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One-sentence summary: This paper describes the multiple signaling pathways targeting cell 15 

and tissue hydraulics to maintain the plant water status, and it reveals the commonalities of these 16 

pathways.  17 
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which was revised by all other authors. C. T.-R., L.V. and V.S. designed the figures and table.  19 
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Introduction 22 

As elaborate terrestrial living organisms, vascular plants have to maintain their water status as tightly 23 

as possible and throughout their life cycle (Davies and Bennett 2015; Steudle 1992). Particularly 24 

challenging processes include the expansion/growth of underground and aerial parts and the 25 

desiccation, imbibition and germination of seeds and pollen. Most often, these processes occur 26 

under variable environmental conditions, including changes to water availability and temperature in 27 

the soil and atmosphere, which have marked impacts on the plant water status. The latter is 28 

primarily maintained through tight stomatal regulation controlling transpirational water flow 29 

(Tardieu et al. 2015). Osmotic adjustment and regulation of water permeability (hydraulics), which 30 

both contribute to water potential gradients and water movement intensity, provide a 31 

complementary and finely-tuned regulation of plant water relations at the cell and tissue levels. In 32 

support for these general principles, a large body of studies has shown that plant water transport 33 

and its molecular components are responsive,  across diverse time scales, to an extremely wide array 34 

of environmental and hormonal signals (Maathuis et al. 2003; Maurel et al. 2015; Chaumont et al. 35 

1998; Aroca et al. 2012). Thus, plant water relations are under constant adjustment in virtually any 36 

physiological context.  37 
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Plant aquaporins, which are present in the plasma and intracellular membranes of most plant 38 

cells, play a central role in these processes by ensuring cell-to-cell water transport and to a lesser 39 

extent, single cell osmotic regulation (Maurel et al. 2015; Chaumont and Tyerman 2014; Tyerman et 40 

al. 1999). More generally, aquaporins have emerged as central membrane targets of environmental 41 

and hormonal signalling pathways acting on plant water relations. In addition, aquaporins are highly 42 

abundant proteins amenable to biochemical (proteomic) and cell biological approaches. Besides 43 

studies in the plant, their function and regulation can be easily studied after functional reconstitution 44 

(proteoliposomes) or heterologous expression (yeast, Xenopus oocytes). Thus, aquaporins are 45 

particularly relevant and convenient entry points for bottom up dissections of plant signalling 46 

cascades. 47 

Due to the central position of aquaporins in multiple hormonal and environmental responses 48 

determining the plant water status, the first aim of the present review was to inventory 49 

corresponding signalling pathways. Beyond the diversity of these pathways, a knowledge network 50 

with common or converging paths is now emerging. Conversely, the dedicated study of signalling 51 

pathways per se seems to reveal regulation states/contexts that escaped classical physiological 52 

analyses of plant water relations. A particularly challenging question is to understand how plants are 53 

able to perceive and respond to combined stresses. 54 

1) Water deficit, abscisic acid (ABA) and related signals 55 

1.1 Drought.  56 

ABA-dependent pathways.  57 

Whereas physiological links between drought stress, ABA and plant water transport have been 58 

identified for some time, it is only recently that the signalling mechanisms involved have started to 59 

be elucidated. Studies on epidermal peels from wild-type and aquaporin knock-out Arabidopsis 60 

(Arabidopsis thaliana) plants have revealed that the plasma membrane aquaporin Plasma Membrane 61 

Intrinsic Protein 2;1 (AtPIP2;1) is required for ABA-induced stomatal closure, but dispensable during 62 
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light- and CO2-induced stomatal movements (Grondin et al. 2015). Consistent with this, isolated 63 

guard cell protoplasts responded to exogenous ABA by a two-fold increase in osmotic water 64 

permeability that was strictly dependent on the functionality of AtPIP2;1. This aquaporin, which is 65 

known to be permeable to H2O2 (Dynowski et al. 2008), was also required for ABA-induced 66 

accumulation of H2O2 in the guard cell interior (Rodrigues et al. 2017). These studies establish a dual 67 

water- and H2O2-transport function for guard cell plasma membrane aquaporins as players and 68 

targets of signalling processes triggering stomatal closure (Grondin et al. 2015; Rodrigues et al. 2017). 69 

More specifically, in vitro phosphorylation assays and transgenic plant analysis led to a model 70 

whereby Snf1-related protein kinase 2.6 (SnRK2.6)/Open stomata 1 (OST1), a protein kinase that 71 

plays a pivotal role in ABA signalling, is able to phosphorylate AtPIP2;1 at a specific cytosolic Ser 72 

residue (Ser121), with this phosphorylation being necessary for proper ABA-induced stomatal 73 

closure. SnRK2.6/OST1 also activates plasma membrane NADPH oxidases, which feed superoxide 74 

dismutases for production of apoplastic H2O2 (Maurel et al. 2016) (Figure 1A). While the above 75 

mentioned studies were performed on epidermal peels of wild-type and pip2;1 plants, we are 76 

concerned that intact leaves of a quadruple pip1;1 pip1;2 pip2;1 pip2;2 mutant showed normal 77 

responses to ABA (Ceciliato et al. 2019). We hypothesize that integration of guard cells within whole 78 

leaf physiology can compensate for the defects captured in isolated guard cells or protoplasts. We 79 

also note that, in contrast to stomata, ABA can down-regulate aquaporin activity in bundle-sheaths 80 

(Shatil-Cohen et al. 2011) and roots (Rosales et al. 2019). Whereas the canonical ABA signaling 81 

machinery formed by RCAR/PYR/PYL receptors, Protein Phosphatase 2C (PP2C) co-receptors acting 82 

on Class 2 Sucrose-Non-Fermenting Protein kinases (SnRK2s) is likely to be involved, in roots in 83 

particular (Rosales et al. 2019), the exact components providing these hydraulic regulations remain 84 

as yet unknown. Aquaporins and water transport can also be under ABA control through more 85 

indirect pathways. In Arabidopsis, ABA induced the expression of the membrane protein Tryptophan-86 

rich sensory protein/translocator (TPSO), which physically interacts with AtPIP2;7 in the early 87 

secretory pathway, to trigger its degradation through the autophagic pathway, thereby reducing its 88 
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water transport activity at the plasma membrane (Hachez et al. 2014b). In rice (Oryza sativa), the 89 

gene encoding a leucine-rich repeat (LRR) receptor like kinase (RLK) named Leaf Panicle 2 (LP2) is 90 

down-regulated by drought and ABA, and acts a negative regulator of drought response (Wu et al. 91 

2015). Its action involves a molecular interaction at the plasma membrane with the drought-92 

responsive aquaporins OsPIP1;1, OsPIP1;3, and OsPIP2;3.  93 

ABA-independent pathways 94 

Drought can also exert ABA-independent effects on aquaporin expression and function. For instance, 95 

several aquaporin gene promoters harbour Drought Responsive Elements (DRE) that promote the 96 

binding of DREB transcription factors (Rae et al. 2011). Other classes of transcription factors (e.g. 97 

AP2/EREBP, ASR1) also confer drought-dependent expression on aquaporin genes (Zhu et al. 2014; 98 

Ricardi et al. 2014). Furthermore, induction under severe drought of ubiquitin-conjugating (E2) 99 

enzyme UBC32 and RING-type E3 ligase, which both interact with AtPIP2;1 and AtPIP2;2, leads to 100 

ubiquitination and degradation of these aquaporins, thereby preventing their negative impact on 101 

drought tolerance (Chen et al. 2021).  102 

A functional interaction between an aquaporin (RhPIP2;1) and a membrane tethered MYB 103 

protein named RhPTM was recently described in rose (Zhang et al. 2019b). In brief, dehydration 104 

stress induced C-terminal phosphorylation of RhPIP2;1 at Ser273, which in turn led to membrane 105 

release and nuclear activation of RhPTM. RhPTM itself acts as a transcription factor with general 106 

growth inhibitory effects. This landmark work establishes an unexpected link between hydraulics and 107 

a transcriptionally determined metabolic control of growth that promotes water deficiency 108 

tolerance. Yet, the protein kinases/phosphatases that act on Ser273 of RhPIP2;1 and their drought-109 

dependent activation/inhibition mechanisms remain to be identified. Similarly, some PIP aquaporins 110 

of Arabidopsis (e.g. AtPIP2;4) show enhanced phosphorylation as early as 5 min after exposure to a 111 

hypertonic stress (0.3 M mannitol) (Stecker et al. 2014). 112 

Cell biological approaches are now developed to address associated regulatory mechanisms. 113 

