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I. INTRODUCTION

A waveguide is a structure that guides waves with minimal loss of energy by restricting the transmission of energy to one direction. Waveguides in diverse areas of physics exist depending on the kinds of energy they transport, e.g., elastic, acoustic, electromagnetic, plasmonic and electronic. The governing equations associated to the type of wave propagation vary accordingly. For example, wave propagation in elastic media is governed by the Cauchy equations of elastodynamics, in fluids by the Helmholtz equation, while Maxwell and Schrödinger equations govern electromagnetic waves and electron transport, respectively. Note that these equations are distinct in nature, with the Cauchy, Helmholtz and Maxwell equations being systems of hyperbolic partial differential equations while the Schrodinger equation is dispersive [START_REF] Courant | Methods of mathematical physics: partial differential equations[END_REF] . The common link between them that is relevant to the present topic is the existence of wave-like solutions in periodic domains that obey the Bloch theorem [START_REF] Kittel | Introduction to solid state physics[END_REF][START_REF] Brillouin | Wave propagation and group velocity[END_REF][START_REF] Jackson | Classical electrodynamics[END_REF] .

There are key differences between wave types supported in various physical media. Elastic solids support both longitudinal (pressure) and transverse (shear) waves. In contrast, fluids support only longitudinal waves [START_REF] Zhang | Topological sound[END_REF] while electromagnetic media only support transverse waves [START_REF] Jackson | Classical electrodynamics[END_REF] .

Elastic waveguides have been extensively investigated both to understand the fundamental properties of materials and for technological applications including sensing, actuation, signal processing and energy conversion or harvesting, to name a few [START_REF] Giurgiutiu | Structural health monitoring: with piezoelectric wafer active sensors[END_REF][START_REF] Ostachowicz | Guided waves in structures for SHM: the time-domain spectral element method[END_REF] . For instance, sensing applications may include pressure, temperature and strain measurement.

Such waveguides are generally comprised of a straight channel, embedded with piezoelectric transducers. If the length of the channel, and thus the spacing between the embedded transducers changes, then the frequency of the traversing wave also changes. This shift in frequency is correlated with the quantity to be measured. Wave steering for actuation, energy harvesting, vibration control and structural health monitoring are other widespread applications of elastic waveguides [START_REF] Ostachowicz | Guided waves in structures for SHM: the time-domain spectral element method[END_REF][START_REF] Rose | Ultrasonic guided waves in solid media[END_REF] .

In this context, over the last two decades, architected materials or metamaterials [START_REF] Deymier | Acoustic metamaterials and phononic crystals[END_REF] have lead to a new class of waveguides exhibiting unique wave control opportunities. For instance, Fig. 1 presents an example of an elastic metamaterial-based waveguide showing energy redirection features. The system consists of a plate with periodic circular inclusions arranged in a square lattice. Due to the periodicity, the waveguide does not allow propagation of waves in certain band of frequencies, often referred to as frequency bandgaps [START_REF] Deymier | Acoustic metamaterials and phononic crystals[END_REF] . In this band, the wave is confined to the strip (straight or L-shaped as illustrated). This example illustrates how designing the geometry of the structure can lead to waveguiding along specific paths.

Although the metamaterial paradigm represented an excellent candidate to boost waveguide applications, in fact they have not found widespread technological diffusion. The primary reason is that their unique behavior is sensitive to the presence of defects and imperfections. In particular, significant losses arise due to scattering and localization at defect locations or at corners, as illustrated in Fig. 1b. To overcome these problems, recently, a new class of architected structures called topological waveguides have been introduced, rapidly evolving as a leading field of research. Such structures exploit the symmetry and topology of their dispersion surfaces to support modes that are immune to defects, to imperfections and that do not suffer from scattering losses. This immunity arises as a consequence of topological properties, and hence these waves are called topologically protected. Originally discovered in 2D electron gases in the context of the quantum Hall effect [START_REF] Hasan | Colloquium: topological insulators[END_REF] , they have been extended to other classical areas of physics in the past decade. Examples include electromagnetic [START_REF] Lu | Topological photonics[END_REF] , plasmonic [START_REF] Di Pietro | Observation of dirac plasmons in a topological insulator[END_REF] , acoustic [START_REF] He | Acoustic topological insulator and robust one-way sound transport[END_REF] , electromechanical [START_REF] Cha | Experimental realization of on-chip topological nanoelectromechanical metamaterials[END_REF] and elastic [START_REF] Prodan | Topological phonon modes and their role in dynamic instability of microtubules[END_REF][START_REF] Miniaci | Experimental observation of topologically protected helical edge modes in patterned elastic plates[END_REF][START_REF] Xia | Topological phononic insulator with robust pseudospin-dependent transport[END_REF][START_REF] Ma | Edge modes and asymmetric wave transport in topological lattices: Experimental characterization at finite frequencies[END_REF] media. Even though these diverse media have very distinct governing equations, the concept of topological modes translate across disciplines because the protection arises from specific symmetry properties of the eigenvalue problem [START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF] , or more specifically, a family of eigenvalue problems as a parameter is varied (see sections IV and V, for the details).

Topological modes in elastic media can be broadly classified into two categories. The first one involves active components, like rotating gyroscopes [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Wang | Topological phononic crystals with one-way elastic edge waves[END_REF] , and it has been primarily demonstrated for discrete elastic media. The second category solely uses passive components, and has been demonstrated in a wide variety of discrete systems such as combination of pendulums and levers [START_REF] Süsstrunk | Observation of phononic helical edge states in a mechanical topological insulator[END_REF] , rotating disks [START_REF] Pal | Helical edge states and topological phase transitions in phononic systems using bi-layered lattices[END_REF] , mass-spring networks [START_REF] Kane | Topological boundary modes in isostatic lattices[END_REF][START_REF] Rocklin | Mechanical weyl modes in topological maxwell lattices[END_REF][START_REF] Rocklin | Transformable topological mechanical metamaterials[END_REF] , as well as for continuous elastic media like architected plates [START_REF] Miniaci | Experimental observation of topologically protected helical edge modes in patterned elastic plates[END_REF][START_REF] Jin | Robustness of conventional and topologically protected edge states in phononic crystal plates[END_REF][START_REF] He | Inverse design of topological metaplates for flexural waves with machine learning[END_REF][START_REF] Matlack | Designing perturbative metamaterials from discrete models[END_REF] .

This tutorial aims to introduce the fundamental concepts and working principles of such topological waveguides in elastic media, as well as practical steps to design them. It is organized as follows. First, an overview of various waves supported by homogeneous and architected elastic media is presented. This is followed by the description of the most commonly used theoretical, numerical and experimental tools to investigate periodic elastic structures. In section IV, illustrative examples of topological modes are provided using discrete mass-spring chains and beams. The key ideas leading to the different types of modes and their combination are described in detail. Section V presents the realization of various topological modes in continuous elastic media and discusses the key steps and strategies for their design. Finally, promising future directions are outlined in Sec. VI.

II. WAVES IN ELASTIC MEDIA

Elastic waves can be defined as disturbances propagating in an elastic solid due to a local deviation from static mechanical equilibrium conditions [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] . Such disturbances manifest as time varying displacement and stress fields in the solid. If the deformations are small enough (i.e., small displacement assumption holds), the medium can be assumed to be linear elastic and the wave characteristics do not depend on the disturbance amplitude. Depending on the domain geometry and boundary conditions (finite or infinite media, presence of free surfaces) of the elastic medium, various types of elastic waves can be identified.

A. Bulk, surface and guided waves in homogeneous media

Waves propagating indefinitely in an infinite homogeneous body without being interrupted by boundaries or interfaces are called bulk waves. The general elastodynamic wave equation governing the evolution of the displacement field u(x, t) has the form

ρ ∂ 2 u ∂t 2 = ∂ ∂x C ∂u ∂x ( 1 
)
where C is the fourth-order elasticity tensor and ρ is the density [START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Graff | Wave motion in elastic solids[END_REF] . In a linear, isotropic and elastic medium, this governing equation reduces to the form

ρ ü = (λ + µ)∇(∇ • u) + µ∇ 2 u, (2) 
where λ, µ are the material properties called Lamé constants. Solutions to Eqn.

(2) support one longitudinal wave and two shear waves with specific wave velocities that are functions of the material's properties and independent of the frequency or the direction of propagation.

These waves have distinct types of motion. Longitudinal waves (also called P-waves) are characterized by particle motion alternating compression and stretching of the medium (see left panel of Fig. 2a). Shear waves are characterized by transverse particle movements in alternating direction (see central and right panels of Fig. 2a). In P-waves, energy propagates parallel to the displacement direction of a point, while in the second one, energy propagates perpendicular to a point's displacement direction. In shear waves, displacement occurs in the plane normal to the propagation direction and the wave can be decomposed into horizontal shear wave (SH) and vertical shear wave (SV), as shown in the central and right panels of Fig. 2a.

Wave propagation in anisotropic media is governed by the general elastodynamics equation Eqn. ( 1) and their analysis is considerably more complicated. Examples of anisotropic elastic media include piezoelectric media, natural materials like wood, engineered materials like composites. They can be classified as triclinic, monoclinic, orthotropic, cubic and transversely isotropic depending on how isotropy broken along various symmetry axes. Similar to isotropic media, anisotropic media also support three types of waves in an infinite solid.

