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Optimization of spider web-inspired phononic crystals to achieve
tailored dispersion for diverse objectives

Vinicius F. Dal Poggetto™*, Federico Bosia?, Marco Miniaci®, Nicola M. Pugno**

Abstract

Spider orb webs are versatile multifunctional structures with optimized mechanical properties for
prey capture, but also for transmitting vibrations. The versatility of such a system mainly derives
from its variable geometry, which can be effectively used to design phononic crystals, thus inhibiting
wave propagation in wide frequency ranges. In this work, the design of spider web-inspired single-
phase phononic crystals through selective variation of thread radii and the addition of point masses
1s proposed, determined through the use of optimization techniques. The obtained results show
that spider web geometry displays a rich vibration spectrum, which by varying its the geometric
characteristics and adding localized masses can be tailored to manipulate wave modes, and the
resulting two-dimensional phononic crystals present wide complete band gaps generated by Bragg
scattering and local resonances.

Keywords: Bioinspired phononic crystals and metamaterials; Spider web-inspired geometry;
Optimization; Wave propagation.

1. Introduction

Spider webs are the product of evolutionary adaptation, being able to deliver a compromise
between demands such as absorbing the impacts of prey while also efficiently transmitting infor-
mation about the nature and position of vibration sources [1, 2]. Different spider web geometries
include the vertical orb web, funnel web, sheet web, and tangle web [3]. Here, a simple plane orb
web model is considered, constituted by radial threads connecting the center of the web (hub)
to the outer region (frame), and viscid threads (spiral) connecting adjacent radial threads [4, 5].
Radial silk threads are known for their high toughness and tensile strength, with larger Young’s
modulus and diameters, while viscid threads are known for their large ultimate strain, but have
smaller Young’s modulus and diameters [6, 7]. Thus, the versatility observed in spider web geome-
tries and the resulting remarkable ability to manipulate waves suggests it can be efficiently used
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to conceive new artificial materials.

Novel systems designed to exhibit wide attenuation regions have recently been inspired by
biological structures [8-13]. In particular, Miniaci et al. [4] have proposed to periodically arrange
spider web-inspired structures to achieve phononic crystals (PCs) with efficient wave attenuation
performance, through the nucleation of Bragg and local resonance based phononic band gaps
(BGs), i.e., frequency regions where wave propagation is inhibited [14-24]. Furthermore, spatially
sparse (i.e., lightweight) geometries can be particularly attractive to design systems capable of
yielding large attenuation regions [25, 26], which further motivates the investigation of spider web-
inspired structures. In particular, the growing use of additive manufacturing and its application
in various fields [27] enables the design of structures with complex geometries at a low cost [2§],
which further encourages the development of single-phase PCs with monolithic structures that can
be readily fabricated to yield interesting vibration-control properties [29].

Several types of strategies have been proposed to achieve BGs in two-dimensional structures,
such as introducing (i) impedance mismatches through the addition of localized masses [30] or
periodic cavities [31], (ii) variations of cross-sections in specific regions [32,133], or (iii) exploiting
the effect of local resonance [34-36]. Spider web structures provide the possibility of adopting all of
these strategies due to their versatility, which allows the combination of the impedance modulation
realized by graded thread diameters and applied localized masses throughout the web structure,
which can be properly determined through the use of optimization techniques. Optimization
techniques have been widely used to design PCs to achieve wide BGs, including genetic algorithms
[37-39], topology [40-42] and evolutionary optimization [43]. Additionally, when dealing with a
given topology, parametric optimization [44] is useful to properly select design variables. This is
particularly relevant to spider web-inspired structures.

Although spider web-inspired PC structures have been proposed before [4,145], their conception
was limited to basic configurations, while their full potential for wave manipulation has remained
largely unexplored. In this paper, the evaluation of the effects of (i) thread diameter to create
impedance mismatches and (ii) the inclusion of point masses to tune the wave filtering character-
istics of two-dimensional PCs designed using simple models of spider orb webs and to optimize
these parameters to achieve distinctive objectives such as (i) maximum normalized BG widths;
(ii) BGs opened at a fundamental frequency and its harmonics; (iii) BGs considering distinct out-
of-plane and in-plane polarization modes; (iv) creation of isolated Dirac cones is proposed. This
works presents, for the first time, a spider web-inspired single-phase PC which displays great ver-
satility. Its structure can easily be tailored to achieve optimized performance for various different
objectives. The presented approach is entirely general and may also be applied to optimize other
bio-inspired systems which present similar design freedom. The paper is organized as follows:
Section [2] presents the models and methods, Section [3 illustrates the obtained results, and Section
(] presents concluding remarks.

2. Models and methods

2.1. Dynamic models

The development of a two-dimensional PC using a spider orb web-inspired geometry is initially
proposed. The relation between the initial spider web-inspired structure, its corresponding periodic
hexagonal lattice, and the resulting unit cell are depicted in Figure Il
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Figure 1: Spider web-inspired periodic frame: (@) single hexagonal frame structure (radial threads indicated as red
lines and viscid threads indicated as blue lines) with distinct composing layers, (b)) periodic structure obtained from
the repetition of the spider web-inspired frame (colored) in a hexagonal lattice, (@) representative unit cell used
to obtain the periodic structure (some frame elements are removed at the edges of the unit cell so they are not
duplicated in the corresponding periodic structure).