An improved super-resolution microscopic technique called single particle tracking Photo-Activated 114 
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Localization Microscopy (sptPALM) was used to monitor the lateral mobility of proteins at the plasma 115 

membrane (LTi6a, AtPIP2;1) and tonoplast (AtTIP1;1) (Hosy et al. 2015). In contrast to the other 116 

membrane proteins, AtPIP2;1 showed a low lateral mobility, was confined to membrane 117 

nanodomains and its mobility was enhanced upon a hyperosmotic stress. sptPALM further showed 118 

how reactive oxygen species (ROS) control specific diffusion and nano-organization of membrane 119 

cargo proteins (Martiniere et al. 2019). In particular, ROS initiated clustering of AtPIP2;1 and its 120 

removal from the plasma membrane. This process is achieved in part by clathrin-mediated 121 

endocytosis. It is linked to further aquaporin internalization and transfer into the endocytic pathways 122 

(Zwiewka et al. 2015). In the longer term, the same aquaporins are subjected to ubiquitination and 123 

further degraded (Lee et al. 2009) in a phosphorylation-dependent manner (Chen et al. 2021). In 124 

addition, a role of autophagic pathways was recently uncovered in Medicago truncatula under water 125 

deficit (Li et al. 2020b). A dehydrin (MtCAS31) was shown to act as a cargo receptor for the MtPIP2;7 126 

aquaporin. MtCAS31 further promoted complex formation with the autophagy-related protein 127 

ATG8a to facilitate MtPIP2;7 degradation. This, in turn, reduced water loss under water deficit and 128 

improved drought tolerance (Li et al. 2020b). The possible relation of this mechanism with the ABA-129 

dependent TPSO pathway (Hachez et al. 2014b) mentioned above is not yet clear.   130 

Finally, a bottom-up approach was used to further explore the signaling mechanisms acting 131 

upstream of aquaporins in the Arabidopsis root under hyperosmotic stress. A RESPIRATORY BURST 132 

OXIDASE HOMOLOG (RBOH) pathway defined by two NADPH oxidases and an additional pathway 133 

involving apoplastic ascorbate and iron were found to mediate osmotic stress-induced ROS 134 

production (Martiniere et al. 2019). Furthermore, osmotic stress was shown to trigger interaction of 135 

a Rho GTPase, Rho-of-Plant 6 (ROP6) with the two NADPH oxidases (Smokvarska et al. 2020). This 136 

interaction occurs in specific plasma membrane nanodomains that are necessary and sufficient to 137 

transduce production of ROS and several plant adaptive responses to osmotic constraints (Figure 1B).  138 

1.2 Salinity 139 
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Under salt stress, PIP aquaporins are subjected to cellular regulations that are reminiscent of those 140 

seen under a purely osmotic stress. In Arabidopsis roots for instance, a 100 mM NaCl treatment 141 

decreased C-terminal phosphorylation at Ser283 of AtPIP2;1 after 2-4 h (Prak et al. 2008). On a 142 

shorter timescale (30 min), a salt treatment also enhanced the lateral diffusion of AtPIP2;1 at the 143 

plasma membrane (Li et al. 2011) and its constitutive cycling (Luu et al. 2012). These movements lead 144 

to internalization of AtPIP2;1 from the plasma membrane, and its transfer to the pre-vacuolar and 145 

vacuolar compartments, a process that is mediated by ROS (Boursiac et al. 2008) (Figure 1B) and is 146 

dependent on clathrin, phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4-kinase 147 

(PI4K)(Ueda et al. 2016). These mechanisms may well be generalized: AtPIP2;7, another major 148 

aquaporin isoform in the Arabidopsis root, showed a combined transcriptional down-regulation and 149 

protein internalization that resulted in a dramatic decrease in cell and tissue hydraulics (Pou et al. 150 

2016). As in the case of osmotic stress, the primary signalling events triggering salt-dependent 151 

aquaporin regulation are not elucidated. Yet, salt-dependent expression of AtPIP2;3 and AtPIP2;5 is 152 

in part mediated by SnRK2s of subclass 1 (Kawa et al. 2020). Some of these protein kinases (SnRK2.4, 153 

SnRK2.10) interact with and phosphorylate VARICOSE (VCS) and VARICOSE RELATED (VCR) (Kawa et 154 

al. 2020; Soma et al. 2017), two components of the mRNA decapping complex that catalyzes the first 155 

step of mRNA decay.  156 

A role of PIP aquaporins in ion transport, tentatively associated to the so-called Non Selective 157 

Cation Channels described by patch clamp in many cell types, was recently proposed in Arabidopsis 158 

and barley (Tran et al. 2020; Byrt et al. 2017). As thoughtfully discussed by (Tyerman et al. 2021), this 159 

activity may well be central during plant response to salinity stress. The ionic conductance of 160 

AtPIP2;1 is repressed by calcium and strongly enhanced upon C-terminal phosphorylation (Qiu et al. 161 

2020). In barley, HvPIP2;8 shows similar regulation, and, in addition, its gene is induced in shoots of 162 

salt stressed plants, specifically in a tolerant cultivar (Tran et al. 2020). The connections of these 163 

regulatory processes to upstream salt stress signaling events and, possibly, to water transport 164 

regulation remain to be investigated.  165 
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2) Other abiotic constraints and stimuli 166 

2.1 Oxygen availability 167 

Flooding stress, whether due to water logging or submergence, deeply impacts plant water relations  168 

by favoring a massive inflow of water through roots while transpiration is directly or indirectly 169 

impaired (Tan et al. 2018). Two pathways leading to aquaporin regulation have been uncovered in 170 

this context (Maurel and Nacry 2020). On the short term, a pronounced cytosolic acidosis can be 171 

observed under oxygen (O2) deprivation due to the metabolic production of organic acids while a 172 

drop in cellular respiration and ATP production hampers efficient proton (H+) extrusion by H+-173 

ATPases. This in turn induces protonation of a His residue located on the second cytosolic loop of 174 

PIPs, triggering channel gating. It is remarkable that this His residue is perfectly conserved in PIPs of 175 

all species, supporting the generality of the H+-dependent gating mechanism (Tournaire-Roux et al. 176 

2003). We note that certain plant species do not show any effect of hypoxia on root hydraulic 177 

conductivity (Lpr). In the case of two lupin species (Lupinus angustifolius, Lupinus luteus), hypoxia 178 

induced a marked inhibition of cortical cell hydraulic conductivity but had no substantial effect at the 179 

whole root level, suggesting the predominance of an apoplastic pathway during water uptake 180 

(Bramley et al. 2010).  181 

The second pathway was recently uncovered through quantitative genetic analysis of 182 

Arabidopsis root hydraulics. It is under the control of Hydraulic Conductivity of Root 1 (HCR1) 183 

(Shahzad et al. 2016). HCR1 mediates root responses to hypoxia in relation to potassium (K+) 184 

availability, thereby acting as a negative regulator of Lpr and root aquaporins. HCR1 encodes a RAF-185 

type MAP3K protein kinase that specifically accumulates in the presence of K+ and absence of O2. 186 

HCR1 enhances the abundance of RAP2.12, a key Ethylene Response Factor (ERF) VII transcription 187 

factor that is stabilized under O2 starvation and triggers the core anaerobic transcriptional response. 188 

