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ABSTRACT
We investigate systematic effects in direction-dependent gain calibration in the context of the Low-Frequency Array (LOFAR)
21-cm Epoch of Reionization (EoR) experiment. The LOFAR EoR Key Science Project aims to detect the 21-cm signal of neutral
hydrogen on interferometric baselines of 50–250 λ. We show that suppression of faint signals can effectively be avoided by
calibrating these short baselines using only the longer baselines. However, this approach causes an excess variance on the short
baselines due to small gain errors induced by overfitting during calibration. We apply a regularized expectation–maximization
algorithm with consensus optimization (SAGECAL-CO) to real data with simulated signals to show that overfitting can be largely
mitigated by penalising spectrally non-smooth gain solutions during calibration. This reduces the excess power with about a
factor of 4 in the simulations. Our results agree with earlier theoretical analysis of this bias-variance trade off and support the
gain-calibration approach to the LOFAR 21-cm signal data.

Key words: methods: numerical – methods: observational – techniques: interferometric – dark ages, reionization, first stars.

1 IN T RO D U C T I O N

Detection of the faint 21-cm signal of neutral hydrogen emitted at
high redshifts is one of the hardest radio-astronomical programmes
currently pursued. This is in particular so, since the contaminating
foreground signals are many orders of magnitude stronger. To extract
the 21-cm signal from the data, requires an exquisite understanding
of the entire signal chain.

The Radio Interferometric Measurement Equation (RIME,
Hamaker, Bregman & Sault 1996; Smirnov 2011) is a generalized
framework to describe the propagation of the signal of radio sources
from the source to the radio interferometer. It includes the full
(polarized) signal path, including atmospheric and instrumental
signal distortion, in a matrix formalism using Jones matrices. A
model of the sky brightness distribution, updated iteratively during
gain calibration, predicts the coherence matrix for a given baseline. In
its most general form, for a dual-polarization instrument, all external
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effects on the propagation of an electromagnetic wave, are merged
into a single time (t) and frequency (f) dependent complex 2 × 2 gain
matrix for both elements i, j of an interferometer, which is applied to
the sky model coherence matrix to predict the corrupted visibilities
Vij of a single baseline:

Vpred
ij (t, f ) =

K∑

k=1

Ji(t, f )Cijk(t, f )JH
j (t, f ) + Nij , (1)

where the sum is over K discrete sky model components. Ji is the
2 × 2 complex Jones matrix for antenna i, Cijk is the coherency
matrix giving the contribution of each sky model component k to the
visibility of baselines i, j, and Nij is a 2 x 2 complex noise matrix.

A solve step performs a non-linear fit of the predicted visibilities
Vpred

ij to the measurement to determine the complex gains of the Jones
matrices. For current wide-field low-frequency telescopes, a single
Jones matrix per antenna is often insufficient, since atmospheric
effects and station beam errors vary over the field of view. These
direction-dependent (DD) effects are in general taken into account
by dividing the sky model into several patches, with scales over
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which these effects are thought to vary little, each with its own
Jones matrix. This means grouping the K discrete components in
equation (1) into N (N << K) directions. In DD calibration, the
number of free parameters increases linearly with the number of
solved directions, enlarging the risk of overfitting. In practice, the
sky model will always be incomplete, and during calibration this
leads to gain errors whose impact are sometimes difficult to predict.
Among these effects are the appearance of ghost sources in the
images (Wijnholds, Grobler & Smirnov 2016), the increase of noise
(Barry et al. 2016; Patil et al. 2016) and the suppression of the signal
of the unmodelled sky (Mouri Sardarabadi & Koopmans 2019).

In this paper, we study the unwanted signal suppression and
noise increase caused by the large number of parameters in DD
calibration through simulation. We investigate this for the specific
case, namely the study of the 21-cm signal power spectrum from the
Epoch of Reionization (EoR) with the LOFAR radio telescope. This
study serves two goals: First, it illustrates the motivation behind the
calibration strategy used by Mertens et al. (2020), thereby verifying
the soundness of their results in light of signal suppression. Secondly,
it allows us to set a framework for investigating a generic context
radio interferometric gain calibration using many directions.

The EoR refers to the period in the evolution of the Universe
in which neutral hydrogen was ionised through irradiation by the
first stars and quasars. It is one of the main research areas of
modern low-frequency radio telescopes such as GMRT (Paciga
et al. 2013), LOFAR (van Haarlem et al. 2013), MWA (Morales
& Wyithe 2010) and HERA (DeBoer et al. 2017). Although direct
detection of the 21-cm signal from the EoR requires instruments with
higher sensitivity, the signals are predicted to be detectable through
a statistical measurement, typically via its expected signature in a
21-cm power spectrum. This measurement is especially challenging
since the power of the expected signal is orders of magnitudes smaller
than that of the foreground radiation. It necessitates long integration
times (typically thousands of hours) and foreground subtraction with
unprecedented accuracy, such that the power of the background noise
reaches that of thermal noise. This poses stringent requirements on
the level of calibration accuracy. One of the main assumptions of
the EoR-signal measurement is that the foregrounds as well as any
instrumental or atmospheric effects are smooth in frequency, whereas
the signal is not. As will be shown, this assumed smoothness in
frequency is important to minimize signal suppression and noise
increase in calibration.

