer | New simple correlation formula for the drag coefficient of non-spherical particles[END_REF], the drag coefficient can be written:

C D,ref = 8 Re p √ Φ ⊥ + 16 
Re p √ Φ + 3 Re p Φ 0.75 + 0.421 Φ ⊥ 10 0.4(-log Φ) 0.2 (3) 
Sphericity Φ and crosswise sphericity Φ ⊥ are defined as:

Φ = πd 2 V A spheroid , Φ ⊥ = π 4 d 2 V A ⊥ (4) 
where A spheroid denotes the surface of the approximated spheroid and A ⊥ is the projected surface of the particle in the considered view.

In practice, the volume V p is not obtained directly from the experimental data. This is why V p is estimated from a reconstructed oblate or prolate spheroid from planar images of the particle. It should also be noted that the density of the particle becomes a bulk density defined as the mass contained in the spheroid:

ρ p = m p V Spheroid (5)
where m p is the mass of the particle that has to be provided either by the experiments or by a correlation (Baker and Lawson [START_REF] Baker | Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships[END_REF]). The procedure is detailed in Sec. I.B.

The Heymsfield and Westbrook model [25]

The second model studied is that of Heymsfield and Westbrook [START_REF] Heymsfield | Advances in the estimation of ice particle fall speeds using laboratory and field measurements[END_REF], which is an improvement of the models based on the Abraham's drag coefficient of a sphere [START_REF] Abraham | Functional dependence of drag coefficient of a sphere on Reynolds number[END_REF].

The Abraham model for spherical particles

In Abraham [START_REF] Abraham | Functional dependence of drag coefficient of a sphere on Reynolds number[END_REF], the problem is considered as an assembly of a smooth sphere of radius a plus a thin boundary layer of thickness δ in a moving fluid of density ρ a at a velocity v. The assembly is then assumed to evolve in an asymptotic low viscosity aerodynamic flow in a regime where the drag coefficient is independant of Re p . These assumptions lead to the following expression for the drag force of a sphere of radius a + δ:

F D = ρ a v 2 2 π(a + δ) 2 C D0 (6) 
where C D0 is a constant parameter to be adjusted. Equation ( 7) may be re-written as:

F D = ρ a v 2 2 πa 2 C D0 1 + δ a 2 (7) 
which is the drag force for the particle of radius a with C D0 1 + δ a 2 as drag coefficient. The boundary layer thickness is

given by δ a = δ 0 √ Re p
where δ 0 is a dimensionless coefficient. This leads to the following drag coefficient definition for the particle:

C D = C D0 1 + δ 0 Re p 2 ( 8 
)
where C D0 and δ 0 are taken to ensure C D0 δ 2 0 = 24 (Stokes regime) and δ 0 = 9.06.

Extension to non-spherical particles Many authors have used this relationship for non-spherical particles. In the case of free fall, one can rewrite Eq. ( 2) alongside the direction of fall with the Best or Davies number:

X = C d,ref Re 2 p = 2m p gρ a d 2 ref µ 2 a A ref (9) 
The corresponding Re p (X) relationship is given by Bohm [START_REF] Böhm | A general equation for the terminal fall speed of solid hydrometeors[END_REF]:

Re p = δ 2 0 4       1 + 4 √ X δ 2 0 √ C D0 1/2 -1       2 ( 10 
)
with C D0 = 0.35 and δ 0 = 8. Choosing d ref = d max as the maximum Feret diameter and A ref = A ⊥ and introducing the area ratio, which is the ratio of the particle's projected area to the area of a circumscribing circle A r = A ⊥ πd 2 max /4 , we can write X = 8m p gρ a µ 2 a π A r . Mitchell, Heymsfield, Khvorostyanov and Curry (MHKC) [START_REF] Heymsfield | An improved approach to calculating terminal velocities of plate-like crystals and graupel[END_REF][START_REF] Khvorostyanov | Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum[END_REF][START_REF] Khvorostyanov | Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law[END_REF][START_REF] Mitchell | Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities[END_REF][START_REF] Mitchell | Adaptive grid refinement for a model of two confined and interacting atoms[END_REF] used this method to calculate the drag coefficient and compared the resulting fall velocities to a very wide range of particles. Planar and columnar-type, graupel and aggregates with a size range from 250 µm to 8 mm were studied. More recently, Heymsfield and Westbrook found that fall velocity estimates were overestimated for particles with a low area ratio. In some cases the relative error exceeded 100 % and this effect appears to be strongest at low Reynolds number. Needles, dendrites, stellars and aggregates are key particle types that are affected by this bias. To mitigate this high sensitivity to the area ratio, they considered the following modified drag coefficient:

C * D = C D A 1/2 r , X * = 8ρ a m p g µ 2 a π A 1/2 r , Re p = δ 2 0 4       1 + 4 √ X * δ 2 0 √ C D0 1/2 -1       2 (11) 
In this model, the density ρ p is defined as:

ρ p = m p πd 3 max /6 (12) 
The particle mass m p may be obtained either from an experimental measurement or, if not available, from an empirical mass-diameter correlation.

