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Abstract 

The occurrence of concentration and 
temperature gradients in saline 
microdroplets evaporating directly in air 
makes them unsuitable for nucleation studies 
where homogeneous composition is 
required. This can be addressed by 
immersing the droplet in oil under regulated 
humidity and reducing the volume to the 
picoliter range. However, the evaporation 
dynamics of such a system is not well 
understood. In this work, we present 
evaporation models applicable for arrays of 
sessile microdroplets with dissolved solute 
submerged in a thin layer of oil. Our model accounts for the variable diffusion distance due to the 
presence of the oil film separating the droplet and air, the diffusive interaction of neighboring 
droplets, as well as the variation of the solution density and water activity due to the evolving 
solute concentration. Our model shows excellent agreement with experimental data for both pure 
water and NaCl solution. With this model, we demonstrate that assuming a constant evaporation 
rate and neglecting the diffusive interactions can lead to severe inaccuracies in the measurement 
of droplet concentration particularly during nucleation experiments. Given the significance of 
droplet evaporation in a wide array of scientific and industrial applications, the models and insights 
presented herein would be of great value to many fields of interest.  

 

INTRODUCTION 

Droplet evaporation on surfaces is ubiquitous in nature and plays a key role in a wide range of 
industrial and scientific applications1 such as inkjet printing2, nanostructure fabrication3, DNA chip 
manufacturing4, crystallization studies5, biomedical diagnostics6, as well as virus spreading7 and 
testing8. However, this seemingly “simple” process is governed by the complex interplay of many 
physical phenomena such as evaporative mass transfer9, heat conduction and convection, 
thermal‐hydrodynamic instabilities, viscous and inertial flows, surface‐tension‐driven flows, 

contact‐line pinning and depinning, buoyancy effects, and other effects.10  

Given its complexity and practical significance, numerous experimental and theoretical 
investigations have been devoted to better understand the underlying physics of sessile droplet 
evaporation10.  Many of these studies dealt with the evaporation of either pure liquid droplets11-12 
or those with suspended colloidal particles which can lead to the so-called “coffee-ring effect”13-

14. However, the evaporation of droplets containing dissolved salts has been rarely investigated. 
For instance, Takistov et al.15, Shin et. al.16, Zhang et. al.17, and Zhong et. al.18 showed that the 
resulting patterns and morphologies of the dried salt droplets depend on the wettability of the 
surface, i.e. crystal rings would form on hydrophilic surfaces while single crystals at the center of 



the droplet are likely to form on hydrophobic surfaces. This suggests that surrounding salt droplets 
with hydrophobic liquid is a promising approach for studying nucleation inside the droplet without 
interaction with the hydrophobic liquid, i.e. homogeneous primary nucleation.   

In the context of crystallization studies, we need to ensure spatial homogeneity of droplet 
temperature and composition. However, in microliter droplets, it has been shown that various 
internal and Marangoni flows can lead to temperature and concentration gradients19-20. To 
address this, we reduce the droplet size down to picoliter range21 and we reduce the evaporation 
rate by immersing the droplet in oil under regulated humidity.22 The oil bath also serves as a 
thermal buffer which minimizes temperature gradients due to evaporation. To extract nucleation 
parameters from such experiments23, it is crucial to determine how the volume, and so 
supersaturation of microdroplets, evolve with time. In modeling the evaporation rate, Soulié et. 
al.24 reported that the droplet volume varies linearly with time within the early stages of 
evaporation. Given that the later stages of evaporation are crucial for the analysis of nucleation, 
we need a model that works even for the later stages. Since we are dealing with arrays of 
concentrated salt microdroplets immersed in a film of oil, there are additional phenomena that 
need to be accounted for. First, the variable diffusion distance due to the presence of oil film 
separating the microdroplet and air must be taken as an additional parameter. Second, the 
diffusive interactions due to the presence of neighboring microdroplets must be accounted for.25 
Third, the density of the microdroplet changes as water evaporates. Fourth, the equilibrium 
concentration at the interface varies with time because water activity decreases as solute 
concentration increases (Raoult’s law).26 In this work, we derive expressions describing the 
evaporation dynamics that account for these four additional phenomena based on well-
established mass transfer equations. We then validate our model with experimental data27. 
Moreover, we highlight that (1) surprisingly, different contact-line behavior such as constant 
contact angle (CCA), constant contact radius (CCR), and stick-slide (SS) leads to comparable 
evolution of microdroplet volume within the time of nucleation (2) failure to account for diffusive 
interactions between microdroplets nor the changes in colligative properties can lead to significant 
overestimation of their concentration. 

MODELING 

When a microdroplet is deposited onto a surface, it rapidly conforms to a quasi-equilibrium 
geometry with contact radius R and contact angle θ, which determine the droplet volume Vd 

(Figure 1). 

 

Figure 1 Geometry of the microdroplets (modeled as a spherical cap) in a linear array with contact 
radius R, contact angle θ immersed in oil with thickness h. The centers of neighboring 
microdroplets have a distance of L. 



 

 

1. Contact Line Behavior of Sessile Microdroplets 

As R is in the micrometer range, the droplet can be assumed to be a spherical cap (see section 
1 of SI, Figure A) due to the negligible gravitational effects (size is much less than the capillary 
length Lc). Thus, the droplet volume Vd can be calculated as28 

𝑉𝑑 = 𝜋𝑅3𝑔(𝜃) 
 
(1) 
 

𝑔(𝜃) =
sin 𝜃 (cos 𝜃 + 2)

3(1 + cos 𝜃)2
 

 
(2) 
 

In the extreme case of perfectly smooth chemically homogeneous surface, the droplet maintains 
an equilibrium contact angle, and this is referred to as constant contact angle (CCA) mode. 
Consequently, during evaporation, the volume decreases due to the continuous decrease in 
contact radius.28 In practice, the droplet can be pinned at some point due to surface roughness 
so the radius remains constant and the angle decreases due to evaporation. In the extreme case 
where the droplet remains pinned throughout its lifetime, we refer to this as the constant contact 
radius (CCR) mode. In this mode, the volume decreases due to the continuous decrease in 
contact angle. As experimental studies suggest,11 real microdroplets evaporate in some mixture 
of CCR and CCA modes.  One common observation is the occurrence of CCR mode at the 
beginning and once the contact angle decreases to a value less than the receding contact angle 
θr, it switches to CCA mode. This combination is known as the stick-slide (SS) mode.11 In this 
work, we consider all three cases (CCA, CCR, and SS models) in analyzing the experimental 
data. 