However, there is no clear distinction like longitudinal and shear waves since the particle motion can be at an arbitrary angle to the wave front propagation direction. In addition, this angle and the wave velocity are also direction dependent. The wave front shape is represented by slowness diagrams or surfaces, and they illustrate the variation in wave speed with direction. Anisotropic media with boundaries can also support Rayleigh and guided waves and their analysis often requires numerical procedures. The interested reader is directed to references discussing elastic waves in anisotropic media [START_REF] Nayfeh | Wave propagation in layered anisotropic media: With application to composites[END_REF] . In this tutorial, we will restrict the attention to solids that are isotropic in the bulk at the length scales considered, i.e., macroscopic.

A three-dimensional (3D) medium bounded at a surface supports the propagation of waves localized at the free half-space, namely Rayleigh (R) waves and Love (L) waves (refer to Fig. 2b). Rayleigh waves (left panel of Fig. 2b) are characterized by a counterclockwise elliptical motion of the medium particles polarized in the xz plane, if the energy flows along the x direction. The amplitude of these wave decreases exponentially as e -bz with distance z from the free surface. The exponent b is inversely proportional to the wavelength of the wave [START_REF] Achenbach | Wave propagation in elastic solids[END_REF] . Love waves are horizontally polarized surface waves (see right panel of Fig. 2b).

They exist only when the top layer has a lower shear wave velocity than the semi-infinite media below it. These waves derive from the interference of many shear waves guided by the top elastic layer, i.e. the one with lower velocity characteristics and with the top boundary free. Particle oscillations in Love waves involve alternating transverse movements.

The direction of medium particle oscillations is horizontal (for instance in the xz plane) and perpendicular to the direction of propagation (x). As in the case of Rayleigh waves, their wave amplitude decreases with depth.

Finally, in some materials, the relation expressed by Eqn. (1) does not fully describe their response when subjected to an elastic strain. Indeed, certain materials become electrically polarized when they are strained. This effect, called the direct piezoelectric effect, manifests experimentally by the appearance of bound electrical charges at the surfaces of a strained medium. It is a linear phenomenon, and the polarization changes sign when the sign of the strain is reversed. Though piezoelectricity is a complex phenomena intimately related to the microscopic structure of the solid, the macroscopic behavior can be quantitatively captured in terms of a rather simple constitutive model. We direct the reader interested in wave propagation in piezoelectric media to additional references [START_REF] Auld | Acoustic fields and waves in solids[END_REF][START_REF] Royer | Elastic waves in solids II: generation, acousto-optic interaction, applications[END_REF][START_REF] Preumont | Vibration control of active structures: an introduction[END_REF] .

Let us now discuss wave propagation in structures where one dimension is much smaller than the other two. Examples include plates and shells, where the thickness is smaller compared to the in-plane dimensions. When a point in a plate (Fig. 2c, for example) is transversely excited, waves propagating from this point encounter the upper and lower free surfaces of the structure, leading to reflection and mode conversion (longitudinal waves to shear waves, and vice versa). The wave field is a superposition of multiple reflections and the resulting generated waves. This wave field can essentially be approximated as propagating in the in-plane directions with a specific displacement field in the direction of the smaller dimension (examples in Fig. 2d). Such waves are called Lamb waves or guided waves.

An elastic plate supports an infinite number of guided modes, each with a different displacement field. Among them, the symmetrical and anti-symmetric zero-order modes (shown in Fig. 2d, having symmetric and anti-symmetric transverse displacement field about the plate center-plane) deserve special attention because (i) they are the only modes that exist over the entire frequency spectrum from zero to indefinitely high frequencies, and (ii) in most practical situations they carry more energy than the higher-order modes. Also, in the low frequency range (i.e. when the wavelength is greater than the plate thickness) these modes are called the "extensional mode" and the "flexural mode" respectively, terms that describe the nature of the particle motion.

Lamb waves are dispersive, i.e., their wave velocities depends on the frequency in addition to the material and geometric properties of the plate. These wave velocities require numerical procedures and cannot be determined in analytical closed form [START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Graff | Wave motion in elastic solids[END_REF] . Guided waves travel long distances with little attenuation, making them well suited for non-destructive evaluation and structural health monitoring applications. The word waveguide arises from structures hosting these types of waves. The interested reader is directed to references that discuss approaches to extract Lamb wave solutions in isotropic, anisotropic, as well as piezoelectric waveguides [START_REF] Rose | Ultrasonic guided waves in solid media[END_REF][START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Auld | Acoustic fields and waves in solids[END_REF] .

B. Waves in architected structures

In previous section we have seen that the properties of bulk, surface and guided waves are determined by the relationship between the particle motion, wave propagation direction and the constitutive properties of the medium. In homogeneous, isotropic (infinite) media, the energy flow coincides with the wave front of the wave.

However, in many practical cases, the assumptions of isotropy and infinite extent are not always satisfied, and often waves propagate in media with geometrical or mechanical discontinuities. When the elastic waves propagate in structures with complex geometries, multiple reflections take place due to impedance mismatch at the interfaces and free surfaces, strongly complicating the energy flow/redistribution. The most general case is when waves propagate in structures with no spatial inversion symmetry and broken time-reversal symmetry, i.e., where the material parameters and geometrical design of the system randomly vary both in space and time. A mechanical system has broken time reversal symmetry if its governing equations change under the transformation t → -t. Examples include structures with attached spinning gyroscopes [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Wang | Topological phononic crystals with one-way elastic edge waves[END_REF] and systems with damping. Similarly, spatial inversion symmetry means the structure is invariant under the transformation x → -x.

If a certain regularity is assumed for the spatio-temporal modulation (for instance introducing periodicity), the use of the space-time Floquet theory [START_REF] Trainiti | Non-reciprocal elastic wave propagation in spatiotemporal periodic structures[END_REF][START_REF] Croënne | Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media[END_REF][START_REF] Merkel | Dynamic nonreciprocity in losscompensated piezophononic media[END_REF][START_REF] Croënne | Nonreciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions[END_REF] can be envisaged. So far, non-reciprocity through space-time modulation has been investigated in optical and electromagnetic systems, in the case of mechanical waves, as well as in airborne acoustics [START_REF] Ruesink | Nonreciprocity and magnetic-free isolation based on optomechanical interactions[END_REF][START_REF] Hadad | Breaking temporal symmetries for emission and absorption[END_REF][START_REF] Nassar | Nonreciprocity in acoustic and elastic materials[END_REF] .

Breaking time-reversal symmetry requires active components that introduce/remove energy into/from the structure.

Another emerging area of research concerns the propagation of elastic waves in solely passive media characterized by a high degree of complexity in their geometrical design. Often periodic, i.e., characterized by a unit cell periodically repeated in space, these media are usually referred to as architected metamaterials. The periodic architecture of these structures can be limited to one, two or three dimensions, and be at the same scale (ordinary architected structures) [START_REF] Deymier | Acoustic metamaterials and phononic crystals[END_REF] or at multiple scale levels (hierarchical architected structures) [START_REF] Meza | Resilient 3d hierarchical architected metamaterials[END_REF][START_REF] Miniaci | Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[END_REF] . Their static and dynamic properties derive from a tailored geometry and material distribution (creating specific impedance jumps/variations), in addition to their material constituents. Compared to waves in conventional materials described in the previous section, architected materials have opened novel ways of manipulating and controlling the propagation of elastic waves.

Examples include omnidirectional stop bands or full bandgaps (BGs), negative refraction, wave focusing and perfect transmission of waves at sharp angles [START_REF] Bigoni | Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization[END_REF][START_REF] Craster | Acoustic metamaterials: Negative refraction, imaging, lensing and cloaking[END_REF][START_REF] Tallarico | Superelement modelling of elastic metamaterials: Complex dispersive properties of threedimensional structured beams and plates[END_REF][START_REF] Mazzotti | Band structure analysis of leaky bloch waves in 2d phononic crystal plates[END_REF][START_REF] Miniaci | Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals[END_REF] . Figure 3 reports an example of an architected elastic waveguide, i.e., namely a plate with circular holes in a hexagonal lattice arrangement. The smallest repetitive block, if one exists, is called unit cell, and in the considered case is highlighted in light green in Fig. 3a, and reported in its in-plane and trigonometric view in Figs. 3b,c, respectively. The interplay of periodicity, geometry and material composition within each unit cell can result in effective mechanical properties very distinct from those of its constituent materials. The unconventional dynamic properties may derive from (i) Bragg scattering, i.e., a destructive interference arising from an impedance mismatch proportionally periodic in space to na/2, with n ∈ N and a the lattice parameter [START_REF] Brillouin | Wave propagation and group velocity[END_REF] , or (ii) local resonances [START_REF] Liu | Locally resonant sonic materials[END_REF] .

The information about the wave propagation within these structures is often derived through the examination of the so-called dispersion diagram or dispersion surfaces. In what follows, the principal approaches to extract these information are presented.

III. METHODS FOR DISPERSION ANALYSIS OF PERIODIC ELASTIC

STRUCTURES

Dispersion analysis gives the frequency-wave vector ω(κ) relation, i.e., the relation between spatial and temporal periodicity of a traveling wave. An arbitrary wave of sufficient regularity can be expressed as a superposition of harmonic waves of distinct frequencies. Dispersion relation specifies how each individual frequency component propagates in a solid. In particular, it provides information of the wave vector as a function of the frequency and its gradient gives the group velocity of the wave. Dispersion relations completely characterize the dynamic behavior of a linear elastic solid because in conjunction with the superposition principle, they can be used to predict the propagation of any arbitrary wave. In this section, we discuss various methods to determine dispersion relations for an architected linear elastic solid.