We have proposed that HCR1 phosphorylates RAP2.12 or one of its direct regulators in planta and 189 
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thereby potentiates the most early plant responses to O2 starvation (Shahzad et al. 2016). However, 190 

the mode of aquaporin down-regulation through this pathway has not been elucidated.  191 

2.2 Nitrogen (N) 192 

Nitrate (NO3
-) is the major inorganic N source absorbed by non-wetland plants and its uptake and 193 

metabolism are tightly associated with water utilization. Whereas ammonium has a rather negative 194 

effect on water absorption, NO3
- was shown to enhance Lpr in multiple plant species. Although post-195 

translational regulation may also be involved, the increase in Lpr induced by NO3
- was shown to 196 

correspond to up-regulation of aquaporin expression (Gorska et al. 2008; Gloser et al. 2007). It has 197 

also been disputed whether NO3
- acts directly or through its assimilation products. In Arabidopsis, 198 

the conserved Lpr response of a nitrate reductase mutant (nia) supports the first hypothesis (Li et al. 199 

2016). Furthermore, characterization of various Arabidopsis genotypes, altered in NO3
- transport, 200 

assimilation, or signaling and growing under various N supply conditions revealed a strong positive 201 

relationship between Lpr and NO3
- accumulation, but in shoots rather than in roots (Li et al. 2016). 202 

This suggests a control of Lpr by putative long-distance signals generated in the shoots. Such systemic 203 

regulation of aquaporins was also observed in split-root experiments with rice plants subjected to 204 

heterogeneous NO3
- treatments (Ishikawa-Sakurai et al. 2014). We also note that Lpr regulation by 205 

transpiration or wounding (Laur and Hacke 2013; Ishikawa-Sakurai et al. 2014; Liu et al. 2014; 206 

Vandeleur et al. 2014) may also be mediated by shoot-borne signals acting on root hydraulics.  207 

Although NRT1.1 is considered as the major NO3
- sensor, the high-affinity nitrate transporter 208 

NRT2.1 is also thought to have a signaling role. In contrast with nrt1.1 plants, nrt2.1 plants showed a 209 

pronounced reduction in Lpr, by up to 30% (Li et al. 2016). Surprisingly, this regulation was 210 

independent of NO3
- and hence, of NRT2.1 expression level. Thus, the signalling mechanisms involved 211 

in this newly discovered pathway remain fairly mysterious. 212 

2.3 Cold 213 
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Both moderate cold and freezing challenge the plant water status. For instance, low temperature, 214 

which reduces Lpr due to a higher viscosity of water and aquaporin down-regulation, causes water 215 

deficit and growth arrest in leaves (Lee et al. 2012). In maize, aquaporins seems to play a key role in 216 

the recovery of Lpr that is specifically observed in chilling tolerant genotypes (Aroca et al. 2005). 217 

Similarly, cold acclimation of Arabidopsis seedlings is accompanied by upregulation of two specific 218 

PIP genes (AtPIP1;4; AtPIP2;5) (Rahman et al. 2020), which also show mRNA accumulation in leaves 219 

under water deficit (Alexandersson et al. 2005). In rice, proper expression and function of Calcium-220 

dependent Protein Kinase (CDPK) OsCPK17 appears to be key for plant adaptation to low 221 

temperature stress (Almadanim et al. 2017). A comparative phosphoproteomic approach further 222 

identified OsPIP2;1 and OsPIP2;6 as putative targets of OsCPK17. A direct activation by OsCPK17 is 223 

further supported by in vitro assays showing that the two aquaporins can be phosphorylated by the 224 

protein kinase in a calcium-dependent manner. Since OsCPK17 also targets sugar metabolism, it was 225 

proposed that cold stress-activated OsCPK17 phosphorylates OsPIP2;1 and OsPIP2;6 to coordinate 226 

membrane water transport with cell osmotic regulation (Almadanim et al. 2017). 227 

2.4 Circadian control. 228 

The circadian clock allows the fine tuning and synchronization of key physiological, metabolic and 229 

signaling pathways, in phase with daily variations of environmental parameters. While circadian 230 

regulation of tissue hydraulics has been largely documented (Henzler et al. 1999), it is only recently 231 

that the corresponding modes of aquaporin regulation have been investigated. In roots of 232 

Arabidopsis and maize, the control of aquaporin expression seems to be largely transcriptional and 233 

depends on well-identified clock components such as ELF3 (Takase et al. 2011; Caldeira et al. 2014). 234 

In maize, the oscillation amplitude of aquaporin expression and plant hydraulic conductance was 235 

strongly enhanced under water deficit, while oscillating expression of the core circadian clock genes 236 

was not altered (Caldeira et al. 2014). Interestingly, this specific potentiation of the hydraulic 237 

outputs, which possibly depends on ABA, appears to be beneficial for cumulated plant growth under 238 
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water deficit whereas steady tissue hydraulic properties are more appropriate under water replete 239 

conditions. These data show how adaptive responses of plant hydraulics to specific environmental 240 

variations rely on exquisite coupling to endogenous signalling mechanisms. 241 

In contrast with roots, the circadian control of leaf hydraulics seems to be mediated through 242 

post-translational modifications of proteins (Prado et al. 2019; Choudhary et al. 2015). In particular, 243 

the rosette hydraulic conductivity (Kros) of Arabidopsis shows circadian oscillations with a peak at 244 

midday, in phase with quantitative variations of PIP2 aquaporin phosphorylation (Prado et al. 2019). 245 

Remarkably, this modification is necessary but not sufficient for circadian control of Kros, which 246 

requires the additional contribution of 14-3-3 proteins (Prado et al. 2013; Prado et al. 2019). Two of 247 

these (GRF4, GRF10) can physically interact with AtPIP2;1 and modulate its function in Xenopus 248 

oocytes depending on the phosphorylation status of the aquaporin C-terminal tail, with more 249 

pronounced effects on phosphomimetic than on phosphodeficient forms (Prado et al. 2019). Much 250 

remains to be learned about the protein kinase/protein phosphatase machinery that ensures 251 

oscillations in aquaporin phosphorylation and, possibly, a synchronized activation of 14-3-3 proteins.  252 

3) A multiplicity of endogenous signals 253 

3.1 Auxin.  254 

Transcriptomic analyses in Arabidopsis have revealed a dramatic down-regulation of aquaporin 255 

expression during lateral root formation (Péret et al. 2012). This effect is mediated in part by auxin 256 

which, more generally, down-regulates most aquaporin expression in roots within 5-10 hours, and, 257 

consequently, Lpr. Auxin also induces, after 24h, a drop in turgor of cortical cells. Interestingly, 258 

mutant analyses have shown that all these molecular and physiological responses are mediated 259 

through Auxin Response Factor 7 (ARF7), a transcription factor that serves as a master regulator of 260 

lateral root formation and emergence. Yet, the down-stream targets of ARF7 in these responses 261 

remain to be identified. Our current understanding is that a finely tuned spatial and temporal control 262 

of PIP expression favours water entry into the lateral root primordium. This inflow is made at this 263 
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expense of overlaying cells, thereby reducing their mechanical resistance and facilitating lateral root 264 

emergence.  265 

3.2 Methyl jasmonate (MeJa)  266 

Contrasting effects of MeJa on root water transport have been reported by different groups. 267 

(Sanchez-Romera et al. 2014) observed that exogenously supplied MeJA increases Lpr in bean, 268 

tomato and Arabidopsis. These effects are associated with an increased phosphorylation of PIP2s and 269 

partly depend on ABA, which accumulates in response to MeJa. In bean, the fluoridone inhibitor 270 

counteracted the effects of MeJA on both ABA accumulation and Lpr. By contrast, exogenous MeJa 271 

induced a decrease in cell hydraulic conductivity in the cortex of Arabidopsis roots (Lee and Zwiazek 272 