 

2. Evaporation Rate of Sessile Droplets 

In the case of diffusion-limited quasi-steady state evaporation of pure liquid droplet, Popov26 
reported an analytical expression for the mass transfer rate as follows : 

 
𝑑𝑚

𝑑𝑡
= −𝜋𝑅𝐷𝑀𝑤(𝑐𝑠 − 𝑐∞)𝑓(𝜃) 

 

(3) 
 

 𝑓(𝜃) =
sin 𝜃

1 + cos 𝜃
+ 4 ∫

1 + cosh(2𝜃𝛿)

sin(2𝜋𝛿)

∞

0

tanh[(𝜋 − 𝜃)𝛿] 𝑑𝛿 

 

(4) 
 

where m is the mass of the volatile species (in this case, water), D is the diffusivity of water in the 
medium, Mw is the molar mass of water, cs and c∞ are the concentration of water at saturation and 

at a point far away from the droplet respectively (in mol/m3), 𝑓(𝜃) is a shape factor, and 𝛿 is an 

arbitrary variable of integration.  

As mentioned earlier, since we are dealing with concentrated arrays of saline droplets immersed 
in a film of oil, there are four additional phenomena that need to be accounted for: (1) the influence 
of oil thickness on the evaporation rate (2) the lowering of evaporation rate due to the presence 
of neighboring droplets (3) the changes in droplet density as water evaporates, (4) the 
dependence of water activity on solute concentration. 



 

2.1) Considering the influence of oil thickness on the evaporation rate 

For a droplet submerged in an oil bath (R<<h), we assume an isothermal system so that 
temperature-dependent quantities such as solubility and diffusivity remain constant. The oil 
thickness is taken into consideration in our study by a factor (1+R/2h) introduced in equation 
Erreur ! Source du renvoi introuvable. (see section 2.1.1 of SI), leading to: 

𝑑𝑚

𝑑𝑡
= −𝜋𝑅𝐷𝑀𝑤(𝑐𝑠 − 𝑐∞) (1 +

𝑅

2ℎ
) 𝑓(𝜃) 

 

(5) 
 
 

We introduce the relative humidity RH, defined as water concentration divided by the 

concentration at saturation 𝑐𝑠 (in this case, the solubility of water in oil). Note that technically, 

relative humidity is a vapor phase property (i.e. ratio of partial pressures). Since the liquid phase 

concentrations should scale proportionally to the partial pressures above them (Henry’s Law), we 

can use RH to express the ratio of water concentrations in the liquid phase (i.e. oil) for simplicity.  

Then, we replace the transfer rate of m by the one of the volume V of pure water (see section 

2.1.2 of SI), leading to:  

 
𝑑𝑉

𝑑𝑡
= −𝜋𝑅𝐾(𝑅𝐻𝑠  − 𝑅𝐻∞ ) (1 +

𝑅

2ℎ
) 𝑓(𝜃)                                              (6) 

 

Where 𝐾 combines all the constant terms in 𝐾 =
 𝐷𝑀𝑤c𝑠

𝜌𝑤
 with 𝜌𝑤 the density of pure water, 𝑅𝐻𝑠 is 

the relative humidity at the droplet-oil interface (saturated). In the case of isolated droplets, we 
use the relative humidity at oil-air interface 𝑅𝐻∞  in equation 6.  

 

2.2) Considering the lowering of evaporation rate due to the presence of neighboring 
droplet 

To account for the presence of neighboring droplets, we use 𝑅𝐻𝑒𝑓𝑓 (effective relative humidity) 

instead of 𝑅𝐻∞  in the driving force. This is because in several studies,29-30 the presence of 

neighboring droplets slow down the evaporation process relative to isolated sessile droplets. This 

is due to the diffusion-mediated interactions, which is a function of the relative spacing between 

the individual droplets. The region between the two neighboring droplets experiences an 

enhanced local accumulation of water, which in turn reduces the driving force for evaporation. To 

quantify this behavior, Hatte et al.25 modeled the zone of enhanced vapor concentration as a half-

cylindrical region with cross-sectional area Ac. (see section 2.2 of SI). Accordingly, 𝐴𝑐 is a function 

of the distance between the centers of the droplets L, the initial contact radius 𝑅0 , the 

instantaneous contact radius R, the initial contact angle 𝜃0 and the instantaneous contact angle 

𝜃 as 

  𝐴𝑐 = 4𝑅0 (𝐿 −
𝑅

sin 𝜃
) √𝜋 (1 +

1

sin 𝜃0
) 

 

(7) 
 
 



Based on their analysis, 𝑅𝐻𝑒𝑓𝑓 can be approximated from 𝑅𝐻∞ using a correction factor 𝜖 

written as : 

𝜖 =
1 − 𝑅𝐻𝑒𝑓𝑓

1 − 𝑅𝐻∞
=

𝐴𝑐

𝐴𝑐 + 2𝜋𝑅0𝑓(𝜃0)𝐴𝐿̅𝑎

 

 

(8) 
 

where 𝑅0 and 𝑓(𝜃0) are the initial contact radius and shape factor respectively, A is an empirical 

parameter (in the order of 1), and 𝐿̅𝑎 is the average vapor accumulation length which depends on 
the initial geometry and on an empirical constant α as 

𝐿̅𝑎 =
𝛼𝑅0

sin 𝜃0
  

 

(9) 
 

Note that in the original derivation of Hatte et al.25, 𝛼 = 2𝐾𝛽 where 𝐾, 𝛽 are empirical parameters 
which they have shown to be 𝐴𝐾𝛽 ≈ 0.5 . Since A≈1, we combined these constants for simplicity 

giving a lumped parameter 𝛼 ≈ 1.  The analysis on interacting three-droplet system can then be 
generalized to multiple droplet arrays by virtue of symmetry.25 

Finally, we derive the following expression for the rate of change in droplet volume:  

𝑑𝑉

𝑑𝑡
= −𝜋𝑅𝐾(𝑅𝐻𝑠 − 𝑅𝐻𝑒𝑓𝑓) (1 +

𝑅

2ℎ
) 𝑓(𝜃)   

 

(10) 
 

 

2.3) Considering the changes in droplet density as water evaporates 

To account for changes in solution density as a function of concentration, we used a linear function 
where ρw is the density of pure water, S is the supersaturation ratio (S = c/ceq, where c is the 
concentration of salt in the solution and ceq its solubility), ρ is the density of salt solution at S and 
b1 is a coefficient fitted from experimental data. The experimental data used in these fittings are 
shown in Figure B of SI (see section 2.3.1 of SI).  