A. Analytical techniques

The plane wave expansion method gives a good approximation to the mode shape and natural frequency of an architected elastic media that is periodic. Let us consider a plane wave traveling through a periodic elastic structure with frequency ω and wave vector κ. The wave vector may be viewed as the spatial analogue of frequency. Just as frequency measures how rapidly a point in the medium is varying with time, wave vector measures how rapidly the displacement field is varying in space. Hence, it is a vector having each component κ p inversely proportional to the corresponding wavelength along the direction with unit vector

e p .
The displacement field due to this traveling wave is expressed as

u(x, t) = U (x)e -iωt . (3) 
In a periodic domain with lattice vectors a p , U (x) satisfies the Bloch periodicity condition U (x + a p ) = e iκ•ap U (x) for each periodic direction p and U (x) is called a Bloch mode. Let us derive an expression for U (x) that will help us to determine the dispersion surfaces. We start by considering the function g(x) = U (x)e -iκ•x . The Bloch periodicity condition then implies that g(x) is periodic in the unit cell, i.e., g(x + a p ) = g(x). Indeed,

g(x + a p ) = U (x + a p )e -iκ•(x+ap) = e iκ•ap U (x)e -iκ•ap e -iκ•x = U (x)e -iκ•x = g(x).
Since g(x) is a periodic function with periodicity of the unit cell, it can be expressed as a Fourier series in the form

g(x) = ∞ m,n,r=-∞ a m,n,r e iGm,n,r•x , G m,n,r = ma 1 + na 2 + ra 3 . (4) 
Here m, n and r take integer values and a m,n,r is a vector with complex coefficients for each basis function with index (m, n, r). For periodic beams, we only have a 1 while for periodic plates, we only have a 1 and a 2 . Using this equation, the displacement field can be written as

u(x, t) = m,n,r a m,n,r e iGm,n,r e iκ•x e -iωt . (5) 
The real part of the right hand side in the above equation gives the displacement field.

Equation ( 5) is the starting point of the plane wave expansion method. The displacement field can be expressed as a superposition of periodic waves with periodicity of the unit cell, along with a factor e iκ•x that takes into account the wavelength of the wave. The functions e iGm,n,r constitute an orthonormal basis over a unit cell and determine the part of the Bloch mode that fluctuates within the unit cell. To determine the dispersion relation ω(κ), we choose a finite set of basis function by allowing m, n, r to take integer values from -N to N in Eqn. (5). The coefficients a m,n,r are determined by substituting the expression for u(x, t) into the governing equations, taking the scalar product with each basis function e p e iGm,n,r and integrating over a unit cell. Recall that e p is the unit vector along direction with index p. This procedure leads to a system of linear homogeneous equations defining an eigenvalue problem and its solution gives the dispersion surfaces. In particular, we impose each value of the wave vector and determine the corresponding natural frequencies.

Let us now illustrate the PWE method with an example. Figure 4a displays a metamaterial bar with two alternating materials whose Young's modulus E are different. The darker material has E 4 times higher than the lighter material. The PWE method can be used to calculate the dispersion surfaces of this structure. Figure 4b displays the real part of two basis functions e i(G+κ)x for the PWE method with κ = 2π/3L and G = 0, 2π/L. Applying this method yields the frequencies and corresponding mode shapes of the propagating waves.

The red curve in Fig. 4a shows the displacement field of the first mode shape at a wavenumber κ = 2π/3 over 6 unit cells. For this wavenumber κ, Bloch periodicity condition implies that the displacement field is periodic over 3 unit cells, which is consistent with the curves in Fig. 4a. The reader may refer to additional detailed illustrations on the PWE method for analysis of propagating [START_REF] Kushwaha | Acoustic band structure of periodic elastic composites[END_REF][START_REF] Tanaka | Acoustic stop bands of surface and bulk modes in twodimensional phononic lattices consisting of aluminum and a polymer[END_REF][START_REF] Torrent | Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates[END_REF][START_REF] Pal | Edge waves in plates with resonators: an elastic analogue of the quantum valley hall effect[END_REF][START_REF] Chaunsali | Subwavelength and directional control of flexural waves in zone-folding induced topological plates[END_REF][START_REF] Poggetto | Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method[END_REF][START_REF] Benchabane | Evidence for complete surface wave band gap in a piezoelectric phononic crystal[END_REF][START_REF] Hou | Modeling of lamb wave propagation in plate with twodimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method[END_REF] and evanescent [START_REF] Laude | Evanescent bloch waves and the complex band structure of phononic crystals[END_REF][START_REF] Oudich | Complex band structures and evanescent bloch waves in two-dimensional finite phononic plate[END_REF] waves in architected elastic structures.

The analytical plane wave expansion method works well for simple geometries where the mode shape can be represented with a few basis functions N in Eqn. (5). As the unit cells become more complex, incorporating complicated shaped holes or inclusions, the error in mode shape represented with a small N is high, while increasing N leads to ill conditioning of the resulting matrices. To overcome these issues, numerical methods based on finite element analysis are used to efficiently determine the dispersion surfaces for complex geometries. We discuss this method in the following subsection. 

B. Numerical techniques

The governing equation ( 2) for a 3D linear elastic solid is considered over a single unit cell with appropriate boundary conditions to determine the dispersion surfaces. To illustrate these conditions, let us consider the unit cell in Fig. 3c. The displacement fields at the right and top boundary are expressed in terms of the corresponding fields at the left and bottom boundary using Bloch periodicity as

u(x R , t) = e iκ•a 1 u(x L , t), u(x T , t) = e iκ•a 2 u(x B , t). (6) 
Similarly, by force equilibrium at each point on the boundary, the traction t on the various surfaces are related as

t(x R , t) = -e iκ•a 1 t(x L , t), t(x T , t) = -e iκ•a 2 t(x B , t). (7) 
The two equations ( 6) and ( 7) constitute independent boundary conditions on each boundary. Substituting u(x, t) = e iωt U (x) into the governing equations and using these two conditions leads to a well posed eigenvalue problem. Its solution provides the mode shapes U (x) and natural frequencies ω for each wave vector κ. The eigenvalue problem is in the form of a partial differential equation and it can be solved using numerical techniques.

The finite element method (FEM) is the most widely used numerical method for dispersion analysis of unit cells with complex geometries. This method involves two key steps to convert the governing partial differential equation to a system of algebraic equations [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF] . The first step is to consider a weak form of the governing equations that results in a variational problem over a function space. The second step is to reduce this variational problem to a system of algebraic equations by discretization, i.e., choosing a finite dimensional subspace that approximates the infinite dimensional function space. Discretization involves two components: (a) meshing, i.e., dividing the domain into smaller sub-domains called elements, and (b) element type, i.e., choosing a set of basis functions up to a specified order for an element. The solution fields in each element lies in the vector space spanned by these basis functions. The mesh should be sufficiently fine with well shaped elements so that the solution can be represented with good resolution using the chosen element type. FEM formulation for dispersion analysis has been done in recent years for beams, plates and solids [START_REF] Åberg | The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure[END_REF][START_REF] Zienkiewicz | The finite element method: its basis and fundamentals[END_REF][START_REF] Spadoni | Phononic properties of hexagonal chiral lattices[END_REF] . Today, several commercial software packages are available to conduct dispersion analysis using FEM.

C. Experimental techniques

From the experimental point of view, and focusing our attention on the ultrasonic frequency range, many methods to excite (indicated by "E" for the sake of brevity in this Lamb, Shear Horizontal, etc.) and the experimental conditions of measurement, can be separated in two categories: those requiring a contact with the sample and those that are contactless.

Among the above listed techniques for wave detection, the SLDV is being used increasingly often in recent years for several reasons, especially in the case of architected materials.

First of all, SLDV, being a contactless measurement technique, eliminates the detrimental effect of adding additional masses in the measurement locations, which can result in a local change of the structure rigidity. Another advantage of SLDV is its ability to perform measurements automatically in a large number of precisely defined points, almost regardless of the complexity of the geometrical pattern to scan. Also, SLDV allows for 3D measurements, allowing object vibration components to be recorded both in the plane perpendicular to the investigated surface and in the one parallel to it. Finally, SLDV allows automatic measurements on a very dense mesh of measurement points, enabling thus the measurement of a propagating elastic wave with precision, not only in time but also in space. The measurement frequency range is another positive point of this technique, since it allows for measurements from close to 0 Hz to several MHz, as well as a wide range of vibration velocity amplitudes [START_REF] Ostachowicz | Guided waves in structures for SHM: the time-domain spectral element method[END_REF] . All these advantages make SLDV one of the most effective measurement techniques for dynamic characterization of architected materials and elastic waveguides. In contrast, it is more difficult to single out a best suited excitation technique and its choice is often a result of several considerations including, (i) frequency range and (ii) type of waves to excite, (iii) geometric and (iv) elastic properties of the specimen to investigate. We direct the reader to reference books 7,8 on these aspects.