B. Snow particle melting

For the sake of completeness, the model is briefly described in this section. For a more detailed description, see [START_REF] Trontin | A comprehensive numerical model for mixed-phase and glaciated icing conditions[END_REF]. The general form of the heat equation reads:

m p c p,i dT p dt = A p h t (T a -T p ) -m ev L v (T p ) -m sub L s (T p ) -m f L f (T p ) (13) 
where c p,i denotes the specific heat capacity of the ice, T p is the particle temperature (supposed to be almost uniform inside the particle), h t is the mean heat transfer coefficient and T a is the air temperature. L v , L s and L f are respectively the latent heat of evaporation, sublimation and fusion. m f is the melting rate. The evaporation and sublimation rates ( m ev and m sub )) can be written as:

m ev = ρ a A p h m (y liq v,s (T p , p a ) -y v,∞ ) (14a) 
m sub = ρ a A p h m (y sol v,s (T p , p a ) -y v,∞ ) (14b) 
where h m is the mean mass transfer coefficient, y v,∞ is the freestream steam mass fraction and y liq v,s (T p , p a ) y sol v,s (T p , p a )) is the saturated steam mass fraction at the surface of the particle computed above liquid water (resp. solid water). Depending on the particle temperature three cases can be considered:

1) The particle is fully glaciated and its temperature is lower than the melting temperature (T p < T f ). There is no melting ( m f = 0) and no evaporation ( m ev = 0) during this phase.

2) The particle is at the melting temperature (T p = T f ). During the melting process the liquid water is assumed to cover the ice core so that there is no sublimation ( m sub = 0). 3) The particle is fully liquid and its temperature is larger than the melting temperature (T p > T f ). There is no melting ( m f = 0) and no sublimation ( m sub = 0) during this phase. Two different models are compared to define h t and h m , namely a model based on a modified definition of the Nusselt and Sherwood numbers (II.B.1) and the Mitra's model (II.B.2).

Model based on modified Nusselt and Sherwood numbers (mNS moddel)

Introducing the sphericity Φ = πd 2 V A spheroid , the Nusselt number Nu = h t •d V k a and the Sherwood number Sh = h m •d V D v,a
where k a is the air conductivity and D v,a is the vapor diffusivity. Equations ( 13) and ( 14) may be rewritten as:

m p c p,i dT p dt = πd V Nu Φ (T a -T p ) -m ev L v (T p ) -m sub L s (T p ) -m f L f (T p ) (15) 
m ev = πd V Sh Φ ρ a D v,a (y liq v,s (T p , p a ) -y v,∞ ) (16a) 
m sub = πd V Sh Φ ρ a D v,a (y sol v,s (T p , p a ) -y v,∞ ) (16b) 
In [START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[END_REF], using a Reynolds-type analogy, the following Nusselt and Sherwood correlations are proposed:

Nu(Φ, Re p ) = 2 √ Φ + 0.55Pr 1/3 Φ 1/4 Re p (17) Sh(Φ, Re p ) = 2 √ Φ + 0.55Sc 1/3 Φ 1/4 Re p ( 18 
)
where P r and S c are respectively the Prandlt and Schmidt numbers. During the melting phase, the following set of equations is solved:

L f (T f ) dm p,i dt = -m f L f (T f ) = -πd V Nu Φ (T a -T p ) + m ev L f (T f ) (19) 
dm p dt = -m ev = -πd V Sh Φ ρ a D v,a (y liq v,s (T p , p a ) -y v,∞ ) (20) 
d V = 6 π m p -m p,i ρ w + m p,i ρ p0 1/3 (21) 1 ρ p = 1 ρ p0 m p,i m p + 1 ρ w 1 - m p,i m p (22) Φ = m p,i m p Φ 0 + 1 - m p,i m p ( 23 
)
where Φ 0 denotes the value of the particle sphericity at the beginning of the melting phase, m p,i is the ice core mass, ρ p0 and ρ w are respectively the densities of the fully frozen snowflake (before the melting process starts) and liquid water. Equations ( 22) and ( 23) are replaced by:

ρ p = ρ p0 + ρ w -ρ p0 1 -exp -2.55 Y w 1 -Y w (24) 
Φ = Φ 0 + (1 -Φ 0 ) 1 -exp -2.55 Y w 1 -Y w ( 25 
)
The justification of the form of Eq. ( 24) for particle density during melting is given in Sec. III.B.

