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Topological physics is emerging as an active area of research, addressing fundamen-

tal questions on how geometry, symmetry and topology affect physical properties,

paving the way towards novel technological applications. Originally investigated in

quantum systems, these concepts have been thereafter translated across diverse do-

mains including, electromagnetic, plasmonic, elastic and acoustic waves. Specifically,

in elasticity, due to the strong tendency to hybridize of wave modes with different

polarization, topological protection is viewed as a revolutionizing approach to design

waveguides supporting unique features such as (i) being immune to defects and (ii)

suppressing back-scattering during the wave propagation phenomenon. These novel

features arise as a consequence of their dispersion surface topology.

This tutorial aims to introduce the theoretical, numerical and experimental frame-

works to investigate topological elastic waveguides, discussing the key ideas, first, in

the context of discrete systems, and then, in continuous elastic solids. After a compre-

hensive description of the currently used state of the art scientific techniques, various

classes of topological wave phenomena leading to localized waves in elastic architected

plates and beams are presented. Implications of the presence of both longitudinal and

shear waves in elastic solids are discussed, and the associated challenges, opportuni-

ties and strategies to exploit their interplay highlighted. The symmetry conditions

required to induce them are discussed using a number of representative examples.

Finally, future research directions of this fledgling field are outlined.

a)Corresponding author: rkpal@ksu.edu
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I. INTRODUCTION8

A waveguide is a structure that guides waves with minimal loss of energy by restrict-9

ing the transmission of energy to one direction. Waveguides in diverse areas of physics10

exist depending on the kinds of energy they transport, e.g., elastic, acoustic, electromag-11

netic, plasmonic and electronic. The governing equations associated to the type of wave12

propagation vary accordingly. For example, wave propagation in elastic media is governed13

by the Cauchy equations of elastodynamics, in fluids by the Helmholtz equation, while14

Maxwell and Schrödinger equations govern electromagnetic waves and electron transport,15

respectively. Note that these equations are distinct in nature, with the Cauchy, Helmholtz16

and Maxwell equations being systems of hyperbolic partial differential equations while the17

Schrodinger equation is dispersive1. The common link between them that is relevant to the18

present topic is the existence of wave-like solutions in periodic domains that obey the Bloch19

theorem2–4.20

There are key differences between wave types supported in various physical media. Elas-21

tic solids support both longitudinal (pressure) and transverse (shear) waves. In contrast,22

fluids support only longitudinal waves5 while electromagnetic media only support transverse23

waves4. Elastic waveguides have been extensively investigated both to understand the24

fundamental properties of materials and for technological applications including sensing,25

actuation, signal processing and energy conversion or harvesting, to name a few6,7. For26

instance, sensing applications may include pressure, temperature and strain measurement.27

Such waveguides are generally comprised of a straight channel, embedded with piezoelec-28

tric transducers. If the length of the channel, and thus the spacing between the embedded29

transducers changes, then the frequency of the traversing wave also changes. This shift30

in frequency is correlated with the quantity to be measured. Wave steering for actuation,31

energy harvesting, vibration control and structural health monitoring are other widespread32

applications of elastic waveguides7,8.33

In this context, over the last two decades, architected materials or metamaterials9 have34

lead to a new class of waveguides exhibiting unique wave control opportunities. For instance,35

Fig. 1 presents an example of an elastic metamaterial-based waveguide showing energy redi-36

rection features. The system consists of a plate with periodic circular inclusions arranged in37

a square lattice. Due to the periodicity, the waveguide does not allow propagation of waves38
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in certain band of frequencies, often referred to as frequency bandgaps9. In this band, the39

wave is confined to the strip (straight or L-shaped as illustrated). This example illustrates40

how designing the geometry of the structure can lead to waveguiding along specific paths.41

Although the metamaterial paradigm represented an excellent candidate to boost waveg-42

uide applications, in fact they have not found widespread technological diffusion. The pri-43

mary reason is that their unique behavior is sensitive to the presence of defects and imper-44

fections. In particular, significant losses arise due to scattering and localization at defect45

locations or at corners, as illustrated in Fig. 1b. To overcome these problems, recently, a new46

class of architected structures called topological waveguides have been introduced, rapidly47

evolving as a leading field of research. Such structures exploit the symmetry and topology of48

their dispersion surfaces to support modes that are immune to defects, to imperfections and49

that do not suffer from scattering losses. This immunity arises as a consequence of topologi-50

cal properties, and hence these waves are called topologically protected. Originally discovered51

in 2D electron gases in the context of the quantum Hall effect10, they have been extended to52

other classical areas of physics in the past decade. Examples include electromagnetic11, plas-53

monic12, acoustic13, electromechanical14 and elastic15–18 media. Even though these diverse54

media have very distinct governing equations, the concept of topological modes translate55

across disciplines because the protection arises from specific symmetry properties of the56

eigenvalue problem19, or more specifically, a family of eigenvalue problems as a parameter57

is varied (see sections IV and V, for the details).58

Topological modes in elastic media can be broadly classified into two categories. The59

first one involves active components, like rotating gyroscopes22,23, and it has been primarily60

demonstrated for discrete elastic media. The second category solely uses passive components,61

and has been demonstrated in a wide variety of discrete systems such as combination of62

pendulums and levers24, rotating disks25, mass-spring networks26–28, as well as for continuous63

elastic media like architected plates16,29–31.64

This tutorial aims to introduce the fundamental concepts and working principles of such65

topological waveguides in elastic media, as well as practical steps to design them. It is66

organized as follows. First, an overview of various waves supported by homogeneous and67

architected elastic media is presented. This is followed by the description of the most68

commonly used theoretical, numerical and experimental tools to investigate periodic elastic69

structures. In section IV, illustrative examples of topological modes are provided using70
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(a) (b) (c)

FIG. 1: (a) Example of waveguides allowing energy to propagate towards (left panel) a

straight or (right panel) a L-shaped path20. Comparison of the wave field reconstruction

for (b) a trivial and (c) a topological photonic waveguide. Wave reflects back at corners in

the trivial case while no energy is reflected in the topological one21. (Reproduced with

permission from Phil. Trans. A 373, 20140364 (2015) and Phys. Rev. Lett. 114, 127401

(2015). Copyright 2015 Royal Society and 2015 American Physical Society.)

discrete mass-spring chains and beams. The key ideas leading to the different types of71

modes and their combination are described in detail. Section V presents the realization72

of various topological modes in continuous elastic media and discusses the key steps and73

strategies for their design. Finally, promising future directions are outlined in Sec. VI.74

II. WAVES IN ELASTIC MEDIA75

Elastic waves can be defined as disturbances propagating in an elastic solid due to a local76

deviation from static mechanical equilibrium conditions32. Such disturbances manifest as77

time varying displacement and stress fields in the solid. If the deformations are small enough78

(i.e., small displacement assumption holds), the medium can be assumed to be linear elastic79

and the wave characteristics do not depend on the disturbance amplitude. Depending on80

the domain geometry and boundary conditions (finite or infinite media, presence of free81

surfaces) of the elastic medium, various types of elastic waves can be identified.82
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A. Bulk, surface and guided waves in homogeneous media83

Waves propagating indefinitely in an infinite homogeneous body without being inter-84

rupted by boundaries or interfaces are called bulk waves. The general elastodynamic wave85

equation governing the evolution of the displacement field u(x, t) has the form86

ρ
∂2u

∂t2
=

∂

∂x

(
C
∂u

∂x

)
(1)

where C is the fourth-order elasticity tensor and ρ is the density33,34. In a linear, isotropic87

and elastic medium, this governing equation reduces to the form88

ρü = (λ+ µ)∇(∇ · u) + µ∇2u, (2)

where λ, µ are the material properties called Lamé constants. Solutions to Eqn. (2) support89

one longitudinal wave and two shear waves with specific wave velocities that are functions of90

the material’s properties and independent of the frequency or the direction of propagation.91

These waves have distinct types of motion. Longitudinal waves (also called P-waves) are92

characterized by particle motion alternating compression and stretching of the medium (see93

left panel of Fig. 2a). Shear waves are characterized by transverse particle movements in94

alternating direction (see central and right panels of Fig. 2a). In P-waves, energy propagates95

parallel to the displacement direction of a point, while in the second one, energy propagates96

perpendicular to a point’s displacement direction. In shear waves, displacement occurs in the97

plane normal to the propagation direction and the wave can be decomposed into horizontal98

shear wave (SH) and vertical shear wave (SV), as shown in the central and right panels of99

Fig. 2a.100

Wave propagation in anisotropic media is governed by the general elastodynamics equa-101

tion Eqn. (1) and their analysis is considerably more complicated. Examples of anisotropic102

elastic media include piezoelectric media, natural materials like wood, engineered materials103

like composites. They can be classified as triclinic, monoclinic, orthotropic, cubic and trans-104

versely isotropic depending on how isotropy broken along various symmetry axes. Similar105

to isotropic media, anisotropic media also support three types of waves in an infinite solid.106

However, there is no clear distinction like longitudinal and shear waves since the particle107

motion can be at an arbitrary angle to the wave front propagation direction. In addition,108

this angle and the wave velocity are also direction dependent. The wave front shape is repre-109

sented by slowness diagrams or surfaces, and they illustrate the variation in wave speed with110
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direction. Anisotropic media with boundaries can also support Rayleigh and guided waves111

and their analysis often requires numerical procedures. The interested reader is directed to112

references discussing elastic waves in anisotropic media35. In this tutorial, we will restrict113

the attention to solids that are isotropic in the bulk at the length scales considered, i.e.,114

macroscopic.115

A three-dimensional (3D) medium bounded at a surface supports the propagation of116

waves localized at the free half-space, namely Rayleigh (R) waves and Love (L) waves (refer117

to Fig. 2b). Rayleigh waves (left panel of Fig. 2b) are characterized by a counterclockwise118

elliptical motion of the medium particles polarized in the xz plane, if the energy flows along119

the x direction. The amplitude of these wave decreases exponentially as e−bz with distance120

z from the free surface. The exponent b is inversely proportional to the wavelength of the121

wave33. Love waves are horizontally polarized surface waves (see right panel of Fig. 2b).122

They exist only when the top layer has a lower shear wave velocity than the semi-infinite123

media below it. These waves derive from the interference of many shear waves guided124

by the top elastic layer, i.e. the one with lower velocity characteristics and with the top125

boundary free. Particle oscillations in Love waves involve alternating transverse movements.126

