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This study is concerned with the distribution of
flexural vibrations in plates excited with a Gaussian
white noise. The distribution of energy can be
characterized by its homogeneity and isotropy. Some
particular geometries like the Bunimovitch stadium
generate a field which is both homogeneous and
isotropic. But other geometries produce a field which
is homogeneous but not isotropic (like the rectangle
panel) or non isotropic nor homogeneous (like the
circular panel). It is known that these features drive
the establishment of diffuse field. However, in the
present work, we show that even at high frequency
and for these three particular geometries, the diffuse
field cannot be reached rigorously. Due to symmetries,
the vibrational response is always enhanced on
some particular lines and points by the effect of
coherence between rays. The enhancement factors are
predicted theoretically with the image source method.
The presence of energy enhancement is also shown
experimentally by measuring the vibrational energy
density in the 20 Hz - 4 kHz frequency range for
these three plates excited with a random white noise.
Measurement of enhancement factors shows a good
agreement with their theoretical predictions.

1. Introduction
Statistical energy analysis (SEA) is a theory of sound
and vibration to predict the vibroacoustic response of
structures in the high frequency range where classical
methods like finite elements reach their limits [1].

© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:alain.le-bot@ec-lyon.fr


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

SEA states that, under certain restrictive conditions [2,3], the vibrational energy of linear [4] or
nonlinear oscillators [5] always flows from high to low levels of energy exactly like heat transfer
[6–8]. In SEA, two adjacent subsystems may have different vibrational temperatures but must be
individually in thermal equilibrium meaning that they have reached a state of diffuse field [9].
Applying a local energy balance, SEA predicts the vibrational energy in all subsystems.

At high frequency, the number of resonant modes (those which contribute significantly to the
vibrational response) is large but this complexity is an advantage when applying a statistical
approach like SEA. It is usually admitted that if the damping is low and the number of resonant
modes is large in the subsystem, then the vibrational energy is uniformly distributed. This is the
state of diffuse field which is one of the most important assumptions of SEA. More exactly, the
diffuse field is usually defined as a homogeneous and isotropic superposition of plane waves
whose phase is random. For that purpose, diagrams of validity of SEA in the frequency-damping
domain have been proposed to predict the apparition of diffuse field [10,11].

However, high frequency and low damping are not sufficient conditions to ensure the
diffuseness of the field [12]. The geometrical properties of the structure can lead to a non-
homogeneity of the field [13,14]. In a circular plate which represents an example of integrable
dynamical system, one can observe the presence of a caustic passing through the excitation point
and where the energy density has a higher level [15]. Non-integrable system may exhibit a chaotic
ray dynamics [16]. However, even if the dynamical system is chaotic, some effects can frustrate
a perfectly uniform distribution of energy. The coherent backscattering effect [17,18] stems from
constructive interferences of rays following reciprocal paths that always exist by virtue of the
time-reversal symmetry. This energy enhancement is always observed on the source position
[19]. Energy enhancement also exist on points and lines outside source position but for spatial
symmetry reason [13,20,21]. This phenomenon has been observed for instance by deflectometry
in Ref. [22].

The aim of this work is to study the enhancement factor of energy in vibrating plates with
integrable shape (rectangle and circular) and chaotic shape (Bunimovitch stadium) [23,24] having
a spatial symmetry. Firstly, theoretical results are obtained with the image source method. For
this purpose, curved edges of stadium and circular plates are discretized in segments. Secondly,
a direct numerical approach for predicting the location and strength of these intensifications is
developed based on the modal expansion technique. Finally, experimental measurements by laser
vibrometry are presented. Plates are excited with a shaker at high frequencies with a random
white noise and measurements are compared with theoretical results.