The layout of this paper will be as follows. In Section 2, we
outline the problem of signal suppression and noise enhancement
in the framework of the LOFAR EoR analysis and we present our
methods. In Section 3, we summarize the processing steps used in
the LOFAR EoR analysis and in our simulation. Section 4 describes
the simulation of the faint 21-cm EoR signals and the subsequent
analysis of signal suppression and increased noise power through
overfitting. In Section 5, we investigate whether we can reduce both
signal suppression and added noise by enforcing smoothness of the
gain parameters. Finally, conclusions and recommendations are given
in Section 6.

2 ME T H O D

We base our analysis on typical data from the Low-Frequency ARray
(LOFAR) (van Haarlem et al. 2013). The LOFAR array consists of
24 core stations, located roughly within a circle with a diameter of
3 km in the Eastern part of the Netherlands, and 14 remote stations
with baselines up to ∼100 km. A further 14 international stations are

not used for the EoR analysis. We use the high-band antenna data of
LOFAR, covering frequencies roughly between 110 and 170 MHz.

Patil et al. (2017) presented the first upper limit on the 21-cm
signal power spectra from LOFAR. They analysed the data of one of
the main LOFAR EoR fields, the North Celectial Pole (NCP). In their
analysis, gain calibration was performed without the baselines that
were used for the 21-cm signal measurement (i.e. those shorter than
250λ). We will refer to this as ‘applying a baseline cut’ to the data.
LOFAR has a sufficient number of longer baselines to determine
the (multi-directional) gains per station. After calibration, the gain
solutions are applied to all baselines, including the shorter baselines.
The reasons for applying a baseline cut are twofold: first, the Galactic
diffuse emission that is dominant on those short baselines is not
included in the sky model; and secondly, it ensures that no signal
suppression occurs in the calibration, since all data that contribute to
the 21-cm signal analysis are excluded from the calibration. However,
as was shown by Patil et al. (2016), overfitting increases the noise
level on the baselines that are excluded from the calibration, resulting
in an excess variance in the 21-cm signal power spectrum. A similar
increase in noise is shown by Barry et al. (2016).

Therefore, we have produced a sky model that includes the diffuse
emission in the NCP. Here, we shall investigate whether the new
model allows us to remove the baseline cut to reduce the effect
of overfitting. We will also, through simulation, study the effect of
removing the baseline cut on signal suppression. Mouri Sardarabadi
& Koopmans (2019) provide a theoretical framework for signal
suppression. In this paper, we investigate signal suppression via
numerical simulations, using the same codes that are used to analyse
the LOFAR data.

2.1 Consensus optimization

Various algorithms have been developed that implement the RIME in
equation (1), aimed at calibrating radio interferometric instruments.
In this work, the software used for calibration is SAGECAL-CO

(Yatawatta et al. 2013; Yatawatta 2015, 2016). SAGECAL-CO makes
use of fast distributed systems that include graphics processing units
(GPU), and performs consensus optimization to iteratively force the
station-based and direction-(in)dependent gain solutions to approach
a spectrally smooth function. Such smooth gain solutions have
previously been shown to be crucial to mitigate signal suppression
and noise increase (see Barry et al. 2016; Patil et al. 2016; Ewall-
Wice et al. 2017; Mouri Sardarabadi & Koopmans 2019). To ensure
a spectrally smooth behaviour of the gain solutions, an extra penalty
function is added to the optimization problem at every iteration. This
so called consensus optimization uses an augmented Lagrangian,
with a regularization parameter to guide the solution to approach the
chosen (smooth) regularization function, which is itself a function of
several free parameters. Hence, if chosen wisely, the solutions will
exactly match this functional form, reducing overfitting, although this
would theoretically take an infinite number of iterations. In practice,
a maximum number of iterations and regularization values need to
be chosen carefully to ensure minimal deviations from the smooth
regularization function. Yatawatta (2015) gives more details on the
implementation. The Lagrangian (equation 14 in Yatawatta 2015) to
be minimized in SAGECAL-CO is

L =
∑

i

gf i(Jf i) + ||YH
f i(Jf i − Bf iZ)|| + ρ

2
||Jf i − Bf iZ||2. (2)

Here, g(J) is the usual least-squares cost function resulting from
the difference between the measured visibilities and the model,
given Jones matrices J; Y is a Lagrange multiplier; BZ is the
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smooth function over frequency, with B a matrix composed of
polynomial terms (in frequency) and Z the fitted parameters; and ρ

is a regularization parameter that determines the level of smoothness
in frequency that is enforced on the individual gain solutions during
each iteration. Fitting of the gains is done iteratively. The polynomial
coefficients Z are updated after each iteration. In practice, the number
of iterations is limited by computation time. We use a Bernstein
polynomial of rank three to regularize the frequency dependence
of the gain parameters. Yatawatta (2015) uses simulated data to
determine values for ρ, quoting typical values of ρ ∈ [1, 10] over
a bandwidth of about 60 MHz. The strongest regularization used in
that work is ρ = 50. As we will show, the regularization parameter
plays a key role in regard to overfitting. We show that increasing
ρ to a substantially higher value over smaller bandwidths, greatly
improves the result on real data. Possible reasons for this difference
could be the additional noise power and the incomplete sky model
which were not included in the simulations in Yatawatta (2015) and
which slow down convergence for real data. In a slightly different
simulation in Yatawatta (2016), an optimal value of ρ ∼ 200 was
found for a fixed number of 50 iterations.