2019). Surprisingly, fad3-2 and fad7-2 plants, which are defective in MeJa endogenous biosynthesis, 273 

were insensitive to this external treatment. These contrasting results suggest that effects of MeJa on 274 

root hydraulics are cell-type specific, somewhat indirect and involve important hormonal cross-talks 275 

that remain to be uncovered.   276 

3.3 Ethylene 277 

The effects of ethylene on aquaporin function in various plant species and organs have revealed the 278 

contribution of multiple signalling pathways. In rose, ethylene acts as a repressor of flower opening. 279 

It  negatively controls petal cell expansion through down-regulation of RhPIP2;1 (Ma et al. 2008) and 280 

RhPIP1;1 (Chen et al. 2013), which functionally interacts with the former. Consistent with these 281 

negative hormonal effects, silencing of ethylene receptors (RhETRs) which, in the absence of the 282 

hormone function as repressors of ethylene effects, resulted in an ethylene-independent decrease in 283 

RhPIP1;1 expression (Chen et al. 2013). In Arabidopsis leaves, ethylene exerts positive effects on 284 

water transport through enhanced C-terminal phosphorylation of AtPIP2;1 (Qing et al. 2016). These 285 

post-translational effects require the ETR-1 receptor and its interacting partner Constitutive Triple-286 

Response 1 (CTR1). They are independent of the major transcriptional pathway involving Ethylene-287 

Insensitive 1 (EIN1) and Ethylene-Insensitive 3-like (EIL3), which would in turn mediate the 288 
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transcriptional down-regulation of PIPs, as mentioned above. Tentative regulatory networks acting 289 

on aquaporin phosphorylation, under the control of ethylene and through balanced effects on 290 

protein kinases and phosphatases, were inferred in part from a differential phosphoproteomics 291 

approach in Col-0 and ctr1 plants (Yang et al. 2013). Since ethylene enhances auxin accumulation, 292 

hormonal interactions will also have to be taken into account to comprehend the multiple pathways 293 

leading to ethylene-dependent aquaporin regulation (Yang et al. 2013; Qing et al. 2016)  294 

3.4 Sugars 295 

Sugars act as metabolites but also signalling molecules to regulate various whole plant and cellular 296 

processes such as photosynthesis and stomatal movements. With respect to tissue water transport, 297 

sucrose was shown to enhance Arabidopsis Lpr specifically in the dark, whereas it inhibited Lpr in the 298 

light, as did other osmotica (Di Pietro et al. 2013). Sucrose also induced changes in AtPIP2;6 299 

phosphorylation (Niittylä et al. 2007), thereby providing a tentative link between light, sugars and 300 

aquaporins. This link was corroborated by the high negative correlation existing between the 301 

expression of aquaporins and either exogenous glucose or the expression of Hexokinase 1 (AtHXK1) 302 

in over-expressing or knock-out transgenic Arabidopsis (Kelly et al. 2017). Protein kinases that are 303 

involved in sucrose-induced phosphorylation responses, among which RLKs (e.g. SIRK1) and receptor-304 

like cytoplasmic kinases (RLCKs e.g. Brassinosteroid Signaling Kinase 8 (BSK8)) have been identified 305 

through typical changes in their phosphorylation status within the few minutes following sucrose 306 

resupply. Some aquaporins were subsequently identified as downstream targets of these protein 307 

kinases (Wu et al. 2019; Wu et al. 2013; Wu et al. 2014). For instance, molecular interactions of SIRK1 308 

with AtPIP2;6 were established through pull down experiments and phosphorylation assays using an 309 

AtPIP2;6-specific peptide. The mesophyll protoplast water permeability of Arabidopsis lines showing 310 

different expression levels of active SIRK1 revealed that the RLK directly regulates aquaporins via 311 

phosphorylation in a sucrose dependent manner (Wu et al. 2013). In addition, SIRK1 forms a complex 312 

with its co-receptor QSK1. SIRK1 shows autophosphorylation, subsequently trans-phosphorylates 313 
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QSK1, which in turn enhances and stabilizes the interaction of aquaporins with the receptor kinase 314 

complex (Wu et al. 2019). Our understanding of BSK8 action on aquaporins is not as precise, but the 315 

RLCK possibly acts on another isoform, AtPIP2;7, that shows reduced phosphorylation in a bsk8 316 

mutant. Although still incomplete, the whole set of data suggests intricate osmotic, metabolic and 317 

signalling effects of sugars acting on aquaporins through multiple receptor pathways and time frames 318 

(Wu et al. 2014). At the whole plant level, the somewhat opposite effects of sugar on hydraulics 319 

depending on organs, timing, or environmental conditions surely reflect contrasting contexts where 320 

maintenance of growth or of water content dominate one another.  321 

3.5 Peptidic hormones and other unknown ligands 322 

The endodermis functions as a major barrier within the root, determining fundamental features of 323 

water and nutrient absorption from the soil (Doblas et al. 2017). These properties follow from the 324 

typical differentiation of endodermal cells, with an initial formation of Casparian strips made out of 325 

lignin and further deposition of suberin lamellas that wrap the whole cell. Casparian strips mostly 326 

block apoplastic solute movements and favor xylem loading by preventing solute backflow from the 327 

stele to the cortex. Suberin lamellas, rather, limit transcellular transport of nutrients and possibly 328 

water at the endodermis. These barriers, which are at the cross-roads of mineral nutrient and water 329 

uptake, are therefore under tight control by endogenous and environmental factors (Barberon et al. 330 

2016). For instance, the loss of Casparian strip integrity is detected by diffusible vasculature-derived 331 

peptides CASPARIAN STRIP INTEGRITY FACTORS 1 & 2 (CIF1 & 2) which act through the SCHENGEN3 332 

receptor-like kinase (Pfister et al. 2014, Doblas et al. 2017, Nakayama et al. 2017) to rebalance water 333 

and mineral nutrient uptake. More specifically, CIF1 and CIF2 induce a reduction in Lpr driven by the 334 

deactivation of aquaporins (Wang et al. 2019). They also limit ion leakage through deposition of 335 

suberin in endodermal cell walls. Inhibition of aquaporins seems to be a primary effect of CIFs, which 336 

in turn may promote suberin deposition. Interestingly, CIF1 and CIF2 act independently of ABA 337 

signaling, which can also be a potent regulator of aquaporins in endodermal cells.  338 
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Casparian strip deposition is guided by the local expression of a family of CAsparian Strip 339 

domain Proteins (CASPs). Related proteins named CASP-like are expressed throughout the plant. 340 

Four of these (CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were identified as interacting with 341 

AtPIP2;1 (Bellati et al. 2016). Although the physiological relevance of these molecular interactions is 342 

not known, CASPL1B1 was shown to specifically activate phosphorylated AtPIP2;1 (Champeyroux et 343 

al. 2019), pointing to a putative composite regulatory pathway.  344 

4) Biotic interactions 345 

4.1 Plant immunity  346 

In recent years, several landmark works have reported a crucial role of aquaporins in plant defense 347 

(Zhang et al. 2019a; Li et al. 2020a; Wang et al. 2018; Tian et al. 2016; Ai et al. 2021). AtPIP1;4 was 348 

identified as one of the PIPs, the expression of which is induced by infection with Pseudomonas 349 

syringae pv. Tomato (Tian et al. 2016). The use of intracellular and extracellular ROS dyes in yeast 350 

and transgenic Arabidopsis further revealed the capacity of AtPIP1;4 to mediate the diffusion of 351 

apoplastic H2O2 into the cytoplasm. This process represents a major step in the signaling response of 352 

plants to pathogen-associated molecular patterns (PAMPs), which activate RBOH NADPH oxidases 353 

present on the plasma membrane. More generally, analysis of knock-out mutants and overexpressing 354 

plants revealed that AtPIP1;4 is necessary for PAMP-triggered immunity (Tian et al. 2016) and 355 

mediates systemic acquired resistance (SAR) through a parallel pathway involving activation of 356 

NONINDUCER OF PR GENES1 (NPR1). These findings establish a major signaling role of PIPs in plant 357 

defense (Figure 1C). Interestingly, a mechanism allowing bacterial effectors to counteract this 358 

aquaporin signalling function was recently uncovered (Ai et al. 2021). In brief, a Crinkler effector 359 

