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Abstract : 
The localization of weak properties or bad behavior of a structure is still a very challenging task that 
concentrates the improvement of Non Destructive Testing (NDT) tools on more efficiency and higher 
structural coverage. In case of random loading or material properties, this challenge is arduous because of 
the limited number of measures and the quasi-infinite potential positions of local failures. The paper shows 
that the stationary property is useful to find the minimum quantity of NDT measurements and their position 
for a given quality assessment. It is shown that a two stages procedure allows us (i) to quantify the 
properties of the ergodic, stationary field (ii) to assess the distribution of the characteristics. The 
optimization is reached following a criterion based on confidence intervals of the statistics. 

Key work : Confidence interval, probability of interval, spatial variability, Karhunen-Loève, 
optimization of inspection 

1 Introduction 
Industrially developed countries face more and more the maintenance of existing infrastructures. This 
challenge began in the 80’s with nuclear power stations or offshore oil and gas platforms for which safety 
requirements were very provided very early because of the high level of consequences of failure. Specific 
methods for Inspection Maintenance and Repair where devoted to each industrial field. However, their 
generalization to other assets is not immediate because of the required money and human resources. That is 
why methods based on visual inspection have been developed with a real potential [3] and that new methods 
and techniques of monitoring, within Bridge Management Systems (BMS), are under development [7-8]. 
Various other assets than bridges assets are now under consideration: sewer networks [2], wharfs. In the 
probabilistic thinking, this question is addressed under the methods of “random variable updating” that have 
been widely addressed during the two last decades. Random variable updating is very useful when a prior 
distribution is known and data coming from inspections or monitored systems are collected for condition 
assessment and reliability updating [10]. Basically, the so-called RBI generalizes these approaches in the 
case of non-perfect inspections by linking inspection and decisions [4].  
Moreover, establishing a prior distribution for a whole set of material parameters of existing structures is a 
very difficult task and probabilistic updating must be applied with care. In parallel, it is more and more 
feasible and inexpensive to collect a huge quantity of data, by an operator or a new generation of remotely 
operating vehicles and robots devoted to Non Destructive Testing tools (interferometer robot for instance: 
[5]). On the whole, the stochastic nature of material properties and deterioration processes as well as the 
factors that reduce the quality of the inspections that can be used to quantify them, trans-form the 
management of deteriorating systems in a major challenge for owners and operators. In the light of this, we 
suggest providing a flowchart for optimizing the number of inspections and provide the statistics of material 
characteristics on real structures with spatial dependency starting from five main assumptions about the 
inspection and the random field modeling one-dimensional. 
The goal of the paper is to present and solve the optimization problem of the total number of measurements 
after the two stages. The paper first presents in the second part usual representation of spatial variability in 
civil engineering through stochastic field modeling and focuses on stationary stochastic fields: the Karhunen-
Loève decomposition is reminded for modeling this spatial variability. Then the third part presents the two-
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stage inspection strategy in view (i) to assess the correlation function and (ii) to get a set of fairly dependent 
measurements to compute statistics of the marginal distribution. A criterion of quality of the modeling after 
inspection is suggested. Original parameters are highlighted in view to represent the role of the distance 
between inspections. The paper ends in the fourth part with an application to an academic study case in view 
to illustrate the potential of the methodology and the suggested parameters. 

2 Spatial random field modeling 

2.1 Usual approaches for spatial field modeling 
The stochastic field could take several forms more or less complicated. The most simple when the 
degradation can be considered as homogeneous is the stationary stochastic field that can be used, for instance, 
to model chloride distribution, concrete properties [6], or soil properties. In some cases, when a stochastic 
process is influenced by several phenomena that vary with time (sea wave for instance) or with space 
(concreting of a structure in several steps with heterogeneity of these steps), it can be modeled as piecewise 
stationary. This more sophisticated stochastic field can represent, for example, the variability of concreting 
materials by pieces or the corrosion of structures located in contiguous environments with different 
characteristics [1]. In this case, a piecewise stationary stochastic field could be used to have a good 
representation of the loss of thickness.  

2.2 Main assumptions for the stochastic modeling  
Starting from the previous sections and to limit the study, we consider five main assumptions about the 
inspection and the random field modeling: (i) the stochastic field is statically homogeneous, and only few 
information on the marginal distribution is known: the type of the unique probability density distribution. In 
the following applications we consider a Gaussian field; (ii) a huge number (more than 100) of 
measurements can be performed; (iii) second order stationary stochastic field can piecewise or totally 
describe the spatial fields; (iv) inspections are regularly spaced for simplicity of the campaign planning; and 
(v) inspections are considered as perfect. 
Given a probability space (Ω, F , P), a stochastic field or process with state space Z is a collection of Z-
valued random variables indexed respectively by a set s “space” or t “time”. We consider here homogeneous 
fields only. This means that the marginal distribution of Z(x1, θ) does not depend on the location. A 
stochastic field is second order stationary if it follows three main properties: (i) expectation E[Z(x, θ)] does 
not depend on the location x –i.e., E[Z(x, θ)] = E[Z]; (ii) variance V[Z(x, θ)] does not depend on the location 
x –i.e., V[Z(x, θ)] = V[Z]; and (ii) spatial covariance COV[Z(x, θ), Z(x, θ)] depends only on the distance (x-
x’). Thus, the second order stationary is a property restricted to the two first probabilistic moments. It can be 
shown that geometries of welds for ships or the spatial distribution of chloride concentration in reinforced 
concrete structures can be represented by stationary stochastic fields. For instance, FIG.1 presents the 
correlation function of the chloride diffusion coefficient as function of the distance between two points 
(duratiNet project: http://www.duratinet.org, following [6]. In this paper, we select a Karhunen-Loève 
expansion to represent the stochastic field of resistance of a structure Z(x, θ). This expansion represents a 
random field as a combination of orthogonal functions on a bounded interval [–a, a]: 