2. Tested structures
One of the most important property of billiards is ergodicity. In an ergodic billiard, almost all
rays pass through the vicinity of any point in any direction that is explore all points of the phase-
space with the same probability. In the absence of constructive interference of rays, this particular
propagation results in a homogeneous and isotropic vibrational field or, in other words, a diffuse
field. But a spatial symmetry may induce constructive interferences between rays which frustrate
the establishment of diffuseness. To explore all possible dynamics, we therefore chose shapes
which combine ergodicity or not with spatial symmetries.

(a) Plate geometries
Three geometries are considered: a rectangular plate, a circular plate and a Bunimovitch stadium
plate. These three shapes have been chosen because they are representative of the various
behaviours in ray propagation of interest in SEA [25]. Furthermore, such simple geometries can
be analyzed in terms of rays by the image source method to demonstrate the quantitative effect
of coherent reflections that would have been difficult to provide in systems with more complex
geometries.
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The plates are made of stainless steel 430 with Young’s modulus E = 203 GPa, mass density
ρ= 8010 kg.m−3 and Poisson’s ratio ν = 0.3. The plates are 2 mm thick and their dimensions are
represented in figure 1. Dimensions have been chosen so that all plates have the same area.

(a) (b) (c)

Figure 1. Dimensions of plates. (a); Rectangular, (b); Bunimovich stadium, and (c); circular plate.

(b) Ray propagation
These three shapes present different ray propagation patterns [26]. The top of figure 2 shows
typical ray trajectories in these billiards after 100 reflections and the bottom shows the phase
space structure for each billiard.

For the circular billiard, the dynamical system is integrable since the angular momentum is
conserved (here defined as the sine of incidence angle) [27]. The ray turns in the circle bouncing
on the boundary always with the same incidence angle. One can clearly observe the presence of
a caustic which encloses a region of space never visited by the ray (figure 2a). Figure 2d shows
that all points of the boundary are reached (although not all points enclosed by the circle) but
also that not all values of angular momentum are reached (a single one is reached). Thereby ray
propagation is neither homogeneous nor isotropic. Even if isotropy could be enforced by sending
many rays in all directions (with a point source with a uniform directivity), the ray propagation
will never reach homogeneity.

In the case of the Bunimovitch stadium billiard, the dynamical system is chaotic. The ray
explores the whole phase-space with a uniform probability density of presence. In particular,
a ray explores the vicinity of all points and spends equal times in regions of equal size (figure
2b). As it can be seen in figure 2e, the probability density function of presence is uniform in the
phase-space.

The rectangular billiard is an intermediate case. Ray propagation is regular because the
incidence angle on edges can take only two values. However, almost all rays entirely explore
the spatial domain (but not the phase-space) as it can be seen in figure 2c. With a single ray, the
resulting field is homogeneous, in contrast with the circular billiard, but not isotropic. Figure 2f
shows that almost all rays entirely explore the spatial domain with a uniform probability in the
position space. But there is only two values of angular moment reached by the ray. Therefore,
even if the ray dynamics is not chaotic, the the vibrational field may be diffuse by enforcing its
isotropy with a large number of rays emmited by a point source with a uniform directivity.

3. Spatial distribution of energy
The objective of this section is to compute the local energy E(x, y) of the previously described
systems. Then, the nature of the vibrational field in the system is evaluated by comparing the
energy at multiple points chosen at random.
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Figure 2. Ray propagation in the three tested structures with the phase space structure. (a,d);
Circle, (b,e); Stadium, and (c,f); Rectangle.

(a) Local energy
The equation of motion governing the transverse deflection u(x, y, t) of a damped plate excited
in bending vibration by a time-varying normal force field f(x, y, t) is

D∇4u(x, y, t) + λ
∂u

∂t
(x, y, t) +m

∂2u

∂t2
(x, y, t) = f(x, y, t) (3.1)

where D=Eh3/12(1− ν2) is the bending stiffness, E the Young modulus, ν the Poisson ratio,
h the plate thickness, m= ρh the mass per unit area, λ the viscous damping coefficient, and ∇4

denotes the bilaplacian operator. The force field is a point force f(x, y, t) = F (t)δ(x− x0))δ(y −
y0) at x0, y0 where F (t) is a stationary random process of constant power spectral density S(ω) =
S0 in the angular frequency band ∆ω centred on ωc and zero elsewhere. Let H be the frequency
response function between the vibrational velocity u̇(x, y, t) and the point force f(x0, y0, t). The
modal expension technique gives