(CRN78) from Phytophthora displaying a protein kinase activity was shown to phosphorylate the C-360 

terminal tail of several H2O2-transporting PIPs of soybean or Nicotiana benthamiana, thereby 361 

triggering their degradation through a proteasome-dependent pathway. This led to inhibition of 362 
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H2O2-accumulation and reduced immunity of these plants when infected by Phytophthora oomycetes 363 

(Ai et al. 2021). 364 

A signalling role for aquaporins during plant defense was also uncovered for AtPIP2;1 in 365 

guard cells, with this aquaporin being necessary for flg22-induced stomatal closure. In this case, a 366 

pathway was proposed, whereby the bacterial PAMP flg22 binds to its receptor FLS2 leading to the 367 

successive activation of the BAK1 co-receptor and SnRK2.6 protein kinase. This in turn 368 

phosphorylates AtPIP2;1 at Ser121 to promote both water and H2O2 transport as shown in the 369 

context of ABA-induced stomatal closure (Rodrigues et al. 2017) (Figure 1A). Flagellin (flg22) also 370 

enhanced lateral diffusion of AtPIP2;1 at the guard cell plasma membrane through effects on 371 

microtubules, resulting in its internalization to the cell (Cui et al. 2021). It is not yet clear whether 372 

these effects contribute to the primary role of AtPIP2;1 in stomatal closure or reflect a feedback 373 

inhibition of its function due to flg22-induced ROS accumulation. Interestingly, AtPIP2;1 dynamics at 374 

the plasma membrane of adjacent (subsidiary) cells showed a distinct dependency on the 375 

cytoskeleton and were somewhat insensitive to flg22 (Cui et al. 2021). Thus, cell-specific regulation 376 

of aquaporins probably contributes to an integrated control of water exchange between cell types 377 

during stomatal movements.  378 

PAMPs such as chitin are produced during plant attack by fungi and insects. Aquaporin-379 

mediated water transport in leaf tissues such as the mesophyll and bundle sheath was shown to be 380 

down-regulated by chitin (Attia et al. 2020). This inhibition could contribute to plant defense by 381 

hampering vascular pathogen propagation in xylem vessels and by promoting stomatal closure 382 

through long-distance hydraulic signalling. Although the mode of aquaporin regulation by chitin 383 

remains as yet unknown, the contribution of two chitin receptor-like kinases, chitin elicitor receptor 384 

kinase 1 (CERK1) and lysine motif receptor kinase 5 (LYK5), could be established (Attia et al. 2020) 385 

Recent work also points to another molecular role of aquaporin during bacterial infection. 386 

For instance, rice OsPIP1;3 and Arabidopsis AtPIP1;4 molecularly interact with the bacterial protein 387 

harpin (Hpa1) which is secreted by Gram-negative pathogenic bacteria. Thus, PIPs serve as receptors 388 
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for harpins at the plant plasma, which in turn mediate the delivery of effector proteins (such as 389 

PthXo1) into the plant cell cytoplasm (Li et al. 2019; Li et al. 2015b). Along the same lines, AtPIP2;7 390 

was recently shown to form a molecular complex with the protease domain of the tobacco etch 391 

potyvirus NIa protein (Martinez et al. 2016). Due to its numerous additional connections to stress 392 

responses, the aquaporin seems to be a preferential target during viral infection.    393 

The overall data show that aquaporins are at the heart of the arms race between plants and 394 

their aggressors. On the one hand, aquaporins help plants resist pathogens by contributing to 395 

defense signaling pathways and by preventing their ingress through promotion of stomatal closure 396 

(Zhang et al. 2019a; Li et al. 2020a). On the other hand, some aquaporins can be hijacked by bacterial 397 

or viral pathogenic machineries, thereby promoting pathogen propagation.  398 

4.2 Myccorhizae 399 

Aquaporins also contribute to positive plant–microbe interactions whereby they play important roles 400 

in nutrient transport and abiotic stress responses. In particular, arbuscular mycorrhizal symbiosis can 401 

notably improve the plant water status. A fine dialog exists between the fungus and the host plants, 402 

leading to precise transcriptional and post-translational regulation of plant aquaporins, particularly 403 

under drought (Quiroga et al. 2019). Similarly, the sub-cellular expression of specific tonoplast 404 

aquaporins seems to be subtly targeted in N-fixing symbiotic nodules (Gavrin et al. 2014). Although 405 

strong hormonal interplays are suspected, the signaling pathways leading to these regulations are as 406 

yet unknown.  407 

5) Commonalities of signalling pathways 408 

The survey above provides a broad but scattered knowledge of signalling processes targeting cell and 409 

tissue hydraulics in plants (Table 1). Yet, a few main principles do emerge from this information.  410 

Whereas transcriptional control is definitely key for long-term adjustment of plant hydraulics 411 

in response to environmental or developmental cues, post-translational mechanisms seem to 412 

dominate short term (min and hours) regulations, as these are more tailored for fast and reversible 413 
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responses to the multiple factors (including water availability) acting on the plant water status. Here, 414 

we discuss a few common players of the latter regulatory mechanisms.  415 

Firstly, ROS play a central signalling role in such regulation of plant water transport (Figure 1). 416 

They are produced in response to numerous stimuli including osmotic, salt and cold stress, nutrient 417 

deprivation and hormones (salicylic acid, ABA). Although several ROS generating systems may 418 

operate at the plasma membrane (Martiniere et al. 2019), RBOH NADPH oxidases seem to occupy a 419 

central position in this device (Li et al. 2011; Martiniere et al. 2019). By enhancing constitutive cycling 420 

of aquaporins at the plasma membrane and shifting the equilibrium towards endocytosis, ROS 421 

promote aquaporin internalization, thereby reducing their density at the cell surface and, as a 422 

consequence, cell hydraulic conductivity (Boursiac et al. 2008; Wudick et al. 2015). As suggested by 423 

recent work in guard cells (Cui et al. 2021), this mechanism could provide a feedback regulation in 424 

contexts where aquaporins contribute to the initial steps of ROS signalling.  425 

The sub-cellular trafficking and regulated degradation of aquaporins also appears to be a 426 

main component of plant responses to environmental stimuli. Syntaxins and other traffic proteins, 427 

such as adaptor proteins (AP), play well-established roles in these processes (Besserer et al. 2012; 428 

Hachez et al. 2014a; Pertl-Obermeyer et al. 2016). While some internalized aquaporins accumulate in 429 

pre-vacuolar compartments (Luu et al. 2012), a stress-response pathway under the control of 430 

Tryptophan-rich sensory protein/translocator (TPSO) (Hachez et al. 2014b) can relay the above 431 

mentioned trafficking to promote aquaporin degradation. The autophagic pathways described in 432 

Medicago truncatula under water deficit (Li et al. 2020b) may also operate under other stressing 433 

conditions. In addition, two recent works have pointed to a control by phosphorylation of ubiquitin-434 

dependent degradation of aquaporins in plants under abiotic or biotic stress (Ai et al. 2021; Chen et 435 

al. 2021). This mechanism, which allows control of aquaporin abundance, further expands the 436 

multiple, and possibly opposite, roles of phosphorylation in controlling aquaporin function.  437 

In relation to the central role of phosphorylation, aquaporins are known to be targeted by 438 

multiple classes of protein kinases. This feature holds promises to further decipher aquaporin 439 
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signalling pathways in bottom-up approaches (Figure 2). CDPKs have long been proposed as major 440 

players of aquaporin regulation (Johnson and Chrispeels 1992; Johansson et al. 1996). Yet, there are 441 

very few cases where their role was formally established (Ji et al. 2017; Almadanim et al. 2017). We 442 

also note that CDPKs can be involved in upstream steps and therefore indirectly act on aquaporin 443 

regulation (Li et al. 2015a). Due to their key role during stomatal movements (Yip Delormel and 444 