The initial spider orb web hexagonal geometry with characteristic length L is depicted in Figure
[[al with red lines indicating radial threads and blue lines indicating viscid threads. This structure
can be interpreted as a composition of ng layers, where each layer is constituted by 12 radial and
12 viscid threads, as illustrated for n, = 3. This structure can be repeated to form a hexagonal
periodic lattice, as shown in Figure Il based on the corresponding unit cell depicted in Figure [Id,
where for the i-th layer, the radius of a radial thread is denoted by r,(«z), and of a viscid thread by
i, Thus, for ng layers, there are 2n, possible different thread diameters. Due to the condition of
periodicity, elements connecting corresponding nodes are removed so they are not duplicated [34].

Each structural component is modeled as a 2-node frame element, which superposes the effects
of rod, shaft, and beam elements. Considering a frame element in the z-direction, transverse
directions are labeled as y and z. The DOFs for the i-th node are represented by the nodal
displacement vector q;, and the forces and moments in the same node are represented using vector
f;, respectively given by

G ={ Usi Uy Uz Dui Gyi Dui }T, (la)
f;={ Fu F, F. M, M, M)}, (1b)

where w,;, Uy, and u,; represent displacements, ¢,;, ¢y, and ¢.; rotations, F,;, Fy;, and F,; forces,
and M,;, My, and M,; moments, for the z, y, and 2z directions, respectively. Quantities u, and
F, are related using the rod model, ¢, and M, using the shaft model, and quantities w,, ¢., Fy,
and M, are related using the beam model, as are also u., ¢, F,, and M,. The relations between
displacements (rotations) and forces (moments) at nodes are described in the literature for the
case of linear elastic behavior using stiffness and mass matrices [46].

2.2. Band structure computation

Band diagrams are used to graphically represent dispersion relations, i.e., relations between the
propagating waves circular frequency w and corresponding wave vectors k. Even though dispersion
relations are computed considering infinite periodic structures, they are able to provide important
information regarding wave propagation in finite structures |12, 47, 48]. In the case of systems



with two-dimensional periodicity, the wave vector can be restricted to the plane containing the
structure and be written in terms of its Cartesian components (k, and k) using

k = ki+k,j. (2)

Due to the system periodicity, the usual process for computing the bands diagram consists in
analyzing a characteristic unit cell, representative of the whole structure. In this case, it is possible
to restrict the wave vector to the first Brillouin zone (FBZ) [14]. Also, due to symmetry, only a
fraction of the FBZ needs to be considered, named the irreducible Brillouin zone (IBZ) [49]. For
a two-dimensional hexagonal lattice, the high symmetry points with respective coordinates in the
k-space are given by I' (0,0), M (7/L, —m/L+/3), and K (47 /3L, 0). These concepts are shown in
Figure [2] for the hexagonal geometry.

(a) (b)

Figure 2: (@ Two-dimensional hexagonal periodic medium with a highlighted unit cell and (B) FBZ with its
highlighted IBZ and high symmetry points T' (0,0), M (7/L, —7/L+/3), and K (47/3L, 0).

For the computation of the band diagrams, the finite element (FE) method is used with the
application of periodicity to enforce the Bloch-Floquet conditions [50] on the contour of the unit
cell. The propagating wave frequencies are computed for fixed directions (w = w(k)), while the
evanescent behavior of waves is obtained by computing the complex wave vectors for each frequency
of interest (k = k(w)). Further details on the computational implementation of this FE-based band
diagram computation technique are given in the supplementary material.

2.3. Parameter optimization

2.3.1. Parameters and constraints

The number of possible different thread diameters in the proposed unit cell and the addition
of localized masses at the junction between radial and viscid threads provide considerable design
freedom. A proper selection of design parameters can be obtained using optimization techniques
to achieve designs that fulfill specific objectives, such as wide BGs with the lowest possible central
frequency [51]. Possible variations of thread diameters in a unit cell and the arrangement of masses
are depicted schematically in Figure Bl

Fixed values of L and n, are used (which are usually limited by physical construction con-
straints) and keep the values of thread diameters and added masses as possible optimization
parameters. Henceforth, the list of the continuous optimization parameters that describe thread
radii will be expressed in a vector r given by

rz{ e S S }, (3)
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Figure 3: Design options used for parameter optimization: (@) variation of radial and viscid thread diameters and
(B) introduction of localized masses at the junctions of threads.

where 7§ and 7” are the values of viscid and radial thread radii for the i-th layer, respectively,

fori =1, 2, ---, ng, asillustrated in Figure[lcl For a unit cell with n, layers, this yields a total of

2n, design parameters. The values of thread radii can be fixed between lower and upper bounds
given by rpi, and 1.y, respectively. This can be summarized as a restriction on R,., stated as

Re: 7D 1D € [roim, rma, Vi =1, 2, -+, 0. (4)

Similarly, a mass vector m can be defined to describe localized masses which can be added to

the unit cell. The mass distribution begins from the inner part of the first layer, moving to the
center of the orb web, using the continuous variables vector described by

m:{ m® @ L ) } , (5)
where m® describe the masses added to the inner region of the i-th layer, for i = 1, 2, -- - , n,

yielding a total of n, design parameters. Instead of setting the values of masses between fixed
bounds, the total added mass is limited to m.qq, Which can be stated as the restriction Ry,
written as

ns—1
Ry : (12 Z m(i)> +m™) < mgq. (6)

i=1

2.3.2. Objective functions
Normalized band gap width

In the following, various objective functions for the dispersion spectrum of the considered
structure are presented, showing how each of these alternative configurations can be achieved, and
thus demonstrating the versatility of the spider web-inspired geometry.