H(x, y, x0, y0, ω) =
∑
n>0

Ψn(x0, y0)Ψn(x, y)

m(ω2
n − ω2 + jηωnω)

(3.2)

with Ψn the nth mode shape of the plate and η= λ/(2mωn) the damping loss factor. The
natural frequencies ωn and mode shapes Ψn are obtained by the finite element method using
the MSC/NASTRAN 2021.1 code.

Let us first introduce the local vibrational energy. At any point (x, y) on the plate, the
vibrational energy density is taken as twice the random expectation of the kinetic energy density
mu̇2(x, y, t),

E(x, y, ωc) =m< u̇2(x, y, t)> (3.3)

where the probability expectation is noted with brackets and ωc is added as variable in E to
highlight the dependance on the centre frequency. Since the random force is stationary, the
vibrational speed u̇ is also stationary and the time no longer appears in the variables of E. In
equation (3.3), < u̇2(x, y, t)> is the auto-correlation Ru̇u̇(τ) of vibrational velocity taken at τ = 0.
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From the Wiener-Khinchin theorem,

< u̇2(x, y, t)>=Ru̇u̇(0) =
1

2π

∫+∞
−∞

Su̇u̇(ω)dω (3.4)

where Su̇u̇(ω) denotes the power spectral density of u̇. But Su̇u̇(ω) is given by Su̇u̇(ω) =

ω2|H(x, y;x0, y0;ω)|2S(ω). Since the power spectral density is constant and equal to S0 in the
frequency band ∆ω and zero elsewhere, the local vibrational energy at point (x, y) becomes

E(x, y, ωc) =
mS0
π

∫
∆ω

ω2|H(x, y;x0, y0;ω)|2dω (3.5)

where an additional factor 2 appears by virtue of the fact that H is an even function. The
calculation of energy field in a plate therefore reduces to the calculation of the receptanceH in the
frequency band ∆ω.

Let us comment the type of averaging appearing in the above equations. The brackets denote a
random expectation that is an average over a large number of realizations of the stochastic process
F . If the input process F is further assumed ergodic, then the random expectation is equal to
the time average of a single realization of F (this assumption of ergodicity is not theoretically a
requirement but is very convenient and useful in practice). Furthermore, equation (3.5) highlights
the link between random expectation and frequency average. The integral of Su̇u̇ over ∆ω gives
the energy of the signal u̇ within the frequency band ∆ω. And for a white noise, the random
expectation reduces to the frequency average of the square of the frequency response function H .

(b) Measure of field diffuseness

(i) Definition

The spatial distribution of energy can be characterised by the spatial average

E(ωc) =
1

A

∫
A
E(x, y, ωc)dxdy. (3.6)

and, to estimate whether the field is diffuse or not, the standard deviation divided by the spatial
average

σ(ωc) =
1

E(ωc)

√
1

A

∫
A
(E(x, y, ωc)− E(ωc))2dxdy, (3.7)

where A is the plate area. The normalized standard deviation σ gives the relative fluctuations of
energy on the plate surface. A high value of σ indicates that the vibration field is not uniform and
that the field can not be considered as diffuse. Conversely, a low value of σ is an indication of the
diffuseness of the field.

The normalized standard deviation σ defined here is linked to the so-called inverse
participation ratio [28]. The inverse participation ratio is defined as the fourth-order moment of u̇

Ip =
1
A

∫
< u̇4(x, y, t)> dxdy

( 1
A

∫
< u̇2(x, y, t)> dxdy)2

=
1
A

∫
E(x, y, ωc)

2dxdy

E(ωc)2
. (3.8)

Comparing with (3.7), it follows immediately that Ip = σ2 + 1 so that normalized standard
deviation σ and inverse participation ratio Ip gives the same information.