Mitra's model [36]

The procedure described in the previous section is identical for the Mitra model. Equations ( 19) and ( 20) are replaced by the following equations :

L f (T f ) dm p,i dt = -m f L f (T f ) = -4π f v C i (T a -T p ) + m ev L f (T f ) ( 26 
)
dm p dt = -m ev = -4π f v C i ρ a D v,a (y liq v,s (T p , p a ) -y v,∞ ) (27) 
To derive this set of equations it is necessary to assume that thermal and mass diffusivities behave in the same way around the particle (Pr = Sc). The ventilation coefficient f v is introduced for the steam heat and mass transfers as well as the capacitance of the melted flake C i (see Pruppacher and Klett [START_REF] Pruppacher | Microphysics of clouds and precipitation[END_REF]). The ventilation coefficient is calculated using the Hall and Pruppacher correlation [START_REF] Hall | The survival of ice particles falling from cirrus clouds in subsaturated air[END_REF] which can be written as a function of χ = Re p Sc :

f v = 1 + 0.14 χ 2 , χ 1.0 0.86 + 0.28 χ, χ 1.0 ( 28 
)
From the geometrical point of view the Mitra's model assumes an oblate spheroid for the idealized snowflake. The capacitance C i is computed from the linear relation:

C i = (0.8 + 0.2Y w )C i,0 (29) 
where Y w = m p,w m p is the water mass fraction. The initial capacitance of the snowflake C i,0 is given by :

C i,0 = a i e sin -1 e , a i = 3 3m p,i 4π(AR) i ρ p ( 30 
)
where (AR) i = c a denotes the spheroid axis ratio. During the melting phase, Mitra assumes that (AR) i and ρ p also vary linearly with respect to the water mass fraction Y w according to the following relations:

(AR) i = 0.3 + 0.7Y w ( 31 
)
ρ p = 20 + 980Y w (32)

III. Comparison between the experiments and the numerical simulations

In this section, comparisons between the numerical simulations and the experiments are proposed (free fall of a snowflake (section I.A.1) and particle melting (section I.A.2)). For the numerical simulations, the two drag models of Hölzer and Sommerfeld (H&S) (section II.A.1) and Heymsfield and Westbrook (H&W) (section II.A.2) are compared. For the melting experiment, the model based on the modified Nusselt and Sherwood numbers (Sec. II.B.1) and the Mitra's model (Sec. II.B.2) are evaluated.