The direction of medium particle oscillations is horizontal (for instance in the xz plane) and127

perpendicular to the direction of propagation (x). As in the case of Rayleigh waves, their128

wave amplitude decreases with depth.129

Finally, in some materials, the relation expressed by Eqn. (1) does not fully describe their130

response when subjected to an elastic strain. Indeed, certain materials become electrically131

polarized when they are strained. This effect, called the direct piezoelectric effect, manifests132

experimentally by the appearance of bound electrical charges at the surfaces of a strained133

medium. It is a linear phenomenon, and the polarization changes sign when the sign of134

the strain is reversed. Though piezoelectricity is a complex phenomena intimately related135

to the microscopic structure of the solid, the macroscopic behavior can be quantitatively136

captured in terms of a rather simple constitutive model. We direct the reader interested in137

wave propagation in piezoelectric media to additional references36–38.138

Let us now discuss wave propagation in structures where one dimension is much smaller139

than the other two. Examples include plates and shells, where the thickness is smaller140

compared to the in-plane dimensions. When a point in a plate (Fig. 2c, for example) is141

transversely excited, waves propagating from this point encounter the upper and lower free142
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surfaces of the structure, leading to reflection and mode conversion (longitudinal waves to143

shear waves, and vice versa). The wave field is a superposition of multiple reflections and the144

resulting generated waves. This wave field can essentially be approximated as propagating145

in the in-plane directions with a specific displacement field in the direction of the smaller146

dimension (examples in Fig. 2d). Such waves are called Lamb waves or guided waves.147

An elastic plate supports an infinite number of guided modes, each with a different148

displacement field. Among them, the symmetrical and anti-symmetric zero-order modes149

(shown in Fig. 2d, having symmetric and anti-symmetric transverse displacement field about150

the plate center-plane) deserve special attention because (i) they are the only modes that151

exist over the entire frequency spectrum from zero to indefinitely high frequencies, and (ii)152

in most practical situations they carry more energy than the higher-order modes. Also, in153

the low frequency range (i.e. when the wavelength is greater than the plate thickness) these154

modes are called the “extensional mode” and the “flexural mode” respectively, terms that155

describe the nature of the particle motion.156

Lamb waves are dispersive, i.e., their wave velocities depends on the frequency in addition157

to the material and geometric properties of the plate. These wave velocities require numerical158

procedures and cannot be determined in analytical closed form33,34. Guided waves travel159

long distances with little attenuation, making them well suited for non-destructive evaluation160

and structural health monitoring applications. The word waveguide arises from structures161

hosting these types of waves. The interested reader is directed to references that discuss162

approaches to extract Lamb wave solutions in isotropic, anisotropic, as well as piezoelectric163

waveguides8,33,36.164

B. Waves in architected structures165

In previous section we have seen that the properties of bulk, surface and guided waves166

are determined by the relationship between the particle motion, wave propagation direction167

and the constitutive properties of the medium. In homogeneous, isotropic (infinite) media,168

the energy flow coincides with the wave front of the wave.169

However, in many practical cases, the assumptions of isotropy and infinite extent are170

not always satisfied, and often waves propagate in media with geometrical or mechanical171

discontinuities. When the elastic waves propagate in structures with complex geometries,172
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FIG. 2: (a) Bulk Waves propagating in an infinite media and characterized by (left panel)

particle motion alternating compression and stretching of the medium, and (center, right

panels) transverse particle motion in orthogonal planes. (b) A 3D medium with a free

surface allows for the propagation of waves localized at the free half-space. Left panel:

Rayleigh waves and right panel: Love waves. (c) Lamb waves in a plate. (d) First two

Lamb modes, top: symmetric and bottom: anti-symmetric about the plate center-plane.

multiple reflections take place due to impedance mismatch at the interfaces and free surfaces,173

strongly complicating the energy flow/redistribution. The most general case is when waves174

propagate in structures with no spatial inversion symmetry and broken time-reversal sym-175

metry, i.e., where the material parameters and geometrical design of the system randomly176

vary both in space and time. A mechanical system has broken time reversal symmetry if177
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its governing equations change under the transformation t → −t. Examples include struc-178

tures with attached spinning gyroscopes22,23 and systems with damping. Similarly, spatial179

inversion symmetry means the structure is invariant under the transformation x → −x.180

If a certain regularity is assumed for the spatio-temporal modulation (for instance intro-181

ducing periodicity), the use of the space-time Floquet theory39–42 can be envisaged. So far,182

non-reciprocity through space-time modulation has been investigated in optical and elec-183

tromagnetic systems, in the case of mechanical waves, as well as in airborne acoustics43–45.184

Breaking time-reversal symmetry requires active components that introduce/remove energy185

into/from the structure.186

Another emerging area of research concerns the propagation of elastic waves in solely187

passive media characterized by a high degree of complexity in their geometrical design. Often188

periodic, i.e., characterized by a unit cell periodically repeated in space, these media are189

usually referred to as architected metamaterials. The periodic architecture of these structures190

can be limited to one, two or three dimensions, and be at the same scale (ordinary architected191

structures)9 or at multiple scale levels (hierarchical architected structures)46,47. Their static192

and dynamic properties derive from a tailored geometry and material distribution (creating193

specific impedance jumps/variations), in addition to their material constituents. Compared194

to waves in conventional materials described in the previous section, architected materials195

have opened novel ways of manipulating and controlling the propagation of elastic waves.196

Examples include omnidirectional stop bands or full bandgaps (BGs), negative refraction,197

wave focusing and perfect transmission of waves at sharp angles48–52.198

Figure 3 reports an example of an architected elastic waveguide, i.e., namely a plate199

with circular holes in a hexagonal lattice arrangement. The smallest repetitive block, if200

one exists, is called unit cell, and in the considered case is highlighted in light green in201

Fig. 3a, and reported in its in-plane and trigonometric view in Figs. 3b,c, respectively. The202

interplay of periodicity, geometry and material composition within each unit cell can result203

in effective mechanical properties very distinct from those of its constituent materials. The204

unconventional dynamic properties may derive from (i) Bragg scattering, i.e., a destructive205

interference arising from an impedance mismatch proportionally periodic in space to na/2,206

with n ∈ N and a the lattice parameter3, or (ii) local resonances53.207

The information about the wave propagation within these structures is often derived208

through the examination of the so-called dispersion diagram or dispersion surfaces. In what209
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FIG. 3: (a) In-plane view of an architected waveguide consisting of a plate with circular

and triangular holes in a periodic arrangement. The unit cell, i.e. the smallest repetitive

building block, is highlighted in light green. (b) In-plane and (c) isometric view of the unit

cell. a1 and a2 are the lattice vectors. Dispersion analysis of this periodic structure is

conducted by the imposing periodic boundary conditions (PBC) at the domain edges (see

section III B for further details).

follows, the principal approaches to extract these information are presented.210

III. METHODS FOR DISPERSION ANALYSIS OF PERIODIC ELASTIC211

STRUCTURES212

Dispersion analysis gives the frequency-wave vector ω(κ) relation, i.e., the relation be-213

tween spatial and temporal periodicity of a traveling wave. An arbitrary wave of sufficient214

regularity can be expressed as a superposition of harmonic waves of distinct frequencies. Dis-215

persion relation specifies how each individual frequency component propagates in a solid. In216

particular, it provides information of the wave vector as a function of the frequency and its217

gradient gives the group velocity of the wave. Dispersion relations completely characterize218

the dynamic behavior of a linear elastic solid because in conjunction with the superposition219

principle, they can be used to predict the propagation of any arbitrary wave. In this section,220

we discuss various methods to determine dispersion relations for an architected linear elastic221

solid.222
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A. Analytical techniques223

The plane wave expansion method gives a good approximation to the mode shape and224

natural frequency of an architected elastic media that is periodic. Let us consider a plane225

wave traveling through a periodic elastic structure with frequency ω and wave vector κ. The226

wave vector may be viewed as the spatial analogue of frequency. Just as frequency measures227

how rapidly a point in the medium is varying with time, wave vector measures how rapidly228

the displacement field is varying in space. Hence, it is a vector having each component κp229

inversely proportional to the corresponding wavelength along the direction with unit vector230

ep.231

The displacement field due to this traveling wave is expressed as232

u(x, t) = U(x)e−iωt. (3)

In a periodic domain with lattice vectors ap, U(x) satisfies the Bloch periodicity condition

U(x+ap) = eiκ·apU(x) for each periodic direction p and U(x) is called a Bloch mode. Let

us derive an expression for U(x) that will help us to determine the dispersion surfaces. We

start by considering the function g(x) = U(x)e−iκ·x. The Bloch periodicity condition then

implies that g(x) is periodic in the unit cell, i.e., g(x+ ap) = g(x). Indeed,

g(x+ ap) = U(x+ ap)e
−iκ·(x+ap) = eiκ·apU(x)e−iκ·ape−iκ·x = U(x)e−iκ·x = g(x).

Since g(x) is a periodic function with periodicity of the unit cell, it can be expressed as a233

Fourier series in the form234

g(x) =
∞∑

m,n,r=−∞

am,n,re
iGm,n,r·x, Gm,n,r = ma1 + na2 + ra3. (4)

Here m,n and r take integer values and am,n,r is a vector with complex coefficients for each235

basis function with index (m,n, r). For periodic beams, we only have a1 while for periodic236

plates, we only have a1 and a2. Using this equation, the displacement field can be written237

as238

u(x, t) =
∑
m,n,r

am,n,re
iGm,n,reiκ·xe−iωt. (5)

The real part of the right hand side in the above equation gives the displacement field.239

Equation (5) is the starting point of the plane wave expansion method. The displacement240

field can be expressed as a superposition of periodic waves with periodicity of the unit cell,241
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along with a factor eiκ·x that takes into account the wavelength of the wave. The functions242

eiGm,n,r constitute an orthonormal basis over a unit cell and determine the part of the Bloch243

mode that fluctuates within the unit cell. To determine the dispersion relation ω(κ), we244

choose a finite set of basis function by allowing m,n, r to take integer values from −N to N245

in Eqn. (5). The coefficients am,n,r are determined by substituting the expression for u(x, t)246

into the governing equations, taking the scalar product with each basis function epe
iGm,n,r

247

and integrating over a unit cell. Recall that ep is the unit vector along direction with index248

p. This procedure leads to a system of linear homogeneous equations defining an eigenvalue249

problem and its solution gives the dispersion surfaces. In particular, we impose each value250

of the wave vector and determine the corresponding natural frequencies.251

Let us now illustrate the PWE method with an example. Figure 4a displays a metamate-252

rial bar with two alternating materials whose Young’s modulus E are different. The darker253

material has E 4 times higher than the lighter material. The PWE method can be used to254

calculate the dispersion surfaces of this structure. Figure 4b displays the real part of two255

basis functions ei(G+κ)x for the PWE method with κ = 2π/3L and G = 0, 2π/L. Applying256

this method yields the frequencies and corresponding mode shapes of the propagating waves.257

The red curve in Fig. 4a shows the displacement field of the first mode shape at a wavenum-258

ber κ = 2π/3 over 6 unit cells. For this wavenumber κ, Bloch periodicity condition implies259

that the displacement field is periodic over 3 unit cells, which is consistent with the curves260

in Fig. 4a. The reader may refer to additional detailed illustrations on the PWE method261

for analysis of propagating54–61 and evanescent62,63 waves in architected elastic structures.262

The analytical plane wave expansion method works well for simple geometries where the263

mode shape can be represented with a few basis functions N in Eqn. (5). As the unit cells264

become more complex, incorporating complicated shaped holes or inclusions, the error in265

mode shape represented with a small N is high, while increasing N leads to ill conditioning of266

the resulting matrices. To overcome these issues, numerical methods based on finite element267

analysis are used to efficiently determine the dispersion surfaces for complex geometries. We268

discuss this method in the following subsection.269
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(a)
(b)

FIG. 4: (a) Mode shape (red curve) of a metamaterial bar (schematic behind the curve)

with two materials of different Young’s modulus at a wavenumber κ = 2π/3L.

