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Marine mammals have been proposed as ecosystem sentinels due to their conspicuous
nature, wide ranging distribution, and capacity to respond to changes in ecosystem
structure and functioning. In southern European Atlantic waters, their response to
climate variability has been little explored, partly because of the inherent difficulty of
investigating higher trophic levels and long lifespan animals. Here, we analyzed spatio-
temporal patterns from 1994 to 2018 of one of the most abundant cetaceans in
the area, the common dolphin (Delphinus delphis), in order to (1) explore changes
in its abundance and distribution, and (2) identify the underlying drivers. For that, we
estimated the density of the species and the center of gravity of its distribution in the
Bay of Biscay (BoB) and tested the effect of three sets of potential drivers (climate
indices, oceanographic conditions, and prey biomasses) with a Vector Autoregressive
Spatio Temporal (VAST) model that accounts for changes in sampling effort resulting
from the combination of multiple datasets. Our results showed that the common dolphin
significantly increased in abundance in the BoB during the study period. These changes
were best explained by climate indices such as the North Atlantic Oscillation (NAO) and
by prey species biomass. Oceanographic variables such as chlorophyll a concentration
and temperature were less useful or not related. In addition, we found high variability
in the geographic center of gravity of the species within the study region, with shifts
between the inner (southeast) and the outer (northwest) part of the BoB, although the
majority of this variability could not be attributed to the drivers considered in the study.
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Overall, these findings indicate that considering temperature alone for projecting spatio-
temporal patterns of highly mobile predators is insufficient in this region and suggest
important influences from prey and climate indices that integrate multiple ecological
influences. Further integration of existing observational datasets to understand the
causes of past shifts will be important for making accurate projections into the future.

Keywords: common dolphin, center of gravity, climate indices, predator-prey, environmental variability, time
series, Bay of Biscay, VAST

INTRODUCTION

The global mean surface temperature has increased by
approximately 1◦C from pre-industrial levels (IPCC, 2019),
triggering shifts in the abundance, phenology and distribution of
organisms worldwide (Parmesan and Yohe, 2003; Poloczanska
et al., 2013). Marine ecosystems, despite having experienced a
slower warming, show comparable or even greater shift rates
and vulnerability than terrestrial systems (Burrows et al., 2011;
Poloczanska et al., 2013; Pinsky et al., 2019), with seagrasses,
corals, cephalopods and marine mammals exhibiting the most
abrupt changes (Trisos et al., 2020).

Marine mammals, as wide ranging top predators, amplify
trophic information across multiple spatiotemporal scales and
can therefore act as sentinels of ecosystems’ responses to
climate variability and change (Hazen et al., 2019). However,
assessing climate change impacts in higher trophic levels and
long lifespan animals such as marine mammals is challenging,
as their relationships to climate may be non-linear and affected
by time lags (Simmonds and Isaac, 2007; Barlow et al., 2021).
In addition, identifying spatio-temporal trends in the context of
climate change requires analyzing decadal or longer time series
(Thorson et al., 2016), which are rarely available for marine
mammal observation data.

Combining data from multiple sampling programs can help
overcome this problem (Waggitt et al., 2020; Maureaud et al.,
2021), but also increases the intrinsic variability related to
observers’ skills, sampling design and protocols, which may
result in confounding species range shifts with variations in the
distribution and intensity of the sampling effort (Thorson et al.,
2016). For that reason, separating the observation process from
the true underlying spatial distribution is essential to accurately
identify range shifts over time (Chust et al., 2014b) and to
identify potential drivers (Erauskin-Extramiana et al., 2019b).
Recently, a species distribution function (SDF) able to distinguish
between sampling variation and true geographic variability has
been developed (Thorson et al., 2016). Unlike conventional
estimators such as the abundance-weighted average, the SDF
is applied through a Vector Autoregressive Spatio Temporal
(VAST) model that allows the estimation of species distribution
over predicted locations rather than sampled locations, while
also estimating a standard error that allows one to distinguish
between sampling variation and significant variability (Thorson
et al., 2016). Although model-based approaches had been used
before to estimate shifts in the distribution of species, VAST
typically involves estimating a Gaussian Markov random field
(GMRF) representing latent variation in density that is constant

over time (a “spatial” term), as well as a GMRF representing
latent variation that changes among years (a “spatio-temporal”
term), which is expected to improve predictions of species density
and distribution compared with using only measured habitat
variables (Thorson, 2019).

Until now, this estimator has been mainly applied to
commercially important fish stocks (Godefroid et al., 2019;
Perretti and Thorson, 2019; Xu et al., 2019), although the
fragmented and methodologically variable nature of marine
mammal observations suggest the method could be highly useful
for analyzing the spatio-temporal patterns of marine megafauna
too. Within that context, the Bay of Biscay (BoB hereafter),
located in the Northeast Atlantic, off the coasts of France and
Spain (Figure 1), represents an interesting study area since
numerous marine mammal species (e.g., cetaceans) cohabit there,
attracted by a highly diverse and abundant community of pelagic
fish species (Astarloa et al., 2019; Louzao et al., 2019).