Boudsocq 2019), it will be worth exploring the action of CDPKs on guard cell aquaporins in closer 445 

detail.  446 

SnRK2s represent another potentially important class of protein kinases acting on plant 447 

aquaporins. Besides SnRK2.6 (OST1), which mediates ABA- and flg22-dependent activation of 448 

AtPIP2;1 in guard cells (Grondin et al. 2015; Rodrigues et al. 2017), other SnRK2s may delineate 449 

additional ABA- or osmotic-stress dependent pathways acting on aquaporins. In support for this, 450 

functional expression of plant signalling pathways in yeast using a transcriptional readout indicated 451 

that four SnRK2s initially thought to be specific for osmotic responses can also contribute to ABA 452 

signalling (Ruschhaupt et al. 2019). Thus, the model of ABA-dependent regulation of AtPIP2;1 may be 453 

extended to additional pairs of SnRK2s and PIPs. 454 

RLKs constitute another major a class of serine/threonine kinases that perceive 455 

environmental and extracellular developmental signals and transduce them via their intracellular 456 

kinase domain. While their role in aquaporin regulation in the endodermis (SGN3) and during sugar 457 

response (SIRK1, BSK8) can serve as models, we anticipate a role for RLKs in many other cellular 458 

contexts including water stress (see Outstanding questions). For instance, a RLK (LP2) and a 459 

Cytoplasmic Receptor-like Kinase (OsRLCK311), both from rice, were shown to interact with PIPs in 460 

vivo (Wu et al. 2015; Sade et al. 2020), but the functional role of these interactions was not 461 

definitively elucidated. Moreover, Arabidopsis RKL1, the activating signals of which remain to be 462 

identified, was shown to molecularly interact with AtPIP2;1 (Bellati et al. 2016). Co-expression of 463 

AtPIP2;1 with RKL1 in Xenopus oocytes resulted in enhanced AtPIP2;1 water transport activity by an 464 

as yet unknown mechanism (Bellati et al. 2016). RLKs may also regulate aquaporins by non-canonical 465 
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mechanisms. For instance, co-expression of FERONIA and AtPIP2;1 in Xenopus oocytes leads to 466 

inactivation of the latter (Bellati et al. 2016). This inactivation seems to require the protein kinase 467 

activity of FERONIA and is favored by two C-terminal phosphorylation sites of AtPIP2;1 that, in 468 

contrast, have been described as activating sites. Thus, these phosphorylated residues may favor the 469 

FERONIA-AtPIP2;1 interaction, which in turn would lead to aquaporin inhibition.  470 

Finally, CBL-interacting protein kinases (CIPKs) represent major regulators of plant nutrition 471 

and response to abiotic stresses (Dong et al. 2020). It is rather surprising that, despite efforts from 472 

several laboratories including ours, no aquaporin has ever been identified as one of their numerous 473 

substrates. In addition, protein phosphatases, which surely play a key role in phosphorylation-474 

dependent regulation of aquaporins, will deserve specific attention in future studies.  475 

Lipid signalling represents another emerging component targeting aquaporins (see 476 

Outstanding questions). For instance, genetic alteration of phosphoinositides (phosphatidyl inositol 477 

[4,5] bisphosphate: PtdInsP2) in tobacco (Nicotiana tabacum) increased the osmotic water 478 

permeability and aquaporin activity of protoplasts isolated from suspension cells (Ma et al. 2015). 479 

The lipid effects may operate through direct interaction with aquaporins or through indirect cellular 480 

effects of PtdInsP2. For instance, interaction of PtdInsP2 with TPSO is required for interaction with 481 

AtPIP2;7 and its subsequent degradation (Jurkiewicz et al. 2020). A role for lipid signaling in PIP 482 

regulation is also suggested by the physical interaction between AtPIP2;1 and two phospholipases D 483 

(PLD and PLD1) (Bellati et al. 2016). In plants, PLDs and their enzymatic product phosphatidic acid 484 

(PA) play key roles in cellular responses to hormonal and abiotic stimuli. Along these lines, AtPIP2;1 485 

and AtPIP2;2 were identified as PA-binding proteins (McLoughlin et al. 2013) but the functional 486 

effects of these interactions remain to be elucidated.  487 

In complement to these targeted studies, we believe that systems biology approaches will 488 

help uncover previously unidentified signalling pathways targeting aquaporins. For instance, protein 489 

interaction networks involving aquaporins have pointed to links with clusters associated with 490 

brassinosteroid signaling (Bellati et al. 2016). A genome-wide search for membrane-protein 491 
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complexes has revealed other clusters that are enriched in aquaporins and have potential roles in 492 

stimulus-dependent regulation of water transport (Jones et al. 2014). Finally, a close inspection of 493 

aquaporin gene position in gene regulation networks will for sure reveal other modes of 494 

developmental or environmental regulation of aquaporins (Alexandersson et al. 2010). 495 

6) Perspectives 496 

Whereas this overview principally deals with chemical signals, whether abiotic or hormonal, there is 497 

still much to be learned about how physical cues lead to aquaporin regulation (see Outstanding 498 

questions). Particularly challenging seems the direct link between tissue hydraulics and transpiration 499 

that may well be mediated through hydraulic signals, or in other words, pressure-dependent 500 

regulation of aquaporins (Pou et al. 2013; Laur and Hacke 2013). Such dependency may also be at the 501 

basis of wound-induced alterations in root or leaf hydraulic conductivity (Vandeleur et al. 2014; Liu et 502 

al. 2014). Plant defence is another emerging context in which aquaporin regulation will have to be 503 

investigated. While the plant water status is crucial for resilience of plants under attacks, it is also a 504 

key target for pathogens to facilitate their proliferation within the plant (Xin et al. 2016). We now 505 

have some ideas on how aquaporins serve as both signalling components and targets during innate 506 

immunity (Zhang et al. 2019a). In contrast, the action of effectors on aquaporins and possible 507 

resistance mechanisms associated to these are just emerging (Ai et al. 2021).   508 

Beyond regulation of water transport in a strict sense, we realize that mechanisms targeting 509 

other aquaporin transport functions may have some relevance for plant water relations or share 510 

similarities with mechanisms targeting the latter. For instance, aquaporin-mediated CO2 transport is 511 

regulated through interaction with βCA4 carbonic anhydrase (Wang et al. 2016), indicating that the 512 

various molecular functions of aquaporin interactants and their ability to associate aquaporin 513 

regulation to upstream signalling cascades still represent a gold mine of information. Also, the ion 514 

transport of AtPIP2;1, which is strongly dependent on divalent cations and pH (Byrt et al. 2017), 515 

confirms that both Ca2+ and H+ are definitely crucial second messengers acting on aquaporin activity.  516 
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Because plants are continuously exposed to combinations of environmental constraints, we 517 

realize that our analytic representation of single signalling pathways remains largely inappropriate. 518 

Although we emphasized how conserved pathways and their cross talks ultimately act on aquaporins, 519 

our knowledge of these processes remains very poor. More generally, basic information on how 520 

plant water transport is adjusted in response to combined stresses is still lacking. This large field of 521 

investigation, combining fundamental plant physiology and systems biology, is now necessary to 522 

properly comprehend the amazing capacity of plants to acclimate to a large array of stressful 523 

environments.  524 

  525 
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Advances.   526 

 ABA-dependent and independent signalling pathways act on aquaporins in plants under 527 

water deficit. 528 

 Aquaporin-mediated water transport is targeted by multiple abiotic, biotic, or endogenous 529 

stimuli; recently identified stimuli include peptide hormones and PAMPs.  530 

 ROS play a central signalling role in regulating water transport in plants by acting on 531 

aquaporin subcellular dynamics, localization and/or phosphorylation.  532 

 Plasma membrane aquaporins exhibit a dual water- and H2O2-transport function, acting as 533 

players in and targets of signalling processes. 534 

 Phosphorylation of aquaporins, which interferes with their gating, trafficking, and stability, is 535 

a major target of plant signalling cascades, and multiple classes of protein kinases that act on distinct 536 

phosphorylation sites have been identified.  537 

 538 

Outstanding questions.  539 

 Is aquaporin-mediated H2O2 transport a common process in plant cell signaling?  540 