Displacement field is shown over 6 unit cells. (b) Real part of typical basis functions

ei(κ+G)x in the PWE method with G = 0 and G = 2π/L. Basis functions are shown over 3

unit cells for clarity.

B. Numerical techniques270

The governing equation (2) for a 3D linear elastic solid is considered over a single unit271

cell with appropriate boundary conditions to determine the dispersion surfaces. To illustrate272

these conditions, let us consider the unit cell in Fig. 3c. The displacement fields at the right273

and top boundary are expressed in terms of the corresponding fields at the left and bottom274

boundary using Bloch periodicity as275

u(xR, t) = eiκ·a1u(xL, t), u(xT , t) = eiκ·a2u(xB, t). (6)

Similarly, by force equilibrium at each point on the boundary, the traction t on the various276

surfaces are related as277

t(xR, t) = −eiκ·a1t(xL, t), t(xT , t) = −eiκ·a2t(xB, t). (7)

The two equations (6) and (7) constitute independent boundary conditions on each bound-278

ary. Substituting u(x, t) = eiωtU(x) into the governing equations and using these two279

conditions leads to a well posed eigenvalue problem. Its solution provides the mode shapes280

U(x) and natural frequencies ω for each wave vector κ. The eigenvalue problem is in the281

form of a partial differential equation and it can be solved using numerical techniques.282

The finite element method (FEM) is the most widely used numerical method for disper-283

sion analysis of unit cells with complex geometries. This method involves two key steps to284

13



convert the governing partial differential equation to a system of algebraic equations64. The285

first step is to consider a weak form of the governing equations that results in a variational286

problem over a function space. The second step is to reduce this variational problem to a287

system of algebraic equations by discretization, i.e., choosing a finite dimensional subspace288

that approximates the infinite dimensional function space. Discretization involves two com-289

ponents: (a) meshing, i.e., dividing the domain into smaller sub-domains called elements,290

and (b) element type, i.e., choosing a set of basis functions up to a specified order for an291

element. The solution fields in each element lies in the vector space spanned by these basis292

functions. The mesh should be sufficiently fine with well shaped elements so that the solution293

can be represented with good resolution using the chosen element type. FEM formulation294

for dispersion analysis has been done in recent years for beams, plates and solids65–67. To-295

day, several commercial software packages are available to conduct dispersion analysis using296

FEM.297

C. Experimental techniques298

From the experimental point of view, and focusing our attention on the ultrasonic fre-299

quency range, many methods to excite (indicated by “E” for the sake of brevity in this300

section) and measure (“M”) elastic waves are widely used. A non-exhaustive list include: (i)301

conventional and piezoceramic ultrasonic transducers (E/M); (ii) comb-type ultrasonic trans-302

ducers (E/M); (iii) electromagnetic acoustic transducer (EMAT), for non-contact acoustic303

wave generation and reception in conducting materials; (iv) magnetostrictive transducers304

(E/M), exploiting the property of magnetic materials that causes them to change their305

shape or dimensions during the process of magnetization; (v) impact-controlled approaches306

(E), such as instrumented impact hammers; (vi) electrodynamic shakers (E); (vii) optical307

fiber sensors (M); (viii) photoelasticity (M), describing changes in the optical properties of a308

material under mechanical deformation; (iix) photothermal (M); (ix) scanning laser Doppler309

vibrometer - SLDV (M), that determines the out-of-plane or normal velocity at each point310

on the surface of an elastic structure through the Doppler effect. These techniques, which311

can be selectively chosen according to the specific type of wave to excite/detect (Rayleigh,312

Lamb, Shear Horizontal, etc.) and the experimental conditions of measurement, can be313

separated in two categories: those requiring a contact with the sample and those that are314
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contactless.315

Among the above listed techniques for wave detection, the SLDV is being used increas-316

ingly often in recent years for several reasons, especially in the case of architected materials.317

First of all, SLDV, being a contactless measurement technique, eliminates the detrimental318

effect of adding additional masses in the measurement locations, which can result in a lo-319

cal change of the structure rigidity. Another advantage of SLDV is its ability to perform320

measurements automatically in a large number of precisely defined points, almost regardless321

of the complexity of the geometrical pattern to scan. Also, SLDV allows for 3D measure-322

ments, allowing object vibration components to be recorded both in the plane perpendicular323

to the investigated surface and in the one parallel to it. Finally, SLDV allows automatic324

measurements on a very dense mesh of measurement points, enabling thus the measure-325

ment of a propagating elastic wave with precision, not only in time but also in space. The326

measurement frequency range is another positive point of this technique, since it allows for327

measurements from close to 0 Hz to several MHz, as well as a wide range of vibration veloc-328

ity amplitudes7. All these advantages make SLDV one of the most effective measurement329

techniques for dynamic characterization of architected materials and elastic waveguides. In330

contrast, it is more difficult to single out a best suited excitation technique and its choice is331

often a result of several considerations including, (i) frequency range and (ii) type of waves332

to excite, (iii) geometric and (iv) elastic properties of the specimen to investigate. We direct333

the reader to reference books7,8 on these aspects.334

IV. OVERVIEW OF TOPOLOGICAL MODES335

There are several classes or types of topological modes depending on the type of symmetry336

that is broken in a lattice19,68. As discussed in the introduction, they can broadly be classified337

into two categories: those that break time reversal symmetry and those that preserve it. This338

classification is based on the simple observation that an elastic media is symmetric or not339

under the transformation t → −t. The physical meaning is that breaking time-reversal340

symmetry requires active or dissipative components. A more fundamental classification of341

symmetries involves using time-reversal, chiral and particle-hole symmetry operators is used342

in quantum mechanics, where each of these has a physical meaning. In an elastic media,343

applying the corresponding mathematical operators leads to constraint equations that may344
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not be related to fundamental principles like balance and conservation laws.345

We introduce the key concepts underlying topological modes through a number of exam-346

ples of varying complexity. They are all based on discrete lattices or elastic beams with the347

goal of elucidating the main ideas behind topological protection in a simplified setting69,70.348

The first example concerns discrete mass-spring chains followed by its extension to contin-349

uous elastic media: architected beams. Afterwards, an example presenting lattices with a350

varying parameter is considered (Sec. IV C), showing energy transport from one corner to351

another. Sec. IV D presents an example of how topological modes can be induced in 2D dis-352

crete lattices, and their relation to the concepts in 1D lattices are elucidated in Sec. IV A.353

We will focus on two distinct classes of modes, namely helical and valley modes in 2D354

lattices.355

A. Illustrative example: topological modes due to spectral flow356

Let us illustrate the key idea behind topological modes with a simple discrete mass-spring357

chain example. It is inspired by the SSH model, the first model that was demonstrated to358

support localized electronic modes due to topological properties10,71. The corresponding359

ideas are valid and can be extended to continuous elastic media. Consider the infinite mass-360

spring chain shown in Fig. 5a, having identical masses m and two springs of different stiffness361

k1 and k2. Note that this chain is a periodic structure. The unit cell of a periodic structure362

is the smallest unit that generates the lattice by repetitive translation. Identifying a unit363

cell requires careful consideration to satisfy this lattice generation requirement. The unit364

cell of this chain has 2 springs (k1, k2) and 2 identical masses, labeled a and b.365

Let us investigate the dynamic response of the infinite chain. The governing equations

for a unit cell indexed n are

mün,a + k1(un,a − un,b) + k2(un,a − un−1,b) = 0,

mün,b + k1(un,b − un,a) + k2(un,b − un+1,b) = 0.

We solve this system of equations in the Fourier domain by imposing a solution of the366

form un,α = eiµn−iωtUα with α = {a, b}. Here µ and ω are the wavenumber and frequency,367

respectively and Uα are the displacement of the two masses in the Fourier domain. The368
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above system of equations then become369  k1 + k2 −k1 − k2e
−iµ

−k1 − k2e
iµ k1 + k2

Ua
Ub

 = ω2

m 0

0 m

Ua
Ub

 (8)

Equation (8) defines an eigenvalue problem and its solution gives the dispersion surfaces370

of the structure, illustrated in Fig. 5c. For each wavenumber µ, there are two natural371

frequencies ω that are solutions of Eqn. (8). These surfaces characterize traveling wave372

solutions in the infinite lattice. Note that there are no real valued wavenumbers µ when Ω373

is in the range (1,
√

2) and when Ω >
√

2, which indicates an absence of traveling waves at374

these frequencies.375

Next, let us consider the dynamic behavior of a finite chain. In general, its natural376

frequencies depends on the chain’s boundary conditions. To exemplify the ideas, let us377

consider a chain in the form of a ring (Fig. 5b) with M unit cells. Each mode shape can378

be identified with a corresponding traveling wave in the infinite lattice, that satisfies the379

condition380

un,α = un+M,α. (9)

This condition arises in the finite lattice due to the topology of the ring. Let us determine381

the wavenumber of the corresponding wave in the infinite lattice. Combining this condition382

(Eqn. (9)) with the Bloch periodicity condition leads to the following set of wavenumbers383

for a ring with M unit cells384

un+M,α = eiµMun,α = un,α =⇒ eiµM = 1. (10)

Note that the solution to eiµN = 1 is µ = 2πs/N for any integer s. Due to the discrete nature385

of the lattice, wavenumbers modulo 2π essentially represent the same wave. For example,386

the displacement field corresponding to waves with wavenumbers µ and µ+2π are identical.387

A unique set of waves can be identified with wavenumbers lying in the first Brillouin zone.388

They are389

µ =
2πs

N
, s = 0,±1,±2, ...± bN/2c. (11)

Here bN/2c is the integer part of N/2. Hence each mode on the ring can be identified with390

a wavenumber from the set in Eqn. (11).391

The red circles in Fig. 5c display these wavenumber values for a ring withN = 5 unit cells.392

This ring has 2N = 10 masses and thus 10 natural frequencies. These natural frequencies393
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FIG. 5: (a) An infinite lattice with two distinct and alternating spring stiffness values.