Such productivity and diversity, however, might be altered by
climate change in the near future, as rising temperatures (0.26◦C
per decade; Costoya et al., 2015) are expected to increase ocean
stratification and reduce primary production and zooplankton
biomass in the area (Chust et al., 2014a). In recent years, losses
in fisheries production have already been reported (Free et al.,
2019), together with changes in the composition, distribution,
and phenology of fish species (Blanchard and Vandermeirsch,
2005; Chust et al., 2019; Baudron et al., 2020). Cetacean spatio-
temporal variability, in contrast, has been mainly assessed by
exploring changes in their relative abundance (Hemery et al.,
2007; Castège et al., 2013; Authier et al., 2018), although
both abundance and distribution are considered key criteria
by the European Marine Strategy Framework Directive (MSFD;
Directive 2008/56/EC) aiming to assess the environmental status
of species and ecosystems in European Union waters.

Advancement of both MSFD criteria in this region is therefore
necessary, especially when it is known that projections of climate
change impacts on cetaceans at large spatial scales (e.g., global;
MacLeod, 2009) do not always match with those at regional
scales (Hazen et al., 2012). In the Northeast Atlantic, for example,
warm-water cetaceans were predicted to expand poleward
(MacLeod, 2009; Lambert et al., 2011, 2014), although the south-
eastward shift detected for some Northeast Atlantic fish species
in the BoB could indicate the opposite pattern in this particular
area (Baudron et al., 2020). Indeed, some of the fish species
(e.g., horse mackerel Trachurus trachurus, anchovy Engraulis
encrasicolus, and sprat Sprattus sprattus) analyzed by Baudron
et al. (2020) constitute an important food resource for many
cetaceans in the BoB (Meynier et al., 2008;Spitz et al., 2018),
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FIGURE 1 | Spatial distribution of common dolphin sightings (displayed in segments of up to 10 km) over the BoB for the 1994–2018 period. Circle sizes are
proportional to group size, while solid gray lines indicate the isobaths. Sightings in yellow represent the ferry data used to check model fit.

which can heavily influence the spatial movements of their
predators (Díaz López and Methion, 2019; Díaz López et al., 2019;
Giralt Paradell et al., 2019).

The hypothesis that climate change may affect top predators
through climate influences on their ectothermic prey has been
often suggested (Robinson et al., 2005; Simmonds and Isaac,
2007; Evans and Waggitt, 2020). Most studies, however, examine
environmental conditions (e.g., temperature) as proxies of prey
distribution rather than studying prey data directly (Torres et al.,
2008; Díaz López and Methion, 2019; Giralt Paradell et al.,
2019) while others focus on exploring the effects of climate
indices on the grounds that they act as an integrated measure
of multiple variables (Hallett et al., 2004; Hemery et al., 2007).
In the Northeast Atlantic, the North Atlantic Oscillation (NAO)
is the dominant mode of climate variability, although additional
climate indices such as the Atlantic Multidecadal Oscillation
(AMO), the East Atlantic pattern (EA), or the South Biscay
Climate (SBC) have been also found to exert strong influence,
direct or indirectly, on both fish and cetacean species (Guisande
et al., 2004; Hemery et al., 2007; Borja et al., 2008; Evans
and Waggitt, 2020) through changes in ocean temperature and
salinity, vertical mixing and circulation patterns (Drinkwater
et al., 2003; Hurrell and Deser, 2009).

Given the multiple drivers potentially influencing cetacean
spatio-temporal patterns, understanding the role of each of them
is key for a better anticipating of future responses. For that
reason, in this study we used a 25-year-long temporal series
(1994–2018) to test the effect of prey biomasses, oceanographic
conditions and climate indices on the abundance and distribution
of the common dolphin (Delphinus delphis), one of the most
abundant cetaceans inhabiting the BoB waters (Hammond et al.,
2017). We used the VAST model (Thorson and Barnett, 2017)
and the spatio-temporal species data compiled by Waggitt et al.
(2020) to address two main research questions: (1) Has the
abundance or the distribution of the common dolphin in the BoB

experienced significant changes over the last two decades? (2)
If so, are changes best explained by climatic, oceanographic, or
prey variables? By answering these questions, this study intends
to provide insights that will help understand past and future
trends in the distribution and abundance of common dolphin
in the BoB while contributing to the management for this
species through the development of MSFD criteria in the context
of climate change.