𝜌 = 𝜌𝑤(1 + 𝑏1𝑆) 

 

(11) 
 

Using this relation of , we express the droplet volume Vd taking into account the presence of salt 

and water and we replace it in equation (1) to determine the droplet radius R in terms of S (see 

section 2.3.2 of SI): 

 

𝑅 = (
𝑉𝑑

𝜋𝑔(𝜃)
)

1
3

= [
𝑉(1 + 𝑐𝑒𝑞𝑀salt𝑆)

(1 + 𝑏1𝑆)𝜋 ⋅ 𝑔(𝜃)
]

1
3

 

 

(12) 
 

 

where Msalt is salt molar mass. Then, this expression of R is used in equation (10) to determine 

the rate of change in droplet volume. 

 

 

2.4) Considering the dependence of water activity on solute concentration 



To account for the lowering of water activity as concentration increases, we model the saturated 
relative humidity 𝑅𝐻𝑠 as 

𝑅𝐻𝑠 = 𝑅𝐻0(1 − 𝑏2𝑆) 

 

(13) 
 

where RH0 is the relative humidity of air that is in an equilibrium state with pure water (equal to 
1), b2 is the coefficient of vapor pressure lowering fitted from experimental data31 (see section 2.4 
of SI).  

 

3. Models for Contact Line Behavior 

We can incorporate the contact-line behavior by modeling the behavior of the contact angle θ, 

using the time derivative of contact angle as a function of time. The simplest case is the constant 

contact angle mode (CCA) in which 

𝑑𝜃

𝑑𝑡
= 0 

 

(14) 
 

For constant contact radius (CCR) mode, the change in contact angle with time can be obtained 
by taking the time derivative of V = f(θ,R) while treating R as constant (see section 1 Figure A of 
SI). This leads to (see section 3.2. of SI) 

𝑑𝜃

𝑑𝑡
=

1

𝑉

𝑑𝑉

𝑑𝑡
(1 + cos 𝜃)2𝑔(𝜃) 

 

(15) 
 

Therefore, the time evolution of V and θ can be obtained from the numerical solution of equation 
Erreur ! Source du renvoi introuvable. through Erreur ! Source du renvoi introuvable. solved 
simultaneously with either equation Erreur ! Source du renvoi introuvable. for CCA and 
equation Erreur ! Source du renvoi introuvable. for CCR. 

For stick-slide mode (SS), the evaporation follows CCR mode, that is, the initial contact angle 𝜃0 

decreases until it reaches the receding contact angle 𝜃𝑟 where it suddenly shifts to the CCA 
model28. The full SS model can be written as (see section 3.3 of SI) 

𝑑𝜃

𝑑𝑡
= {

  
1

𝑉

𝑑𝑉

𝑑𝑡
(1 + cos 𝜃)2𝑔(𝜃) for 𝜃𝑟 ≤ 𝜃 ≤ 𝜃0 

 0 for 0  < 𝜃 < 𝜃𝑟

 
 
(16) 

 
 

For the numerical solution of SS, the final condition of the CCR part is used as the initial condition 

of the CCA part.  

 

   

MATERIALS AND METHODS 

To determine the applicability of our models, we compared the experimental results of our 

previous works to the numerical solution of equations (5) through (13) coupled with equations 

(14), (15), and (16)   for CCA, CCR, and SS respectively. This gives the time evolution of droplet 
volume and contact angle which can then be used to calculate the contact radius and droplet 



height.  For pure water droplets we used the data of Rodriguez-Ruiz et. al27 which tracked the 
evolution of contact radius and droplet height from a series of lateral images of droplets acquired 
using a side-view microscope (see section 4 of SI, Table S1). With simple trigonometry, the 
contact radius and droplet height allow calculation of contact angle and droplet volume, assuming 
that microdroplets are spherical caps (see section 1 of SI, Figure A). We note that the use of side-
view microscope gives direct access to geometric parameters of the microdroplets. However, it 
only permits measurement of 3-4 droplets at a time which is inefficient for nucleation experiments. 

For saline droplets, we generated arrays of sessile NaCl microdroplets on PMMA-coated glass 

immersed in a thin film of PDMS oil using the method described by Grossier et al.21 The 

experimental setup and additional details are shown in.22 Properties of products are described in 

Table S2 of SI (see section 4 of SI). To validate our models for saline droplets, we used an 

approach based on the analysis of gray-level pixel standard deviation23 of axial-view droplet 

images (see section 5 of SI, Figure D). For 190 independent microdroplets, we measure three 

characteristic times namely the saturation time (droplet is saturated), matching time (refractive 

index of droplet equals that of the oil), and nucleation time. Although the use of the bottom-view 

microscope only gives the droplet volume and concentration at some specific time points, it allows 

simultaneous measurement of hundreds of droplets, which is useful for studying the stochastic 

nature of nucleation.  

 

RESULTS AND DISCUSSION 

1. Predictions of three models (CCR, CCA, and SS) for Pure Droplets   

For water droplets with no dissolved solutes, we compared the experimental geometric 

parameters with the predictions of three models (CCR, CCA, and SS) in Figure 2.  