Dashed rectangle is a unit cell. (b) Hypothetical finite lattice in the form of a ring. (c)

Dispersion curves of the lattice along with finite ring frequencies superimposed as red

circles.

all lie on the dispersion curves and their corresponding wavenumbers take values in the set394

derived in Eqn. (10). This set ensures that there are N = 5 modes of the ring lattice in395

each dispersion branch. To summarize, the key observation is that the topology of the ring396

lattice ensures that equal number of its modes lie on each dispersion branch.397

Let us now consider a ring of N = 40 masses with two kinds of unit cells, shown in398

Figs. 6a and 6b. We set the r-th spring stiffness in the ring to399

kr = 1 + α cos

(
2πr

p

)
, r ∈ {1, 2, . . . , N}. (12)

Here α < 1 and p is equal to the number of masses (or springs) in each unit cell. r is the400

spring index and it runs from 1 to N as there are N springs in the ring. Setting p = 4 and 5401

gives the rings whose unit cell schematics are shown in Fig. 6a and 6b. Their corresponding402

dispersion curves, along with the natural frequencies of the corresponding ring of N masses403

is also shown below (Figs. 6c, 6d). Let us make a couple of observations that are analogous404

to the chain with two distinct springs (k1 and k2) discussed above. The lattice with p = 4405

has 4 dispersion curves or branches and the N natural frequencies are distributed equally406

in each dispersion branch, with the wavenumbers given by Eqn. (10). Similarly, the lattice407

with p = 5 has 5 masses per unit cell, 5 dispersion curves and N/5 natural frequencies in408

each branch.409
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FIG. 6: Unit cells of lattices with (a) 4 and (b) 5 distinct spring stiffness values. Dashed

rectangle shows unit cell. (c), (d): their dispersion curves having 4 and 5 branches. Red

circles show the frequencies of a finite ring lattice of 40 masses are distributed equally

among the dispersion curves: 10 and 8 in each branch, respectively, for the two lattices.

Now, let us examine what happens as we transition from the p = 4 to the p = 5 lattice.410

We do this by setting p = 4+β in the denominator in Eqn. (12), with β taking values in the411

set [0, 1]. The natural frequencies are given by solving the eigenvalue problem arising from412

the governing equations for the masses in the ring. Figure 7 displays the natural frequencies413

of the ring with N masses as a function of β. As β is varied continuously in the set [0, 1], the414

N natural frequencies also vary continuously. At β = 0, the p = 4 lattice has 4 dispersion415

bands separated by bandgaps and there are N/4 = 10 frequencies in each band. On the416

other hand, at β = 1, the p = 5 lattice has 5 dispersion bands with N/5 = 8 frequencies in417

each band.418

Let us analyze how the natural frequencies of the ring vary with β. Let us consider the419

top dispersion band of the p = 4 and p = 5 lattices. These two lattices correspond to β = 0420

and 1, respectively. At these two β values, all modes lie on the dispersion bands and the421

bands are separated by bandgaps for both the lattices. The number of frequencies changes422

from 10 to 8 as 10− 8 = 2 modes go to the second band (from the top) in the p = 5 lattice.423

There are 8 modes in the second band for p = 5 lattice, 6 modes go from the second band424
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FIG. 7: Change in natural frequency of each mode with parameter β showing a spectral

flow across the bandgaps. A number of modes traverse the gap to satisfy the requirement

of equal number of modes in each dispersion branch at β = 0 and 1.

along with 2 modes from the top band at β = 0. Using similar counting arguments, we can425

determine how the 10 modes in each of the 4 branches of the p = 4 lattice get distributed426

into the 5 branches of the p = 5 lattice.427

The key observation is that a number of modes flow across the bands as β varies from 0428

to 1 to satisfy the requirement of N/5 = 8 and N/4 = 10 modes in each dispersion branch in429

the p = 5 and p = 4 lattice, respectively. This flow of natural frequencies, or spectral flow,430

arises solely to satisfy the topological constraint of the number of modes in each dispersion431

branch. For β = 0, there are 10 modes in each of the 4 bulk bands and for β = 1, there are432

8 modes in each of the 5 bulk bands. The key topological argument is the following: as we433

vary β smoothly in [0, 1], the only way to have a change in the number of modes in the top434

bulk band change from 10 to 8 is if 10− 8 = 2 modes migrate down to another bulk band.435

Thus, two modes traverse the bandgap as β is varied in [0, 1] and these modes are labeled436

as topologically protected modes. This migration of modes is independent of the functional437

form of p(β) in [4, 5], with the only requirement being continuity. It is also independent438

of the specific functional form of km in Eqn. (12). Indeed, any functional form of km that439

gives distinct values 4 (or 5) distinct values of spring stiffness and leads to 4 (or 5) distinct440

dispersion bands should also exhibit such spectral flow.441
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In summary, we saw how modifying the parameter β smoothly from 0 to 1 leads to a442

spectral flow between the bandgaps. This hypothetical example of a lattice embedded on a443

ring shows the simplest realization of modes arising to satisfy the topological constraint of444

N/p modes in each dispersion branch. The ring shaped lattice in this hypothetical example445

can be extended to real structures where there is an interface or boundary between distinct446

lattice types. The mode shapes corresponding to the modes traversing the bandgap will be447

localized at such interfaces and boundaries. Indeed, such modes cannot be bulk modes since448

their natural frequency is in the bandgap. Since they have a topological origin, such modes449

cannot be removed in the presence of a wide class of defects or imperfections.450

In the subsequent examples in this section, we will see how a similar spectral flow between451

bulk bands arises at a boundary of a lattice or at an interface between two lattices. The452

bulk dispersion surfaces of these lattices are characterized by topological invariants and such453

interface/boundary modes arise when they have different/non-zero topological invariants.454

B. Localized modes in beams455

Our next example shows how a spectral flow similar to that discussed in Sec. IV A arises456

in an elastic beam with ground springs. Figure 8 displays the schematic of the considered457

system, where the ground springs are located at a distance specified by a parameter θ. There458

are circles of radius r with centers located distance a apart, with r < a. The n-th ground459

spring location is obtained by projecting a point at an angle nθ from the circle to the beam.460

Specifically, this location is xn = na+ r sin(2πnθ) and the periodicity of the resulting lattice461

pattern thus depends on θ. If θ is a rational number, for example p/q, where p and q are462

co-prime integers, then a unit cell has q springs. On the other hand, if θ is an irrational463

number, then there is no repetitive unit cell and the resulting structure is quasiperiodic.464

The plane wave expansion method discussed in Sec. III A may be used to determine the

natural frequencies of the beam structures considered here. The basis functions in Eqn. (4)

running over a single index m are a valid choice, as they are periodic over a unit cell69.

Figure 9a displays the natural frequencies of a finite beam (red curves) overlaid on the

corresponding frequencies for an infinite beam. It shows how the frequencies change with

the parameter θ. Note that each vertical slice (constant θ line) is a different lattice. A

homogeneous beam (without ground springs) has an infinite number of natural frequencies
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FIG. 8: Schematic of procedure to determine the location of each ground spring by

projecting from a circle. Varying the parameter θ gives a family of periodic (quasiperiodic)

structures for rational (irrational) θ69.

without an upper bound and its dispersion relation is

ω =

√
EI

ρA
κ2.

Here κ is the wavenumber and E, I, ρ and A denote the Young’s modulus, area moment of465

inertia, density and cross-section area of the beam. Let us first consider the θ = 0 beam466

structure. Having a periodic arrangement of ground springs introduces a length scale, the467

distance a between adjacent ground springs. This length scale of the resulting unit cell468

introduces Bragg scattering bandgaps in the dispersion surface. For a finite beam with N469

ground springs and simply supported boundary conditions, there are N modes in this first470

band, i.e., below the first bandgap. This observation follows from similar arguments as the471

discrete lattice embedded on a ring that was considered in Sec. IV A.472

Let us restrict attention to this first dispersion band at θ = 0. As the parameter θ473

is varied in the set [0, 1], this band splits into a number of smaller bands with bandgaps474

between them. The red curves corresponding to the finite beam fall within the bulk bands475

as θ takes values in the set {p/N : p = 1, 2, . . . N}. For these values of θ, one can double the476

length L of the beam and set u(L + x) = −u(L− x) and check by direct substitution that477

this displacement field will be an eigenmode of the doubled beam. This transformation now478

allows us to identify the mode shapes with that of a corresponding beam shaped in the form479

of a ring, i.e., without a boundary. Using similar arguments for the beam as in Sec. IV A,480

we arrive at this set {p/N : p = 1, 2, . . . N} of θ values. In addition, we observe spectral481

flow between the bulk bands as θ changes between these discrete values.482

We thus see features similar to that observed in the hypothetical ring lattice in Sec. IV A483

in the elastic beam. Furthermore, the number of modes that traverse from one band to the484
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(a)

(b)

FIG. 9: (a) Frequencies of a finite beam with 20 ground springs (red curves) superimposed

on infinite beam frequencies (black curves) for a family of lattices. Each θ is a distinct

structure. Spectral flow between bulk bands (contiguous black curves) arises. (b) Mode

shapes of two localized modes at points a and b in (a)69.

other can also be determined using similar counting arguments. For example, let us consider485

two beam lattices, one with θ = 1/5 and the other with θ = 1/4. The first band at θ = 0486

splits into 5 and 4 dispersion bands, respectively. The first N = 20 natural frequencies of the487

finite lattice are distributed equally in these dispersion bands. As θ varies between these two488

values, we observe a spectral flow between the various bands similar to the discrete lattice489

case. In particular, one mode flows from the bottom band of the θ = 1/5 beam lattice to490

the second band of the θ = 1/4 lattice to satisfy the constraint of specific number of modes491

in each band.492

Having demonstrated how a similar spectral flow arises in an architected beam, let us493

examine the mode shape of this mode. Figure 9b displays two representative mode shapes,494

for modes in the bandgap marked as (a) and (b) in Fig. 9a. The modes are localized at495

the right boundary of the beam and their displacement amplitude decreases rapidly with496

distance from this end. Note that there are N = 20 such modes spanning this large bandgap497

- having modes marked (a) and (b) - as θ varies from 0 to 1. This number N is equal to498

the number of ground springs in the finite beam69. For practical applications, it is more499

desirable to have a system or structure where the number of localized modes in a bandgap500
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is independent of the system size. The next example achieves this and its topological modes501

are independent of the number of unit cells in the lattice structure.502

C. Topological elastic pumping of localized modes503

In the last section, we saw how to achieve localized modes at the boundary of an elastic504

beam. Let us now study an example of a structure that can support transport of elastic505

energy by exploiting such topological modes. This example is inspired by the Thouless506

charge pump in quantum mechanics72,73. We start by considering a mass-spring chain whose507

stiffness kn of the n-th spring is508

kn = 1 + α cos

(
2πn

3
+ φ

)
. (13)

Here α < 1 and φ takes values in the set [0, 2π]. There are 3 masses in each unit cell and509

hence the lattice has 3 dispersion surfaces.510

Figure 10a displays the dispersion surfaces for a family of lattices as φ varies from 0 to511

2π and α = 0.6. The bandgaps do not close for small α. Now, let us consider a finite chain512

of 61 masses. This chain has N = 20 unit cells and an extra mass is added so that we get a513

commensurate lattice, one whose modes can be identified with modes in the corresponding514

infinite chain for φ = 0. Figure 10b displays how the natural frequencies change with φ515

for this finite chain. Note that there is a mode that spans each bandgap as it flows from516

one bulk band to another and then back again. The solid and dashed lines in this bandgap517

indicate a mode localized at the left and right boundary, respectively. Figure 10c displays518

the mode shape of the mode spanning the first bandgap, showing how it transitions from519

one edge to another in the finite chain.520

The origin of this spectral flow is also topological as the number of modes ni in each bulk521

band changes as φ changes by π. For this considered lattice, all the modes lie on dispersion522

surfaces at φ = 0 and φ = π. The total number of modes is 3N + 1 and they are distributed523

differently in each of the bulk bands for the two lattices φ = 0 and φ = π. The number524

of modes ni can be determined directly by explicit calculations. The lattices at φ = 0 and525

φ = π are illustrated in Fig. 11a. Note that the unit cells of these two lattices are translated526

copies of each other but the key point is that the location of the lowest spring stiffness is527

different. This difference leads to differences at the two ends of a finite chain and their528
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(a) (b) (c)

FIG. 10: (a) Dispersion surfaces of a family of lattices as a function of φ showing 2

bandgaps between the bulk bands, along with the Chern number. (b) Natural frequencies

of a finite chain of N = 61 masses showing a spectral flow across the bandgap as φ varies.