(ii) Example of rectangular plate

In this section, the diffuseness of the vibratory field of a rectangular plate with free edges is
evaluated using the normalised standard deviation defined in equation (3.7). The numerical
process described in section (a) is applied to evaluate the local energies. The expectation of local
energy is estimated by equation (3.5) at 7000 receiver points chosen at random. The integration
over frequency is computed on 16 frequency bands ∆f from [20-63] Hz, [20-125] Hz, ..., to [20-
8000] Hz. The lower limits fmin of all the frequency bands are set to the same value 20 Hz whereas



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

the upper limits fmax are logarithmically spaced between 63 Hz and 8000 Hz. In addition, 30
damping loss factor values are considered, varying from 0.001 to 1, evenly spaced on a log scale.
The integral in equation (3.5) is approximated using the rectangle rule. The angular frequency
step is chosen as δω= 2πfminη/4 with η the damping loss factor, the same for all modes.

Figure 3 represents the map of the relative spatial standard deviation in the frequency-
damping loss factor plane for a rectangular plate with dimensions presented in figure 1. The x-axis
represents the higher frequency for each frequency band. The structure is excited at x0 = 0.22 m
and y0 = 0.12 m with a point force having a constant power spectral density in the frequency
band. The contour lines represent constant values of σ.

The map of figure 3 highlights that it exists three different states of a vibrational field. These are
visible around points A, B and C represented by crosses. Figure 4 shows examples of simulated
vibrational fields in the rectangular plate for the three configurations corresponding to point A, B
and C. The energy is presented in dB. The vibratory states at these points can be characterized by:

• Point A is characteristic of a modal field with σ greater than 1. The frequency integration
band is [20-63] Hz and the damping loss factor is equal to 0.002. As shown in figure 4a,
the response of the plate is dominated by one or few modes so that the distribution of
vibrational energy is highly fluctuating due to the existence of modal lines. The region of
modal field is confined to low frequencies in the frequency-damping loss factor plane.

• Point B is characteristic of a direct field with σ is greater than 2. The frequency integration
band is [20-4000] Hz and the damping loss factor is equal to 0.2. In this regime, the
propagation of rays is limited to few reflections because the damping being very high
their energy decreases quickly. This is the regime where reverberation is negligible and
the vibrational field is circular in the vicinity of source (see figure 4b). The region of direct
field is confined to high frequencies and high damping in the frequency-damping loss
factor plane.

• Point C is characteristic of a diffuse field and is localized into the region delimited by the
contour line σ= 0.6. The frequency integration band is [20-4000] Hz and the damping loss
factor is equal to 0.002. In this regime, each point of the plate receive approximately the
same level of energy. At a first approximation, the vibrational field can be considered as
spatially homogeneous and isotropic (see figure 4c). The region of diffuse field is confined
to high frequencies and low damping in the frequency-damping loss factor plane [2].

(c) Highlighting of local energy enhancement
We now further explore the diffuse field region for the two other shapes. Vibrational energy
simulations are also done for the circular and stadium shaped plates. The frequency integration
band is [20-4000] Hz and the damping loss factor is equal to 0.002. These values are associated to
point C in the previous section that corresponds to a diffuse field. Figure 5 shows the simulated
vibrational energy fields in these plates.

It may be observed that a diffuse field appears on both the rectangular (figure 4c) and stadium
shaped plates (figure 5a). This is confirmed by the standard deviation σ which is equal to 0.54

for the rectangular plate and 0.31 for the stadium plate. However, even if the distribution of
energy is considered as diffuse the vibrational field is not fully spatially homogeneous due to the
effect of rays coherence. The energy distribution exhibits patterns with enhancement. From these
numerical simulations, enhancement factors are calculated as the vibrational energy on these
patterns divided by the background diffuse energy. The numerical values of enhancement factors
are determined for the rectangular, stadium shaped, and circular plates and are presented in table
1. Uncertainties are estimated with the standard deviation.