With the purpose of achieving BGs with maximum widths and minimum central frequencies
(typical for structural vibration mitigation applications), the optimization objective is chosen as
the maximization of the normalized width of the difference between the n-th and (n + 1)-th bands
[52]. Considering a given band diagram, the difference between consecutive propagating frequencies
wy, and wy, 11 for the IBZ position given by the wave vector k can be calculated as wy,1(k) —w, (k).
Furthermore, if k is considered over all possible positions along the contour of the IBZ, one can
define the difference between the n-th and (n + 1)-th propagating frequencies over this contour,
given by minyg w,1(k) — maxy w,(k), which means that, for a positive value of this difference,
a BG exists between the n-th and (n + 1)-th bands, which can be further widened. Thus, this



metric can be combined with the corresponding central (mean) frequency to describe the objective
function ¢, as
() ming wn1(k) — maxy wy,(k)
71~ (ming wppq (K) + maxy wp(K))/2
where the superscript s refers to the optimization of a single BG.
The optimization objective described by Eq. ([7) is especially useful for the optimization process,
since it defines a continuous metric between given bands. Although wave modes may cross and
change their ordering in the band diagram, gpgf) consistently provides the difference between the
bands chosen for the optimization, and in the case where a BG is closed, it becomes negative.

, (7)

Attenuation of harmonics

Another interesting possibility concerns applications in structural health monitoring problems,
where the presence of a defect in a structure may be determined by the detection of its nonlinear
response, i.e. the presence of harmonics |53, 54]. Thus, it is important to control both the opening
and closing of BGs at a specific frequency (fundamental) and its harmonics, i.e., attenuate a
fundamental frequency while preserving its harmonics for detection. With this in mind, a metric
can be defined using the minimum attenuation computed at a given fundamental frequency (wp)
and its harmonics (nwy, for a positive integer n), also applying weighting factors that account for
the greater importance of lower harmonics. This metric can be written using the imaginary part
of the wave vector, Im(k(w)), which accounts for the wave evanescent behavior for a given circular
frequency w [55], as

Ny,
() _ (1 _ o~ minIm(k(wo))| Z L —min |[Im(k(nwo))| 3
= < ‘ ) * — ne ’ ( )

where the superscript fh refers to a first harmonic approach, and min |Im(k(w))| is the minimum
of the imaginary part of all computed wave vectors, which indicates if all waves are attenuated
at a given frequency [56], considering the first N;, harmonics. The factor e~ ™inmE@)I hecomes 1
for min |Im(k(w))| = 0 and 0 for a sufficiently large min [Im(k(w))|, providing a continuous metric
for the attenuation considering the chosen harmonics. Thus, this metric yields positive values
that increase for a BG opened at the fundamental frequency (1) and for at least one propagating
frequency for each of the higher harmonics (1/n). The weighting factor 1/n is somewhat arbitrary
and can be generally replaced by any integer-based positive function that reflects the relative
importance of each harmonic.

The simplicity in the presented objective function suggests it can be further modified to design
structures capable of opening BGs at each harmonic, which can be written as

Ni 4
SOEZh) _ ; - (1 e mlnIm(k(nwo))l) ’ (9)

where the superscript ah now refers to an all harmonics approach. It is worth noticing that in this
case, the opening of multiple BGs is an objective rather diverse from those previously presented,
since objective function @S ) aims to open and widen a single BG and objective function @wf?) opens
a single BG and ensures higher harmonics do not lie inside BGs.

Both proposed objective functions (@5%) and @&%h)) are generic and can be used for optimization

procedures applied to structures with frequency-dependent damping, such as viscoelastic structures
[10, 157).



Uncoupled mode polarization

The proposed PC is also used to obtain BGs relative to distinct polarization modes, useful for
applications in wave controlling and confinement [58,159]. To this end, a metric is proposed in the
form

Ny
oP) = Ze_NLp(NO“‘(“’”)Nm(‘“”)) : (10)
n=1

where the superscript p refers to a polarization approach, Ny (w,) and Nj,(w,) represent the
number of out-of-plane and in-plane wave modes contained in the n-th frequency interval centered
at w, with width Aw (i.e., w € [w, — Aw/2, w, + Aw/2]), respectively. This metric is built in such
a way that consecutive intervals do not overlap, N, = Zivi 1 Nout (wn) + Nin(wy,) is the total number
of computed wave modes, and N, = wyax/Aw is the number of frequency intervals (bins) for a
given maximum frequency wp.x and width Aw. The sets of corresponding pairs w;,, X Noy(wy,) and
wn X Nip(wy,) have the same meaning as states histograms, where each n-th component represents a
frequency bin for propagating frequencies contained in that frequency region. Whenever Ny (wy,)
or Ni,(wy,) are zero, the metric yields a 1 for the corresponding bin, decaying to 0 otherwise, while
the term 1/N, provides a smoother transition between these limits. The polarization of modes
can be computed by comparing out-of-plane and in-plane displacements for each propagating wave
mode and categorizing the modes according to their relative magnitudes.

Dirac cones

For the last optimization objective, the use of the variable spider web-inspired PC structure to
create isolated Dirac cones [60-62] is proposed. These features may result in elastic systems with
localized wave modes that potentially yield topological mode protection and lossless energy trans-
port [63,164]. Thus, a metric proportional to the differences regarding the propagating frequencies
corresponding to the high-symmetry points I', M, and K (denoted respectively as w(I"), w(M), and
w(K)) relative to the consecutive n-th and (n 4 1)-th bands is proposed in the form

(D)

ol (M)

Aw MK I'M
= ¢! (KM) (Aw) (MK) (I'M) (11)

In gn,n—i—l gn+1 gn+1 )

where the superscript D refers to a Dirac cone approach, and the functions that compose this metric
are given by g1 = g(wn(M), wa(D), 98" = glwn(K), wn(M)), gy = g(wnt1 (M), was1(K)),
9N = (w1 (D), wapr (M), and g3, = g(Aw, wni1(K) — wa(K)). The function g(a,b) =
1 — e (@/* becomes 0 for @ < b and 1 for a > b, thus performing a simple comparison between

its arguments. Terms gﬁMF), ggKM), gﬁg\f}f), and gg\f) account for the separation of propagating
frequencies of high-symmetry points, while the term g,(ﬁ:jr)l closes the distance between consecutive

propagating frequencies at the K-point using a threshold value Aw.