Dashed (solid) curves indicate the mode is localized on the left/right boundary. (c)

Displacement magnitudfe of the localized mode in the second (higher) bandgap showing

the transition from right to left boundary74. (Reproduced with permission from Phys.

Rev. Lett. 123, 034301 (2019). Copyright 2019 American Physical Society.)

(a)

(b)

FIG. 11: The finite lattice at (a) φ = 0 and (b)φ = π has distinct stiffness distribution.

The number of frequencies lying on the first and third dispersion branches are different for

φ = 0 and π. This difference implies a spectral flow in the bandgap as φ varies in [0, π].

resulting natural frequencies. A direct calculation yields n1 = N + 1, n2 = n3 = N for the529

φ = 0 lattice and n1 = n2 = N , n3 = N + 1. The only way to have this change in the530

discrete number of modes between the two lattices is to have a spectral flow of a mode from531

the first band to the second and another mode from the second to the third band as φ varies532

from 0 to π.533

The lattice above shows a specific example where varying a single parameter results in a
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spectral flow of a localized mode across the bandgap. It leads to the natural question: what

class of lattices exhibit such spectral flow of a localized mode across a bandgap? The answer

to this question is related to the Chern number, a topological invariant of a vector field over

a manifold75. In particular, the eigenvectors that are mode shapes in each band constitute

a vector field. If there are n degrees of freedom in a unit cell, then each eigenvector has n

components. These n components are complex numbers, with the additional property that

if u is an eigenvector, then βu is also an eigenvector for any nonzero complex number β. Let

us consider a family of lattices whose properties vary smoothly with a parameter φ such that

the dynamic matrix is a periodic function of φ, i.e., D(φ) = D(φ + 2π). Let us also define

Ω = [0, 2π]× [0, 2π] as the domain in the wavenumber µ and parameter φ plane. Dispersion

analysis of each lattice in this family gives n eigenvectors for each φ and wavenumber µ.

There are n dispersion surfaces and hence n vector fields of the corresponding eigenvectors

in Ω. The Chern number of a band measures a topological property of the vector field

comprised of its eigenvectors. It is given by

C =
1

2πi

∫
Ω

[∇× (u∗ · ∇u)]3 dΩ.

Note that the eigenvectors u of a dispersion band is periodic in this plane with period 2π534

along each axes. u is periodic in µ due to the periodicity of the Brillouin zone.535

The reader may refer to several excellent sources for a detailed derivation and mathe-536

matical properties of the Chern number75–77. Here we give an intuitive introduction to the537

physical meaning of this quantity that is relevant to the present topic. The Chern number538

is equal to the number of singularities in the phase of the vector field in Ω. To see how539

such a singularity arises and its relation to localized modes at a boundary, let us consider540

a dispersion surface of a lattice with n degrees of freedom per unit cell. The eigenvector at541

each (µ, φ) can be expressed as a unit vector in Cn, i.e., an n-component vector over the542

complex number field.543

Let us determine how u and its derivatives change as we move along a path in Ω. Recalling544

that βu is also an eigenvector for any complex number β, we can still write down a phase545

independently for each eigenvector, i.e., each member in the set {eiθu} with ‖u‖ = 1 is also546

an eigenvector. To meaningfully compare u at two distinct points in the (µ, φ) plane, we547

need to fix a gauge - a generalized coordinate system specifying θ. Otherwise the phase θ548

at any two distinct points can make the individual components arbitrary. In particular, we549
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need to make a choice for the phase θ(µ, φ) as a function of µ and φ. By Stokes theorem,550

the Chern number for the vector field u(µ, φ) in the domain Ω becomes551

C =

∫
∂Ω

[n× (u∗ · ∇u)]3 d∂Ω. (14)

Here n is the unit outward normal from Ω at a point on the boundary ∂Ω. If there is a

smooth choice possible, then the Chern number becomes zero due to periodicity of u(µ, φ)

in Ω. If no such smooth choice of a phase field is possible, then this results in a discontinuity

in θ(µ, φ). In particular, it can be shown that74

u(φ = 2π, µ) = eisµu(φ = 0, µ).

Here s is an integer. Substituting the above relation into Eqn. (14) gives C = s. The key552

message is that C is non-zero only when there is a discontinuity in the phase field θ.553

Now, let us consider a family of finite lattices generated by varying φ from 0 to 2π. If the554

Chern number of a band is C = s 6= 0, then there are s modes traversing the bandgap above555

it as φ changes in [0, 2π]. A simple way to understand this spectral flow is to note that a556

zero Chern number implies that the modes in the finite lattice can be smoothly deformed557

as φ varies in [0, 2π]. Similarly, a nonzero Chern number implies that all modes cannot558

be smoothly deformed or mapped as we vary φ. Hence the only possibility is that some559

modes lie in multiple bands when φ = 0 and π. As φ varies in [0, 2π], these modes traverse560

the bandgap and this traversal is the observed spectral flow between bulk bands. The net561

number of such modes equals the number of singularities in the phase field, i.e., the absolute562

value of the Chern number. The sign of the Chern number indicates whether the modes563

traverse from or to the band as φ varies in [0, π]. Hence any lattice whose dispersion band564

has a non-zero Chern number s in the (µ, φ) supports a net number |s| of modes traversing565

the bandgap to the bulk band above it.566

Let us see how this family of localized modes can be used to achieve transport of elastic567

waves. Figure 12 displays an array of beams coupled with continuous distributed springs568

along their length. The key idea is to have a family of lattices with varying φ so that the569

localized mode moves from one boundary to another. The springs have stiffness analogous570

to Eqn. (12) with the φ varying along the length of the chain. Hence each segment of the571

distributed spring at a distance z along the length is equivalent to a discrete elastic chain572

at a value φ(z). If φ is varied from π/3 to 2π/3, we note that the localized mode shifts573
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FIG. 12: Schematic of an array of beams coupled with distributed springs whose stiffness

is given by Eqn. (13). Along the beam, φ varies from π/3 to 2π/3 so that the localized

mode in this chain of distributed springs traverses from left to right boundary.

FIG. 13: Snapshots of beam displacements at 3 distinct time instants showing how the

wave transitions from a left localized to a bulk wave to finally a right localized wave74.

(Reproduced with permission from Phys. Rev. Lett. 123, 034301 (2019). Copyright 2019

American Physical Society.)

from the right to the left boundary, as illustrated by the distinct time snapshots of the574

displacement field in Fig. 13. This transport happens when the structure is subjected to a575

dynamic excitation with frequency in the first bandgap. An experimental demonstration of576

this wave propagation was achieved in78 in a plate whose bending stiffness is modulated by577

varying its thickness. This example shows how to achieve energy transport from one corner578

to another in an elastic structure. The next example illustrates wave transport between any579

two points on the boundary of a 2D mechanical lattice.580
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D. Mechanical spin Hall effect581

The mechanical analogue of the quantum Hall effect allows for one way transport along582

the boundaries of a structure. It is inspired by works in quantum mechanics starting with583

the Haldane model 79, where electrons move in one direction along the edges of a 2D electron584

gas. In recent years, several works have achieved mechanical analogues of this effect in both585

periodic and random media. The basic idea is the same as was discussed for localized modes586

in the family of lattices in Sec. IV C. Instead of a 1D family of lattices, we have a 2D lattice587

with the wave vector along the direction tangential to the boundary playing the role of φ.588

Such modes are achieved in lattices whose dispersion bands have a nonzero Chern number.589

It requires using springs with imaginary stiffness that break time reversal symmetry and is590

realized using active mechanical components like rotating gyroscopes22,23.591

To illustrate this concept, let us study the hexagonal lattice in Fig. 14a. It consists of592

rotating gyroscopes attached to the masses at each lattice site. There are two dispersion593

bands for this lattice with Chern numbers +1 and -1 for the lower and upper bands, respec-594

tively. These numbers are evaluated by considering the vector field of mode shapes for each595

band in the two-dimensional wave-vector domain κ = (κx, κy).596

To demonstrate the existence of edge modes in such lattices, a common technique is597

to consider the dispersion of a single strip of finite width shown in Fig. 14b. Periodic598

boundary conditions are imposed on the long inclined boundaries and the lattice is thus599

one dimensional with wavenumber equal to the wave-vector component κx. Figure 14b600

displays the dispersion curves for such a finite strip. Most of the modes of the strip lie601

in the frequency range of the bulk dispersion surfaces obtained with a single unit cell. In602

addition, two modes traverse the bandgap as κx varies from 0 to 2π. Their corresponding603

mode shapes are localized on each boundary.604

The reason for this spectral flow is the same as the concept discussed in Sec. IV C. A605

non-zero Chern number implies the existence of a spectral flow across a bandgap to satisfy606

the condition that a singularity exists in the phase field. This lattice thus supports edge607

modes localized at the boundary for all frequencies in the bandgap. In addition, they have608

a positive (negative) group velocity on the top (bottom) surface. Indeed, recall that the609

group velocity is the gradient of the frequency with respect to the wave vector80. Hence,610

these modes propagate only one way along each boundary and in effect, traverse clockwise611
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(a) (b)

FIG. 14: Elastic lattice supporting chiral edge modes. (a) Hexagonal lattice with rotating

gyroscopes at each node. (b) Dispersion curves for a strip as a unit cell showing one way

modes in the bandgap. The red (blue) modes are localized at the top (bottom) surface and

traverse counter-clockwise around the boundary23. (Reproduced with permission from

Phys. Rev. Lett. 115, 104302 (2015). Copyright 2015 American Physical Society.)

around a finite lattice.612

Note that there are no continuous analogues of this effect in conventional elastic media.613