The experimental points in Figure 2a suggests that the normalized contact radius R/R0 is constant 

until a certain time of pinning tp, after which, R/R0 decreases. Meanwhile, Figure 2b shows that 

the contact angle θ decreases until this threshold at tp. This behavior indicates that the system 

undergoes a stick-slide (SS) mode, i.e. CCR followed by CCA.  In our system, we found that the 

time of pinning tp corresponds to a contact angle of around 86° (Figure 2b). Thus we assume a 

receding contact angle of θr=86° for our system and we use this value for the stick-slide (SS) 

model in equation (15). Upon comparing the experimental points with the model predictions, it is 

clear that the stick-slide (SS) model well captures the evolution of the microdroplet geometric 

parameters (i.e. contact angle, contact radius, height, and volume). Note that although the 

observed deviations in contact angle and droplet height (Figure 2b,c) could be due to instrumental 

limitations, the SS model in itself is an idealization. In reality, the radius and contact angle can 

evolve simultaneously which is more difficult to model. Interestingly, regardless of the contact-line 

behavior (CCR, CCA, SS), the droplet volume evolves almost identically (Figure 2d). This is in 

agreement with Stauber et. al.12 who showed that on strongly hydrophobic surfaces, the volume 

evolution of the two extreme modes CCA and CCR tend to converge for contact angles 

90o<θ<180o.  

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 Model predictions of three contact line behavior models (CCR, CCA, SS) in comparison 
with experimental data for pure water droplets by Rodriguez-Ruiz et. al.27 Time evolution of (a) 
normalized contact radius, (b) Contact angle of the microdroplets with the substrate (c) normalized 
microdroplet height and (d) Volume contraction. Error bars represent standard errors based on 3 
replicates and tp time of pinning. 
 

To visualize the evolution of droplet shape, we used the numerical solution in Figure 2 to simulate 

the geometry of the droplet at discrete time points. In Figure 3, we see that the final droplet shape 

is highly dependent on the contact-line behavior.  

 

Figure 3 Predicted evolution of microdroplet shape (pure water) for CCR, CCA, and SS models 
at discrete time points (every 1 hour). X,Y axis (lengths) are in terms of R/R0. 



Note that for the prediction of geometric parameters (R/R0, θ, H/H0), the SS model is the most 
suitable. However, in the context of crystallization studies, the most important parameter to obtain 
from the evaporation modeling is the evolution of droplet volume on which the solution 
concentration depends. Thus, regardless of the droplet shape, the excellent agreement of the 
CCR, CCA, and SS in terms of droplet volume indicates that we can just choose one of these 
three contact-line behavior models to calculate the droplet concentration. In the case of saline 
droplets, we currently do not have an experimental value of the receding angle θr needed in SS 
model. Consequently, we use CCA to describe the evaporation rate as this is the simplest case 
mathematically.  

2. The CCA model for Saline Microdroplets 

Using CCA model, we thus extend our analysis to microdroplets containing dissolved salt (NaCl). 
As mentioned, this is based on bottom-view images from an inverted optical microscope which 
allow us to measure experimental points corresponding to the time at which the solution is 
saturated (S=1) and the time at which the refractive index of the droplet matches that of the oil 
(S=1.395) details are shown in reference22 and Table S3, section 6 of SI. In Figure 4, we see that 
the CCA model is able to predict the two experimental points with excellent accuracy. Recall that 
in our CCA model derivation, we incorporated four important modifications to the well-established 
mass transfer equations. Thus, it would be interesting to see how each model modification affect 
the model predictions. In Figure 4, we see that neglecting the oil height correction can slightly 
overestimate the predicted volume. This is because without the oil height parameter, the droplet 
is considered to evaporate in an infinite medium of oil thereby hindering evaporation. Without 
density correction, the evaporation rate is significantly misestimated because the volume 
occupied by the NaCl in the droplet is not accounted which then affects the surface area to volume 
ratio. Remarkably, failure to correct for the relative humidity (due to the presence of neighboring 
droplet) and the changes in water activity (Raoult’s law) led to a drastic overestimation of 
evaporation rate.  This is because both cases directly affect the driving force for evaporation. The 
relationship between the effective relative humidity RHeff and the prevailing humidity above the oil 
RH∞ is shown in Figure E in section 6.1 of SI. Moreover, notice that neglecting the effect of 
colligative properties results in a linear decrease of droplet volume which is consistent with what 
is observed in pure droplets.  

Figure 4 Model predictions (CCA) for saline microdroplets (V0 = 67 pL and S0 = 0.88) in terms of 
(a) droplet volume and (b) supersaturation ratio in comparison with experimental data. The error 
bars at saturation time (S=1) and matching time (S=1.395) represent the standard deviation of 
the distribution of data points (190 droplets).  

(a) 

 

(b) 

 



To verify whether the saline droplets have a homogeneous composition throughout the 
evaporation process, we plotted the Peclet number as a function of time (see Section 6.2. of SI 
and Figure F) and we found that the maximum Pe is in the order of 10-4 suggesting a uniform 
droplet concentration. 

In the context of crystallization studies, droplets are not expected to nucleate at the same time 
even though they have identical concentration due to the stochastic nature of nucleation. Our 
results demonstrate this with nucleation events spanning from 800 s to 1050 s (the grey area in 
Figure 4b). In principle, these nucleation times can be used to estimate the interfacial surface 
energy of NaCl-water if we know the supersaturation ratio at nucleation Sn. To do this, several 
reports assumed a linear evaporation rate (neglecting changes in water activity) to calculate the 
droplet concentration as a function of time32-34. Here we highlight that this approximation can lead 
to inaccurate values of droplet concentration particularly in later stages where nucleation occurs. 
For instance, using our model, the supersaturation at nucleation Sn ranges from S = 1.50 to 1.75 
(Figure 4b). This is consistent with the results of Desarnaud et. al.35 who showed a metastability 
limit of S = 1.60 for NaCl-water system using microcapillary experiments. However, if we assume 
a constant evaporation rate by extrapolating t = 0 and t = saturation time, the predicted range of 
Sn would be up to 40% higher (ranging from 1.75 to 2.50). This discrepancy would have a huge 
consequence particularly in crystallization studies. To illustrate this, we plot the cumulative 
probability distribution as a function of supersaturation at nucleation Sn in Figure 5. The constant 
evaporation rate assumption clearly overestimates Sn resulting in unreasonably large values of 
supersaturation. Furthermore, if diffusive interactions and changes in water activity were not 
accounted for, much larger deviations could be obtained. All of these can lead to inaccurate values 
of nucleation kinetic parameters. Thus, we highlight the need for accurate modeling of evaporation 
rate of sessile droplets in the context of nucleation studies.  