3 DATA PRO CESSING AND GAIN
C A L I B R AT I O N

In this section, the LOFAR 21-cm signal data-processing steps as
followed by Patil et al. (2017) and the impact of gain calibration
on the 21-cm signal are discussed. Processing of the raw LOFAR
visibilities follows several distinct steps, which we will summarize
below. For more details, we refer to Patil et al. (2017) and Mertens
et al. (2020). All analyses are done in the context of the NCP field.

3.1 Flagging and calibration

Step 1 – The raw visibilities have a 2 s time and 3.05 -kHz spectral
resolution per channel. The data sets are split into sub-bands, each
with 64 channels. Each sub-band is cleaned of strong RFI using the
package AOFLAGGER (Offringa et al. 2010; Offringa, van de Gronde
& Roerdink 2012). The outer two channels on each side of the
sub-band are discarded to avoid spurious signals caused by the poly-
phase filter. Visibilities are subsequently averaged to three channels
per sub-band, resulting in a 61-kHz spectral resolution.

Step 2 – After this initial filtering, flagging and averaging follows
the initial gain calibration of the visibilities. A model of the brightest
sources for the NCP field, consisting of ∼1500 components each with
an apparent flux >35 mJy, is used during the initial calibration, and
a model of the station beam is applied to the sky model. In direction-
independent calibration, only full-Jones station-based complex gain
solutions are solved for, in fact solving for the gains in a single
effective direction. These gain solutions can then be used to correct
the visibilities for station gains and first-order atmospheric effects.
However, the relatively bright source 3C 61.1 is located near the first
null of the station beam, causing an apparent flux that is strongly
frequency and time-dependent. These gain variations can potentially
degrade the accuracy of the initial calibration. To mitigate this effect,
two separate gain-solutions are solved simultaneously, with one set
of gain solutions for 3C 61.1 and one for the remainder of the field.
The solution intervals over which the gains are assumed constant are
10 s and 3 channels (183 kHz). The data are subsequently corrected
by applying the latter gain solutions. During initial calibration,
only baselines >30λ are used to avoid significant diffuse emission
affecting the gain solutions. SAGECAL-CO is used over the full
60-MHz bandwidth, using a third-order Bernstein polynomial to

regularize the gain solutions in the frequency direction, but with a
relatively low level of regularization, determined from theoretical
considerations in Yatawatta (2015). This level of regularization
allows for fitting of the non-smooth spectral gain variations, such
as cable reflections and filter effects, but at the same time reduces
overfitting of the thermal noise and sky emission that is not part of
the calibration model.

Step 3 – Direction-dependent (DD) calibration is done by solving
for full-Jones matrices in 122 independent directions, clustered on
a sky model consisting of 28 000 components. The time solution
intervals vary between 4 and 20 min, depending on the apparent flux
in the cluster associated with a direction, and the frequency solution
interval is 3 channels (183 kHz). Before DD calibration, the corrected
data of the previous step is averaged to a time resolution of 10 s. The
frequency resolution remains 61 kHz.

SAGECAL-CO allows for regularization of the gain solutions by
enforcing the gains to iteratively approach a smooth function in
frequency. We make the following choices:

(i) During DD calibration, a third-order Bernstein polynomial over
the full 60-MHz frequency range is used for spectral regularization.

(ii) The level of regularization for each iteration is specified by a
single parameter per cluster of sources (i.e. a direction). The values
of the regularization parameters ρ are based on the theoretically
estimated required level of regularization for the centre of the field
and are scaled with 0.1 and the relative apparent flux in the clusters.
It is set to ρ ≈ 50 for the brightest clusters and close to ρ ≈ 1.0 for
the faintest clusters.

(iii) Each cluster of source components is subtracted from the
visibilities after multiplication with their DD gains. This assumes
that the gains are constant over the spatial extent of the cluster.

In Section 5, it is shown that this level of regularization still
allows for small but significant frequency variations in the visibilities,
which are caused by un-modelled sky emission (Barry et al. 2016).
As the gain solutions have enough freedom to absorb part of the
difference between the real sky and the sky model, this causes signal
suppression. To avoid this, the baselines used during calibration and
signal-extraction are fully separate in all of the current LOFAR 21-cm
results (Patil et al. 2017; Mertens et al. 2020).