IV. OVERVIEW OF TOPOLOGICAL MODES

There are several classes or types of topological modes depending on the type of symmetry that is broken in a lattice [START_REF] Barlas | Topological classification table implemented with classical passive metamaterials[END_REF][START_REF] Huber | Topological mechanics[END_REF] . As discussed in the introduction, they can broadly be classified into two categories: those that break time reversal symmetry and those that preserve it. This classification is based on the simple observation that an elastic media is symmetric or not under the transformation t → -t. The physical meaning is that breaking time-reversal symmetry requires active or dissipative components. A more fundamental classification of symmetries involves using time-reversal, chiral and particle-hole symmetry operators is used in quantum mechanics, where each of these has a physical meaning. In an elastic media, applying the corresponding mathematical operators leads to constraint equations that may not be related to fundamental principles like balance and conservation laws.

We introduce the key concepts underlying topological modes through a number of examples of varying complexity. They are all based on discrete lattices or elastic beams with the goal of elucidating the main ideas behind topological protection in a simplified setting [START_REF] Pal | Topological bands and localized vibration modes in quasiperiodic beams[END_REF][START_REF] Chen | A study of topological effects in 1d and 2d mechanical lattices[END_REF] .

The first example concerns discrete mass-spring chains followed by its extension to continuous elastic media: architected beams. Afterwards, an example presenting lattices with a varying parameter is considered (Sec. IV C), showing energy transport from one corner to another. Sec. IV D presents an example of how topological modes can be induced in 2D discrete lattices, and their relation to the concepts in 1D lattices are elucidated in Sec. IV A.

We will focus on two distinct classes of modes, namely helical and valley modes in 2D lattices.

A. Illustrative example: topological modes due to spectral flow

Let us illustrate the key idea behind topological modes with a simple discrete mass-spring chain example. It is inspired by the SSH model, the first model that was demonstrated to support localized electronic modes due to topological properties [START_REF] Hasan | Colloquium: topological insulators[END_REF][START_REF] Su | Solitons in polyacetylene[END_REF] . The corresponding ideas are valid and can be extended to continuous elastic media. Consider the infinite massspring chain shown in Fig. 5a, having identical masses m and two springs of different stiffness k 1 and k 2 . Note that this chain is a periodic structure. The unit cell of a periodic structure is the smallest unit that generates the lattice by repetitive translation. Identifying a unit cell requires careful consideration to satisfy this lattice generation requirement. The unit cell of this chain has 2 springs (k 1 , k 2 ) and 2 identical masses, labeled a and b.

Let us investigate the dynamic response of the infinite chain. The governing equations for a unit cell indexed n are

mü n,a + k 1 (u n,a -u n,b ) + k 2 (u n,a -u n-1,b ) = 0, mü n,b + k 1 (u n,b -u n,a ) + k 2 (u n,b -u n+1,b ) = 0.
We solve this system of equations in the Fourier domain by imposing a solution of the form u n,α = e iµn-iωt U α with α = {a, b}. Here µ and ω are the wavenumber and frequency, respectively and U α are the displacement of the two masses in the Fourier domain. The above system of equations then become

  k 1 + k 2 -k 1 -k 2 e -iµ -k 1 -k 2 e iµ k 1 + k 2     U a U b   = ω 2   m 0 0 m     U a U b   (8) 
Equation ( 8) defines an eigenvalue problem and its solution gives the dispersion surfaces of the structure, illustrated in Fig. 5c. For each wavenumber µ, there are two natural frequencies ω that are solutions of Eqn. (8). These surfaces characterize traveling wave solutions in the infinite lattice. Note that there are no real valued wavenumbers µ when Ω is in the range (1, √ 2) and when Ω > √ 2, which indicates an absence of traveling waves at these frequencies.

Next, let us consider the dynamic behavior of a finite chain. In general, its natural frequencies depends on the chain's boundary conditions. To exemplify the ideas, let us consider a chain in the form of a ring (Fig. 5b) with M unit cells. Each mode shape can be identified with a corresponding traveling wave in the infinite lattice, that satisfies the condition

u n,α = u n+M,α . (9) 
This condition arises in the finite lattice due to the topology of the ring. Let us determine the wavenumber of the corresponding wave in the infinite lattice. Combining this condition (Eqn. ( 9)) with the Bloch periodicity condition leads to the following set of wavenumbers for a ring with M unit cells

u n+M,α = e iµM u n,α = u n,α =⇒ e iµM = 1. ( 10 
)
Note that the solution to e iµN = 1 is µ = 2πs/N for any integer s. Due to the discrete nature of the lattice, wavenumbers modulo 2π essentially represent the same wave. For example, the displacement field corresponding to waves with wavenumbers µ and µ + 2π are identical.

A unique set of waves can be identified with wavenumbers lying in the first Brillouin zone.

They are

µ = 2πs N , s = 0, ±1, ±2, ... ± N/2 . ( 11 
)
Here N/2 is the integer part of N/2. Hence each mode on the ring can be identified with a wavenumber from the set in Eqn. (11).

The red circles in Fig. 5c display these wavenumber values for a ring with N = 5 unit cells.

This ring has 2N = 10 masses and thus 10 natural frequencies. These natural frequencies all lie on the dispersion curves and their corresponding wavenumbers take values in the set derived in Eqn. (10). This set ensures that there are N = 5 modes of the ring lattice in each dispersion branch. To summarize, the key observation is that the topology of the ring lattice ensures that equal number of its modes lie on each dispersion branch.

Let us now consider a ring of N = 40 masses with two kinds of unit cells, shown in Figs. 6a and6b. We set the r-th spring stiffness in the ring to

k r = 1 + α cos 2πr p , r ∈ {1, 2, . . . , N }. (12) 
Here α < 1 and p is equal to the number of masses (or springs) in each unit cell. r is the spring index and it runs from 1 to N as there are N springs in the ring. Setting p = 4 and 5

gives the rings whose unit cell schematics are shown in Fig. 6a and6b. Their corresponding dispersion curves, along with the natural frequencies of the corresponding ring of N masses is also shown below (Figs. 6c,6d). Let us make a couple of observations that are analogous to the chain with two distinct springs (k 1 and k 2 ) discussed above. The lattice with p = 4 has 4 dispersion curves or branches and the N natural frequencies are distributed equally in each dispersion branch, with the wavenumbers given by Eqn. (10). Similarly, the lattice with p = 5 has 5 masses per unit cell, 5 dispersion curves and N/5 natural frequencies in each branch. Thus, two modes traverse the bandgap as β is varied in [0, 1] and these modes are labeled as topologically protected modes. This migration of modes is independent of the functional form of p(β) in [4, 5], with the only requirement being continuity. It is also independent of the specific functional form of k m in Eqn. (12). Indeed, any functional form of k m that gives distinct values 4 (or 5) distinct values of spring stiffness and leads to 4 (or 5) distinct dispersion bands should also exhibit such spectral flow.

In summary, we saw how modifying the parameter β smoothly from 0 to 1 leads to a spectral flow between the bandgaps. This hypothetical example of a lattice embedded on a ring shows the simplest realization of modes arising to satisfy the topological constraint of N/p modes in each dispersion branch. The ring shaped lattice in this hypothetical example can be extended to real structures where there is an interface or boundary between distinct lattice types. The mode shapes corresponding to the modes traversing the bandgap will be localized at such interfaces and boundaries. Indeed, such modes cannot be bulk modes since their natural frequency is in the bandgap. Since they have a topological origin, such modes cannot be removed in the presence of a wide class of defects or imperfections.

In the subsequent examples in this section, we will see how a similar spectral flow between bulk bands arises at a boundary of a lattice or at an interface between two lattices. The bulk dispersion surfaces of these lattices are characterized by topological invariants and such interface/boundary modes arise when they have different/non-zero topological invariants.

B. Localized modes in beams

Our next example shows how a spectral flow similar to that discussed in Sec. IV A arises in an elastic beam with ground springs. Figure 8 displays the schematic of the considered system, where the ground springs are located at a distance specified by a parameter θ. There are circles of radius r with centers located distance a apart, with r < a. The n-th ground spring location is obtained by projecting a point at an angle nθ from the circle to the beam. Specifically, this location is x n = na + r sin(2πnθ) and the periodicity of the resulting lattice pattern thus depends on θ. If θ is a rational number, for example p/q, where p and q are co-prime integers, then a unit cell has q springs. On the other hand, if θ is an irrational number, then there is no repetitive unit cell and the resulting structure is quasiperiodic.

The plane wave expansion method discussed in Sec. III A may be used to determine the natural frequencies of the beam structures considered here. The basis functions in Eqn. (4) running over a single index m are a valid choice, as they are periodic over a unit cell [START_REF] Pal | Topological bands and localized vibration modes in quasiperiodic beams[END_REF] . We thus see features similar to that observed in the hypothetical ring lattice in Sec. IV A in the elastic beam. Furthermore, the number of modes that traverse from one band to the the number of ground springs in the finite beam [START_REF] Pal | Topological bands and localized vibration modes in quasiperiodic beams[END_REF] . For practical applications, it is more desirable to have a system or structure where the number of localized modes in a bandgap is independent of the system size. The next example achieves this and its topological modes are independent of the number of unit cells in the lattice structure.