2.3.3. Optimization problems

Optimization problems may be formulated by separately optimizing the radii (2n, variables),
the masses (n, variables), or by simultaneously optimizing both radii and masses (3ns variables).
The proposed objective functions need to be maximized, which may be subject to R, and R,
either simultaneously, yielding the optimization problem

maximize ¢ , subject to Ry, R, (12)

r,m



or sequentially, yielding

maximize ¢ , subject to Ry, (13a)
maximize ¢, subject to Ry , (13b)
m

where the optimization variables r and m are given, respectively by Eqs. () and (B), restrictions
R, and R, are given respectively by Eqs ) and Gﬁl) the generic objective function, ¢, may refer
to @) (Bq. @), 5’ (Ea. @), o (Eq. @), ¢® (Eq. @), or @i’ (Eq. (), depending on
which optimization objective is considered.

The resulting constrained nonlinear optimization problems can be solved using a sequential
quadratic programming (SQP) algorithm, which yields excellent efficiency and percentage of suc-
cessful solutions when compared to several other methods [65]. The SQP algorithm uses a quadratic
approximation of a Lagrangian function to formulate a quadratic programming subproblem [66].
Candidate solutions are iterated using approximations for the Hessian matrix of the Lagrangian
function, conveniently updated through quasi-Newton methods [67]. This type of method is also
particularly useful for constrained parameters, and is currently available in commercial software
such as Matlab [68]. The interested reader is referred to the general overviews presented in [69, [70].

3. Results

3.1. Initial considerations

To compute the band diagrams of the structure shown in Figure [[d the material properties of
Digital ABS Plus (a commonly used material for 3D printing) are considered for both the radial
and viscid threads (which simplifies the fabrication process): Young’s modulus E = 2800 MPa,
Poisson’s ratio v = 0.35, and mass density p = 1175 kg/m3. Before applying the optimization
process for distinct objectives, the band diagrams yielded by a PC with all threads having the
same diameters are first investigated.

3.1.1. Initial band diagrams

The band diagram (real and imaginary parts of the wave vector) of a hexagonal lattice with
length L = 50 mm, number of layers n, = 3, and elements with radius » = 1.5 mm, using the
material properties of Digital ABS Plus are initially computed, which yields a unit cell with a
mass of 4.84 x 1073 kg. The resulting band diagram, unit cell, and corresponding wave mode
displacements are shown in Figure 4 with the real part of wave vectors marked in blue; since the
imaginary part of wave vectors serves as an indicative of the type of mechanism associated with
BG formation, these are also shown in red, indicated as Im(krya/27) and Im(krga/27) for the
I'M and I'K directions at the left and right portions of the band diagram, respectively. Also, the
normalized frequency @ = wa/2mcy is used, where a = L+/3 is the hexagonal lattice characteristic
length and ¢, = \/E/p is the speed of longitudinal waves in the material.

The band diagram in Figure dal shows no BGs. Wave mode shapes are marked using letters in
Figure Bhl where a rigid-body-like translational behavior can be noticed in wave modes V (out-
of-plane displacements) and H1/H2 (in-plane displacements); wave mode pairs B1/B2, BB1/BB2,
and BB3/BB4 represent first-, second-, and third-order-like bending modes, respectively; and wave
mode T is torsional. Although, as observed, the lack of impedance mismatches indicates that no
BGs are formed in this initial structure, these initial results allow further comprehension on the

8
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Figure 4: Initial results for the hexagonal lattice structure: (@) band diagram with the real and imaginary parts
of the wave vector marked in blue and red, respectively, showing no BGs; (b)) mode displacements profiles (colored
according to the magnitude of displacement and normalized according to the maximum of displacement in each
case): V is an out-of-plane displacement mode, B1 and B2 represent bending modes, BB1 and BB2 represent
second-order-like bending modes, BB3 and BB4 represent third-order-like bending modes, H1 and H2 are in-plane
displacement modes, and T is a torsional mode.

influence that the parameter optimization has on altering the band diagram and wave modes, as
presented in the subsequent sections.

3.2. Optimization of normalized band gap width

3.2.1. Optimization of thread radii

Here, the results of the optimization process considering the diameters of threads (Figure [Bal)
with the objective of opening and widening various BGs (Eq. () through the selection of proper
values of n using the optimization problem stated in Eq. (I3al) are presented. The same initial
structure as in the previous section is chosen, with a lattice length of L = 50 mm and n, = 3
layers, which yields 6 design variables.

In view of future experiments, the bounds for the optimization variable r are chosen compliant
to typical manufacturing restrictions such as the resolution of the additive process. Here, the
bounds 74, = 0.5 mm and 7., = 3.0 mm are set. Also, due to the large number of converging
threads at the unit cell center (see Figure [Tal), an increase in the thread diameters in this vicinity
might be unfeasible for the manufacturing process of the PC. Thus, to facilitate the connection
between these elements, the innermost thread diameters are removed from the list of parameters

and fix it at the lower limit (i.e., rne) — T'min ) -



The first bands that could be successfully separated using the optimization process were the
6th and 7th bands. The optimized parameter vector that widens the corresponding normalized
BG width is obtained as

v = {0500 0.594 3.000 3.000 3.000 0.500 }mm, (14)

opt

which yields the corresponding band diagram, unit cell, and wave modes shown in Figure
Henceforth, the obtained parameters representing the unit cell with the thickness of elements
proportional to the optimized diameters are depicted, also using colors to indicate the added
masses at nodes, ranging from white (no added mass) to black (all added mass).