For the rectangular plate (figure 4c), the lines of intensified response form a tic-tac-toe pattern
with the driving point at one of the four intersections. The enhancement factor on these four lines
(di) is determined by averaging vibrational energy for all the points located on these lines and is
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Figure 3. Relative standard deviation of spatial energy distribution in the frequency-damping loss
factor plane for a rectangular plate with free edges under a point excitation.

equal to 1.31. Regarding the four points at lines intersections (Si) the enhancement factor is equal
to 3.48.

In the same way, for the stadium shaped plate (figure 5a), four points of energy enhancement
are clearly visible due to two spatial symmetries with respect to vertical and horizontal lines. With
the same method as before, the enhancement factor at these four points is determined and is equal
to 3.07.

For the circular plate (figure 5b), vibrational energy never reaches a state of diffuse field and
σ= 2.81 which is much higher than 0.6. Energy is higher along the circle passing through the
excitation point as shown in figure 5b. This energy enhancement along this circle can be explained
with geometrical acoustics in its strict sense that is without taking into account a phase in rays. As
shown in figure 2a, all rays have a caustic along which the energy is higher. So the enhancement
of energy on the source circle in the presence of multiple rays is due to a geometrical focusing
of rays but not to a phenomenon of ray coherence. However, it can also be seen in figure 5b that
the vibrational energy is also higher on the diameter passing through excitation point. But this
time, the enhancement is due to the coherence of rays induced by the spatial symmetry. From
numerical simulation, the factor of enhancement observed on this diameter is equal to 2.70. As
the vibrational field is not diffuse, the error is larger than for the others.

These enhancement factors are theoretically calculated in the next section.

4. Quantification and localisation of local energy enhancement
The source image technique is the appropriate tool for determining the patterns of enhanced
energy for the three studied plates. This method is particularly helpful in providing clear
insight into the location and relative intensification of zones of enhanced energy. For the sake
of simplicity, these properties are established without taking into account the attenuation. By
analogy with geometrical acoustics, the propagation of waves can be considered in the form of
rays emerging from the source point and image sources obtained by symmetry of the actual source
with plate edges [29].
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(a)

(b)

(c)

Figure 4. Vibrational energy distribution (in dB) computed with the eigenmodes in the
rectangular plate with free edges. (a): modal field (∆f=[20-63] Hz, η=0.002), (b): direct field
(∆f=[20-4000] Hz, η=0.2), and (c): diffuse field (∆f=[20-4000] Hz, η=0.002). The actual point force
position is represented with a cross.

(a) Rectangular plate
Figure 6 shows the pattern of image sources in the rectangular plate of length Lx and width Ly .
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(a)

(b)

Figure 5. Vibrational energy distribution (dB) computed with the eigenmodes for the stadium
(a) and the circular plate (b) excited by a point force (∆f=[20-4000] Hz and η= 0.002). The cross
indicates the force position.

The actual source where the force is applied is located at point S0(x0, y0). We first introduce the
points S1(x0, Ly − y0), S2(Lx − x0, y0), S3(Lx − x0, Ly − y0) and the lines d0(x= x0), d1(x=
Lx − x0), d2(y=Ly − y0), and d3(y= y0) where enhancement is observed. The 15 image sources
(A,B, ..., to D3, C3) are obtained by applying successive symmetries with respect to the plate
edges. Of course, an infinite number of image sources does exist but these 16 image sources are
sufficient for this illustration. To estimate the intensification on points S1, S2, and S3 and lines d0
to d3, we need to know the fraction of incoming waves that can be grouped into pairs of waves
with identical response. If we consider the contribution to the response from a single uncorrelated
wave of the source group A,B,C,D, to be 1/4, the contribution from the group to a non special
point of the rectangular plate is equal to 1. First, we note that point C2 and D2 are symmetric to
C and D with respect to line d2. So, at any point on d2 (J for example), the wave arriving from
C (resp. D) is identical to the wave arriving from C2 (resp. D2). At point J , waves arriving from
A and B are uncorrelated with any other so their contribution is 1