C. Topological elastic pumping of localized modes

In the last section, we saw how to achieve localized modes at the boundary of an elastic beam. Let us now study an example of a structure that can support transport of elastic energy by exploiting such topological modes. This example is inspired by the Thouless charge pump in quantum mechanics [START_REF] Thouless | Quantization of particle transport[END_REF][START_REF] Thouless | Quantized hall conductance in a two-dimensional periodic potential[END_REF] . We start by considering a mass-spring chain whose stiffness k n of the n-th spring is

k n = 1 + α cos 2πn 3 + φ . (13) 
Here α < 1 and φ takes values in the set [0, 2π]. There are 3 masses in each unit cell and hence the lattice has 3 dispersion surfaces. The origin of this spectral flow is also topological as the number of modes n i in each bulk band changes as φ changes by π. For this considered lattice, all the modes lie on dispersion surfaces at φ = 0 and φ = π. The total number of modes is 3N + 1 and they are distributed differently in each of the bulk bands for the two lattices φ = 0 and φ = π. The number of modes n i can be determined directly by explicit calculations. The lattices at φ = 0 and φ = π are illustrated in Fig. 11a. Note that the unit cells of these two lattices are translated copies of each other but the key point is that the location of the lowest spring stiffness is different. This difference leads to differences at the two ends of a finite chain and their to this question is related to the Chern number, a topological invariant of a vector field over a manifold [START_REF] Nakahara | Geometry, topology and physics[END_REF] . In particular, the eigenvectors that are mode shapes in each band constitute a vector field. If there are n degrees of freedom in a unit cell, then each eigenvector has n components. These n components are complex numbers, with the additional property that if u is an eigenvector, then βu is also an eigenvector for any nonzero complex number β. Let us consider a family of lattices whose properties vary smoothly with a parameter φ such that the dynamic matrix is a periodic function of φ, i.e., D(φ) = D(φ + 2π). Let us also define Ω = [0, 2π] × [0, 2π] as the domain in the wavenumber µ and parameter φ plane. Dispersion analysis of each lattice in this family gives n eigenvectors for each φ and wavenumber µ.

There are n dispersion surfaces and hence n vector fields of the corresponding eigenvectors in Ω. The Chern number of a band measures a topological property of the vector field comprised of its eigenvectors. It is given by

C = 1 2πi Ω [∇ × (u * • ∇u)] 3 dΩ.
Note that the eigenvectors u of a dispersion band is periodic in this plane with period 2π along each axes. u is periodic in µ due to the periodicity of the Brillouin zone.

The reader may refer to several excellent sources for a detailed derivation and mathematical properties of the Chern number [START_REF] Nakahara | Geometry, topology and physics[END_REF][START_REF] Nash | Topology and geometry for physicists[END_REF][START_REF] Prodan | Bulk and boundary invariants for complex topological insulators[END_REF] . Here we give an intuitive introduction to the physical meaning of this quantity that is relevant to the present topic. The Chern number is equal to the number of singularities in the phase of the vector field in Ω. To see how such a singularity arises and its relation to localized modes at a boundary, let us consider a dispersion surface of a lattice with n degrees of freedom per unit cell. The eigenvector at each (µ, φ) can be expressed as a unit vector in C n , i.e., an n-component vector over the complex number field.

Let us determine how u and its derivatives change as we move along a path in Ω. Recalling that βu is also an eigenvector for any complex number β, we can still write down a phase independently for each eigenvector, i.e., each member in the set {e iθ u} with u = 1 is also an eigenvector. To meaningfully compare u at two distinct points in the (µ, φ) plane, we need to fix a gauge -a generalized coordinate system specifying θ. Otherwise the phase θ at any two distinct points can make the individual components arbitrary. In particular, we need to make a choice for the phase θ(µ, φ) as a function of µ and φ. By Stokes theorem, the Chern number for the vector field u(µ, φ) in the domain Ω becomes

C = ∂Ω [n × (u * • ∇u)] 3 d∂Ω. ( 14 
)
Here n is the unit outward normal from Ω at a point on the boundary ∂Ω. If there is a smooth choice possible, then the Chern number becomes zero due to periodicity of u(µ, φ)

in Ω. If no such smooth choice of a phase field is possible, then this results in a discontinuity in θ(µ, φ). In particular, it can be shown that 74

u(φ = 2π, µ) = e isµ u(φ = 0, µ).

Here s is an integer. Substituting the above relation into Eqn. ( 14) gives C = s. The key message is that C is non-zero only when there is a discontinuity in the phase field θ. Such modes are achieved in lattices whose dispersion bands have a nonzero Chern number.

It requires using springs with imaginary stiffness that break time reversal symmetry and is realized using active mechanical components like rotating gyroscopes [START_REF] Nash | Topological mechanics of gyroscopic metamaterials[END_REF][START_REF] Wang | Topological phononic crystals with one-way elastic edge waves[END_REF] .

To illustrate this concept, let us study the hexagonal lattice in Fig. 14a. It consists of rotating gyroscopes attached to the masses at each lattice site. There are two dispersion bands for this lattice with Chern numbers +1 and -1 for the lower and upper bands, respectively. These numbers are evaluated by considering the vector field of mode shapes for each band in the two-dimensional wave-vector domain κ = (κ x , κ y ).

To demonstrate the existence of edge modes in such lattices, a common technique is to consider the dispersion of a single strip of finite width shown in Fig. 14b. Periodic boundary conditions are imposed on the long inclined boundaries and the lattice is thus one dimensional with wavenumber equal to the wave-vector component κ x . Figure 14b displays the dispersion curves for such a finite strip. Most of the modes of the strip lie in the frequency range of the bulk dispersion surfaces obtained with a single unit cell. In addition, two modes traverse the bandgap as κ x varies from 0 to 2π. Their corresponding mode shapes are localized on each boundary.

The reason for this spectral flow is the same as the concept discussed in Sec. IV C. A non-zero Chern number implies the existence of a spectral flow across a bandgap to satisfy the condition that a singularity exists in the phase field. This lattice thus supports edge modes localized at the boundary for all frequencies in the bandgap. In addition, they have a positive (negative) group velocity on the top (bottom) surface. Indeed, recall that the group velocity is the gradient of the frequency with respect to the wave vector [START_REF] Hussein | Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook[END_REF] . Hence, these modes propagate only one way along each boundary and in effect, traverse clockwise preserves time reversal symmetry. The quantum Hamiltonian H, which is the analogue of the dynamic stiffness matrix M -1 K of a mechanical system, has the form

H(κ) =   h(κ) 0 0 -h * (κ)   (15) 
Figure 15 displays examples of discrete mechanical lattices that support such helical edge modes. The advantage of this class of modes is that they do not require active components and can be realized in conventional linear elastic media. The key idea is that two copies of any lattice whose dispersion bands have non-zero Chern number can be used to construct a lattice that supports helical edge modes. The Chern number of each band in the combined assembly is zero. Susstrunk and Huber used this concept on a square Hofstadter lattice with 6 degrees of freedom per unit cell to achieve a mechanical analogue of this quantum spin Hall effect. They obtained the first experimental observation of helical modes in a mechanical system that has 2 copies of a square lattice with 6 degrees of freedom per unit cell (Fig. 15a). The experimental setup consists of an array of interconnected pendulums and levers to mimic springs with positive and negative stiffness. Their key idea to handle the imaginary terms in h(κ) was to use the unitary transformation

U = I N ⊗ 1 √ 2   1 i 1 -i   ( 16 
)
to convert the Hamiltonian to a matrix with only real terms. Here N is the number of unit cells of a finite lattice. The dynamic stiffness matrix D = U † HU has the same eigenvalue spectrum as H. In addition, if a wavefunction u is localized in the quantum case, its corresponding mechanical mode shape U u will also remain localized in the mechanical lattice. This preservation of localization is due to the block diagonal form of U . This form ensures that the mode shape (eigenvector of D) components in each unit cell can be expressed as a linear function of the corresponding eigenvector components of H in the same unit cell.

Let us discuss in detail the design constructed by one of the authors of this tutorial in [START_REF] Pal | Helical edge states and topological phase transitions in phononic systems using bi-layered lattices[END_REF] . Figure 15b imaginary interaction terms and these couplings are analogous to springs connecting masses in a mechanical system. However, in a discrete mechanical system, it is desirable that all spring stiffness values are real. To achieve this condition of real coupling terms, we apply the transformation U in Eqn. ( 16) to get a stiffness matrix with all real terms. In particular, after applying Bloch periodicity condition, the stiffness matrix for the hexagonal lattice unit cell takes the form

K =   K 1 K 2 K * 2 K 1   ,
with Let us now see the transient behavior of a finite lattice comprised of these unit cells subjected to narrow band excitation (like a tone burst) in the bandgap frequency. Figure 17 displays the snapshots of displacement field at various time instants for each of these waves.

K 1 = (3k + 6λ)I 2 -k(1 + e iκ•a 1 + +e iκ•a 2 )σ x , K 2 = λ e iκ•a 1 -e iκ•a 1 + e -iκ•a 2 -e iκ•a 2 + e -iκ•(a 1 -a 2 ) -e iκ•(a 1 -a 2 ) σ z .
They are localized at the boundary and their magnitude decays rapidly away from it. These discrete models serve to illustrate the key concept behind such waves in mechanical lattices, but they may not extend straightforwardly to continuous elastic media. In Sec. V B, we will show an example of helical waves in architected plates whose design is guided by symmetry considerations. Before that, let us turn attention to studying another class of topological modes: valley modes, that are supported at the interface between two hexagonal lattice.