  
Z(x,θ ) = µZ +σ Z . λi .ξi (θ ).

i=1

n

∑ fi (x)  (1) 

where, µZ is the mean of the field Z, σZ is the standard deviation of the statistically homogeneous field Z, n is 
number of terms in the expansion, ξi is a set of centered Gaussian random variables and λi and fi are, 
respectively, the eigenvalues and eigen functions of the correlation function ρ(Δx). It is possible to 
analytically determine the eigenvalues λi and eigen functions fi for some correlation functions. For example, 
it can be determined if we assume that the field is second order stationary and we use an exponential 
correlation function:  

  
ρ(Δx = x1 - x2 )=exp( −

Δx
b

); 0 < b  (2) 

where b is the correlation length and Δx ∈ [–a, a] 
: 
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FIG.1-Spatial correlation of the chloride diffusion coefficient in concrete – data Trinity College of Dublin. 

3 Inspection strategy and goals 
3.1 Concept of Inspection Distance Threshold  
The two stages inspection we suggest should provide both the parameters of the spatial correlation function 
and independent events that characterize the marginal distribution of Z. We considerer in this paper a one-
dimensional spatial field and we will apply the methodology on a set of trajectories: these trajectories could 
be a set of 1D components (beams). In view to limit the inspection costs we first inspect a trajectory with a 
“sufficiently low distance Lb” to assess the shape of the correlation function (2): for instance the shape 
parameter b. In view to sample independent events for Z, we need to inspect the trajectories with a 
“sufficiently high distance Lc” to get fairly correlated events. These “sufficiently low and high distances” can 
be gathered under the generic term IDT for Inspection Distance Threshold. Thus Lb and Lc should satisfy: Lb 
∈ ]0, IDT[ ; Lc ∈ ]IDT, L[  where L is the length of the trajectory. For illustrating the methodology, we 
consider in the following a set of 1D-components (beams) with infinite length L ~ ∞: we don’t discuss the 
case of components with a limited size, especially those where L< Lb for which it is quite impossible to 
characterize the spatial variability. The IDT is defined by assuming that after a given distance, the events 
measured from an inspection can be assumed as statistically independent. A Spatial Correlation Threshold 
SCT of the spatial correlation gives this weak correlation. For instance in FIG.1 (red line) for SCT=0.4, 
IDT=3 meters. It is linked with IDT by the relationship: 

  IDT = −bln(SCT )  (3) 

3.2 Assessment of the correlation function from discrete inspections  
We assume that the stationary stochastic field can be characterized by an autocorrelation function (ACF) 
considered for spatial variability of structures with their parameter, called length of correlation b. A complete 
overview of the auto-correlation functions and their application is available in [5]. Let us focus on the 
assessment of this function from experimental data (sensors or NDT tests). In the first procedure, reported by 
Li[7], the Maximum Likelihood Estimate method (MLE) is used in which different values for the model 
parameter of the proposed ACF model is assumed and the value that maximizes the corresponding MLE is 
taken as the model parameter. In the second procedure, proposed by Vanmarcke [11]. In this paper, we select 
an exponential ACF (see (2)) and we use the MLE for the estimation of b (4). 
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 (4) 

where νi is the ith component of the vector of independent standard values. 

3.3 Number of inspections to optimize in the two stages procedure 
When focusing on a practical application, we will have to optimize the total number of discrete inspections 
N=Np*Ns*Nt where Np is the number of repetitive tests for reducing the error of inspection, Ns is the 
number of inspected sections and Nt the number of trajectories. Here the error of inspection is neglected and 
we inspect separately and firstly Ns1 sections on the first trajectory to assess the spatial correlation function, 
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thus N= Ns1 + Ns*(Nt-1) (see FIG.2). 

FIG.2-Definition of the number of inspections. 