 Which cellular signals trigger RLK-dependent aquaporin regulation?   541 

 What is the role of lipid signaling in water transport regulation?  542 

 What are the mechanisms for coupling physical stimuli to aquaporin regulation?  543 

 How do aquaporins contribute to plant defense? What are their active roles in plant 544 

immunity, and how can they be hijacked by pathogens?  545 

 What are the effects of combined stresses on plant water transport, and which signaling 546 

pathways are involved? 547 

 548 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab373/6358153 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 27 August 2021



 

24 
 

Acknowledgments. The authors thank their colleagues of the Aqua team for fruitful discussions. This 549 

work was supported in part by the Agence Nationale de la Recherche (ANR- 18-CE92-0055).   550 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab373/6358153 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 27 August 2021



 

25 
 

TABLE 551 

Table 1:  Molecular signaling mechanisms involved in aquaporin regulation under abiotic and biotic stresses 

and by endogenous signals 

 

Type of signal Stimulus Signalling 

intermedia

te 

Molecular mechanism on 

aquaporins 

Aquaporin regulation Reference  

  

 

 

 

 

 

 

 

 

 

 

 

 

ABIOTIC 

  

 

drought 

(ABA-   

dependent) 

SnRK2.6 AtPIP2;1 loop B 

phosphorylation 

up-regulated activity Grondin et al., 2015; Rodrigues et 

al., 2017 

LP2 interaction with OsPIP1;1, 

OsPIP1;3 and OsPIP2;3 

down-regulated activity Wu et al., 2015 

 

drought 

(ABA-   

independent) 

  

RhPTM  interaction with RhPIP2;1 nd Zhang et al., 2019 

TSPO nd AtPIP2;7 protein degradation Hachez et al., 2014b 

MtCas31/ 

MtATG8 

MtCas31 as a cargo receptor 

for  MtPIP2;7  

protein degradation by 

autophagy 

Li et al., 2020b 

  

 

 

 

osmotic  

  

  

  

nd increased  C-ter 

phosphorylation of AtPIP2;4  

nd Stecker et al., 2014 

RBOHs and 

ROP6 

membrane lateral mobility clustering  in nano-domains Hosy et al., 2015; Martiniere et 

al., 2019; Smokvarska et al., 2020 

clathrin nd protein internalization Zwiewka et al., 2015 

Rma1H1 AtPIP2;1 ubiquitination  protein degradation Lee et al., 2009 

UBC32 AtPIP2;1 ubiquitination  protein degradation Chen et al., 2021 

salinity  clathrin, 

PI3K, PI4K, 

SnRK2.4, 

SnRK2.10 

C-ter phosphorylation of 

PIPs; enhanced mRNA decay 

protein internalization and 

down-regulated activity 

Prak et al., 2008; Boursiac et al., 

2008; Ueda et al., 2016; Pou et 

al., 2016; Kawa et al., 2020 

oxygen  cytosolic 

protons 

His protonation of PIPs down-regulated activity  Tournaire-Roux et al., 2003 

availability HCR1 nd down-regulated activity  Shahzad et al., 2016 

Nitrogen NRT2;1 nd enhanced gene expression, 

protein accumulation and 

up-regulated activity  

Li et al., 2016; Ishikawa-Sakurai 

et al., 2014  

 

cold 

  

nd AtPIP1;4 and AtPIP2;5 gene 

expression  

up-regulation of gene 

expression 

Rahman et al., 2020 

OsCPK17  OsPIP2;1 and OsPIP2;6  C-ter 

phosphorylation 

up-regulated activity  Almadanim et al., 2017 

circadian  

clock 

 14-3-3  AtPIP2;1 C-ter 

phosphorylation 

up-regulated activity Prado et al., 2019 

ELF3 AtPIP1;2 and AtPIP2;1 gene 

expression 

oscilating activity Caldeira et al., 2014; Takase et 

al., 2011 

 flg22 BAK1 and 

SnR2.6 

increased AtPIP2;1 loop B 

phosphorylation 

up-regulated activity Rodrigues et al., 2017 
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  552 

 

 

BIOTIC 

  

Phytophtora 

sojae 

CRN78 GmPIP2;13 and NbPIP2;2 

phosphorylation 

protein degradation Ai et al., 2021 

chitin CERK1  and 

LYK5 

nd up-regulated activity Attia et al., 2020 

Xanthomonas 

oryzae 

Harpin interaction with OsPIP1;3 

and AtPIP1;4 

nd Li et al., 2015b; Li et al., 2019 

 

 

 

 

 

ENDOGENOUS  

  

  

auxin ARF7 PIP gene expression down-regulated activity Péret et al., 2012 

MeJa nd PIP2 C-ter phosphorylation up-regulated activity Lee and Zwiazek, 2019 

 

ethylene 

  

RhETRs RhPIP1;1 and RhPIP2;1 gene  

expression  

down-regulated gene 

expression 

 Ma et al., 2008 ; Chen et al., 

2013 

ETR1 and 

CTR1 

AtPIP2;1 C-ter 

phosphorylation 

up-regulated activity Qing et al., 2016; Yang et al., 

2013 

 

sucrose 

  

SIRK1, 

QSK1 

AtPIP2;6 C-ter 

phosphorylation  

up-regulated activity Niittyla et al., 2007; Wu et al., 

2014; Wu et al., 2019; Wu et al., 

2013 

BSK8 AtPIP2;7 C-ter 

phosphorylation  

nd  Wu et al., 2014 

CIF peptide SGN3 nd down-regulated activity Wang et al., 2019 

Other CASPL1B1 physical interaction with 

AtPIP2;1 

up-regulated activity Champeyroux et al., 2019 
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Figure legends 553 

Figure 1. Cellular responses to biotic or abiotic stimuli involving hydrogen peroxide (H2O2) and 554 

aquaporins. A, In guard cells (right), the Snf1-Related protein Kinase 2.6 (SnRK2.6) is a key 555 

component of abscisic acid (ABA)- and flagellin (flg22)-induced stomatal closure. Flg22 is a Pathogen-556 

Associated Molecular Pattern (PAMP) recognized by the plasma membrane Flagellin-Sensitive 2 557 

(FLS2) receptor, which acts in concert with BRI1-Associated Kinase 1 (BAK1). Upon activation, 558 

SnRK2.6 phosphorylates two NADPH oxidases, Respiratory Burst Oxidase Homolog protein D 559 

(RBOHD) and RBOHF,  and the AtPIP2;1 aquaporin. The latter facilitates the influx of H2O2 and the 560 

efflux of water, thereby promoting stomatal closure (Grondin et al. 2015; Rodrigues et al. 2017). 561 

Fgl22 also enhances the lateral mobility of AtPIP2;1 at the guard cell plasma membrane (left), 562 

thereby promoting its internalization (Cui et al. 2021). B, The root hydraulic conductivity (Lpr) is 563 

strongly decreased in response to abiotic stresses such as osmotic and salt stress, or hormones such 564 

as salicylic acid (SA). All these stimuli act through accumulation of H2O2 which lowers AtPIP2;1 565 

phosphorylation (P), alters its plasma membrane mobility and promotes its internalization (Boursiac 566 

et al. 2008; Wudick et al. 2015). In contrast, PIP phosphorylation promotes its trafficking to the 567 

plasma membrane. The increased apoplastic H2O2 production observed in response to an osmotic 568 

stress is mediated through the clustering in nanodomains of the Rho-related GTPase of plants 6 569 

(Rop6) together with the RBOHD and F NADPH oxidases (Smokvarska et al. 2020; Martiniere et al. 570 