E. Mechanical valley Hall effect

Valley modes are a class of topological modes that arise due to symmetry properties of Dirac cones in hexagonal lattices [START_REF] Pal | Edge waves in plates with resonators: an elastic analogue of the quantum valley hall effect[END_REF][START_REF] Liu | Tunable acoustic valley-hall edge states in reconfigurable phononic elastic waveguides[END_REF][START_REF] Yan | On-chip valley topological materials for elastic wave manipulation[END_REF][START_REF] Qian | Topology of the valley-chern effect[END_REF][START_REF] Ma | Valley hall in-plane edge states as building blocks for elastodynamic logic circuits[END_REF] . 2D periodic lattices with specific symmetry properties exhibit singular features called Dirac cones in their dispersion surfaces. To see an example of how they arise, let us consider the hexagonal discrete mass-spring lattice shown in Fig. 18a. Each mass has one degree of freedom and can move out of plane. Each unit cell has 2 sub-lattice sites, indexed by a, b, and thus 2 degrees of freedom . The governing equations for a unit cell indexed p, q are given by m a üp,q,a + k(u p,q,a -u p,q,b ) + k(u p,q,a -u p-1,q,b ) + k(u p,q,a -u p,q-1,b ) = 0,

m b üp,q,b + k(u p,q,b -u p,q,a ) + k(u p,q,b -u p+1,q,a ) + k(u p,q,b -u p,q+1,a ) = 0.
Figure 18b displays the two dispersion surfaces over the first Brillouin zone. They touch at the six high symmetry K points. In the vicinity of these points, the dispersion surface resembles a two cones whose apex touch and these points are called Dirac points. Figure 18c displays the dispersion surfaces along the path sketched at the base in Fig. 18b. Such Dirac cones are at the heart of unique physical properties of graphene [START_REF] Neto | The electronic properties of graphene[END_REF] . The unique property of Dirac cones is that the mode density at that frequency is very low but the group velocity is finite, equal to the gradient of dispersion dispersion surface near the cone tip. There are two different approaches to understand the existence of these localized modes at such interfaces, similar to the two distinct approaches presented in Sec. IV C. The first approach analyzes the behavior at distinct high symmetry points to infer the existence of a spectral flow in the bandgap, while the second approach uses topological invariants to infer localized modes in the bandgap.

In the first approach, let us consider the dynamic behavior of the lattice at wavenumbers κ x = 0 and κ x = π/a. Here a is the unit cell length. Using Bloch periodicity conditions, we see that all unit cells have identical displacement fields at κ x = 0, while adjacent unit cells have displacement field of opposite sign at κ x = π/a. These relations lead to the unit cell transforming into the lattices shown in Fig. 21a and 21b for κ x = 0 and π/a, respectively.

Thick lines indicate that the stiffness value is k = 2. These transformed lattices are obtained by using the above displacement field relations at these wavenumbers and the connectivity of the hexagonal lattice. Similar to the case of topological pumping in Sec. IV C, direct calculations show that the frequency distribution in each of the bulk bands is different at these two wavenumbers. The difference in frequency arises for both kinds of interfaces:

adjacent light masses and adjacent heavy masses, and it manifests as a spectral flow between the bulk bands. Again, there is a topological invariant that captures this difference in mode distribution and predicts the existence of localized modes. This invariant is the valley Chern number and it is equal to the integral of the Berry curvature in the vicinity of the K-point.

Detailed derivations of this invariant are presented in [START_REF] Pal | Edge waves in plates with resonators: an elastic analogue of the quantum valley hall effect[END_REF] . It should be noted that having distinct masses that break inversion symmetry is one possible way to achieve topological bandgaps. Recent works [START_REF] Hasan | Spectral analysis of amplitudes and phases of elastic waves: Application to topological elasticity[END_REF] have demonstrated band inversion in spring mass models that preserve inversion symmetry.

V. EDGE MODES IN ELASTIC PLATES

Having discussed various kinds of topological modes localized at interfaces and boundaries in architected beams and discrete 2D mechanical lattices, let us now see examples of how these concepts can be extended to architected plates. We will consider 3 examples in increasing order of structural complexity. The first one supports valley Hall modes in thin plates using zero order bending or A 0 Lamb waves. The second example achieves helical edge waves using the hybridization of multiple higher order Lamb wave modes in a plate with complex-shaped blind and through holes. The final example extends this plate design to support both helical and valley modes, along with splitting or redirection of a wave at a junction depending on its polarization.

A. Elastic valley Hall modes

In Sec. IV E, we discussed the discrete mechanical analogue of the quantum valley Hall effect in lattices that have C 3 rotational symmetry but broken inversion symmetry. The key idea is that localized modes arise at the interface of two such lattices that are inverted copies of each other. Let us see how to extend this discrete concept to continuous elastic media.

Architected thin plates supporting Lamb waves provide a way to realize a wide class of waves that are continuous analogues of 2D discrete mechanical lattices. Examples include hexagonal and Kagome lattices in [START_REF] Vila | Observation of topological valley modes in an elastic hexagonal lattice[END_REF][START_REF] Miniaci | Valley-based splitting of topologically protected helical waves in elastic plates[END_REF][START_REF] Darabi | Experimental realization of a reconfigurable electroacoustic topological insulator[END_REF] . The common aspect in these designs is that they all satisfy the aforementioned symmetry conditions for the discrete case. Let us discuss in detail the design in Fig. 22a. It consists of a thin plate with hexagon shaped holes drilled into it in a periodic arrangement. Masses are attached at nodal locations in a corresponding discrete hexagonal lattice. The masses attached at the two sub-lattice sites in the unit cell are different and this difference breaks inversion symmetry of the lattice.

Figure 22b displays the corresponding dispersion bands for a single unit cell. It is computed using finite element analysis and it shows a bandgap opening up due to the breaking of inversion symmetry at the K-point. Note that the bending modes that form a Dirac cone breaks to form a bandgap, but it is not a complete isolated bandgap as there are axial and in plane-shear modes that traverse this frequency range. However, due to their distinct mode shapes, when the bending mode is excited, a negligible fraction of energy is converted to Let us now see an experimental demonstration of how such waves are able to navigate sharp bends without scattering losses. The structure is made of acrylic and magnetic cylinders are attached on both sides that attract each other. The unit cell size is 18.4 mm.

The magnetic force between cylinders on adjacent lattice sites is assumed to be negligible. This example shows how valley modes can be induced in continuous elastic media using architected thin plates. Such valley modes have also been demonstrated in several other systems, including in small scale structures [START_REF] He | A silicon-on-insulator slab for topological valley transport[END_REF][START_REF] Brendel | Snowflake phononic topological insulator at the nanoscale[END_REF] , reconfigurable waveguides with shunted piezoelectric patches [START_REF] Darabi | Experimental realization of a reconfigurable electroacoustic topological insulator[END_REF] , in acoustic lattices with sound waves [START_REF] Lu | Observation of topological valley transport of sound in sonic crystals[END_REF][START_REF] Lu | Valley vortex states in sonic crystals[END_REF][START_REF] Lu | Valley topological phases in bilayer sonic crystals[END_REF] and in plates with bolts or stubs [START_REF] Chaunsali | Subwavelength and directional control of flexural waves in zone-folding induced topological plates[END_REF][START_REF] Chaunsali | Experimental demonstration of topological waveguiding in elastic plates with local resonators[END_REF] .

B. Elastic spin Hall modes

In Sec. IV D, the key ideas behind the mechanical analogue of the quantum spin Hall effect were discussed in the case of discrete lattice-like structures. Recall that this effect leads to topological helical modes at boundaries. In this section, a general procedure or recipe to obtain helical topologically protected edge modes in continuous passive elastic waveguides is thoroughly detailed.

In principle, in the case of a system made of solely passive components, time-reversal symmetry is preserved, and a phononic analogue of chiral edge states is precluded. However, as proposed in the pioneering work of Mousavi et al. [START_REF] Mousavi | Topologically protected elastic waves in phononic metamaterials[END_REF] , helical edge modes can be achieved in passive elastic waveguides as well by exploiting the fact that various Lamb modes are characterized by different polarization. Specifically, they showed that guided symmetric (S0) and anti-symmetric (A0) modes in plates are excellent candidates to achieve an elastic version of the quantum spin Hall effect (i.e., designing a system supporting two effective spins for Lamb waves over a sufficiently broad bandwidth).

Geometry and material modifications, in general, affect the dispersion behavior and the associated band structure of plates. For example, breaking translation symmetry by introducing periodic holes or inclusions may open bandgaps, which, however, may not be complete and may therefore affect only some of the modes. The opening of bandgaps supporting topological modes also requires the structure to maintain a specific symmetry. The general procedure to obtain topologically protected helical edge modes in continuous elastic plates can be decomposed into the following steps:

• step 1 -Design a unit cell whose dispersion surfaces have an isolated double Dirac cone (Fig. 25);

• step 2 -Open a bandgap by breaking mid-plane symmetry of the unit cell (Fig. 26);

• step 3 -Create an interface using the unit cells of step 2. The unit cells on either side are mirror images of each other about the plate mid-plane. (Fig. 27a).

We will show below how applying the above steps to a patterned continuous elastic plate leads to helical topological protected edge modes. As mentioned, the first step is to create field. Refer to [START_REF] Miniaci | Experimental observation of topologically protected helical edge modes in patterned elastic plates[END_REF] for more details on the geometrical parameters of the unit cell and movie files of the experimental full field reconstruction. Hence there are two helical modes with opposite polarization. They have opposite group velocities for each wavenumber κ of waves propagating along the interface.