Our objective is to optimize the number of inspections in view to reach a given quality of the result. 
3.4 Definition of a reliability oriented measure of quality of inspection 
The quality of a result of inspection can be expressed by several concepts.  If we consider the error of 
measurement risk oriented measures have been developed: PoD, PFA, PoI, PGA and PWA. We select in this 
paper a confidence interval of both the mean µ and the standard deviation σ expressed as a percentage ε of µ 
and σ respectively. We carry out Monte-Carlo simulations to estimate the bounds of the confidence interval 
for a target probability for the inspection respectively Pti,µ and Pti,σ. In a reliability study, Pti will be provided 
by the requirements on the accuracy of the probability of failure assessment. Thus we focus on the two 
estimates: 

  
PẐ

µ = P(σ Ẑ ∈ (1− εµ )σ Z;(1+ εµ )σ Z
⎡⎣ ⎤⎦)  and   PẐ

σ = P(σ Ẑ ∈ (1− εσ )σ Z;(1+ εσ )σ Z⎡⎣ ⎤⎦)  (5) 

Where if only a statistical error occurs (no effect of weak dependency between measurements), theory of 
confidence intervals gives: 

  
εµ =u

1−α 2

σ Z

µZ N
 and 

  
εσ =u

1−α 2

1
2N

 (6) 

With u1-α/2 =1.96 for Pti =0.95 (α=0.05). 

In the case of measurements on trajectories with a weak dependency between data, these values will be 
affected.  

4 Application to a study case  
4.1 Structure characteristics and inspection goals 
We consider a structure for which L>>b that allows to assess b from theoretical point of view. The Gaussian 
stationary stochastic field is characterized by: b=1, µZ = 100 and σZ = 20 and the length of the structure is 
L=200. We aim to provide an inspection protocol that ensures: respectively Pti,µ = Pti,σ = 0.95. 

4.2 Effect of SCT on confidence interval 
We first analyze the effect of a weak correlation between measurements due to the spatial field on the quality 
of inspection according to (5). For N=100, theoretical values deduced from (6) are: εµ = 3.9% and εσ = 
13.85%. FIG. 3 plots the effect of SCT (from 0.1 to 0.9) on εµ and εσ respectively. The width of the 
confidence interval increases obviously with SCT and this effect is more pronounced for SCT higher than 0.4 
for both µ and σ. In the following we fix SCT=0.4 and IDT is computer from (3). We can also express the 
result in another way. By fixing the confidence bounds -for instance εµ = 5% and εσ= 20% - and Lc (Lc 
∈ ]IDT, L[,  Lc = b.ln(0.3) ≈1.2 m ), FIG. 4 presents the couple of minimum required values for Ns and Nt to 
ensure Pti,µ = Pti,σ = 0.95. 
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FIG.3 - Effect of SCT on εµ and εσ  
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FIG.4 - Number of required Ns and Nt to ensure Pti,µ = Pti,σ = 0.95 (Lc =1.2 m). 

The optimal number Nopt is solution of equation (7). Here Nopt = 40 if 4 trajectories are available and Ns=10. 

  
Nopt =argmin

N
max(N εµ ; N εσ( )  (7) 

4.3 Inspection methodology: first stage 
According to section 3, the first stage of the inspection methodology is devoted to the assessment of b on a 
single trajectory according to 3.2. We propose   Lb = −bln(0.5) ≈ 0.7 m . Practically b can be deduced from 
expert judgment. Here it is fixed at is theoretical value: b=1. FIG 5 plots the effects of Ns1 on the mean value 
µB and the standard deviation σB of B. The convergence of µB is quick and the error is less than 0.1 for 
Ns1=38 but the convergence of σB is very slow and the error remains high (more than 0.3) even for Ns1=100. 
That underlines the role of the choice of Lb.  

4.4 Inspection methodology: second stage and optimization 
The uncertainty on the assessment of b will cause an uncertainty on Lc and will propagate this uncertainty 
when assessing statistics of Ẑ . Let us fix for instance Ns =23 and Nt = 2 to reach εµ= 5% and εσ= 20%. FIG.5 
gives the effect of the choice of Ns1 on εµ and εσ respectively, with Lc =1.2 m (see section 4.3). That allows us 
to illustrate that exceeding 70 measurements Ns1 for εµ and 50 for εσ doesn’t decrease the confidence interval. 
Note that the values expected for confidence intervals that confirms the good selection of Lb.  
 

FIG.5- Effect of Ns1 on εµ  and εσ 

10 

20 

30 

40 

50 

0 10 20 30 40 50 60 70 80 90 

ε σ
 (%

) 

Ns1 

Ns=23, Nt=2 



21ème Congrès Français de Mécanique                                                                  Bordeaux, 26 au 30 août 2013 

  6 

5 Conclusion 
We propose in this paper an original two stage method for the optimization of the number of inspection of a 
Gaussian stationary stochastic field in view to (i) assess the shape of the correlation function (ii) deduce the 
statistics of the marginal distribution. The role of the distance between measurement for assessment of (i) 
and (ii) is highlighted and a probabilistic-oriented measure of quality is suggested in terms of confidence 
intervals of these quantities. That underlines the key role of a Spatial Correlation Threshold. The 
methodology relies on (1) the measurement of the correlation function on a first trajectory with a given 
number of inspections and  (2) the assessment of statistics of the marginal distribution on a given set of 
trajectories, knowing (1). The paper ends with a practical applications and suggestions for the spacing 
between inspection in view to reach (1) and (2).  
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