3.2 Baseline selection

Patil et al. (2017) set a lower limit of >250λ on the baselines used
during DD calibration, under the assumption that the unmodelled
diffuse emission, dominant on the shorter baselines, could result in
signal suppression. In subsequent analysis, a new model, including
diffuse galactic emission modelled at the shortest baselines (<250λ)
was introduced. In Section 4, we will investigate the effect of the DD
calibration scheme with and without the baseline cut on a simulated
21-cm signal and on the noise power.

3.3 Power spectrum generation

After calibration and sky model subtraction, the residual visibilities
are imaged, using WSCLEAN (Offringa et al. 2014). Imaging is
performed with settings that are sufficiently accurate for 21-cm
power spectra (Offringa et al. 2019). Each frequency channel is
imaged individually, resulting in an image cube with dimensions
l, m, f, with l, m the direction cosines and f the frequency. For
the LOFAR-EoR analysis, only the baselines <250λ are taken into
account. However, for inspection, we also make use of baselines up
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to 500λ. The most common method to statistically detect the 21-cm
signal is to look at the power spectrum of the data in cosmological
units (Morales & Hewitt 2004). The power spectrum is generated by
mapping the l, m, f coordinates to comoving distances and Fourier
transforming to wavenumber (k) space. We will present the results
as a 2D power spectrum, distinguishing between the modes parallel
(k�) and perpendicular (k⊥) to the line of sight. This enables the
possibility to specifically examine baseline (proportional to k⊥) and
frequency (proportional to k�) dependent effects.

4 SI M U L AT I O N O F FA I N T S I G NA L S

In order to test the level of suppression, we add mock 21-cm signals
with varying amplitudes to simulated data. The simulated data rep-
resents the real data after initial calibration (Step 2 in Section 3), and
includes realistic DD corruptions. The simulated data are formed by
multiplying the 28 000 component model (without diffuse emission)
with the DD gain solutions from real data calibration. Since these
corruptions were taken from real data calibration, they were not
forced to be spectrally smooth. In reality, we expect the gains,
which are mainly the result of instrumental and ionospheric effects,
to be spectrally smooth. Therefore, applying strong constraints on
smoothness of the gain parameters during calibration, is not expected
to introduce additional noise in real data, but it might add some noise
in our simulations. This effect of this additional noise power in our
simulations will be discussed in Section 5.1, where enforcing smooth
gain solutions is studied.

A realistic level of complex Gaussian noise is added to the data.
The variance is derived from the Stokes V noise in real data after DD
calibration. The diffuse foreground emission is simulated using the
model for Stokes I, Q and U that was introduced before for calibration
purposes (see Section 3.2). This model consists of shapelets fitted to
real data. For practical reasons, the diffuse emission is not corrupted
with gain errors. However, in the calibration step, it is treated as
one independent direction out of many, with its own gain solutions,
which are expected to be close to the simulated gains of 1. Therefore,
this simplification is not expected to have a large effect on the study
presented here. In reality, the diffuse emission will be corrupted with
DD errors, possibly varying over the extent of the emission. Solving
for varying gains over the extended emission is currently not part of
the LOFAR EoR calibration scheme, and therefore out of scope of
this study. The effect of neglecting gain variations over the extended
emission will likely add to the signal suppression in a similar way as
an incomplete sky model does. The model that is used for calibration
of the simulated data includes all simulated sources and the diffuse
emission, but does of course not include the 21-cm signal. This
implies that the sky model is complete, i.e. with no emission from
unmodelled sources. In Mouri Sardarabadi & Koopmans (2019), it
was shown that an incomplete sky model during calibration would
add to the level of suppression. Therefore, we also performed one
test in which we excluded one third of the simulated sources with the
lowest flux from the sky model used during calibration. This resulted
in no significant difference in the level of suppression with respect to
the calibration using the complete sky model. Within our accuracy
limits, we could therefore not validate that conclusion from Mouri
Sardarabadi & Koopmans (2019). Although in reality the sky model
will be incomplete, we are confident that the use of the complete sky
model in simulations gives a reliable estimate of the minimal level
of signal suppression during calibration.

The simulated 21-cm signal is generated from an image cube
covering 115–200 MHz, with a frequency resolution of 0.5 MHz
and a spatial resolution of 1.17 arcmin, that was originally pro-

duced by Jelić et al. (2008) using the 21CMFAST SIMULATION

CODE (Mesinger, Furlanetto & Cen 2011). The image data are
linearly interpolated to the LOFAR subband frequencies. Visibilities
are predicted from the image cube using WSCLEAN (Offringa et al.
2014). Because a realistic 21-cm signal is orders of magnitude less
bright than the noise in a single night of LOFAR observations, the
simulated signal is artificially increased by three orders of magnitude.
According to Mouri Sardarabadi & Koopmans (2019), the level of
suppression is independent of the amplitude of the 21-cm signal,
as long as the signal is faint enough not to significantly alter the
gain solutions. To test the validity of this linearity, we add the signal
with three different amplitudes with another factor of 4, 7, and 10,
relative to the original multiplication factor of 1000 of the simulated
21-cm signal, still one to two orders of magnitude smaller than the
simulated foreground signal. Just as the diffuse model, the simulated
21-cm signal is not corrupted with the SAGECAL gains. Since the
residual visibilities are the result of subtracting the corrupted sky
model, and not corrected with DD gain solutions, the fact that beam
and atmospheric effects are ignored in the 21-cm signal is likely
to have a negligible impact on this suppression study. Expanding
equation (1) to specifically include the different components of our
model, we obtain