7000 : 0.39
6000 0.34
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iSOOO‘ J0.28
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Figure 5: Results for optimized structure for maximum normalized BG width between 6th and 7th bands: (@) band
diagram with BGs between 2296 Hz — 2788 Hz, 2998 Hz — 3025 Hz, 3464 Hz — 3742 Hz, 4433 Hz — 4640 Hz, and

6633 Hz — 7000 Hz and its corresponding unit cell obtained using optimization objective gpés) (Eq. @). (B) Wave
modes are separated between low-frequency (B1, B2, V, H1, H2, and T, dominated by rigid-body-like inclusion
behavior) and mid- to high-frequency wave modes (L1, L2, L3, and L4) with localized motion at the outer threads.

The band diagram computed using optimized geometric parameters for widening the normalized
BG width between the 6th and 7th bands (Figure [al) has the first BG located between 2296 Hz —
2788 Hz (19% normalized width) which separates wave modes (presented in Figure [bh) associated
with the motion of a rigid-body-like inclusion (wave modes B1, B2, V, H1, H2, and T) from
wave modes with higher frequencies and localized motion (L1, L2, L3, and L4). The second-order
bending modes (BB1 and BB2, Figure [4b]) are not present.

As side effects, additional BGs are opened at 2998 Hz — 3205 Hz, 3464 Hz — 3742 Hz, 4433 Hz
— 4640 Hz, and 6633 Hz — 7000 Hz frequency ranges, which are associated with the localized wave

10



modes. Thus, although above 2788 Hz no wide BGs are noticed, one can expect limited energy
propagation, given the low group velocity presented by these wave modes.

The imaginary parts of wave vectors have a fairly symmetrical distribution around the central
frequency of each BG, indicating they are formed through Bragg scattering, although localized
modes are visible in the diagram (e.g., a locally resonant BG appears around 7000 Hz). This
indicates that the lattice length can be scaled to match the desired wavelengths associated with
a given vibration attenuation application. Also, since Bragg scattering is associated with the
lattice length, the opening of BGs at frequencies corresponding to multiple wavelengths is usually
expected. The occurrence of several Bragg scattering BGs for wavelengths in the same order of
magnitude indicates another advantage of the proposed structure.

Regarding the optimal radii distribution r(()?;:), it is interesting to notice that the first parameter
is equal to the lower bound (0.5 mm), and the second parameter is close to this lower bound,
while all other optimized parameters (viscid and radial threads starting from the second layer,
with exception of the innermost radial threads) are equal to the upper bound (3.0 mm). This
indicates that the optimal configuration to achieve the maximum normalized BG width consists in
maximizing the stiffness and mass of the inner regions, while minimizing the stiffness of the outer
regions, which leads to a spring-mass-like system with the outer region acting as soft springs and
the inner region acting as a rigid and heavy core. This result agrees with what has been previously
presented in literature 25, 126] and validates the proposed optimization scheme.

With this configuration, the unit cell has a total mass of 9.65 g, which represents a 99% weight
increase in the mass of the unit cell when compared to the initial configuration. This further
reinforces the spring-mass behavior for the low-frequency wave modes of the system, i.e., low
stiffness with large mass values.

It is also interesting that the second parameter is not exactly equal to the lower bound.
To understand why, it is necessary to analyze the band diagram considering the radii vector
r = { 0.5 05 3.0 3.0 3.0 0.5 } mm (not shown here, for the sake of brevity). For these
parameters, the first BG has a slightly narrower normalized width (15%), which suggests that
a smoother radii transition between the outer and inner regions of the PC is beneficial for BG
formation, as opposed to excessively large differences in thread radii.

The described optimization procedure can also be used to manipulate other characteristics of
the band diagram, for example to obtain a BG associated with the separation of the 8th and 9th
bands. In this case, the optimization process yields the optimized radii vector given by

r% = £0.680 0.500 3.000 3.000 3.000 0.500 }mm, (15)

opt

showing a smooth variation between the optimized radii (as opposed to setting the first 2 variables
at the lower bound), reinforcing the previous observation that a smoother radii transition is ben-
eficial for BG formation, which would not be possible if an optimization method using a discrete
set of variables were chosen. The corresponding computed band diagram, unit cell, and some wave
modes are depicted in Figure [Gl

In this case, the band diagram (Figure[6al) shows that the first BG, formed between the 8th and
9th bands, appears between 1980 Hz — 2570 Hz, which indicates a better result (26% normalized
width) than the one obtained using the previous configuration, and smaller BGs appear at higher
frequencies (4116 Hz — 4202 Hz and 4205 Hz — 4768 Hz). Also, in this configuration the unit
cell has a mass of 9.68 g (a 100% increase when compared to the initial design). Thus, a wider
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Figure 6: Results for optimized structure for maximum normalized BG width between 8th and 9th bands: (@) band
diagram with BGs between 1980 Hz — 2570 Hz, 4116 Hz — 4202 Hz, 4205 Hz — 4768 Hz, and 7180 Hz — 7327 Hz and
its corresponding unit cell obtained using optimization objective @és) (Eq. @). (B) Localized wave modes (L1, L2,
L3, and L4) control BG limits and a vertical localized wave mode L5 with zero group velocity can be noticed.

normalized BG width is obtained using practically the same amount of added mass, indicating a
more efficient use of mass addition.