A. Snowflake free fall velocity

Terminal free fall velocities for 17 snowflakes are mesured with the experimental method described in Sec. I.A.1. Conditions are described in Tab.1. Figure 8 shows the comparison between the experimental and numerical results for the snowflake terminal velocity. Different models for the drag coefficient are compared (H&S and H&W) as well as different definition for the spheroid reconstruction (prolate or oblate) in the case of the H&S drag model. The mass of the snowflakes used in Eq. ( 2) is given by the experiments. Each snowflake being described by three views (front, side and bottow, Sec. I.A.1), the inputs for the snowflake geometric description (reference surface A r e f and oblate/prolate spheroid reconstruction) are obtained by the arithmetic average of the input data measured from the three views. Both H&S and H&W models are able to reproduce the terminal free fall velocity with a relative accuracy of 30%. Regarding H&S model, the spheroid reconstruction (prolate or oblate) has a small influence on the terminal velocity. Thus, drag models validated for higher density ice crystals (ρ p = 917 kg.m -3 [START_REF] Villedieu | Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[END_REF]) remain valid for snowflakes by defining the particle density as a lower bulk density built from a convex geometric volume enveloping the particle as a prolate/oblate spheroid. In Tab. 2, the relative errors between the numerical and experimental velocities are shown when only one view is used for the snowflake geometric description (either front, side or bottom), without averaging among the three views. The error does not depend on the chosen view, which validates the average procedure over the three views used in Fig. 8 L2 and the absence of a privileged direction of the particle during the free fall. First, the evolution of the snowflake density during the melting process is studied. In Fig. 9, time evolution of the density of snowflake N o 3 from Tab. 3 is shown. Blue symbols represent the densities ρ p obtained from the ratio ρ p = m p /V spheroid . The volume V spheroid is estimated from the post processing of the projected views of the particle described in Sec. I.B (prolate reconstruction). The mass of the particle m p is assumed to be constant along the trajectory (mass loss due to evaporation neglected). It is estimated from the final spherical shape of the liquid droplet once the whole snowflake is melted. For intermediate times (6s ≤ t ≤ 11s), the reconstructed value for ρ p is larger than ρ w , the limit value of the density of the final spherical liquid droplet. This may be explained by Fig. 10 where the projected views of the particle used to reconstruct the prolate V spheroid (Sec. I.B) are shown for different times. The ratio V spheroid /V ref is specified, where V ref is the volume of the final spherical liquid droplet once the whole snowflake is melted. The left column represents the digitized pictures from the grayscale images generated by the experiments (right column). At times 7.50s and 7.55s, which belong to the time interval where V spheroid < V ref (or equivalently ρ p > ρ w , Fig. 9), the particle is not yet fully melted or spherical. However it is relatively compact and close to a sphere. Thus, given the small gap between V spheroid and V ref , the error due to the 2D/3D geometric reconstruction may allow values of V spheroid smaller than V ref , and thus ρ p > ρ w . At shorter times (t < 5s), the difference between V spheroid and V ref is greater than the difference between the exact volume of the particle and the reconstructed volume V spheroid from the 2D projected view. Finally, the following law is chosen for the particle density during the melting process (mNS model):

ρ p (Y w ) = ρ p0 + ρ w -ρ p0 1 -exp -β Y w 1 -Y w ( 33 
)
where ρ p0 is the density of the fully frozen snowflake (before the melting process starts) and β a constant to be adjusted. From Fig. 9, a minimization procedure leads to β = 2.55. 13) is given by the experiments. For every snowflake, the results are shown for each view (front, side or bottom). Both models are able to compute the melting time with a relative accuracy of 30%. Regarding the mNS model, the spheroid reconstruction (prolate or oblate) has a small influence on the final melting time. 

C. Mass-diameter model for mass estimation

So far, it has been assumed that the mass of the snowflakes is known as an experimental input for the experiments dedicated to snowflake free fall velocity and melting times. We are now interested in the impact of using a mass-diameter correlation to predict snowflake mass. The Baker and Lawson relationship is used [START_REF] Baker | Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships[END_REF]. It is based on the two Feret diameters f max and f ⊥ max (Sec. I.B) and allows the estimation of the mass of the particle using only one single view. It is defined as: BL mass = 0.135CSP 0.793 , CSP = A ⊥ f ⊥ max (2f max + 2f ⊥ max ) P [START_REF] Mitchell | Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities[END_REF] where P denotes the perimeter and A ⊥ the projected area of the particle (in the considered view).

Figure 12 shows a comparison between the measured experimental mass of the snowflake and the mass derived from the Baker and Lawson mass-diameter correlation. Data from both the snowflake terminal fall velocity and the melting time experiments are shown. Note that, for a given particle, the differences observed between the mass estimated by the Baker and Lawson mass-diameter correlation and the reference mass given by the experiments amount to defining a different bulk density for the particle since the calculated volume remains the same (based on the same spheroid reconstruction). For a given volume, using the Baker and Lawson law for the particle mass is therefore equivalent to making an average error of 70% on the bulk density.

Figure 13 shows the influence of the use of the Baker and Lawson mass-diameter correlation on the particle's dynamics and thermics. Figure 13a focuses on the estimation of the particle terminal free fall velocity. The use of an approximated value for the particle mass does not induce additional errors on the estimation of the terminal velocity. This has to be confirmed for more realistic trajectories and not only for terminal fall velocities.

Regarding melting times (Fig. 13b), the use of the Baker and Lawon law for the particle mass leads to an underestimation of the snowflake melting time. Thermal behavior of the particle seems to be sensitive to its bulk density.