Vpred
ij (t, f ) =

N∑

k=1

Jik(t, f )Cijk(t, f )JH
jk(t, f )

+ Gi(t, f )
S∑

s=1

DGijs(t, f )GH
j (t, f )

+ F · Ii(t, f )21cmij (t, f )IH
j (t, f ) + Nij . (3)

Here, Cij refers to the point source foreground model, where each
cluster k is the sum over the individual components in the cluster. DGij

is the modelled diffuse galactic emission, composed of S shapelet
coefficients. 21cmij is the simulated 21-cm signal, multiplied with an
artificial constant amplitude F. G and I are set to the identity matrices
in our simulation and the J matrices are taken from earlier runs on
real data. In the calibration, we solve for J and G.

4.1 Suppression measurement

We run SAGECAL-CO (Yatawatta 2016) with standard settings, but
without the 250 λ baseline cut, on the simulated data with and
without an added 21-cm signal. The computationally intensive DD
calibration step for a typical observation (∼14-h duration, 60MHz
bandwidth) takes about 72 hours when processed using half of
the dedicated high-performance GPU cluster (Pandey et al. 2020).
This limits the possible number of independent simulation runs
that can be executed in a reasonable time. We make sure that, by
construction, a solution exists. It will, however, not be recovered
precisely because noise has been added and the calibration is a
non-linear process, which causes the gain solutions to be inexact.
The latter point causes additional noise in the solutions, which we
will refer to as the solver noise. Since SAGECAL-CO uses random
parameter initialization, we can estimate the power of the solver
noise by running SAGECAL-CO twice on the same simulated data and
calculating the power spectrum of their difference. We assume the
power of the solver noise to be consistent between runs. The power
spectrum of the solver noise calculated this way is shown in the
top left-hand panel of Fig. 1. The top right-hand panel of Fig. 1
shows the power spectrum of the simulated 21-cm signal before DD
calibration. The bottom left-hand panel of Fig. 1 shows the power
spectrum of the simulated 21-cm signal after calibration, and the
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Figure 1. Top left-hand panel: Power spectrum of the solver noise. Top right-hand panel: simulated 21-cm signal (relative amplitude 10, see the text for
explanation). Bottom left-hand panel: remaining 21-cm signal after DD calibration. Bottom right-hand panel: Ratio of 21-cm signal after and before calibration.
DD calibration was performed without the 250 λ cut on baseline length.

bottom right spectrum shows the ratio of the power spectra of the
simulated signal after and before DD calibration. The solver noise
is one to two orders of magnitude smaller than the added signal,
but it does have an impact on the ratio in the bottom left-hand
plot, albeit minor. In general, due to the solver noise, the power
spectrum after SAGECAL will be enhanced and therefore the level
of suppression will be underestimated. We compensate for this by
subtracting the power of the solver noise from the signal power per
bin. As can be seen from Fig. 1, the suppression of the signal is
large, roughly one order of magnitude. Note that in this suppression
measurement all baselines are included in DD calibration and the
level of regularization is relatively low, in contrast to the analyses
presented in Patil et al. (2017) and Mertens et al. (2020). The results
with three different levels of input 21-cm signal are summarized in
the top three rows of Table 1. The level of suppression is measured
by averaging the power over all 750 k bins and taking the ratio with
the same average of the input signal. They show that the level of
suppression is more or less independent of the signal amplitude, as
predicted by Mouri Sardarabadi & Koopmans (2019). There is a small
correlation between signal strength and its measured suppression,
leading to slightly more suppression on smaller input signals, but it
is negligible compared to the overall level of suppression, and our
current measurement is therefore a realistic indication of the level
of suppression expected for signals with much smaller amplitudes,
such as a true 21-cm signal.

4.2 Overfitting

From Section 4.1, it is clear that not using a 250 λ baseline cut
leads to unacceptable levels of signal suppression, even when diffuse
emission is included in the model. Here, we test the effect on the
signal and noise when a baseline cut is applied. As discussed in
Patil et al. (2016) and Yatawatta (2015), excluding baselines from
the calibration will increase the variance on these baselines. The
significance of this effect is illustrated in Fig. 2, where the Stokes-
V power spectrum ratios after and before SAGECAL are shown over
a larger range of scales (between 50 and 500λ). For LOFAR, the
Stokes-V correlations consist almost only of system noise, and Stokes
V allows us therefore to analyse the effect of calibration on a noise-
like signal. In the left-hand panel of Fig. 2, we show the power ratio
of the settings as described in Section 4, using a diffuse model and
all baselines included during calibration with SAGECAL-CO. We see
a noise power ratio that is close to one. However, when applying the
250λ baseline cut, as shown in the right-hand panel of Fig. 2, a clear
increase of the noise up to a factor of ∼5 in power is observed on the
largest scales. The turn up at 250 λ, corresponding to k⊥ of 0.25, is
clearly visible. This effect is a sign of overfitting of the data. Part of
the noise is absorbed into the gain solutions and therefore transferred
to the shortest baselines. Note that in our simulations the sky model
is complete, so in this case, only the noise adds to overfitting of the
data (Barry et al. 2016; Patil et al. 2016). In the following section,
we will investigate whether adding more spectral constraints to the
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Table 1. Remaining simulated 21-cm signal power after DD calibration with different settings. The calibration was
performed with and without applying the 250 λ cut and with a different regularization parameter and bandwidth.