 

Figure 5 Cumulative probability distribution of supersaturation ratio at nucleation Sn based on two 
evaporation models.   

 

CONCLUSION 

In this work, we studied the evaporation dynamics of sessile saline picoliter droplets in oil until 
crystallization. Starting from well-established mass transfer equations for pure sessile droplets 
evaporating in air, we derived new expressions applicable for droplets with dissolved solute 
submerged in a thin layer of oil. Our model accounts for the additional complexity due to (i) 



variable diffusion distance due to the presence of oil (ii) diffusive interactions due to the presence 
of neighboring droplets (iii) density change as concentration increases (iv) water activity change 
as a function of concentration. By comparing our model predictions to experimental data, we 
showed that different contact-line behavior (CCR, CCA, or SS) results in almost identical evolution 
of droplet volume especially within the time scale relevant to crystallization studies. With this 
information, we analyzed the evaporation rate of saline droplets using the CCA model and using 
NaCl-water as a model system, we demonstrated for the first time that assuming a constant 
evaporation rate as well as neglecting the diffusive interactions between droplets can lead to 
severe discrepancies in the measurement of droplet concentration particularly during nucleation. 
This indicates that crystallization studies in literature that had used this assumption may be 
subject to large errors (In the example presented here, 40%). With our model, we can accurately 
determine the time evolution of droplet concentration which is important in quantifying 
crystallization kinetics. Moreover, given the importance of evaporation dynamics in a wide array 
of scientific and practical applications, our models and new insights presented herein would be of 
great value to many fields of interest. 
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1. Contact Line Behavior of Sessile Microdroplets 

When a droplet is deposited onto a surface, it rapidly conforms to a quasi-equilibrium 

geometry with contact radius R, and contact angle θ, which determine the droplet volume 

Vd . The shape of the droplet is either spherical or flattened, depending on the value of R 

compared to the capillary length Lc which characterizes the ratio of the interfacial energy 

between the droplet and the medium γ(droplet/medium) to gravitational effects. Lc can be 

calculated as   

 

                      𝐿𝑐 = √
𝛾(droplet/𝑚𝑒𝑑𝑖𝑢𝑚)

∆𝜌 × 𝑔
 

 

(S1) 
 

 

where Δρ is the density difference between the solution and the surrounding medium and 

g is the gravitational acceleration. In our case, the droplet is either pure water or saline 

solution and the medium is PDMS oil.  If the droplet size is much less than Lc, then the 

droplet assumes a spherical cap geometry. For the PDMS-water system1, the capillary 

length is in the millimeter range. Since R is in the micrometer range, (much smaller than 

Lc), the gravity is negligible compared to the interfacial energy between droplet and oil 

and so the droplets can be assumed to be a spherical cap. Thus, the droplet volume Vd 

can be calculated as2  

 

                                                    𝑉𝑑 = 𝜋𝑅3𝑔(𝜃) with 𝑔(𝜃) =
sin 𝜃(cos 𝜃+2)

3(1+cos 𝜃)2  

 
(S2) 

 

 

In the following section, we derive expressions for the diffusion-controlled evaporation of 

saline microdroplet with contact radius R and constant contact angle θ immersed in a 

PDMS oil bath with thickness h. The different cases (θ>90o, θ=90o, θ<90o) are shown in  

Figure A. Recall that we define r as the radial distance from the center of the equivalent 



spherical cap at an angle of 𝜙 with the equatorial line.  

 
Figure A. Illustration of microdroplet showing the equivalent spherical cap at different 

values of contact angle θ. 

 

For simplicity, we will first consider the case where θ=90o (hemispherical droplet) which 

exhibits uniform evaporation flux over the surface area. Later on, we will incorporate a 

widely-used shape factor3-4 denoted as f(θ) to obtain a general expression for any value 

of θ.   

 

2. Evaporation Rate of Sessile Droplets 

2.1 Influence of oil thickness on the evaporation rate 

2.1.1. Introduction of the factor (1+R/2h) (leading to equation 5 in the main text) 

Since the microdroplet is submerged in an oil bath (R<<h), we assume an isothermal 

system so that temperature-dependent quantities such as solubility and diffusivity remain 

constant. With the continuity equation in spherical coordinates, the molar flux of water 

vapor N(r) as a function of radial distance r is 

 

                      
1

𝑟2

𝑑

𝑑𝑟
(𝑟2𝑁) = 0 ⇒ 𝑁(𝑟) =

𝐶1

𝑟2
 (S3) 

 

 

 

where C1 is a constant of integration that will be evaluated later. Assuming negligible 

convective transport, Fick’s equation can be simplified as 

                  𝑁 = −𝐷
𝑑𝑐

𝑑𝑟
 (S4) 

 

 

 

where D is the diffusivity of water in oil and c is the molar concentration of water. 

Combining equations (S3)  and (S4), 

 



                 
𝑑𝑐

𝑑𝑟
= −

𝐶1

𝐷
(

1

𝑟2
) (S5) 

 

 

 

 

Since the diffusion distance varies at any angle (with respect to the horizontal), the radial 

distance from the droplet center to the oil-air interface is r = 
ℎ

sin 𝜙
.  To facilitate integration, 

we express the boundary conditions in terms of R. We can write  
ℎ

sin 𝜙
= 𝑅 +

ℎ−𝑅 sin 𝜙 

sin 𝜙
.  

Given that ℎ ≫ 𝑅 sin 𝜙, we can approximate 
ℎ

sin 𝜙
≈ 𝑅 +

ℎ

sin 𝜙
. Integrating equation (S5) 

with boundary conditions c(R) = cs and 𝑐 (𝑅 +
ℎ

sin 𝜙
) = 𝑐∞,  we obtain 

 

 ∫ 𝑑𝑐
𝑐∞

𝑐𝑠

= −
𝐶1

𝐷
∫ (

1

𝑟2
) 𝑑𝑟

𝑟=𝑅+
ℎ

sin 𝜙

𝑟=𝑅

⇒ 𝐶1 = 𝐷(𝑐∞ − 𝑐𝑠) (
1

𝑅
−

1

𝑅 +
ℎ

sin 𝜙

)

−1

 (S6) 

 

Combining equations (S3), and (S6), we can write the molar flux as 

                   𝑁(𝑟, 𝜙) = 𝐷 (𝑐∞ − 𝑐𝑠) (
1

𝑅
−

1

𝑅 +
ℎ

sin 𝜙

)

−1

(
1

𝑟2
) (S7) 

 

 

 

 

Now, we can express the rate of change in droplet volume as the mass flux of water vapor 

integrated over the droplet surface area A. 