C. Combined valley and spin Hall modes

In this section we show how to design an elastic waveguide supporting multiple classes of edge modes (helical and valley). Specifically we will show a recipe to construct a continuous elastic waveguide capable of splitting equal-frequency helical edge waves differing on the basis of their polarization when they impinge on distinct interfaces at a common junction.

The starting point is the same as for helical modes: a unit cell showing a double Dirac cone degeneracy, as the one examined in the previous section, and illustrated again in Fig. 28a for clarity. From this unit cell, specific geometric modifications are introduced so as σ v and σ h symmetries, i.e., inversion and reflection symmetries, are selectively broken in specific portions of an elastic waveguide, as shown in Fig. 29a. The introduced geometric perturbations produce topological bandgaps that, respectively, support helical and valley modes in a common frequency range. Specifically, replacing the through holes of Fig. 28a with blind holes of 0.9 times the height of the plate, as shown in Fig. 28b, breaks the σ h symmetry. We denote the configuration with the blind holes on the top (bottom) surface as H + (H -). The interface between H + and H -supports two helical edge modes spanning the gap with positive (Φ + ) and negative (Φ -) group velocity, respectively (Fig. 29b).

Next, we break the σ v symmetry or reflection symmetry about a vertical plane parallel to a lattice vector direction. This id done by making the holes in each unit cell of different radii, namely r and R (see Fig. 28c). Inverting the position of the larger and smaller radii allows us to identify two distinct unit cells, denoted as V r and V R (Fig. 28c). Contrary to the previous case, an interface that separates two σ v -transformed copies of the structure supports a single valley mode, with positive or negative group velocity, depending on the type of interface, i.e., with two adjacent holes of diameter r or R, respectively. Besides, the interfaces between structures supporting helical and valley modes will still support a single hybrid edge mode with either positive (Ψ + ) or negative (Ψ -) group velocity, as shown in Figs. 29c,d. The edge modes are denoted by the index + (-) according to their positive (negative) group velocity when the wavenumber κ is in [0, π/a]. Note that this wavenumber is for waves propagating along an interface between two kinds of unit cells. In Figs. 29b-d, bulk modes are shaded in grey, while the edge states are denoted by the black, blue and red circles, depending on the types of interface: H + /H -), H + /V R ), and H -, V r ), respectively. Such wave splitting shows the potential for novel elastic wave manipulation capabilities. 

VI. OUTLOOK AND FUTURE DIRECTIONS

The past decade has seen an explosive growth in this research field, motivated by both an exploration of fundamental wave phenomena in elastic media and aimed at specific technological applications. The key realization in our opinion is that interfaces and defect modes can be designed in a systematic way by incorporating features derived from topological considerations. The examples discussed above showed how one can achieve robust and backscattering free waveguides that have sharp bends and corners. Different dimensions exhibit distinct topological phenomena: for instance the existence of a non-zero Zak phase in 1D systems and Weyl points in 3D systems. In this article, we have primarily focused on topological phenomena in elastic beams and plates that can be characterized by a Chern number. Now, let us we outline some promising future research directions.

Reconfigurable waveguides [START_REF] Liu | Tunable acoustic valley-hall edge states in reconfigurable phononic elastic waveguides[END_REF]100 are just beginning to be explored and remain to be realized in a variety of elastic waveguides. Similarly, multiphysics interactions, including between elastic and electromagnetic domains, for example in piezoelectric media 101,102 , or between fluids and structures 103 , may open avenues for controlling waves in one media with another.

Extending unit cell designs to three dimensional periodic structures will significantly expand the design space as well as allow for 3D manipulation and control of elastic waves. They may concepts have recently started to be investigated in static media and in 1D beam systems.

Extending unit cell concepts to non-periodic, complex geometries 109 , higher dimensions and higher order topological modes 110 will open avenues for unique wave manipulation properties. In particular, quasi-and non-periodic structures exhibit for bulk isotropic behavior as opposed to anisotropic behavior that is associated with periodic media, for example C 3 , C 4 media in 2D structures.

On the theoretical side, several questions similarly remain unanswered, having to do with the role of nonlinearities. Notably, nonlinear 111-113 and non-Hermitian 114-116 elastic structures have exciting potential for realizing novel wave phenomena. The topological properties of such systems remain to be investigated and they may allow for solitons, frequency conversion, localized skin modes, unidirectional reflection in elastic structures like beams, plates and shells 117,118 . In this regard, the advent of 3D 119 and 4D printing 120,121 has opened novel avenues for fabricating complex shaped structures that were beyond the reach of conventional manufacturing methods. Synthetic high dimensional spaces have been created in other physical domains by modulating geometric parameters in time 122 or by accessing additional degrees of freedom 123 . Such techniques can lead to the realization of topological wave phenomena associated with the corresponding higher dimensions in elastic media too. We anticipate that these directions will thus lead to fruitful fundamental and applied research
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FIG. 1 :

 1 FIG. 1: (a) Example of waveguides allowing energy to propagate towards (left panel) a straight or (right panel) a L-shaped path 20 . Comparison of the wave field reconstruction for (b) a trivial and (c) a topological photonic waveguide. Wave reflects back at corners in the trivial case while no energy is reflected in the topological one 21 . (Reproduced with permission from Phil. Trans. A 373, 20140364 (2015) and Phys. Rev. Lett. 114, 127401 (2015). Copyright 2015 Royal Society and 2015 American Physical Society.)

FIG. 2 :

 2 FIG. 2: (a) Bulk Waves propagating in an infinite media and characterized by (left panel) particle motion alternating compression and stretching of the medium, and (center, right panels) transverse particle motion in orthogonal planes. (b) A 3D medium with a free surface allows for the propagation of waves localized at the free half-space. Left panel: Rayleigh waves and right panel: Love waves. (c) Lamb waves in a plate. (d) First two Lamb modes, top: symmetric and bottom: anti-symmetric about the plate center-plane.

FIG. 3 :

 3 FIG. 3: (a) In-plane view of an architected waveguide consisting of a plate with circular and triangular holes in a periodic arrangement. The unit cell, i.e. the smallest repetitive building block, is highlighted in light green. (b) In-plane and (c) isometric view of the unit cell. a 1 and a 2 are the lattice vectors. Dispersion analysis of this periodic structure is conducted by the imposing periodic boundary conditions (PBC) at the domain edges (see section III B for further details).

FIG. 4 :

 4 FIG. 4: (a) Mode shape (red curve) of a metamaterial bar (schematic behind the curve) with two materials of different Young's modulus at a wavenumber κ = 2π/3L. Displacement field is shown over 6 unit cells. (b) Real part of typical basis functions e i(κ+G)x in the PWE method with G = 0 and G = 2π/L. Basis functions are shown over 3 unit cells for clarity.

  section) and measure ("M") elastic waves are widely used. A non-exhaustive list include: (i) conventional and piezoceramic ultrasonic transducers (E/M); (ii) comb-type ultrasonic transducers (E/M); (iii) electromagnetic acoustic transducer (EMAT), for non-contact acoustic wave generation and reception in conducting materials; (iv) magnetostrictive transducers (E/M), exploiting the property of magnetic materials that causes them to change their shape or dimensions during the process of magnetization; (v) impact-controlled approaches (E), such as instrumented impact hammers; (vi) electrodynamic shakers (E); (vii) optical fiber sensors (M); (viii) photoelasticity (M), describing changes in the optical properties of a material under mechanical deformation; (iix) photothermal (M); (ix) scanning laser Doppler vibrometer -SLDV (M), that determines the out-of-plane or normal velocity at each point on the surface of an elastic structure through the Doppler effect. These techniques, which can be selectively chosen according to the specific type of wave to excite/detect (Rayleigh,

FIG. 5 :

 5 FIG. 5: (a) An infinite lattice with two distinct and alternating spring stiffness values. Dashed rectangle is a unit cell. (b) Hypothetical finite lattice in the form of a ring. (c) Dispersion curves of the lattice along with finite ring frequencies superimposed as red circles.

FIG. 6 :FIG. 7 :

 67 FIG. 6: Unit cells of lattices with (a) 4 and (b) 5 distinct spring stiffness values. Dashed rectangle shows unit cell. (c), (d): their dispersion curves having 4 and 5 branches. Red circles show the frequencies of a finite ring lattice of 40 masses are distributed equally among the dispersion curves: 10 and 8 in each branch, respectively, for the two lattices.

Figure 2 .

 2 Figure 9a displays the natural frequencies of a finite beam (red curves) overlaid on the corresponding frequencies for an infinite beam. It shows how the frequencies change with the parameter θ. Note that each vertical slice (constant θ line) is a different lattice. A homogeneous beam (without ground springs) has an infinite number of natural frequencies

FIG. 9 :

 9 FIG. 9: (a) Frequencies of a finite beam with 20 ground springs (red curves) superimposed on infinite beam frequencies (black curves) for a family of lattices. Each θ is a distinct structure. Spectral flow between bulk bands (contiguous black curves) arises. (b) Mode shapes of two localized modes at points a and b in (a) 69 .

Figure 10a displays the

  Figure10adisplays the dispersion surfaces for a family of lattices as φ varies from 0 to 2π and α = 0.6. The bandgaps do not close for small α. Now, let us consider a finite chain of 61 masses. This chain has N = 20 unit cells and an extra mass is added so that we get a commensurate lattice, one whose modes can be identified with modes in the corresponding infinite chain for φ = 0. Figure10bdisplays how the natural frequencies change with φ for this finite chain. Note that there is a mode that spans each bandgap as it flows from one bulk band to another and then back again. The solid and dashed lines in this bandgap indicate a mode localized at the left and right boundary, respectively. Figure10cdisplays the mode shape of the mode spanning the first bandgap, showing how it transitions from one edge to another in the finite chain.