DD calibration scheme Relative signal amplitude Recovered power ratio Solver noise fraction

No cut, low reg, 60 MHz 4 8.3 ± 0.2% 15%
No cut, low reg, 60 MHz 7 8.7 ± 0.2% 6%
No cut, low reg, 60 MHz 10 9.1 ± 0.2% 4%

Cut, low reg, 12 MHz 10 103 ± 3% 16%
No cut, high reg, 12 MHz 10 65 ± 2% 5%
Cut, high reg, 12 MHz 10 100 ± 2% 6%

Figure 2. Ratio of the Stokes V power spectra after DD calibration and the input noise. Left-hand panel: all baselines used during calibration. Right-hand panel:
calibrated with baselines larger than 250 λ.

Figure 3. Left-hand panel: Input amplitudes and amplitude solutions for a single timeslot, station and direction (≈3 degrees away from the field centre), using
the four different calibration schemes described in 4 and table 1. Even though a spectral Bernstein polynomial constraint was applied during calibration, the
solutions still fluctuate in frequency when the regularization parameter SAGECAL-CO is low. The large outliers correspond to subbands that had a lot of RFI (in
real data) and therefore many of the data were flagged. The simulated gains were taken from real data calibration with low regularization and therefore have
spectral structure. Middle panel: zoom of the left plot on the 12 MHz used in the latter 3 calibration schemes. A clear improvement in the smoothness of the
solutions is observed when high regularization is applied. Right-hand panel: time-averaged delay spectrum of the complex gain solutions, same cluster and
station. The reduction in noise power with higher regularization is obvious. Note the different binning due to the five times larger bandwidth of the first two
lines.

gain solutions by increasing the regularization will reduce the level
of signal suppression and/or the overfitting effect.

5 SP E C T R A L R E G U L A R I Z AT I O N

The calibration scheme discussed in Section 4 has also been applied
on real data. As expected, removing the 250 λ cut considerably
reduces the noise in the Stokes I and V power spectra, compared to
Patil et al. (2017). However, it also has a major effect on the 21-cm

signal itself. The solid black line in Fig. 3 left shows the DD gain
variation for one timeslot and one of the 122 directions. From this
figure, it is apparent that the final DD solutions are not spectrally
smooth on MHz scales. From the physical processes involved (i.e.
the ionosphere and the instrument response), one would expect the
true gains to be spectrally smooth up to scales of 10 MHz or larger.
The overfitting discussed in the previous section manifests itself in
the irregularity of the solutions on much smaller frequency scales.
As discussed by Mouri Sardarabadi & Koopmans (2019), smoother
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Figure 4. Demonstration of the effect of the regularization parameter on the
average gain variance, using the SAGECAL-CO solutions from a single cluster
(real data).

solutions may mitigate the effect of signal suppression and the
excess variance. We can enforce smoothness by increasing either
the number of iterations or the value of the regularization parameter
in SAGECAL-CO. A third-order Bernstein polynomial might also be
too constraining to describe the expected frequency variation over
the full 60-MHz bandwidth. Therefore, we reduce the bandwidth to
12 MHz, covering only 134–146 MHz, corresponding to the z =
9.6–8.7 redshift bin used by both Patil et al. (2017) and Mertens
et al. (2020). By decreasing the bandwidth, a third-order polynomial
provides enough freedom to capture the shape of the bandpass.
Without any regularization, the number of gain parameters is reduced
by a factor of 5 due to the limited bandwidth, but so is of course the
number of input visibilites. Full regularization, forcing the solutions
to lie on the Bernstein polynomial, would reduce the number of
degrees of freedom by a factor of 20, since there are 62 subbands
within this 12 MHz that have a individual gain solution. Since in
our experiments full convergence is not always met, the number of
degrees of freedom will only be partly be reduced by regularization.
A more formal method to derive the remaining number of degrees of
freedom is given in Yatawatta (2019).

For a few intervals of real data, we investigate the effect of
the number of iterations and the regularization parameter on the
smoothness of the solutions. From theory (Mouri Sardarabadi &
Koopmans 2019), one expects that the solutions will be constrained
to a smooth curve once convergence is reached. Selecting a reg-
ularization parameter that is too low may increase the number of
iterations needed to reach convergence, whereas a high regularization
parameter may force the solutions to a wrong minimum every
iteration, thereby slowing convergence. We find that with the default
SAGECAL-CO setting for the regularization parameter ρ, with values
between 1 and 50, depending on the apparent cluster brightness,
convergence to smooth gain solutions is not reached even after 400
iterations. Because the number of iterations is in practice constrained
by compute power limitations, we decided to use 40 iterations and
find the optimal regularization parameters for that setting.