4 (1)
2 where the square remind
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Figure 6. Lines (D0, ..., D3) and points (S0, ..., S3) of intensified response on rectangular plate
excited at S0 with symmetrically placed image sources.

that we sum energies. The contribution from C and C2 (resp. D and D2) is 1
4 (1 + 1)2 = 1 and so

the contribution from C (resp D) is 1
2 . Finally the contribution from the group A,B,C,D is equal

to 1
4 + 1

4 + 1
2 + 1

2 = 3
2 . For the same reason, the enhancement factor is also 3

2 for lines d0, d1 and
d3.

At the intersection S3 of line d1 and d2, the wave arriving from A is doubled with the ray
arriving from A1, the wave arriving from D is doubled with the ray arriving from D2, the wave
arriving from C is quadrupled with rays arriving from C1, C2, and C3 and the wave from B is
uncorrelated with any other wave. The relative intensification at point S3 is 1

4 (
1
2 (1 + 1)2 + 1

2 (1 +

1)2 + 1
4 (1 + 1 + 1 + 1)2 + 1) = 9

4 . For the same reason, the enhancement factor is also 9
4 at points

S1 and S2.

Table 1. Comparison between numerical and theoretical enhancement factors for the three plate

Theoretical (linear) Theoretical (dB) Numerical (dB) Error (%)
Rectangle (Si) 9/4 3.52 3.48± 0.2 1.13
Rectangle (di) 3/2 1.76 1.31± 0.7 25.5
Stadium 2 3.01 3.07± 0.1 1.99
Circle 2 3.01 2.70± 1.4 10.29

Similar analyses are done in Ref. [20] for special source positions for both rectangular and
square plates. The square presents more symmetries than the rectangle and this results in the
generation of other high energy lines. Furthermore, the enhancement factor generally increases
with the number of symmetries.

It is important to notice that a modification of boundary conditions can lead to a change of
the enhancement factors. When a plane wave hits a boundary, it is subjected to a phase shift. In
the simply supported case, the phase shift is equal to π for all incidences but if the boundary is
free or clamped, the phase shift depends on the incidence angle [30]. If the boundary conditions
are not uniform and break down the spatial symmetry of the rectangle, rays no longer interfere
constructively. It is even possible that for special combinations of phase shifts, rays interfere
destructively leading to an enhancement factor smaller than one.
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(b) Stadium shaped plate
Figure 7 shows the stadium shaped plate with the source located at S0(x0, y0) and 7 image sources
A1, A2, ..., C2, D. Curved elements of the stadium are segmented with lines ∆1, ∆2, ... to obtain
plane surfaces. Then, image sources are determined by successive symmetries with respect to the
plate edges. For example, image source B1 (resp. C1) is the symmetric of S0 with respect to ∆1

(resp. ∆2). We consider the contribution to the response from the source group A1, B1, C1 and D.
In the same way as for the rectangular plate, rays arriving from A1, B1 and C1 are respectively
correlated with rays arriving from A2, B2, and C2 at point S1. Their contribution is 1

2 (1 + 1)2 1
4 .

Ray arriving from D is uncorrelated with any other so the contribution is 1
4 (1)

2. For the group
A1, B1, C1, and D, the contribution at point S1 is:

3× 1

2
(1 + 1)2

1

4
+

1

4
(1)2 (4.1)

To get an asymptotic estimation, let us extrapolate with n image sources. At point S1, the
contribution from the n images source is:

(n− 1)× 1

2
(1 + 1)2

1

n
+

1

n
(4.2)

As n approaches infinity, equation (4.2) approaches 2. Then, the intensification factor at point
S1 for a stadium is 2. In the same way, the intensification factor at points S3 and S2 is also 2. In
this case, the intensification factor is obtained with an odd number of edges. This results remains
unchanged if we considered an even number of edges since the term 1/n approaches 0.