This hexagonal lattice of Haldane was extended to derive another class of topological edge614

modes called helical modes and the associated phenomena is called the quantum spin Hall615

effect. It essentially consists of two copies of the Haldane model lattice and the total system616

preserves time reversal symmetry. The quantum Hamiltonian H , which is the analogue of617

the dynamic stiffness matrix M−1K of a mechanical system, has the form618

H(κ) =

h(κ) 0

0 −h∗(κ)

 (15)

Figure 15 displays examples of discrete mechanical lattices that support such helical edge619

modes. The advantage of this class of modes is that they do not require active components620

and can be realized in conventional linear elastic media. The key idea is that two copies of621

any lattice whose dispersion bands have non-zero Chern number can be used to construct a622

lattice that supports helical edge modes. The Chern number of each band in the combined623

assembly is zero. Susstrunk and Huber used this concept on a square Hofstadter lattice624

with 6 degrees of freedom per unit cell to achieve a mechanical analogue of this quantum625

spin Hall effect. They obtained the first experimental observation of helical modes in a626

mechanical system that has 2 copies of a square lattice with 6 degrees of freedom per unit627
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cell (Fig. 15a). The experimental setup consists of an array of interconnected pendulums628

and levers to mimic springs with positive and negative stiffness. Their key idea to handle629

the imaginary terms in h(κ) was to use the unitary transformation630

U = IN ⊗
1√
2

1 i

1 −i

 (16)

to convert the Hamiltonian to a matrix with only real terms. Here N is the number of unit631

cells of a finite lattice. The dynamic stiffness matrix D = U †HU has the same eigenvalue632

spectrum as H . In addition, if a wavefunction u is localized in the quantum case, its633

corresponding mechanical mode shape Uu will also remain localized in the mechanical634

lattice. This preservation of localization is due to the block diagonal form of U . This635

form ensures that the mode shape (eigenvector of D) components in each unit cell can be636

expressed as a linear function of the corresponding eigenvector components ofH in the same637

unit cell.638

Let us discuss in detail the design constructed by one of the authors of this tutorial

in25. Figure 15b displays a unit cell consisting of rotating disks connected by bars. Each

disk has one degree of freedom and can rotate in its plane. Our starting point is the

Hamiltonian used by Kane and Mele81, that supports helical edge modes at the boundary

of a hexagonal lattice. Their model has two copies of hexagonal lattice and each unit cell

thus has 4 degrees of freedom. These degrees of freedom are coupled through real and

imaginary interaction terms and these couplings are analogous to springs connecting masses

in a mechanical system. However, in a discrete mechanical system, it is desirable that all

spring stiffness values are real. To achieve this condition of real coupling terms, we apply

the transformation U in Eqn. (16) to get a stiffness matrix with all real terms. In particular,

after applying Bloch periodicity condition, the stiffness matrix for the hexagonal lattice unit

cell takes the form

K =

K1 K2

K∗2 K1

 ,

with

K1 = (3k + 6λ)I2 − k(1 + eiκ·a1 + +eiκ·a2)σx,

K2 = λ
(
eiκ·a1 − eiκ·a1 + e−iκ·a2 − eiκ·a2 + e−iκ·(a1−a2) − eiκ·(a1−a2)

)
σz.
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(a)
(b) (c)

FIG. 15: Examples of discrete mechanical lattices that support helical edge modes. (a)

Pendulums with springs24, (b) rotating disks25 and (c) spring mass lattice82. (Reproduced

with permission from Science 349, 47-50 (2015), J. Appl. Phys. 995 119, 084305 (2016)

and Phys. Rev. B 98, 094302 (2018). Copyright 2015 Amer. Assoc. Adv. Science and

2018 American Physical Society.)

Here σx and σz are Pauli matrices and k, ±λ are the stiffness values of the intra- and inter-639

layer coupling springs, respectively. Figure 15b (top) displays a schematic of a hexagon of640

the resulting lattice along with the connectivity between the disks.641

Figure 16a displays the dispersion diagram for the lattice with λ = 0, i.e., no interlayer642

coupling springs. The dispersion diagram is projected onto the κy = 0 plane. There is643

no bandgap and the two dispersion surfaces touch. Figure 16b displays the corresponding644

dispersion diagram of a unit cell with interlayer coupling λ = 0.2 showing a bandgap now645

opens up. To see the presence of topological modes at a boundary, we again examine the646

dispersion curves of a lattice that is finite in one direction and infinite in another, similar647

to the lattice in Fig. 14b. They are illustrated in Fig. 16c and have two modes spanning648

the bandgap in addition to the bulk bands seen in Fig. 16b. The difference between these649

two dispersion curves (Figs. 16b, 16c) is the effect of a finite boundary. Indeed, the mode650

shapes corresponding to the modes in the bandgap are localized at a boundary. Note how651
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(a) (b) (c)

FIG. 16: Dispersion of a unit cell (a) without and (b) with interlayer coupling, showing

how Dirac points break to generate a bandgap. (c) Dispersion of a finite strip showing

modes spanning the bandgap25. (Reproduced from J. Appl. Phys., 119, 084305 (2016),

with the permission of AIP Publishing.)

they span the entire bandgap. In contrast to the chiral edge modes in Fig. 14b, there are652

two modes with opposite group velocities traversing the bandgap.653

Let us now see the transient behavior of a finite lattice comprised of these unit cells654

subjected to narrow band excitation (like a tone burst) in the bandgap frequency. Figure 17655

displays the snapshots of displacement field at various time instants for each of these waves.656

They are localized at the boundary and their magnitude decays rapidly away from it. These657

discrete models serve to illustrate the key concept behind such waves in mechanical lattices,658

but they may not extend straightforwardly to continuous elastic media. In Sec. V B, we will659

show an example of helical waves in architected plates whose design is guided by symmetry660

considerations. Before that, let us turn attention to studying another class of topological661

modes: valley modes, that are supported at the interface between two hexagonal lattice.662

E. Mechanical valley Hall effect663

Valley modes are a class of topological modes that arise due to symmetry properties

of Dirac cones in hexagonal lattices57,83–86. 2D periodic lattices with specific symmetry
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FIG. 17: Snapshots of displacement field at various time instants. Wave propagates

clockwise (a-d) or counter-clockwise (e-h) depending on which mode is excited25.

(Reproduced from J. Appl. Phys., 119, 084305 (2016), with the permission of AIP

Publishing.)

properties exhibit singular features called Dirac cones in their dispersion surfaces. To see an

example of how they arise, let us consider the hexagonal discrete mass-spring lattice shown

in Fig. 18a. Each mass has one degree of freedom and can move out of plane. Each unit

cell has 2 sub-lattice sites, indexed by a, b, and thus 2 degrees of freedom . The governing

equations for a unit cell indexed p, q are given by

maüp,q,a + k(up,q,a − up,q,b) + k(up,q,a − up−1,q,b) + k(up,q,a − up,q−1,b) = 0,

mbüp,q,b + k(up,q,b − up,q,a) + k(up,q,b − up+1,q,a) + k(up,q,b − up,q+1,a) = 0.

Figure 18b displays the two dispersion surfaces over the first Brillouin zone. They touch664

at the six high symmetry K points. In the vicinity of these points, the dispersion surface665

resembles a two cones whose apex touch and these points are called Dirac points. Figure 18c666

displays the dispersion surfaces along the path sketched at the base in Fig. 18b. Such Dirac667

cones are at the heart of unique physical properties of graphene87. The unique property of668

Dirac cones is that the mode density at that frequency is very low but the group velocity is669

finite, equal to the gradient of dispersion dispersion surface near the cone tip.670
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(a)

(b) (c)

FIG. 18: (a) Hexagonal lattice schematic with unit cell. (b) Dispersion surfaces when

ma = mb showing Dirac cones at the K points. (c) Dispersion curves over a path through

the high symmetry points for the case ma 6= mb (solid curves) and ma = mb (dashed

curves). The valley Chern numbers Cv for each band at the K points are indicated88.

(Reproduced with permission from Phys. Rev. B 96, 134307 (2017). Copyright 2017

American Physical Society.)

Let us see what happens if we break inversion symmetry by making the masses at the two671

sub-lattice sites different. The broken inversion symmetry is about the unit cell center, i.e.,672

the structure is different under the transformation x → −x. The degeneracy of the two673

modes at the K points break and a bandgap opens up. Again, similar to the case of Sec. IV A674

and Sec. IV D, the vector field associated with the bands have topological properties that675

lead to the existence of localized modes spanning the bandgap frequencies. In contrast to676

the earlier cases, where such modes are localized at the domain boundary, these modes are677

localized at the interface between two lattices that are inverted copies of each other.678

Let us start by considering the lattice shown in Fig. 19. The strip is infinite along the679

x-direction but finite along the y-direction. The boundary masses at both ends are fixed.680

The masses at the two sub-lattice sites (red and white circles) are different. There is an681

interface at the center of the strip and the unit cells on both sides are inverted copies of each682

other. This lattice is periodic along the x-direction and the dashed parallelogram shows a683

unit cell of this lattice.684

Let us analyze the dispersion behavior of this finite strip lattice. Let the light and heavy685

mass values be m1 = 1 and m2 = 2, respectively. There are two types of lattices depending686
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FIG. 19: Schematic of a lattice periodic along horizontal edges and finite along tilted

edges. Red and white circles have distinct masses. The interface separates two parts that

are inverted copies of each other57.

(a) (b)

FIG. 20: Dispersion diagrams of a finite strip with an interface having adjacent (a) light

and (b) heavy masses. Mode shapes of the dashed red and solid blue curves are localized

at the interface and boundary, respectively57.

on whether there are adjacent light or heavy masses at the interfaces. Figure 20 displays the687

dispersion curves for both cases. The dashed lines indicate modes localized at the interface688

while the solid blue lines are modes localized at the boundary. The remaining two contiguous689

sets of curves correspond to modes spanning the entire unit cell, i.e., bulk modes. The key690

observation is that the mode shape and frequency-wavenumber relation of the localized mode691

can change depending on the interface type, but there is a mode in the bandgap for both692

cases.693
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(a) (b)

FIG. 21: Schematic of finite strip lattice with interface at the high symmetry points (a)

κx = 0 and (b) κx = π/a after applying Bloch periodicity. The two configurations have

distinct number of frequencies lying in each bulk band, implying a mode traverses the

bandgap as κx varies in [0, π/a].