The opening mechanisms of the computed BGs can be explained analyzing the wave modes
depicted in Figure [60l The slight increase in the outermost viscid threads radius yields several
localized wave modes. In the case of L1, a negligible group velocity is noticed, and its lower
frequency controls the first BG opening, which closes at the localized wave mode depicted as L2.
A similar mechanism occurs between L3 and L4, where a wave mode with zero group velocity
(L5) can be noticed, which is explained due to the localized vibration of the innermost threads.
In fact, the presence of mode L5 is barely noticeable when analyzing the imaginary part of the
wavenumbers, which further reinforces the conclusion that in practice, a single BG is achieved
between L3 and L4. It should also be noticed that the mechanisms associated with the opening of
BGs are based on localized wave modes not obviously foreseen using simple design guidelines, which
further supports the use of an optimization process for a more efficient use of design variables.

3.2.2. Optimization of added masses

The optimization of the distribution of added masses (Figure BLl), considering the same objec-
tive function as the previous section (Eq. () is now investigated. Initially, only mass addition
is discussed (without variations in thread radii), as stated by Eq. (13L). For an unbiased com-
parison, the initial structure (r = 1.5 mm) is considered, and the total added mass is limited to
the difference between the initial design and the maximum mass addition obtained in the previous
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cases, i.e., Maqq = 4.84 g.

The obtained results show that when such restrictions are imposed, no complete (i.e, for all
types of waves) or full (i.e., for all wave vector values) BGs can be opened considering up to
the 10th band. These results also suggest that the simple addition of masses, i.e., without the
manipulation of local stiffness, is not effective in creating complete BGs.

To further investigate the effects of mass addition, the necessary allocated mass is computed
increasing m,qq until a first complete and full BG is obtained using two distinct configurations:
(i) at the PC center and (ii) with equally distributed masses located at the radial-viscid junctions
closest to the PC center. Results are shown in Figure [7
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(a) (b)

Figure 7: Band diagrams of structures with added masses: (@) concentrated at the PC center (BG around 630 Hz)
and (D) distributed around the first junctions around PC center (BG around 4410 Hz).

The band diagram shown in Figure [Tal was obtained for m = { 0.000 0.000 305 } g and
indicates that the addition of mass at the PC center is able to separate the vertical and horizontal
rigid-body-like wave modes from the first bending modes. However, an excessively large mass
addition (nearly 63 X m,qq) is necessary to nucleate this BG. Meanwhile, in Figure [7h the band
diagram obtained using masses allocated around the PC center (radial-viscid junctions closest to
the PC center) is shown, obtained for m = { 0.000 0.687 0.000 } g, indicating that localized
wave modes can be more efficiently used to nucleate BGs at higher frequencies and require less
mass addition (in this case, 1.7 X muqq)-

To further investigate the effects of mass addition, the allocation of masses using a previously
optimized structure presented in Section [3.2.1] is now considered. The same restrictions on the

aéidi)tion of masses are imposed, i.e., myqq = 4.84 g, and consider the optimized radii given by
6,7
opt

Since this optimization process is independent of the previous one, different BGs may be
widened. The BGs between two different sets of bands are then chosen: (i) the 6th and 7th
and (ii) the 7th and 8th bands. The obtained optimized mass vectors are respectively given by

m{>” = {0000 0403 0.000 }g, (16)

opt
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which represents masses allocated at the junction between radial and viscid threads closest to the
PC center, and
m{"¥ = {0000 0000 484 }g, (17)

opt

which represents all of the mass allocated at the PC center. The corresponding band diagrams
and unit cells are presented in Figure [8.
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Figure 8: Band diagrams computed (considering a previously optimized threads configuration) using a mass distri-
bution for maximizing the normalized BG width between (@) the 6th and 7th bands (first BG between 1868 Hz —

2759 Hz) and (@) the 7th and 8th bands (first BG between 1705 Hz — 2788 Hz) and their corresponding unit cells

obtained using optimization objectives gagf ) (Eq. @) for n =6 and n = 7, respectively.

Considering the band diagram shown in Figure Bal obtained using the mass vector given by
Eq. (1), BGs are noticed between 1868 Hz — 2759 Hz, 2985 Hz — 3098 Hz, 3353 Hz — 3684
Hz, 4425 Hz — 4532 Hz, 4565 Hz — 4640 Hz, and 6633 Hz — 7000 Hz. The first BG presents a
39% normalized width, which represents a significant improvement over its previous version, i.e.,
without added masses. Interestingly, even though the optimization constraints are based on an
inequality (i.e., not all masses must be allocated), these results indicate that the allocation of total
masses is capable of yielding improved results.

Moreover, the band diagram shown in Figure 8D obtained using the mass vector given by Eq.
(I7), displays BGs between 1705 Hz — 2788 Hz, 2998 Hz — 3205 Hz, 4429 Hz — 4640 Hz, and 6633
Hz — 7000 Hz, which indicate a first BG with a considerable improvement in its normalized width
(48%). However, this result also indicates a shortcoming of the optimization objective, since a
better result was obtained considering different bands to be separated in consecutive optimization
processes, i.e., 8th and 9th bands for the mass addition and 6th and 7th bands for the thread
diameters processes, instead of using the same pair of bands in both cases. The interplay between
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optimization objectives relative to different bands to be separated can present intricate solutions,
in which case, the procedure shown here is meant to be an initial approach in demonstrating the
versatility of the proposed structure. Further investigations are beyond the scope of this paper
and left for future work.