FIG. 10 :FIG. 11 :

 1011 FIG. 10: (a) Dispersion surfaces of a family of lattices as a function of φ showing 2 bandgaps between the bulk bands, along with the Chern number. (b) Natural frequencies of a finite chain of N = 61 masses showing a spectral flow across the bandgap as φ varies. Dashed (solid) curves indicate the mode is localized on the left/right boundary. (c) Displacement magnitudfe of the localized mode in the second (higher) bandgap showing the transition from right to left boundary 74 . (Reproduced with permission from Phys. Rev. Lett. 123, 034301 (2019). Copyright 2019 American Physical Society.)

  FIG.12: Schematic of an array of beams coupled with distributed springs whose stiffness is given by Eqn.(13). Along the beam, φ varies from π/3 to 2π/3 so that the localized mode in this chain of distributed springs traverses from left to right boundary.

FIG. 14 :

 14 FIG. 14: Elastic lattice supporting chiral edge modes. (a) Hexagonal lattice with rotating gyroscopes at each node. (b) Dispersion curves for a strip as a unit cell showing one way modes in the bandgap. The red (blue) modes are localized at the top (bottom) surface and traverse counter-clockwise around the boundary 23 . (Reproduced with permission from Phys. Rev. Lett. 115, 104302 (2015). Copyright 2015 American Physical Society.)

  displays a unit cell consisting of rotating disks connected by bars. Each disk has one degree of freedom and can rotate in its plane. Our starting point is the Hamiltonian used by Kane and Mele 81 , that supports helical edge modes at the boundary of a hexagonal lattice. Their model has two copies of hexagonal lattice and each unit cell thus has 4 degrees of freedom. These degrees of freedom are coupled through real and

FIG. 15 :

 15 FIG. 15: Examples of discrete mechanical lattices that support helical edge modes. (a) Pendulums with springs 24 , (b) rotating disks 25 and (c) spring mass lattice 82 . (Reproduced with permission from Science 349, 47-50 (2015), J. Appl. Phys. 995 119, 084305 (2016) and Phys. Rev. B 98, 094302 (2018). Copyright 2015 Amer. Assoc. Adv. Science and 2018 American Physical Society.)

Figure 16a displays theFIG. 16 :

 16 Figure16adisplays the dispersion diagram for the lattice with λ = 0, i.e., no interlayer coupling springs. The dispersion diagram is projected onto the κ y = 0 plane. There is no bandgap and the two dispersion surfaces touch. Figure16bdisplays the corresponding dispersion diagram of a unit cell with interlayer coupling λ = 0.2 showing a bandgap now opens up. To see the presence of topological modes at a boundary, we again examine the dispersion curves of a lattice that is finite in one direction and infinite in another, similar to the lattice in Fig.14b. They are illustrated in Fig.16cand have two modes spanning the bandgap in addition to the bulk bands seen in Fig.16b. The difference between these two dispersion curves (Figs.16b, 16c) is the effect of a finite boundary. Indeed, the mode shapes corresponding to the modes in the bandgap are localized at a boundary. Note how

FIG. 17 :

 17 FIG. 17: Snapshots of displacement field at various time instants. Wave propagates clockwise (a-d) or counter-clockwise (e-h) depending on which mode is excited 25 . (Reproduced from J. Appl. Phys., 119, 084305 (2016), with the permission of AIP Publishing.)

FIG. 18 :FIG. 20 :

 1820 FIG. 18: (a) Hexagonal lattice schematic with unit cell. (b) Dispersion surfaces when m a = m b showing Dirac cones at the K points. (c) Dispersion curves over a path through the high symmetry points for the case m a = m b (solid curves) and m a = m b (dashed curves). The valley Chern numbers C v for each band at the K points are indicated 88 . (Reproduced with permission from Phys. Rev. B 96, 134307 (2017). Copyright 2017 American Physical Society.)

FIG. 21 :

 21 FIG. 21: Schematic of finite strip lattice with interface at the high symmetry points (a) κ x = 0 and (b) κ x = π/a after applying Bloch periodicity. The two configurations have distinct number of frequencies lying in each bulk band, implying a mode traverses the bandgap as κ x varies in [0, π/a].

FIG. 22 :

 22 FIG. 22: (a) Designed structure is a thin plate with hexagonal holes. Different masses are attached to the sub-lattice sites to break inversion symmetry. (b) Dispersion curves over the boundary of the IBZ for the unit cell. Blue curves are out of plane bending modes while red curves are in plane longitudinal and shear modes 88 . (Reproduced with permission from Phys. Rev. B 96, 134307 (2017). Copyright 2017 American Physical Society.)

Figure 23 displays

 23 Figure23displays the dispersion diagram for a finite strip, calculated using the plane wave expansion method. The frequency is expressed in non-dimensional form by normalizing it as Ω = ω EI/ρA and the wave vector is normalized by the unit cell length a. The modes are bounded by two curves Ω = µ 2 and Ω = π 2 -µ 2 . This is because the group velocity at each frequency ω is bounded by the corresponding value for a homogeneous plate. Similar to the discrete case, there are two kinds of interface, depending on whether there are adjacent heavy or light masses at the junction. Figures23c and 23ddisplay the mode shapes at each kind of interface. These modes are called elastic valley modes and they span the bandgap frequencies for sufficiently small values of the mass difference. Note how they are localized at the interface and their amplitude decays rapidly away from it.

FigureFIG. 23 :

 23 Figure 24a displays the experimental setup of an N-shaped topological waveguide realized by creating an interface. The red and cyan circles indicate locations with low and high

FIG. 24 :

 24 FIG. 24: N-shaped (a) topological and (c) trivial waveguide. Red and cyan circles have different mass amounts. (b,d): Their corresponding dynamic response at distinct time instants showing the wave navigates sharp bends in the topological waveguide 88 .(Reproduced with permission from Phys. Rev.B 96, 134307 (2017). Copyright 2017 American Physical Society.)

FIG. 25 :

 25 FIG. 25: Step 1:(a) perspective and cross-sectional view of an architected unit cell with through the thickness holes -TH. (b) Its dispersion curves have a double Dirac cone and the corresponding modes have different polarization (in-plane and out-of-plane, represented respectively by the colors blue and grey/yellow in the right panel).

FIG. 26 :

 26 FIG. 26: Step 2: (a) perspective and cross-sectional view of a unit cell with blind holes BH. Unit cells for domain 1 and domain 2 differ by a σ h transformation, with blind holes being on the top vs bottom surface. (b) Modes are hybridized at the high symmetry point K, breaking σ h symmetry.

FIG. 27 :

 27 FIG. 27: Step 3: (a) schematic of a continuous elastic waveguide supporting helical modes at the interface between two unit cells related by a σ h transformation. (b) Numerical (white lines) and experimental measurements (energy spots) of the two distinct helical modes. (c) Experimental reconstruction of the helical edge modes characterized by a clockwise and counterclockwise displacement phase field variation with respect to the direction of wave propagation (left to right) 16 .

Finally,

  Figs.30a,bshow the numerical distribution of the von Mises stress field resulting from harmonic excitation at 98 kHz, i.e. within the bulk gap. The excitation is applied at the location shown by the white dot as an out-of-plane displacement distribution and the calculations clearly illustrate the possibility to preferentially excite one of the two modes and to remotely select the interface along which the wave will propagate once impinging the Y -shaped junction. Colors indicate the von Mises stress, ranging from zero (blue) to maximum (red). Refer to[START_REF] Miniaci | Valley-based splitting of topologically protected helical waves in elastic plates[END_REF] for the geometrical details of the unit cells and further details.

FIG. 28 :

 28 FIG. 28: (a) Top view of the designed unit cell with through-the-thickness holes whose dispersion has a double Dirac cone (see Fig. 25b). (b) Perspective view of two unit cells with broken σ h symmetry. H+ has blind holes on the top surface and H-has blind holes at the bottom. They both break Dirac cones and open a bandgap (see Fig. 26b). (c) Perspective view of the unit cells with broken σ v symmetry. V+ and V-had different size through holes. Both unit cells also open a bandgap in the same frequency range.

FIG. 29 :FIG. 30 :

 2930 FIG. 29: (a) Digital model to assist the drilling machine for the manufacturing of the waveguide. Holes in red (green) define the H + (H -) unit cell where blind holes are drilled. Hole depth is 0.9 times the height of the plate. Holes in blue (violet) define the V R (V r ) unit cells where holes are drilled through the whole thickness of the plate, but that have different radii. (b -d) Dispersion diagrams for non-trivial stripes with the following types of interfaces: H + /H -), H + /V R ), and H -, V r ), respectively. The band structures are computed considering the strips periodic in the horizontal direction and made of 10 unit cells on each side of the domain wall. The bulk modes are reported as gray dots while the interface modes in black, blue and red dotted lines, respectively. The edge modes are denoted by the index + (-) according to their positive (negative) group velocity with respect to the propagation direction 90 . (Reproduced with permission from Phys. Rev. B 100, 024304 (2019). Copyright 2019 American Physical Society.)
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in the coming years and will lead to the discovery of novel and exciting effects in the domain of topological elastic waves. 
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