Figure 7. Points of intensified response S0, ..., S3 on stadium plate excited at S0 with
symmetrically placed image sources (A1, A2, ..., C2, D).

(c) Circular plate
Figure 8 shows a representation of a circular plate which has been discretised. The source S0 and 7
image sources A1, A2, ..., C2, D are obtained by successive symmetries with respect to the edges.
As an example, the image source A1 is the image of source S0 by symmetry with respect to the
boundary ∆1. Consider the contribution to the response from the source group A1, B1, C1 and
D1. Rays arriving from A1, B1 and C1 are respectively correlated with rays arriving from A2, B2

and C2 along the line D0. Their contribution is 1
2 (1 + 1)2 1

4 . Ray arriving from D1 is uncorrelated
with any other so the contribution is 1

4 (1)
2. For the group A1, B1, C1 and D1, the contribution at
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point S1 is:

3× 1

2
(1 + 1)2

1

4
+

1

4
(1)2 (4.3)

When we extrapolate, the contribution to point S1 from n images source is:

(n− 1)× 1

2
(1 + 1)2

1

n
+

1

n
(4.4)

With a similar reasoning as for the stadium shaped plate, the intensification factor along the line
D0 approaches 2 as the number of image sources goes to infinity.

Figure 8. Line of intensified responseD0 on circular plate excited at S0 with symmetrically placed
image sources.

(d) Comparison with numerical results
Table 1 presents a comparison between the enhancement factors for the three plates determined
by both the image-source method (theoretical values) and direct numerical simulation (numerical
values) of Section (c).

There is a good agreement between numerical and theoretical values. However the numerical
values are slightly lower than theoretical ones. This can be attributed to the effect of energy
dissipation by structural damping which tends to reduce the enhancement and which is not taken
into account in the theoretical approach. Numerical simulations are also limited to a frequency
band due to computing capabilities and therefore the computed energy is truncated. Even if this
band is wide, this limitation can affect the result.

5. Experimental investigation

(a) Experimental setup
In this section, we present measurements of the energy field for the three different geometries.
The experimental setup is shown in figure 9. The plate is suspended from a rigid frame with two
bungee cords attached to the plate top by small holes. A shaker (PCB K2004E01) is suspended
from the rigid frame and linked to the plate by a stinger bonded with an epoxy glue. The shaker
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applies a random vibration to the plate. The plate response is measured at multiple points with
a laser vibrometer PSV500 with a scanning head. From the PSV software, the plates are meshed
with 1200 points for the rectangular plate, 2400 points for the circular plate, and 1236 points for
the stadium shaped plate.

Figure 9. Experimental setup. The shaker excites the plate (meshed with 1200 points) through the
stinger which is bonded on the plate. The response is measured with the scanning head and the
vibrometer.

To verify that the shaker does not modify the plate behaviour, the first four natural frequencies
measured with the laser vibrometer are compared with those obtained by numerical simulation
with a finite element model. Results are summarized in table 2. The error is small, demonstrating
that the presence of the shaker do not modify the normal modes of the plate. Moreover, at 4 kHz,
the wavelength is 71 mm which is much higher compared to the diameter of the holes so that
their influence is negligible.

Plates are excited with a Gaussian white noise in the frequency band 10 Hz - 8 kHz with
an input voltage of 0.1 V. At each point the velocity is measured and filtered with a Hamming
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Table 2. Comparison between numerical and experimental natural frequencies for the rectangular
plate

Simulation (Hz) Experiment (Hz) Error (%)
26.14 26.69 2.08
59.19 60.94 2.95
76.04 79.04 3.94
89.62 88.09 1.81

Figure 10. Evolution of damping loss factor

window between 20 Hz and 4 kHz. The power spectral density of the source is flat in the
frequency band.