              
𝑑𝑚

𝑑𝑡
= ∫ 𝑀𝑤𝑁(𝑟, 𝜙)𝑑𝐴

𝐴

 (S8) 

 

 

 

The differential surface area dA can be written as a function of the differential angle 𝑑𝜙 

as 

                    𝑑𝐴 = (2𝜋𝑟 cos 𝜙)(𝑟𝑑𝜙) (S9) 

 

 

 

Combining equations (S7), (S8) and (S9) and integrating 𝜙 from 0 to π/2 (because we 

consider the case of hemispherical droplet where θ = π/2), we get  

 

𝑑𝑚

𝑑𝑡
= ∫ 𝑀𝑤𝐷 (𝑐∞ − 𝑐𝑠) (

1

𝑅
−

1

𝑅 +
ℎ

sin 𝜙

)

−1

(
1

𝑟2
) (2𝜋𝑟 cos 𝜙)(𝑟𝑑𝜙)

𝜋
2

0

 (S10) 



𝑑𝑚

𝑑𝑡
= −(2𝜋𝑅)𝐷𝑀𝑤 (𝑐𝑠 − 𝑐∞) (1 +

𝑅

2ℎ
) (S11) 

 

 

Note that this is similar to that of Popov5 for pure droplets directly evaporating in air. By 

comparison, if we substitute θ = π/2 in the shape factor expression (equation 4 in the 

main text), we obtain f(θ) = 2 (via numerical integration), i.e. 

 

𝑓 (
𝜋

2
) =

sin (
𝜋
2) 

1 + cos (
𝜋
2)

+ 4 ∫
1 + cosh(2(0.5𝜋)𝜀)

sin(2𝜋𝜀)

∞

0

tanh [(𝜋 −
𝜋

2
) 𝜀] 𝑑𝜀 = 2 (S12) 

 

 

 

 

Furthermore, note that (1 +
𝑅

2ℎ
) ≈ 1  since R<<h. Thus, we incorporate the shape factor 

f(θ) for any contact angle θ as  

 

                
𝑑𝑚

𝑑𝑡
= −𝜋𝑅𝐷𝑀𝑤 (𝑐𝑠 − 𝑐∞) (1 +

𝑅

2ℎ
) 𝑓(𝜃) (S13) 

 

 

 

2.1.2. Introduction of the relative humidity (leading to equation 6 in the main text) 

 

The relative humidity RH is defined as water vapor concentration divided by the 

concentration at saturation 𝑐𝑠 (in this case, the solubility of water in oil). Thus, we can 

write 

                                                               (𝑐𝑠 − 𝑐∞) = 𝑐𝑠 (𝑅𝐻𝑠 − 𝑅𝐻∞) (S14) 
 

 

where 𝑅𝐻𝑠 and 𝑅𝐻∞  are the relative humidity at the droplet-oil interface (saturated) and 

oil-air interface, respectively. For pure water droplets, 𝑅𝐻𝑠 is always equal to 1. As a result, 

equation (S13) can be written as 

                       
𝑑𝑚

𝑑𝑡
= −𝜋𝑅𝐷𝑀𝑤𝑐𝑠 (𝑅𝐻𝑠 − 𝑅𝐻∞) (1 +

𝑅

2ℎ
) 𝑓(𝜃) (S15) 

 

 

 

 

Note that m is the mass of the volatile component (in this case, water). Using the definition 

of density, we can write m = 𝜌𝑤𝑉 where 𝜌𝑤  and V are the density and volume of pure 

water respectively. Since 𝜌𝑤 is constant, 
𝑑𝑚

𝑑𝑡
= 𝜌𝑤

𝑑𝑉

𝑑𝑡
 . We can then combine the constant 

terms as 𝐾 =
 𝐷𝑀𝑤c𝑠

𝜌𝑤
. Thus, equation (S15) can be  re-written as 



                      
𝑑𝑉

𝑑𝑡
= −𝜋𝑅𝐾 (𝑅𝐻𝑠  − 𝑅𝐻∞ ) (1 +

𝑅

2ℎ
) 𝑓(𝜃) (S16) 

 

 

 

Note that this is valid for isolated droplets (i.e., no neighbors). 

 

2.2. Considering the presence of neighboring droplet 

Several studies,6-7 have shown that the presence of neighboring droplets slow down the 

evaporation process relative to isolated sessile droplets due to the contribution of the 

neighboring droplets to the local relative humidity. To account for this behavior, we adapt 

the theoretical model of Hatte et al.8 In simple terms, the effective relative humidity 𝑅𝐻𝑒𝑓𝑓 

is approximated from the prevailing relative humidity at the oil-air interface 𝑅𝐻∞ using a 

correction factor 𝜖 defined as 

 

                       𝜖 =
1 − 𝑅𝐻𝑒𝑓𝑓

1 − 𝑅𝐻∞
=

𝐴𝑐

2𝜋𝑅0𝑓(𝜃0)𝐴𝐿̅𝑎 + 𝐴𝑐

 (S17) 
 

 

 

where 𝐴𝑐 is the surface area of the vapor field, 𝑅0 and 𝑓(𝜃0) are the initial contact radius 

and shape factor respectively, and 𝐿̅𝑎 is the average vapor accumulation length (Refer to 

equation 8.8 of Hatte et al.8).  Accordingly, 𝐴𝑐 is the cross-sectional area  of the half-

cylindrical region surrounding the microdroplets with enhanced local vapor concentration. 