A good measure of the smoothness of the gain solutions can be
obtained by examining the differences of the gains of adjacent sub-
bands. In Fig. 4, we present the variance of the subband differenced
gain solutions for a typical cluster as a function of regularization
parameter. To obtain this plot, we used real data. A clear minimum
in differential gain variance is obtained near the regularization value
of ρ = 200, which is 200 times higher than the original regularization
parameter for this specific cluster. Similar optimal values were found

in Yatawatta (2016). In the same way, we find that for most of
the 122 directions, the optimal regularization parameter is tens to
hundreds times higher than the initial regularization. Only a few
clusters that are close to the first null of the beam do not show
such a clear minimum of differential gain variance. A possible
explanation could be that a beam model is not applied to the sky
model during DD calibration. This results in stronger frequency-
dependent beam variations near the first null, causing spatial gain
variations over the extent of the cluster not constant enough to be
described by a single Jones matrix. Including the beam model is
one of the envisioned improvements to our current calibration. The
signal-to-noise ratio (S/N) of the gains using real data, defined as the
absolute gain divided by the subband differenced gain variance, using
the optimized regularization parameters, is shown in Fig. 5. Every
point in this figure is a single component of the 28 000 sky model
components. Clearly, clusters that share the same DD gain solution
show the same S/N-ratio. The S/N ratio of the clusters shows a slight
gradient to lower S/N values away from the phase centre, possibly
related to the lower apparent flux at those positions. Some outliers
with lower S/N values are visible near the first null of the beam.

5.1 Simulations

We repeat the tests in Section 4 on the same simulated data. This time,
we only use a single realization of the simulated signal, correspond-
ing to the brightest selected signal with a relative amplitude of 10. Ad-
ditionally, we use the limited bandwidth and optimized regularization
parameters, as described in the previous section. As before, we anal-
yse the Stokes-V correlations to understand the effect of calibration
on an almost noise-like signal. The Stokes-V power ratio plots with
high regularization without and with the baseline cut are shown in the
left- and right-hand panels of Fig. 6, respectively. Table 1 summarizes
the results of the suppression and solver noise measurements for four
different calibration schemes. The schemes have different baseline
cuts and levels of regularization. The lowest stokes V power spectrum
ratio is achieved when no baseline cut is applied, as expected. How-
ever, even with a high- gain regularization level, a considerable level
of signal suppression is observed (35 per cent suppression), although
it is much lower than without strong regularization. This remaining
signal suppression is likely due to the fact that convergence is too slow
for practical purposes, therefore maximum smoothness is not reached
within the limited number of 40 iterations. This is in agreement with
the theoretical considerations by Mouri Sardarabadi & Koopmans
(2019). In Fig. 3, we show the amplitude solutions for all four
calibration scenarios of a single time slot, station and direction.
The reduction of spectral variations with increased regularization is
visible and even more pronounced in the time-averaged delay power
spectrum of the complex gains of the same station and direction in
the same figure. From these results, we conclude that combining a
baseline cut with a high level of regularization to enforce smooth
gain solutions is optimal. When using these settings, the signal
suppression on the baselines excluded from calibration is close to
zero, as expected. Moreover, the extra noise power on the shorter
baselines due to overfitting is reduced by about a factor four with
respect to the test using low regularization. Also, the sharp break that
can be observed in Fig. 2 at the k⊥ value corresponding to a baseline
length of 250λ is hardly visible in the right-hand panel of Fig. 6.
We conclude that this way an optimal bias-variance trade off can be
reached.

Note that the way our simulated gains were constructed, namely
from real data calibration, the input gains were not spectrally smooth.
This is shown in Fig. 3, where the input gains in this example show
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Figure 5. S/N-ratio of the subband differenced solutions for all ∼28.000 sky components in real data. Clusters of components can be recognized since they
share the same gain solutions. In total, there are 120 clusters in the image. The S/N ratio is similar for most clusters, but showing a slight gradient to lower S/N
values away from the phase centre. Some outliers near the first null of the beam can be observed.

Figure 6. Ratio of the Stokes V power spectra after DD calibration with strong regularization over the input noise. Left-hand panel: No baseline cut during
calibration. Right-hand panel: Excluding baselines shorter than 250 λ from calibration.

similar structure to the gains of the initial test with low regularization.
True spectral structure in the gains will introduce additional noise
power when enforcing maximal smoothness, an effect that needs to
be carefully considered when working with real data. It is, however,
expected that the true gains are spectrally smooth scales up to several
MHz in real data. In our analysis, we are not able to directly detect this
additional noise. In principle, it has been added to the power spectra in
Fig. 6, such that our conclusion about the reduction of the overfitting

effect using strong regularization might be an underestimation. In
fact, our result strengthens the conclusion that limiting the number of
degrees of freedom in calibration is more important to reduce signal
suppression and noise enhancement, than reaching the True gains.