Conclusions

In the framework of the modeling of snowflake trajectory and heat and mass transfers, a method for reconstructing the volume input parameters of the models has been proposed. It is based on image post-processing and allows to build a convex hull around the particle defined by a prolate or oblate spheroid. Volume reconstruction is possible from a single view of the snowflake. This leads to a definition for the snowflake bulk density much smaller than the densities usually used for ice particles. The approach is validated with two experiments, namely the estimation of the terminal free fall velocity of a snowflake and the typical melting times. Different models from the literature are tested to evaluate the drag coefficient and heat and mass transfers during the melting process. Provided that the snowflake mass is known accurately, the predictions for the terminal fall velocity and the melting time are acceptable. Discrepancies appear when a correlation is used to evaluate the mass of the snowflake (typically a mass-diameter correlation). This has to be improved in future works.
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  Φ ⊥ = Crosswise sphericity A ⊥ = Projected surface of the particule normal to the airflow k

Fig. 1

 1 Fig. 1 MASC picture of hydrometeor illustrating the variability in the shape and size of snow particles [3].

Fig. 2

 2 Fig. 2 Schematic view of the experimental setup used to measure snowflake drag.

Fig. 3

 3 Fig. 3 Example images of a snowflake recorded with camera 1 (front view) having a resolution of 24.1 µm/pixel. The snowflake's maximum dimension is 3.5 mm and its terminal velocity is 1.36 m/s.

Fig. 4 Fig. 5

 45 Fig. 4 Image of the melted snowflake, having a mass of 0.263 mg and a diameter of 0.795 mm.

Fig. 6

 6 Fig. 6 Exemplary snowflake before melting levitating in the acoustic levitator and resulting drop with enclosed air bubbles.

Fig. 7

 7 Fig. 7 Data post-processing illustration prolate spheroid of volume V spheroid = π/6A 2 C. For an oblate spheroid A = 2a and C = 2c. For a prolate spheroid A = 2c and C = 2a. Using these parameters, the following characteristics can be deduced:

Fig. 8

 8 Fig. 8 Snowflake free fall velocity. Comparison between the experimental (abscissa) and numerical (ordinate) results for the snowflake terminal velocity (see Tab. 1 for the test case description). Main diagonal means a perfect agreement. ± 30% relative error regions are shown. Different models are compared to evaluate the drag coefficient (H&S and H&W) as well as different definition for the spheroid reconstruction (prolate or oblate) in the case of the H&S drag model. The mass of the snowflakes used in Eq. (2) is given by the experiments.

Fig. 9

 9 Fig. 9 Time evolution of the density of snowflake N o 3 from Tab. 3. Blue symbols represent the densities ρ p obtained from the ratio ρ p = m p /V spheroid . The volume V spheroid is estimated from the post processing of the projected views of the particle described in Sec. I.B (prolate reconstruction). The mass of the particle m p is assumed to be constant along the trajectory (mass loss due to evaporation neglected). It is estimated from the final spherical shape of the liquid droplet once the whole snowflake is melted. In the model's formulation (black solid line), ρ p,0 stands for the initial density of the fully glaciated snowflake while ρ w is the liquid water density.

Fig. 10

 10 Fig. 10 For snowflake N o 3 (Tab. 3), projected views of the particle used to reconstruct the prolate V spheroid (Sec. I.B) at different times. The ratio V spheroid /V ref is specified, where V ref is the volume of the final spherical liquid droplet once the whole snowflake is melted. Left column: digitized pictures from the grayscale images generated by the experiments (right column).

Figure 11

 11 Figure 11 shows a comparison between the experimental and numerical results for snowflake melting times. The model based on the modified Nusselt and Sherwood numbers (referred to as mNS model, Sec. II.B.1) and the Mitra's model (Sec. II.B.2) are compared. For the mNS model, different definitions for the spheroid reconstruction (prolate or oblate) are proposed. The mass of the snowflakes used in Eq. (13) is given by the experiments. For every snowflake, the results are shown for each view (front, side or bottom). Both models are able to compute the melting time with a relative accuracy of 30%. Regarding the mNS model, the spheroid reconstruction (prolate or oblate) has a small influence on the final melting time.

Fig. 11

 11 Fig. 11 Snowflake melting time. Comparison between the experimental (abscissa) and numerical (ordinate) results for the snowflake melting time (see Tab. 3 for the test case description). Main diagonal means a perfect agreement. ± 30% relative error regions are shown. The model based on the modified Nusselt and Sherwood numbers (referred to as mNS model, Sec. II.B.1) and the Mitra's model (Sec. II.B.2) are compared. For the mNS model, different definitions for the spheroid reconstruction (prolate or oblate) are proposed. The mass of the snowflakes used in Eq. (13) is given by the experiments.