3.3. Optimization of fundamental frequency and harmonics

The results of the optimization process considering the diameters of threads and distribution
of added masses with the objective of attenuating a fundamental frequency and preserving or at-
tenuating its higher harmonics using the problem stated in Eq. (I2) and the objective functions
given in Eqs. () and (@) are now presented. The same initial geometry, material properties, and
optimization variables constraints as presented in the last section are considered. Also, the con-
sidered harmonics are restricted to the maximum frequency of 7000 Hz. Two distinct fundamental
harmonics are considered: (i) 2000 Hz and (ii) 2500 Hz, which were chosen to demonstrate the
versatility of the structure, since no harmonics are common to both fundamental frequencies in
the analyzed frequency range. The lowest fundamental frequency was chosen to reflect the lowest
limit of previously obtained BGs.

Even though the BG opening mechanisms have already been explained in the last section, the
optimized parameters results are presented for additional insight on the obtained band diagrams,
comparing the results that yield a single BG at the fundamental frequency to those that also
attenuate higher harmonics. For case (i), the optimized thread radii and masses to open a BG
only at the fundamental frequency are obtained as

plOR0 M) — £0.565 0.602 0.500 0.684 2720 0.500 }mm, (18a)

m{" =71 = 10,403 0.000 0.000 }g, (18b)
while in the case of opening BGs at each harmonic, the optimization yields

=200 — £10.900 0.744 2.994 0501 0.559 0.500 }mm, (19a)

m{5=2" ") — £ 0,000 0.402 0.000 } g, (19Db)

which indicate that, for multiple BGs, the thick viscid layer is shifted from the center to the
periphery of the unit cell, while allocated masses are shifted in the opposite direction. The corre-
sponding band diagrams and unit cells are shown in Figure[@, where the corresponding fundamental
frequencies and their harmonics are marked using orange dashed lines.

Results presented in Figure [0 indicate the successful opening of BGs only for a fundamental
frequency (Figure Dal) or also attenuating higher harmonics (Figure QD). In both cases, a large
number of zero group velocity waves are located below the first BG, explained due to the small
value of radii in the first viscid layer. It is worth noticing that in Figure[Qal at least one propagating
mode (i.e., zero attenuation) is obtained for each of the higher harmonics, thus ensuring detectable
wave modes. Also, the analysis of the imaginary part of the obtained wave vectors in Figure [9h]
indicates decreasing attenuation values for the harmonics as frequency increases.

For case (ii), the optimized thread radii and masses to open a BG only at the fundamental
frequency are given by

rUo=200H) _ 0657 0.544 2.317 1.877 2109 0.500 }mm, (20a)
mg&ff%oo Hz) ={0.340 0.011 0542 }g, (20Db)
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Figure 9: Band diagrams and their corresponding unit cells obtained using the optimization objective that (@)

opens a BG only at the fundamental frequency (@&T), Eq. @) and () attenuates all harmonics (cpfﬁ)h), Eq. @)
for fo = 2000 Hz. Harmonics are indicated using dashed lines (- -).

while in the case of opening a BGs at each harmonic, the optimization yields

r(()J;Ot’zzsoo Hz) :{ 0.676 0.636 2.996 1.813 2.698 0.500 }mm, (21a)
m(()J;ot’=:500 Hz) ={0.004 0.000 4.330 }g, (21b)

which indicate somehow similar distributions, with a more noticeable difference in the shifting of
added mass between the periphery and the center of the the unit cell. The corresponding band
diagrams and unit cells are shown in Figure [10.

The band diagrams presented in Figures [[0al and show that some BGs are opened at
frequencies unrelated to the desired harmonics, which do not impede the proposed objective from
being achieved. Also, in Figure [[0al the second harmonic is close to a BG unrelated to the
optimization objective, which is shifted up in Figure [[0Dl This slight change in the dispersion
relation is enough to achieve the objective of attenuating all harmonics, which helps to understand
why both objectives could be achieved with a small change in the parameters.

3.4. Optimization of in-plane and out-of-plane mode polarization

The results of the optimization process considering the diameters of threads and distribution of
added masses to obtain BGs with distinct (out-of-plane and in-plane) polarization modes using the
problem stated in Eq. (I2)) and the objective function given in Eq. (I0) are now presented. The
same previous initial geometry, material properties, and optimization constraints are considered.
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Figure 10: Band diagrams and their corresponding unit cells obtained using the optimization objective that (@)

opens a BG only at the fundamental frequency (<p£,f[];), Eq. @) and () attenuates all harmonics (w&ih), Eq. @)
for fo = 2500 Hz. Harmonics are indicated using dashed lines (- -).

The optimization process yields the radii and mass vectors given by

r? = {0500 0.500 0.502 3.000 3.000 0.500 }mm, (22a)
m{) = { 0.403 0.000 0.000 }g, (22b)

indicating a single layer of thick viscid and radial threads, with masses distributed around its outer
nodes. Results for the optimized unit cell, initial and final band diagrams, and density of states
(DOS, shown in arbitrary units) histograms are shown in Figure [[1], calculated using 20 equally
spaced frequency bins between 0 and 7000 Hz.

The band diagram and DOS histogram (Figures [[Tal and [11D]) show that initially, every fre-
quency bin contains wave modes from both types of polarization (out-of-plane and in-plane). The
final results indicate how the optimization procedure allows to open wide BGs relative to both
types of polarization (Figure [[1d), with non-overlapping polarization modes between 350 Hz —
1750 Hz, 2100 Hz — 4550 Hz and 6300 Hz — 7000 Hz (Figure [[1Id). The final band diagram also
shows several almost zero group velocity out-of-plane modes starting below 2000 Hz and going up
to approximately 4500 Hz. This suggests that the thin outer threads play a major role in deter-
mining this type of behavior. Curiously, the case N, = 1 was also tested in the metric proposed
in Eq. (I0) and obtained very similar results, even though in the latter case, each component of
the metric is practically restricted to binary values.
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Figure 11: Band diagrams and histograms accounting for (e) out-of-plane and (e) in-plane polarization modes. The
initial band diagram @) and its corresponding propagating frequency histograms (bl) show each of the 20 frequency
bins with wave modes from each type of polarization. After the optimization, the final band diagram and unit cell
@ — obtained using the optimization objective o®) (Eq. (I0)) — with its corresponding histogram (d) show 13
frequency bins with a single type of polarization and a few with non polarized modes.