6 D ISCUSSION

We studied the effect of using DD calibration with a large number
of free parameters (i.e. directions and spectral channels) on the
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noise power as well as on a simulated 21-cm signal added to a
typical LOFAR EoR data set pointing at the NCP. Although some
parameters, such as the model components and regularization per
direction were optimized for the chosen field and bandwidth, the
main conclusion of our analysis is valid for any LOFAR EoR
observation. We investigated the effects of excluding the shorter
baselines that are used in the final power spectrum analysis (<250λ)
from the calibration as well as the level of regularization of calibration
solutions. The regularization constrains the gain solutions to be more
smooth in frequency. We find that including all the baselines during
calibration, even when using a model of the bright diffuse emission on
those baselines, leads to an unacceptable level of signal suppression.
Calibrating without those baselines that will be used in the final
21-cm signal power spectrum removes signal suppression. However,
excluding short baselines from the calibration also increases the
excess noise power on those same baselines. This is known as
the bias-variance trade off. Forcing the solutions to be spectrally
smooth, on the other hand, reduces signal suppression significantly,
and limits the excess noise. The origin of signal suppression and
noise enhancement due to calibration can be the lack of convergence
to the True gains, the large number of degrees of freedom and sky
model incompleteness. For the latter, the current analysis gives no
definite answer, since most of the simulations were done with a
perfect sky model, but it needs to be concerned in real data analysis.
We found that convergence to smooth parameters could not be
reached in practice on real data, even with a very large number
of iterations. The simulate gains in our analysis contained spectral
structure, but constraining the solutions to be spectrally smooth did
not enhance the noise in our limited data set, strengthening the
conclusion that the biggest impact comes from limiting the number
of free parameters. Reducing the number of degrees of freedom by
enforcing strong regularization clearly leads to lower signal loss and
less noise enhancement.

We conclude that, for DD calibration of a typical LOFAR 21-cm
data set, it is necessary to use a baseline cut, separating the baselines
used for calibration from those used for signal extraction, as well as
significantly increase the level of regularization. We also show that
the conservative strategy chosen for the LOFAR EoR analysis by
Mertens et al. (2020) does not lead to signal suppression during the
calibration step, while the increased noise level due to overfitting is
significantly reduced with respect to the strategy presented earlier by
Patil et al. (2017). An incomplete sky model may further increase the
level of noise due to overfitting or the level of signal suppression if
no baseline cut is applied. In the presented study a perfect sky model
(apart from the 21-cm signal) was assumed, therefore a lower limit on
the level of suppression was established. Further testing is necessary
to determine whether the baseline cut can be safely removed when
using an improved model of the sky. However, as shown by the
results in this work, the use of an optimized regularization parameter
reduces the solver noise to a lower level (about a factor of 4 in power)
and removing the cut is therefore less pressing.

Besides reducing the parameter space by enforcing smooth solu-
tions in frequency space, we have additionally shown that, in real
data, the gain parameters never converge to a polynomial curve
for some of the clusters. This is specifically the case for clusters
near the first null of the beam. Including a beam model during DD
calibration could therefore improve results further. Since DD effects
are expected to be smooth over the field of view, another way to
decrease the degrees of freedom in the calibration is to constrain the
solutions to be both spectrally and directionally smooth.

The final calibration scheme described here also does not yet in-
clude constrained solutions for the initial two-directional calibration.

The reason for this is that cable reflections and bandpass effects
lead to DI gain variations on short frequency scales. These can
not be taken into account with a third-order Bernstein polynomial.
However, as was discussed by Barry et al. (2016) and Ewall-Wice
et al. (2017), correcting the data with spurious rapid varying gain
solutions, e.g. due to an incomplete sky model, could introduce
artificial enhanced power on small frequency scales that cannot be
reduced in the subsequent steps of the calibration. Contrary to solver
noise, this model incompleteness induced power leakage is correlated
and therefore, can not be integrated down by adding observations.
Although in DD calibration the final visibilities are not multiplied
with the calibration gains, the gain multiplied sky model is subtracted.
Therefore, the correlated enhanced power at high k values, arising
from incorrect spectral structure in the calibration gains related to
model incompleteness, is expected to be less pronounced but could
still be present if the DD gains are not forced to be spectrally smooth.
In Mertens et al. (2020), it was shown that with the current settings,
a large fraction of excess noise power (above the theoretical noise
power) remains, which needs further investigation (Gan et al., in
preparation). In future analyses, we will investigate whether adding
extra constraints during our initial calibration or during the DD
calibration will further reduce the excess noise power and is able
to limit the leakage of power due to model incompleteness.

We note that, the results in this paper focus on the specific case of
data from the LOFAR EoR project. However, the conclusions are also
applicable to other experiments that try to recover faint signals using
various forms of calibration with a large number of free parameters,
and to the SKA, that has a design similar to that of LOFAR.
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