There are two different approaches to understand the existence of these localized modes694

at such interfaces, similar to the two distinct approaches presented in Sec. IV C. The first695

approach analyzes the behavior at distinct high symmetry points to infer the existence of a696

spectral flow in the bandgap, while the second approach uses topological invariants to infer697

localized modes in the bandgap.698

In the first approach, let us consider the dynamic behavior of the lattice at wavenumbers699

κx = 0 and κx = π/a. Here a is the unit cell length. Using Bloch periodicity conditions, we700

see that all unit cells have identical displacement fields at κx = 0, while adjacent unit cells701

have displacement field of opposite sign at κx = π/a. These relations lead to the unit cell702

transforming into the lattices shown in Fig. 21a and 21b for κx = 0 and π/a, respectively.703

Thick lines indicate that the stiffness value is k = 2. These transformed lattices are obtained704

by using the above displacement field relations at these wavenumbers and the connectivity705

of the hexagonal lattice. Similar to the case of topological pumping in Sec. IV C, direct706

calculations show that the frequency distribution in each of the bulk bands is different707

at these two wavenumbers. The difference in frequency arises for both kinds of interfaces:708

adjacent light masses and adjacent heavy masses, and it manifests as a spectral flow between709

the bulk bands. Again, there is a topological invariant that captures this difference in mode710

distribution and predicts the existence of localized modes. This invariant is the valley Chern711

number and it is equal to the integral of the Berry curvature in the vicinity of the K-point.712

Detailed derivations of this invariant are presented in57. It should be noted that having713

distinct masses that break inversion symmetry is one possible way to achieve topological714

bandgaps. Recent works89 have demonstrated band inversion in spring mass models that715

preserve inversion symmetry.716
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V. EDGE MODES IN ELASTIC PLATES717

Having discussed various kinds of topological modes localized at interfaces and bound-718

aries in architected beams and discrete 2D mechanical lattices, let us now see examples of719

how these concepts can be extended to architected plates. We will consider 3 examples in720

increasing order of structural complexity. The first one supports valley Hall modes in thin721

plates using zero order bending or A0 Lamb waves. The second example achieves helical722

edge waves using the hybridization of multiple higher order Lamb wave modes in a plate723

with complex-shaped blind and through holes. The final example extends this plate design724

to support both helical and valley modes, along with splitting or redirection of a wave at a725

junction depending on its polarization.726

A. Elastic valley Hall modes727

In Sec. IV E, we discussed the discrete mechanical analogue of the quantum valley Hall728

effect in lattices that have C3 rotational symmetry but broken inversion symmetry. The key729

idea is that localized modes arise at the interface of two such lattices that are inverted copies730

of each other. Let us see how to extend this discrete concept to continuous elastic media.731

Architected thin plates supporting Lamb waves provide a way to realize a wide class of732

waves that are continuous analogues of 2D discrete mechanical lattices. Examples include733

hexagonal and Kagome lattices in88,90,91. The common aspect in these designs is that they734

all satisfy the aforementioned symmetry conditions for the discrete case. Let us discuss in735

detail the design in Fig. 22a. It consists of a thin plate with hexagon shaped holes drilled736

into it in a periodic arrangement. Masses are attached at nodal locations in a corresponding737

discrete hexagonal lattice. The masses attached at the two sub-lattice sites in the unit cell738

are different and this difference breaks inversion symmetry of the lattice.739

Figure 22b displays the corresponding dispersion bands for a single unit cell. It is com-740

puted using finite element analysis and it shows a bandgap opening up due to the breaking741

of inversion symmetry at the K-point. Note that the bending modes that form a Dirac cone742

breaks to form a bandgap, but it is not a complete isolated bandgap as there are axial and in743

plane-shear modes that traverse this frequency range. However, due to their distinct mode744

shapes, when the bending mode is excited, a negligible fraction of energy is converted to745
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(a)

(b)

FIG. 22: (a) Designed structure is a thin plate with hexagonal holes. Different masses are

attached to the sub-lattice sites to break inversion symmetry. (b) Dispersion curves over

the boundary of the IBZ for the unit cell. Blue curves are out of plane bending modes

while red curves are in plane longitudinal and shear modes88. (Reproduced with permission

from Phys. Rev. B 96, 134307 (2017). Copyright 2017 American Physical Society.)

these modes.746

Figure 23 displays the dispersion diagram for a finite strip, calculated using the plane747

wave expansion method. The frequency is expressed in non-dimensional form by normalizing748

it as Ω = ω
√
EI/ρA and the wave vector is normalized by the unit cell length a. The modes749

are bounded by two curves Ω = µ2 and Ω = π2 − µ2. This is because the group velocity at750

each frequency ω is bounded by the corresponding value for a homogeneous plate. Similar to751

the discrete case, there are two kinds of interface, depending on whether there are adjacent752

heavy or light masses at the junction. Figures 23c and 23d display the mode shapes at each753

kind of interface. These modes are called elastic valley modes and they span the bandgap754

frequencies for sufficiently small values of the mass difference. Note how they are localized755

at the interface and their amplitude decays rapidly away from it.756

Let us now see an experimental demonstration of how such waves are able to navigate757

sharp bends without scattering losses. The structure is made of acrylic and magnetic cylin-758

ders are attached on both sides that attract each other. The unit cell size is 18.4 mm.759

The magnetic force between cylinders on adjacent lattice sites is assumed to be negligible.760

Figure 24a displays the experimental setup of an N-shaped topological waveguide realized761

by creating an interface. The red and cyan circles indicate locations with low and high762
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(a) (b)

(c) (d)

FIG. 23: Dispersion diagram for a finite strip having an interface with adjacent (a) light

and (b) heavy masses. In both cases, a mode is localized at the interface with frequency in

the bandgap. (c,d) Typical mode shapes of this mode and schematic of the finite strip57.

masses, respectively. There are two adjacent light masses and the unit cells on each side are763

inverted copies of each other. The bottom end of the waveguide is excited with a windowed764

tone burst excitation and the velocity field is measured throughout the lattice with sufficient765

spacing between adjacent points using an SLDV. Figure 24b displays the amplitude of the766

out-of-plane velocity component after the waves have passed through. The wave decays in767

amplitude as the plate is made of acrylic, but an examination of the reconstructed tempo-768

ral evolution of the dynamics shows the absence of back-scattering as the wave navigates769

corners.770

As discussed earlier, topologically protected modes exist at the interface between lattices771

with distinct topological invariants. In this case, the relevant invariant is the valley Chern772

number. In contrast, if the lattices on both sides of an interface have identical invariants,773

then no modes are guaranteed to exist. Localized defect modes can exist, but they typically774

do not span the bandgap and these modes are sensitive to the geometry of the interface.775

Such interfaces are topologically trivial and are termed trivial waveguides. The following776
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example illustrates their dynamic behavior. The lattices on either side of the interface are777

identical in the structure of Fig. 24c. Hence the topological invariants of the two lattices are778

identical and this interface is a trivial waveguide. The corresponding transient response779

shows that no wave navigates the corners. Thus comparing its response with that of the780

topological case shows the efficacy and superiority of the topological waveguide.781

This example shows how valley modes can be induced in continuous elastic media using782

architected thin plates. Such valley modes have also been demonstrated in several other783

systems, including in small scale structures92,93, reconfigurable waveguides with shunted784

piezoelectric patches91, in acoustic lattices with sound waves94–96 and in plates with bolts or785

stubs58,97.786

B. Elastic spin Hall modes787

In Sec. IV D, the key ideas behind the mechanical analogue of the quantum spin Hall788

effect were discussed in the case of discrete lattice-like structures. Recall that this effect789

leads to topological helical modes at boundaries. In this section, a general procedure or790

recipe to obtain helical topologically protected edge modes in continuous passive elastic791

waveguides is thoroughly detailed.792

In principle, in the case of a system made of solely passive components, time-reversal793

symmetry is preserved, and a phononic analogue of chiral edge states is precluded. However,794

as proposed in the pioneering work of Mousavi et al.98, helical edge modes can be achieved795

in passive elastic waveguides as well by exploiting the fact that various Lamb modes are796

characterized by different polarization. Specifically, they showed that guided symmetric797

(S0) and anti-symmetric (A0) modes in plates are excellent candidates to achieve an elastic798

version of the quantum spin Hall effect (i.e., designing a system supporting two effective799

spins for Lamb waves over a sufficiently broad bandwidth).800

Geometry and material modifications, in general, affect the dispersion behavior and the801

associated band structure of plates. For example, breaking translation symmetry by in-802

troducing periodic holes or inclusions may open bandgaps, which, however, may not be803

complete and may therefore affect only some of the modes. The opening of bandgaps sup-804

porting topological modes also requires the structure to maintain a specific symmetry. The805

general procedure to obtain topologically protected helical edge modes in continuous elastic806

41



(a) (b)

(c) (d)

FIG. 24: N-shaped (a) topological and (c) trivial waveguide. Red and cyan circles have

different mass amounts. (b,d): Their corresponding dynamic response at distinct time

instants showing the wave navigates sharp bends in the topological waveguide88.

(Reproduced with permission from Phys. Rev. B 96, 134307 (2017). Copyright 2017

American Physical Society.)

plates can be decomposed into the following steps:807

• step 1 - Design a unit cell whose dispersion surfaces have an isolated double Dirac808

cone (Fig. 25);809

• step 2 - Open a bandgap by breaking mid-plane symmetry of the unit cell (Fig. 26);810

• step 3 - Create an interface using the unit cells of step 2. The unit cells on either side811

are mirror images of each other about the plate mid-plane. (Fig. 27a).812

We will show below how applying the above steps to a patterned continuous elastic plate813

leads to helical topological protected edge modes. As mentioned, the first step is to create814
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(a)
(b)

FIG. 25: Step 1:(a) perspective and cross-sectional view of an architected unit cell with

through the thickness holes - TH. (b) Its dispersion curves have a double Dirac cone and

the corresponding modes have different polarization (in-plane and out-of-plane,

represented respectively by the colors blue and grey/yellow in the right panel).

an isolated Dirac-like dispersion curves for the two polarized Lamb modes in the absence815

of σh symmetry (or reflection symmetry about the mid-plane of the plate) breaking. Let816

us consider an architected unit cell as the one showed in Fig. 25a. The specific patterning817

creates a graphene-like band structure for elastic waves. Specifically, the in-plane hexagonal818

symmetry provides Dirac dispersion for waves with an accidental degeneracy at K and K’819

points (Dirac points). While the plate geometrically resembles the twisted Kagome lattice820

described in99, it is a continuous medium with no lumped elements such as point masses821

and springs can be identified. The associated dispersion surfaces have a double Dirac cone822

of modes with different polarization (in-plane and out-of-plane, represented respectively by823

the colors blue and grey/yellow in the right panel). Matching the frequency and the slope824

(group velocity) of Dirac cones associated with a symmetric mode and an anti-symmetric825

mode in a frequency range with no other modes is analogous to emulating the two spin826

states in graphene. Kane and Mele81 showed that quantum spin Hall effect and helical edge827

modes arise when strong spin orbital coupling is introduced.828

Once isolated double Dirac cones are achieved, a bandgap can be opened by by replacing829

the through-the-thickness holes by blind holes, i.e., holes not spanning the whole thickness830

of the plate, as illustrated in the perspective and cross-sectional view of Fig. 26a. Blind831
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(a) (b)

FIG. 26: Step 2: (a) perspective and cross-sectional view of a unit cell with blind holes

BH. Unit cells for domain 1 and domain 2 differ by a σh transformation, with blind holes

being on the top vs bottom surface. (b) Modes are hybridized at the high symmetry point

K, breaking σh symmetry.