This is a function of the distance between the centers of the droplets L, the initial contact 

radius 𝑅0, the instantaneous contact radius R, the initial contact angle 𝜃0 and the 

instantaneous contact angle 𝜃 as 

 

                   𝐴𝑐 = 4𝑅0 (𝐿 −
𝑅

sin 𝜃
) √𝜋 (1 +

1

sin 𝜃0
) (S18) 

 

 

 

                 𝐿̅𝑎 =
𝛼𝑅0

sin 𝜃0
   (S19) 

 

 

 

where 𝛼 is a constant. Note that in the original derivation of Hatte et al.8, we substituted 

𝜆 = 2𝐿 − 𝐷𝑒 (see their Figure 6a) and 𝐷𝑒 = 2𝑅/ sin 𝜃  (spherical cap geometry). We also 

let 𝛼 = 2𝐾𝛽 where 𝐾 and 𝛽 are empirical parameters which have been shown to follow 

𝐾𝛽 ≈ 0.5. For simplicity, we combined this giving a single parameter (𝛼 ≈ 1).   

Thus, for droplets with neighbors, we replace 𝑅𝐻∞ by 𝑅𝐻𝑒𝑓𝑓 in equation (S16) which 

leads to 



                        
𝑑𝑉

𝑑𝑡
= −𝜋𝑅𝐾(𝑅𝐻𝑠 − 𝑅𝐻𝑒𝑓𝑓) (1 +

𝑅

2ℎ
) 𝑓(𝜃) (S20) 

 

 

 

 

2.3 Considering the changes in droplet density as water evaporates 
 

2.3.1. Determination of the density of salt solution 

Note that we defined V as the volume of pure water (the volatile component) and R as 

the radius of the entire droplet.  However, the total volume of the droplet Vd is a function 

of the volume occupied by both water and salt ions.  To relate the volume of pure water 

V to the droplet volume Vd, we employ experimental data on the solution density change 

as a function of NaCl supersaturation ratio (S = c/ceq, where c is the concentration of salt 

in the solution and ceq its solubility) as shown in Figure B. We then use a simple linear 

function with b1 (slope) as the dimensionless coefficient of density increase relating the 

density of pure water ρw and the density ρ at any S.    

                        𝜌 = 𝜌𝑤(1 + 𝑏1𝑆) (S21) 

 

 

 

2.3.2. Determination of droplet radius 

Given that the droplet mass is the sum of water mass and NaCl mass (md = mw + mNaCl ), 

we can write  

                    
𝑚𝑤 + 𝑚NaCl

𝑉𝑑
=

𝑚𝑤

𝑉
(1 + 𝑏1𝑆) ⟹

1 + (
𝑚NaCl

𝑚𝑤
)

𝑉𝑑
=

1 + 𝑏1𝑆

𝑉
 (S22) 

 

 

 

 

Figure B. Variation of aqueous NaCl density as a function of supersaturation ratio.9 The 



regression line is y = 998(1+0.205x) with R2 = 0.9984. 

 

We can express 𝑚NaCl/𝑚𝑤in terms of S using the solubility of NaCl in water ceq  (in mol/kg 

water) and NaCl molar mass MNaCl (kg/mol)  

                           
𝑚NaCl

𝑚𝑤
= 𝑐𝑒𝑞𝑀NaCl𝑆 (S23) 

 

 

 

Thus, the droplet volume Vd is related to the volume of pure water V as 

                             𝑉𝑑 = (
1 + 𝑐𝑒𝑞𝑀NaCl𝑆

1 + 𝑏1𝑆
) 𝑉 (S24) 

 

 

Observe that for pure droplet (S=0), Vd = V.  We can now express the droplet radius R in 

terms of V using the equation for the volume of spherical cap along with the density 

changes. 

𝑅 = (
𝑉𝑑

𝜋𝑔(𝜃)
)

1
3

= [
𝑉(1 + 𝑐𝑒𝑞𝑀NaCl𝑆)

(1 + 𝑏1𝑆)𝜋 ⋅ 𝑔(𝜃)
]

1
3

with 𝑔(𝜃) =
sin 𝜃 (cos 𝜃 + 2)

3(1 + cos 𝜃)2
 (S25) 

 

 

 

This expression for R will be used in equation (S20).  

 

2.4. Dependence of water activity on solute concentration 

To account for the change in water activity due to the presence of salt, we express the 

decrease in water activity as a linear function with slope b2 fitted from experimental data 

of An et al, as shown in Figure C.10  

 

Figure C. Variation of water activity (numerically equal to the equilibrium relative humidity, 

RHs) as a function of supersaturation ratio. The data were taken from Table 6 of An et 

al.10  



 

Thus, in equation (S20), the saturation relative humidity RHs is expressed as 

                                                                              𝑅𝐻𝑠 = 1 − 𝑏2𝑆 (S26) 

 

 

 

where b2 is the coefficient of vapor pressure lowering fitted from experimental data of An 

et al.10 Since the total mass of the salt is constant, we can write 𝑆0𝑉0 = 𝑆𝑉 so all equations 

containing S can be expressed in terms of V.  

 

3. Models for Contact Line Behavior 

The contact line behavior (how the contact radius and contact angle evolve with time) 

generally depends on the nature of the surface where the sessile microdroplet is situated. 

In the extreme case of perfectly smooth chemically homogeneous surface, the droplet 

maintains an equilibrium contact angle, and this is referred to as constant contact angle 

(CCA) mode. Consequently, the volume decreases due to the continuous decrease in 

contact radius.2 In practice, the droplet will be pinned due to surface roughness so the 

radius remains constant at some point. In the extreme case where the droplet remains 

pinned throughout its lifetime, we refer to this as the constant contact radius (CCR) mode. 

In this mode, the volume decreases due to the continuous decrease in contact angle. As 

experimental studies suggest,11 real droplets evaporate in some mixture of CCR and CCA 

modes.  One common observation is the occurrence of CCR mode at the beginning and 

once the contact angle decreases to a value less than the receding contact angle θr, it 

switches to CCA mode. This combination is known as the stick-slide (SS) mode.11 In this 

work, we consider all three cases (CCA, CCR, and SS models) in analyzing the 

experimental data. 
 

Mathematically, we can then incorporate the contact-line behavior by modeling the 

behavior of the contact angle θ.  