Fig. 12

 12 Fig. 12 Comparison between the measured experimental mass of the snowflake (abscissa) and the mass derived from the Baker and Lawson mass-diameter correlation (ordinate). Main diagonal means a perfect agreement. Data from both the snowflake terminal fall velocity and the melting time experiments are shown.

  (a) Snowflake terminal free fall velocity experiment (b) Snowflake melting time experiment

Fig. 13

 13 Fig. 13 Influence of the use of the Baker and Lawson (B&L) mass-diameter correlation on the particle's dynamics and thermics.

  The drag coefficient C D,ref is defined with respect to the reference surface A ref . It is a function of the particle Reynolds number Re p = ρ a wd ref µ a

Table 1 Snowflake free fall study. Experimental data.

 1 

	N	Fall speed m/s	Mass mg	BL Mass mg	d V,pro mm	ρpro kg/m 3	ρpro(BL) kg/m 3	Φpro -	Φ ⊥ pro -	d V,obl mm	ρ obl kg/m 3	ρ obl (BL) kg/m 3	Φ obl -	Φ ⊥ obl -	dmax mm	ρmax kg/m 3	ρmax(BL) kg/m 3	Ar -
	1	0.67	0.063	0.105	1.042 117.0	180.0	0.95 1.05 1.248 64.8	103.2	0.93 1.51 1.505 38.1	62.4	0.34
	2	1.83	1.480	0.924	2.571 192.5	100.2	0.95 1.02 3.098 102.1	56.2	0.93 1.51 3.745 55.2	32.4	0.45
	3	2.40	16.790	3.907	4.977 265.0	61.1	0.96 1.08 5.880 158.4	36.7	0.95 1.51 6.953 95.4	22.2	0.43
	4	1.47	0.576	0.532	2.340 97.2	83.8	0.98 1.47 2.599 65.9	58.1	0.97 1.82 2.898 45.6	41.3	0.47
	5	1.49	0.132	0.155	1.143 174.1	195.5	0.98 1.11 1.263 131.1	145.9	0.98 1.35 1.396 99.2	109.3	0.57
	6	1.44	0.546	1.217	3.018 40.4	83.6	0.98 1.14 3.369 28.3	59.5	0.98 1.42 3.763 19.9	42.7	0.56
	7	1.07	0.170	0.314	1.653 75.1	135.8	0.98 1.09 1.882 51.8	93.2	0.97 1.42 2.144 35.9	64.3	0.49
	8	1.80	0.298	0.236	1.493 184.6	138.2	0.97 1.26 1.672 124.2	95.2	0.97 1.56 1.880 86.7	68.3	0.52
	9	0.92	0.047	0.085	0.862 188.0	265.7	0.92 0.82 1.075 83.3	127.5	0.90 1.25 1.352 40.8	66.8	0.51
	10	1.38	0.243	0.528	2.109 54.7	108.5	0.98 1.12 2.330 38.1	78.0	0.98 1.37 2.583 27.1	57.6	0.56
	11	1.69	0.459	0.515	1.994 113.1	125.0	0.97 1.04 2.317 75.6	82.6	0.96 1.39 2.697 51.6	55.7	0.47
	12	1.28	0.157	0.191	1.300 168.5	168.0	0.94 0.92 1.591 81.8	87.4	0.92 1.40 1.957 41.2	47.5	0.42
	13	1.49	0.134	0.148	1.127 227.4	199.8	0.93 0.87 1.407 109.4	100.4	0.91 1.37 1.766 54.3	52.2	0.57
	14	1.64	0.349	0.246	1.487 203.4	143.1	0.98 1.10 1.644 150.9	106.1	0.98 1.35 1.818 112.0	78.7	0.59
	15	1.41	0.578	0.582	2.150 178.1	111.2	0.98 1.13 2.386 130.9	81.7	0.98 1.39 2.648 96.2	60.0	0.59
	16	1.51	0.266	1.201	3.195 18.5	71.4	0.95 1.15 3.728 10.3	42.5	0.94 1.58 4.391	6.1	27.4	0.36
	17	1.21	0.150	0.482	2.017 38.9	114.3	0.97 1.10 2.296 24.1	74.9	0.96 1.43 2.628 15.8	51.7	0.45

Table 2 Relative error between numerical and experimental terminal velocities. Only one view is used for the snowflake geometric description (either front, side or bottom).
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Table 3 Snowflake melting study. Experimental data.
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