holes (BH) through part of the plate thickness break the σh symmetry while preserving the832

original C3v symmetry. This modification induces a coupling between the modes spanning833

the Dirac points: the in-plane polarized and out-of-plane polarized modes. This coupling834

is analogous to the spin orbital interaction in the quantum spin Hall effect. In contrast to835

valley modes where the two sets of modes are associated with two distinct valleys (K,K ′),836

the spin Hall effect results from the hybridization of two distinct sets of modes spanning837

each of the high-symmetry K points.838

This type of macroscopic geometrical modification produces a unit cell with broken σh839

symmetry, leading to mode hybridization at the high symmetry point K. Applying a σh-840

transformation to such a unit cell then gives the geometries for domain 1 and domain 2 (blind841

holes are inverted with respect to the mid-plane of the unit cell). The interface between them,842

as shown in the schematic in Fig. 27a is an elastic waveguide supporting localized helical843

edge modes in the bandgap frequencies. Figure 27b displays the numerical (white lines) and844

experimental measurements (energy spots) of the two distinct helical modes propagating845

in the waveguide. Experimental reconstruction of the helical edge modes characterized846

by a clockwise and counterclockwise variation of phase of the displacement field as the847

waves propagate from left to right. Fig. 27c illustrates a snapshot of the displacement848
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(a) (b) (c)

FIG. 27: Step 3: (a) schematic of a continuous elastic waveguide supporting helical modes

at the interface between two unit cells related by a σh transformation. (b) Numerical

(white lines) and experimental measurements (energy spots) of the two distinct helical

modes. (c) Experimental reconstruction of the helical edge modes characterized by a

clockwise and counterclockwise displacement phase field variation with respect to the

direction of wave propagation (left to right)16.

field. Refer to16 for more details on the geometrical parameters of the unit cell and movie849

files of the experimental full field reconstruction. Hence there are two helical modes with850

opposite polarization. They have opposite group velocities for each wavenumber κ of waves851

propagating along the interface.852

C. Combined valley and spin Hall modes853

In this section we show how to design an elastic waveguide supporting multiple classes of854

edge modes (helical and valley). Specifically we will show a recipe to construct a continuous855

elastic waveguide capable of splitting equal-frequency helical edge waves differing on the856

basis of their polarization when they impinge on distinct interfaces at a common junction.857

The starting point is the same as for helical modes: a unit cell showing a double Dirac858

cone degeneracy, as the one examined in the previous section, and illustrated again in859
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Fig. 28a for clarity. From this unit cell, specific geometric modifications are introduced860

so as σv and σh symmetries, i.e., inversion and reflection symmetries, are selectively broken861

in specific portions of an elastic waveguide, as shown in Fig. 29a. The introduced geometric862

perturbations produce topological bandgaps that, respectively, support helical and valley863

modes in a common frequency range. Specifically, replacing the through holes of Fig. 28a864

with blind holes of 0.9 times the height of the plate, as shown in Fig. 28b, breaks the σh865

symmetry. We denote the configuration with the blind holes on the top (bottom) surface866

as H+ (H−). The interface between H+ and H− supports two helical edge modes spanning867

the gap with positive (Φ+) and negative (Φ−) group velocity, respectively (Fig. 29b).868

Next, we break the σv symmetry or reflection symmetry about a vertical plane parallel869

to a lattice vector direction. This id done by making the holes in each unit cell of different870

radii, namely r and R (see Fig. 28c). Inverting the position of the larger and smaller radii871

allows us to identify two distinct unit cells, denoted as V r and V R (Fig. 28c). Contrary872

to the previous case, an interface that separates two σv-transformed copies of the structure873

supports a single valley mode, with positive or negative group velocity, depending on the874

type of interface, i.e., with two adjacent holes of diameter r or R, respectively. Besides, the875

interfaces between structures supporting helical and valley modes will still support a single876

hybrid edge mode with either positive (Ψ+) or negative (Ψ−) group velocity, as shown in877

Figs. 29c,d. The edge modes are denoted by the index + (−) according to their positive878

(negative) group velocity when the wavenumber κ is in [0, π/a]. Note that this wavenumber879

is for waves propagating along an interface between two kinds of unit cells. In Figs. 29b-d,880

bulk modes are shaded in grey, while the edge states are denoted by the black, blue and red881

circles, depending on the types of interface: H+/H−), H+/V R), and H−, V r), respectively.882

Finally, Figs. 30a,b show the numerical distribution of the von Mises stress field resulting883

from harmonic excitation at 98 kHz, i.e. within the bulk gap. The excitation is applied at884

the location shown by the white dot as an out-of-plane displacement distribution and the885

calculations clearly illustrate the possibility to preferentially excite one of the two modes886

and to remotely select the interface along which the wave will propagate once impinging887

the Y -shaped junction. Colors indicate the von Mises stress, ranging from zero (blue) to888

maximum (red). Refer to90 for the geometrical details of the unit cells and further details.889

Such wave splitting shows the potential for novel elastic wave manipulation capabilities.890
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FIG. 28: (a) Top view of the designed unit cell with through-the-thickness holes whose

dispersion has a double Dirac cone (see Fig. 25b). (b) Perspective view of two unit cells

with broken σh symmetry. H+ has blind holes on the top surface and H- has blind holes at

the bottom. They both break Dirac cones and open a bandgap (see Fig. 26b). (c)

Perspective view of the unit cells with broken σv symmetry. V+ and V- had different size

through holes. Both unit cells also open a bandgap in the same frequency range.

VI. OUTLOOK AND FUTURE DIRECTIONS891

The past decade has seen an explosive growth in this research field, motivated by both an892

exploration of fundamental wave phenomena in elastic media and aimed at specific techno-893

logical applications. The key realization in our opinion is that interfaces and defect modes894

can be designed in a systematic way by incorporating features derived from topological895

considerations. The examples discussed above showed how one can achieve robust and896

backscattering free waveguides that have sharp bends and corners. Different dimensions897

exhibit distinct topological phenomena: for instance the existence of a non-zero Zak phase898

in 1D systems and Weyl points in 3D systems. In this article, we have primarily focused899

on topological phenomena in elastic beams and plates that can be characterized by a Chern900

number. Now, let us we outline some promising future research directions.901

Reconfigurable waveguides83,100 are just beginning to be explored and remain to be real-902

ized in a variety of elastic waveguides. Similarly, multiphysics interactions, including between903

elastic and electromagnetic domains, for example in piezoelectric media101,102, or between904

fluids and structures103, may open avenues for controlling waves in one media with another.905

Extending unit cell designs to three dimensional periodic structures will significantly expand906

the design space as well as allow for 3D manipulation and control of elastic waves. They may907
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FIG. 29: (a) Digital model to assist the drilling machine for the manufacturing of the

waveguide. Holes in red (green) define the H+ (H−) unit cell where blind holes are drilled.

Hole depth is 0.9 times the height of the plate. Holes in blue (violet) define the V R (V r)

unit cells where holes are drilled through the whole thickness of the plate, but that have

different radii. (b - d) Dispersion diagrams for non-trivial stripes with the following types

of interfaces: H+/H−), H+/V R), and H−, V r), respectively. The band structures are

computed considering the strips periodic in the horizontal direction and made of 10 unit

cells on each side of the domain wall. The bulk modes are reported as gray dots while the

interface modes in black, blue and red dotted lines, respectively. The edge modes are

denoted by the index + (−) according to their positive (negative) group velocity with

respect to the propagation direction90. (Reproduced with permission from Phys. Rev. B

100, 024304 (2019). Copyright 2019 American Physical Society.)

allow for exploiting Weyl points104 or can realize constructions like fragile topology105 that908

exhibit spectral flow at interfaces. Similarly, quasiperiodic106,107 and non-periodic108 metas-909

tructures offer rich opportunities for achieving unique static and dynamic behaviors. Such910
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FIG. 30: (a - b) Numerical distribution of the von Mises stress field resulting from

harmonic excitation at 98 kHz, i.e. within the bulk gap. The excitation is applied at the

location shown by the white dot as an out-of-plane displacement. The calculations

illustrate the possibility of preferentially exciting one of the two modes and of thus

remotely selecting the interface along which the wave will propagate after it impinges on

the Y -shaped junction.

concepts have recently started to be investigated in static media and in 1D beam systems.911

Extending unit cell concepts to non-periodic, complex geometries109, higher dimensions and912

higher order topological modes110 will open avenues for unique wave manipulation proper-913

ties. In particular, quasi- and non-periodic structures exhibit for bulk isotropic behavior as914

opposed to anisotropic behavior that is associated with periodic media, for example C3, C4915

media in 2D structures.916

On the theoretical side, several questions similarly remain unanswered, having to do with917

the role of nonlinearities. Notably, nonlinear111–113 and non-Hermitian114–116 elastic struc-918

tures have exciting potential for realizing novel wave phenomena. The topological properties919

of such systems remain to be investigated and they may allow for solitons, frequency conver-920

sion, localized skin modes, unidirectional reflection in elastic structures like beams, plates921

and shells117,118. In this regard, the advent of 3D119 and 4D printing120,121 has opened novel922

avenues for fabricating complex shaped structures that were beyond the reach of conven-923

tional manufacturing methods. Synthetic high dimensional spaces have been created in other924

physical domains by modulating geometric parameters in time122 or by accessing additional925

degrees of freedom123. Such techniques can lead to the realization of topological wave phe-926

nomena associated with the corresponding higher dimensions in elastic media too. We927

anticipate that these directions will thus lead to fruitful fundamental and applied research928
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in the coming years and will lead to the discovery of novel and exciting effects in the domain929

of topological elastic waves.930

931

ACKNOWLEDGMENTS932

MM is funded by the European Union’s Horizon 2020 FET Open (“Boheme”) under grant933

agreement No. 863179. RKP is supported by startup funds from Kansas State University934

and by U.S National Science Foundation Award No. 2027455.935

DATA AVAILABILITY936

The data that support the findings of this study are available from the corresponding937

author upon reasonable request.938

REFERENCES939

1R. Courant and D. Hilbert, Methods of mathematical physics: partial differential equations940

(John Wiley & Sons, 2008).941

2C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, Vol. 8 (Wiley942

New York, 1996).943

3L. Brillouin, Wave propagation and group velocity, Vol. 8 (Academic press, 2013).944

4J. D. Jackson, “Classical electrodynamics,” (1999).945

5X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Christensen, “Topological sound,” Com-946

munications Physics 1, 1–13 (2018).947

6V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors (El-948

sevier, 2007).949

7W. Ostachowicz, P. Kudela, M. Krawczuk, and A. Zak, Guided waves in structures for950

SHM: the time-domain spectral element method (John Wiley & Sons, 2011).951

8J. L. Rose, Ultrasonic guided waves in solid media (Cambridge university press, 2014).952

9P. A. Deymier, Acoustic metamaterials and phononic crystals, Vol. 173 (Springer Science953

& Business Media, 2013).954

50



10M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Reviews of modern955

physics 82, 3045 (2010).956
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