In order to estimate the expected distribution of energy in the rectangular plate using the map
presented in figure 3, the damping loss factor is estimated at different natural frequencies with
the half-power bandwidth method. Figure 10 presents the evolution of damping loss factor in the
rectangular plate when the frequency increases. The damping decreases quickly to a value lower
than 0.002 from 600 Hz to 4000 Hz. The measurements are performed at point C of figure 3 and
therefore a nominally diffuse field is expected.

Finally, a Fourier transform of the vibrational velocity is estimated with a resolution of 6400
points by averaging 20 measurements and the mean vibrational energy is calculated with the
integration bounds limited from 20 Hz to 4 kHz.

(b) Results
Figure 11 shows the vibrational energy distribution in the three plates in dB. Lines and points of
intensified response are clearly visible. From these results, it is possible to measure enhancement
factors. Table 3 presents a comparison between experimental and theoretical enhancement factors
for the three plates. First, the background diffuse energy is estimated by taking the spatial
average of the vibrational energy outside area of intensified response. Then, for the circular and
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rectangular plates, the enhancement factor on the lines is determined by averaging vibrational
energy for all the points located in the vicinity of these lines and divided by the background
diffuse energy. The same procedure is applied for the four points with higher energy in the
stadium shaped plate and rectangular plate.

Experimental measurements are always slightly below theoretical values but this is an
expected results because damping loss factor of plates are not taken into account with the source
image method. Moreover, the difference with theoretical results can be explained taking into
account the measurements uncertainties like Young’s modulus and the mass density which can
slightly differ from their theoretical values. Also the excitation point is not perfectly punctual in
practice due to the bonding and the boundary conditions are also not absolutely perfect.

Table 3. Comparison between experimental and theoretical enhancement factors for the three
plate. Uncertainties are estimated with the standard deviation.

Theoretical (dB) Experimental (dB) Error (%)
Rectangle (Si) 3.52 3.0 ± 0.2 14.7
Rectangle (Di) 1.76 1.5 ± 0.2 14.7
Stadium 3.01 2.7 ± 0.1 9.96
Circle 3.01 2.9 ± 0.6 3.65

6. Conclusion
In the present work, we have shown that high frequencies and low damping are not enough
to ensure a perfect diffuse field. Geometrical properties of subsystems are important and are
responsible for the presence of energy enhancement at points different from the source. The
Bunimovich stadium presented is a good example because even if it is a chaotic system, the energy
field is not totally diffuse and four points with a higher energy have been observed. Lines of
energy enhancement have also been observed for rectangular and circular plates. With the image
source method, enhancement factors have been determined for the three plates. Measurements of
energy density level with a laser vibrometer have been realized and a good agreement is found
with results obtained with image source method.

The practical applications of these results are of interest in SEA theory. Indeed, even if the
system is chaotic, a great attention must be paid to the diffuseness of the vibrational field to
strictly respect the SEA assumptions. If two subsystems are coupled in the vicinity of a point
presenting an energy enhancement, the vibrational field can no longer be considered as diffuse
at that point. We may expect that the exchange of vibrational power will be driven by the local
level of energy and not the level of diffuse background. This would result in a deviation with
the standard law of SEA which states that the exchange power is proportional to the difference
of modal energies. So the actual exchange of energy will differ from the value predicted by SEA.
This phenomenon has been observed in Refs. [2,25]. Stricly speaking, SEA is the statistical theory
of sound and vibration which requires that all subsystems are in thermal equilibrium [8].

Data Accessibility. Experimental data and Matlab scripts to generate figures of numerical simulations are
released as the electronic supplementary material.
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(a)

(b)

(c)

Figure 11. Distribution of energy density level (dB) for the three plates excited by a point force.
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