2019). C, In mesophyll cells, PAMPs are perceived by plasma membrane receptors, which trigger, in 571 

combination with BAK1 co-receptor and other non-represented cellular components, the activation 572 

of RBOHB NADPH oxidase and, as a consequence, apoplastic accumulation of H2O2. The AtPIP1;4 573 

aquaporin plays a key role in facilitating the diffusion of apoplastic H2O2 into the cytoplasm (Tian et 574 

al. 2016). The increase in cytoplasmic H2O2 concentration ultimately leads to activation of key 575 

proteins (Pathogenesis-Related protein 1: PR1; Pathogenesis-Related protein 2: PR2; Plant Defensin 576 

1.2: PDF1.2; Noninducer of PR genes 1 : NPR1; Mitogen-Activated Protein Kinase 3 : MAPK3; Glucan 577 

Synthase-like 5: GSL5) involved in Systemic Acquired Resistance (SAR) or Pathogen Triggered 578 

Immunity (PTI), as indicated. The figure also shows how the Crinkler 78 (CRN78) effector of 579 

Phytophthora can penetrate the plant cell where it interacts with phosphorylated NbPIP2;2, to 580 

induce its internalization and further degradation, thereby preventing its role in PAMP signaling (Ai et 581 

al., 2021).  Thick blue arrows and thick red arrows indicate initial effects of stimuli and their output 582 

responses, respectively; thin dotted blue line arrows refer to diffusion of the indicated molecules; red 583 

dotted line arrows represent protein phosphorylation by indicated protein kinases; red dashed-584 

dotted line arrows and red dashed-dotted line blunt arrows describe indirect activation and 585 
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inactivation pathways, respectively; brown line arrows indicate movements of proteins or membrane 586 

compartments.  587 

 588 

Figure 2. Signaling pathways converging on PIP phosphorylation. The figure represents a prototypal 589 

PIP aquaporin with its transmembrane domains (1-6) and extracellular (A, C, E) or cytosolic (B, D) 590 

loops. The indicated stimuli lead to enhanced (arrows) or reduced (blunt arrow) phosphorylation of 591 

Ser residues in loop B or C-terminal tail. The inset shows three pathways acting on unknown PIP 592 

phosphorylation sites (white question marks). Signaling intermediates are indicated with the 593 

following color code: Snf1-related protein kinase 2 (SnRK2): blue; Calcium-Dependent Protein Kinase 594 

(CDPK), green; Receptor-Like Kinase (RLK), red; others, black. Note that the indicated protein kinases 595 

do not necessarily act directly on the indicated sites. Other abbreviations: Brassinosteroid Signaling 596 

Kinase 8 (BSK8); Chitin Elicitor Receptor Kinase 1 (CERK1); Calcium-dependent Protein Kinase 17 597 

(CPK17); Constitutive Triple-Response 1 (CTR1); Leaf Panicle 2 (LP2); Lysine motif receptor Kinase 5 598 

(LYK5); phosphatidylinositol 3-kinase (PI3K); phosphatidylinositol 4-kinase (PI4K); Qian Shou Kinase 1 599 

(QSK1); Receptor-like Kinase 1 (RKL1), Sucrose Induced Receptor Kinase 1 (SIRK1); 14-3-3 protein (14-600 

3-3). For more details and references see text and Table 1. 601 

 602 

  603 
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Figure 1. Cellular responses to biotic or abiotic stimuli involving hydrogen peroxide (H2O2) and aquaporins. A, In guard cells
(right), the Snf1-Related protein Kinase 2.6 (SnRK2.6) is a key component of abscisic acid (ABA)- and flagellin (flg22)-
induced stomatal closure. Flg22 is a Pathogen-Associated Molecular Pattern (PAMP) recognized by the plasma membrane
Flagellin-Sensitive 2 (FLS2) receptor, which acts in concert with BRI1-Associated Kinase 1 (BAK1). Upon activation, SnRK2.6
phosphorylates two NADPH oxidases, Respiratory Burst Oxidase Homolog protein D (RBOHD) and RBOHF, and the
AtPIP2;1 aquaporin. The latter facilitates the influx of H2O2 and the efflux of water, thereby promoting stomatal closure
(Grondin et al. 2015; Rodrigues et al. 2017). Fgl22 also enhances the lateral mobility of AtPIP2;1 at the guard cell plasma
membrane (left), thereby promoting its internalization (Cui et al. 2021). B, The root hydraulic conductivity (Lpr) is strongly
decreased in response to abiotic stresses such as osmotic and salt stress, or hormones such as salicylic acid (SA). All these
stimuli act through accumulation of H2O2 which lowers AtPIP2;1 phosphorylation (P), alters its plasma membrane mobility
and promotes its internalization (Boursiac et al. 2008; Wudick et al. 2015). In contrast, PIP phosphorylation promotes its
trafficking to the plasma membrane. The increased apoplastic H2O2 production observed in response to an osmotic stress
is mediated through the clustering in nanodomains of the Rho-related GTPase of plants 6 (Rop6) together with the RBOHD
and F NADPH oxidases (Smokvarska et al. 2020; Martiniere et al. 2019). C, In mesophyll cells, PAMPs are perceived by
plasma membrane receptors, which trigger, in combination with BAK1 co-receptor and other non-represented cellular
components, the activation of RBOHB NADPH oxidase and, as a consequence, apoplastic accumulation of H2O2. The
AtPIP1;4 aquaporin plays a key role in facilitating the diffusion of apoplastic H2O2 into the cytoplasm (Tian et al. 2016). The
increase in cytoplasmic H2O2 concentration ultimately leads to activation of key proteins (Pathogenesis-Related protein 1:
PR1; Pathogenesis-Related protein 2: PR2; Plant Defensin 1.2: PDF1.2; Noninducer of PR genes 1 : NPR1; Mitogen-
Activated Protein Kinase 3 : MAPK3; Glucan Synthase-like 5: GSL5) involved in Systemic Acquired Resistance (SAR) or
Pathogen Triggered Immunity (PTI), as indicated. The figure also shows how the Crinkler 78 (CRN78) effector of
Phytophthora can penetrate the plant cell where it interacts with phosphorylated NbPIP2;2, to induce its internalization
and further degradation, thereby preventing its role in PAMP signaling (Ai et al., 2021). Thick blue arrows and thick red
arrows indicate initial effects of stimuli and their output responses, respectively; thin dotted blue line arrows refer to
diffusion of the indicated molecules; red dotted line arrows represent protein phosphorylation by indicated protein
kinases; red dashed-dotted line arrows and red dashed-dotted line blunt arrows describe indirect activation and
inactivation pathways, respectively; brown line arrows indicate movements of proteins or membrane compartments.
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ADVANCES 

• ABA-dependent and independent 
signalling pathways act on aquaporins in 
plants under water deficit. 

• Aquaporin-mediated water transport is 
targeted by multiple abiotic, biotic, or 
endogenous stimuli; recently identified 
stimuli include peptide hormones and 
PAMPs.  

• ROS play a central signalling role in 
regulating water transport in plants by 
acting on aquaporin subcellular dynamics, 
localization and/or phosphorylation.  

• Plasma membrane aquaporins exhibit a 
dual water- and H2O2-transport function, 
acting as players in and targets of 
signalling processes. 

• Phosphorylation of aquaporins, which 
interferes with their gating, trafficking, 
and stability, is a major target of plant 
signalling cascades, and multiple classes 
of protein kinases that act on distinct 
phosphorylation sites have been 
identified.  
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OUTSTANDING QUESTIONS 

• Is aquaporin-mediated H2O2 transport a 
common process in plant cell signaling?  

• Which cellular signals trigger RLK-
dependent aquaporin regulation?   

• What is the role of lipid signaling in water 
transport regulation?  

• What are the mechanisms for coupling 
physical stimuli to aquaporin regulation?  

• How do aquaporins contribute to plant 
defense? What are their active roles in 
plant immunity, and how can they be 
hijacked by pathogens?  

• What are the effects of combined stresses 
on plant water transport, and which 
signaling pathways are involved? 
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