3.5. Dirac cones

Finally, the results of the optimization process considering the diameters of threads and dis-
tribution of added masses to create Dirac cones using the problem stated in Eq. (I2) and the
objective function given in Eq. (LIl are presented, with Aw = 0.27 rad/s. The same previous
initial geometry, material properties, and optimization constraints are considered. Using the pro-
posed optimization process, the radii and mass vectors that create a Dirac cone (D7) between the
10th and 11th bands are obtained as

rio?) = {0944 0712 0.500 0.741 2.391 0.500 } mm, (23a)
m{) = {0.000 0.348 0.007 }g. (23Db)

It is also possible to experiment on creating another Dirac cone (Dy) between the 17th and
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18th bands, yielding the radii and mass vectors

rioz) = £1.252 0.500 2.950 0.863 2.937 0.500 } mm, (24a)
m{? = { 0.000 0.000 0.080 }g. (24b)

The corresponding band diagrams, unit cells, and dispersion surfaces indicating the 6 cones
corresponding to the vertices of the FBZ (high-symmetry K point) representing the Dirac cones
D; and D, are shown in Figure
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Figure 12: Band diagrams, corresponding unit cells, and dispersion surfaces computed for the generated Dirac cones
obtained using the optimization objectives @%D) (Eq. ) for n = 10 and n = 17, respectively : Dy (2839 Hz) with

its (@) band diagram, unit cell, (b) and dispersion surface and Dy (4298 Hz) with its (@) band diagram, unit cell,
and (d)) dispersion surface.

When comparing band diagrams shown in Figures [[2al and [[2d, it is worth noticing that the

Dirac cones D; and Dy seem to be associated with the same localized wave modes (see Figure [@l for
the description of wave modes), but at different frequencies (2839 Hz and 4298 Hz, respectively).
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The resemblance between these wave modes is further reinforced by the imaginary part of the
wave vectors, which have analogous partial BGs in the I'M direction, and the dispersion surfaces
(Figures [12D] and [12d] respectively). Also, the difference in the band ordering (D; is formed
between the 10th and 11th bands, while Dy is formed between the 17th and 18th bands) is due
to the addition of several localized modes in the low frequency range below Dy. Furthermore, the
optimized parameters values (Eqs. (23) and (24])) show that, in this case, mass addition is less
necessary to create Dirac cones for increasing values of frequency (4.19 g for Dy and 0.080 g for
D,, respectively).

4. Concluding remarks

In summary, several two-dimensional PCs inspired by distinctive geometric characteristics of
spider web structures were designed and optimized, incorporating additional features for improved
dynamic behavior for applications. Starting from simple spider orb web models, the effects of
impedance modulation using variable diameters of radial and viscid threads and the addition of
point masses at the junctions of threads to manipulate the dispersion characteristics were investi-
gated. The proposed designs consider a single material, which allows realizations of single-phase
PCs amenable to additive manufacturing. In the case of hexagonal periodic lattices with all
elements having the same diameters, low- to mid-frequency wave modes are dominated by rigid-
body-like (translational, bending, and torsional) wave modes and mid- to high-frequencies usually
show localized wave modes. The design freedom in the proposed lattice yields a great number of
possible combinations, and optimization techniques were employed to achieve objectives such as
(i) wide normalized BG widths, (ii) opening a BG at a fundamental frequency while preserving or
attenuating its higher harmonics, (iii) BGs with respect to distinct polarization modes, and (iv)
generating Dirac cones.

The first of these objectives is relatively standard and has been used to validate our optimization
process. The optimization of thread diameters confirms expected results, i.e., low-frequency BGs
can be obtained using thick central threads with a soft boundary configuration, resembling a heavy
central resonator. Less obvious configurations can also be achieved and yield wider BGs through
the manipulation of localized wave modes. The addition of masses alone is not efficient in opening
BGs, but can enhance BGs that were previously opened using optimized thread diameters.

When optimizing the structure to achieve BGs at a chosen fundamental frequency, similar
configurations may yield distinct objectives, such as preserving or attenuating higher harmonics.
The shifting of thick viscid layers in one direction while shifting masses in the opposite direction
may open several BGs at higher harmonics where none existed before. In the cases where band
diagrams are not very different and harmonics are already close to similar BGs between different
objectives, mass reallocation seems more necessary to achieve each objective.

It was also demonstrated that the highly tailorable impedance of the system can be used to
achieve configurations that yield BGs with respect to distinct polarization modes. A proposed
metric was tested and yielded optimization parameters indicating that wide frequency ranges with
separate polarization modes, especially due to highly localized wave modes at the outer threads.
This aspect will be explored more in depth in future work.

Finally, it was shown that the presented PC structure may present configurations that yield
Dirac cones, revealed using a newly proposed metric, also suggesting that mass addition is not as
necessary as in the case of BG nucleation.
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In conclusion, the presented optimization process is entirely general and can be used to manip-
ulate several dispersion characteristics according to the requirements of the desired application but
requires a structure with tailorable characteristics. The proposed spider web-inspired PC provides
a versatile structure suitable for optimization procedures, given the richness of available vibration
modes and their tunability through the variation of geometric parameters and localized masses.
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