 

3.1. For constant contact angle mode (CCA) 

For constant contact angle mode (CCA), the change in contact angle with time is simply, 

                         
𝑑𝜃

𝑑𝑡
= 0 (S27) 

 

 

3.2. For constant contact radius mode (CCR) 

For constant contact radius mode (CCR), the change in contact angle with time can be 

obtained by taking the derivative of V = f(θ,R) where R is constant (see Figure A) 

                         𝑉 = 𝜋𝑅3𝑔(𝜃) ⇒
𝑑𝑉

𝑑𝑡
= 𝜋𝑅3

𝑑

𝑑𝑡
[𝑔(𝜃)] with 𝑔(𝜃) =

sin 𝜃 (cos 𝜃 + 2)

3(1 + cos 𝜃)2
 (S28) 

 

 

 



                             
𝑑

𝑑𝑡
[𝑔(𝜃)] =

𝑑

𝑑𝑡
(

sin 𝜃 (cos 𝜃 + 2)

3(1 + cos 𝜃)2
) =

1

(1 + cos 𝜃)2

𝑑𝜃

𝑑𝑡
 (S29) 

 

 

 

Combining equations (S28) and (S29), we can obtain the change in contact angle as 

                         
𝑑𝜃

𝑑𝑡
=

1

𝑉

𝑑𝑉

𝑑𝑡
(1 + cos 𝜃)2𝑔(𝜃) (S30) 

 

 

3.3. For stick-slide mode (SS) 

For stick-slide mode (SS), the evaporation follows CCR mode, that is, the initial contact 
angle 𝜃0 decreases until it reaches the receding contact angle 𝜃𝑟 where it suddenly shifts 
to the CCA model2. Then, the full SS model can be written as   

 

                         
𝑑𝜃

𝑑𝑡
= {   

1

𝑉

𝑑𝑉

𝑑𝑡
(1 + cos 𝜃)2𝑔(𝜃) for 𝜃𝑟 ≤ 𝜃 ≤ 𝜃0 

 0 for 0  < 𝜃 < 𝜃𝑟

 (S31) 

 

 

 

4. Parameters and properties 

Table S1 Numerical values used as input in the evaporation model of pure water droplets 

Experimental Parameter Symbol Value Unit 

initial radius R0 25.7 µm 

initial contact angle θ0 110 degrees 

initial volume V0 64.6 pL 

receding contact angle (for SS) θr 86 degrees 

oil height h 0.40 mm 

ambient temperature T 298 K 

relative humidity at evaporation step RH∞ 60 % 

distance between droplet centers L 65 µm 

Literature Data    

solubility of water in paraffin oil12 cs 2.95 mol/m3 

diffusivity of water in paraffin oil13 D 8.5×10-10 m2/s 

density of pure water9 ρw 997 kg/m3 

 

Table S2. Properties of products 

Product Supplier Properties 

Sodium chloride, NaCl R.P Normapur ® Purity = 99.5% 
Refractive index = 1.5442 

Polymethylmethacrylate, 
PMMA  

ALLRESIST GmbH Molecular weight= 950,000 g/mol  
Refractive index = 1.395 

Polydimethylsiloxane, 
PDMS oil 

Alfa Aesar Molecular weight = 1250 g/mol 
Viscosity = 10 cSt 
Refractive index = 1.3990 

Ultrapure water via Milli-Q Purifier resistivity = 18.2 MΩ·cm 
TOC value < 5 ppb 



 

5. Measurement of Characteristic Time Points in Saline Droplets  

To validate our models for saline droplets, we generated arrays of sessile saline microdroplets on 

PMMA-coated glass immersed in a thin film of PDMS oil using the method described by Grossier 

et al.14  

 

Figure D. Image of a typical microdroplet array (scale bar = 200 µm) 

On 190 independent microdroplets, we measured three characteristic times namely the saturation 

time (time when the microdroplet is saturated, S=1), the matching time (time when the refractive 

index of the droplet matches that of the PDMS oil, S = 1.395) and the nucleation time. Our 

approach is to use image analysis to determine these three points as demonstrated in our 

previous work [Faraday 2021]. Briefly, the standard deviation of the gray-level pixel histogram 

(denoted as σ, a function of refractive index difference) corresponding to the region surrounding 

the microdroplet image (axial view) is used as an indicator of droplet concentration.  

6. The CCA model for Saline Microdroplets 

Table S3 Numerical values used as input in the CCA evaporation model of saline droplets 

Experimental Parameter Symbol Value  

initial radius R0 26.1 µm 

contact angle  θ 110 degrees 

initial volume V0 66.93 pL 

radius at saturation Rs 25 µm 

oil height h 0.40 mm 

ambient temperature T 298 K 

rel. humidity at evaporation step RH∞ 10 % 

distance between droplet centers L 100 µm 

Literature Data    

solubility of water in PDMS oil15 cs 30 mol/m3 

diffusivity of water in PDMS oil16 D 8.5×10-10 m2/s 

coefficient of density change9 b1 0.205 - 

coefficient of water activity lowering10 b2 0.225 - 

solubility of NaCl in water17 ceq 6.14 mol/kg 

molar mass of NaCl MNaCl 0.0584 kg/mol 

diffusivity of NaCl in water18 Di 1.47×10-9 m2/s 

density of pure water9 ρw 997 kg/m3 

 

 

 



6.1. The effective relative humidity RHeff 

 

Figure E. Evolution of the effective relative humidity RHeff for CCA and CCR against the humidity 

above the oil RH∞. RHeff decreases and then reaches equilibrium as the droplets become very 

small.  

  

6.2. Homogeneity of Droplet Concentration 

In the equations (S31), we approximate that the temperature and concentration are essentially 
homogeneous. The homogeneity of droplet composition is characterized by Peclet number Pe, 
which is the ratio of convective mass transfer to diffusive mass transfer19. It is expressed as20 

𝑃𝑒 =
2𝑅𝜅

𝐷𝑖
 

 
(32) 
 

Where 𝜅 is the evaporation flux (volume loss dV/dt per unit area A), R is the droplet radius and 

Di is the diffusion coefficient of the solute in the droplet.  If Pe < 1, the diffusion rate of the solute 

is fast enough to avoid a considerable enrichment at the receding surface and thus the system 

maintains a homogeneous composition. In our experiments, Pe is in the order of 10-4 (Figure F), 

thus we can treat the microdroplets as homogeneous solution (with negligible concentration 

gradient).   

 



 

Figure F. Evolution of Peclet number for CCA and CCR models. (If Peclet number << 1, the 
microdroplet is considered to have homogeneous composition)  
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