MATERIALS AND METHODS

Data Collection and Standardization
Cetacean data analyzed in this study, despite focusing on the BoB,
belong to a large compilation made by Waggitt et al. (2020) that
included observations collected on aerial and vessel (dedicated
and opportunistic) surveys conducted in the Northeast Atlantic
between 1980 and 2018. Although the data analyzed here (data
providers in Supplementary Table 1) is a more updated version
that includes higher-resolution tracklines (meaning that fewer
data were omitted due to overlap with land-masses and more
accurate measurements of distance traveled were obtained), the
steps taken in the data processing and standardization stage
were the same as in Waggitt et al. (2020), in which they (1)
assessed differences in protocols by grouping data according to
the (a) survey transect design (line transects, strip transects,
and an intermediate method called ESAS, European Seabirds At
Sea) and (b) the platform-type (vessel vs. aircraft) and (2) fitted
detection functions using platform height and Beaufort sea-state
as explanatory variables to estimate the proportion of animals
missed by the observers (Marques and Buckland, 2004). They
also assessed response bias (when animals react to the presence
of the platform) through double-platform surveys that enabled
the detection of animals before responsive movements. This
correction was applicable to vessel surveys and is particularly
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relevant to common dolphins, which typically show a positive
response to vessels (Cañadas et al., 2004). Finally, they calculated
the effective strip half-width (ESW) which considers the decline
in the detection probability as a function of distance and
covariates and serves to estimate the area effectively covered
(Area covered = ESW∗s∗L) when including the number of
observation sides (s) and transect length (L). Full details can be
found in Waggitt et al. (2020).

Spatio-Temporal Pattern Detection
Sampling Effort
In order to match with the spatial resolution of the environmental
data that we examined in later steps (see “Identification of Main
Drivers” section), we divided larger transects into 10 km segments
(García-Barón et al., 2019). Then, we examined the spatio-
temporal coverage of surveys by summing the effort comprised
in all segments per month and per year. In addition, we checked
whether compiling data had led to a non-uniform distribution
of sampling in space and time by exploring the annual latitudinal
and longitudinal mean distributions and the corresponding linear
regression trends.

Baseline Spatio-Temporal Model
Observations of common dolphin were analyzed by means of
a spatio-temporal delta-generalized linear mixed model (delta-
GLMM), referred to here as a VAST model (Thorson and
Barnett, 2017) and available in R.1 This model is a flexible
variant of the classical delta models that decompose density
into two components (Stefánsson, 1996): (1) the probability of
encountering the species at a given location and time; and (2)
the expected density of the species when encountered. This
two-part approach, also known as a hurdle model, helps combat
statistical problems with zero-inflation and overdispersion in the
original data (Martin et al., 2005) and is therefore suitable for use
with cetacean survey data that usually show patchy distributions
(Waggitt et al., 2020).

Another feature of the VAST model is that it decomposes
spatio-temporal patterns in available point-count data into
multiple additive components:

1. A temporal main effect (“intercepts”) representing changes
in median abundance over time;

2. A spatial main effect (“spatial component”) representing
the average spatial distribution during the modeled
interval;

3. An interaction of space and time (“spatio-temporal
component”) representing variation in distribution among
years;

4. Density covariates, representing the impact of
environmental conditions on expected density;

5. Catchability (a.k.a. detectability) covariates, representing
the impact of environmental and/or sampling conditions
on expected sampling data, but which do not reflect
variation in population density and hence are “partialled
out” prior to predicting densities.

1https://github.com/james-thorson/VAST

Each of these components can be included in each of two
linear predictors, and these two linear predictors are then
transformed via inverse-link functions to predict the value of
a response variable (in this case, dolphin samples). Spatial and
spatio-temporal components are estimated as a Gaussian Markov
random field (GMRF) and treated as a random effect. To improve
computational speed, the value of these GMRFs is predicted
at a fixed set of “knots” that defines a mesh of triangles that
covers the entire modeled spatial domain. The value of the
GMRF at any location within this domain is then predicted from
the value of three knots surrounding that location. We use the
stochastic partial different equation (SPDE) approximation to
calculate the probability of GMRFs (Lindgren et al., 2011), and
the projection from knots to locations is accomplished using
bilinear interpolation as computed using R-INLA (Lindgren,
2012). The value of fixed effects are estimated using maximum
likelihood techniques while integrating across the probability of
random effects (Kristensen et al., 2016), and standard errors are
calculated using a generalization of the delta method (Tierney
et al., 1989). For further details, please see the VAST user manual.2

In our case, we treated year as a fixed effect (default VAST
setting), such that there is no shrinkage in overall abundance
across years. We modeled spatial and spatio-temporal variation
as random effects to help account for multidimensional factors
that are not included directly in the model but that can affect the
density and distribution of the modeled species (Carroll et al.,
2019). In particular, we estimated first-order autocorrelation
among years in the spatio-temporal component, such that
predicted hotspots in density decay slowly over time; this
treatment allows spatio-temporal patterns to be predicted (with
associated uncertainty) even in locations with sporadic sampling.

Detectability covariates were not considered here, because
Beaufort sea-state and platform height were included in Waggitt
et al. (2020). Density covariates were also omitted for our initial
investigation of trends (but see “Identification of Main Drivers”
section). As a response variable, the density of common dolphin
was analyzed, after truncating the highest 5% to control outliers
(Buckland et al., 2001). The spatio-temporal model was fitted
assuming a lognormal error distribution and a Poisson-linked
delta model such that the sum of both linear predictors is
predicted log-density; this structure, was selected based on the
lowest Akaike Information Criterion (AIC) (Sakamoto et al.,
1986). Model parameters, as well as spatio-temporal components,
were estimated using 200 knots (Supplementary Figure 1) based
on previous studies that applied this same resolution in bigger
areas (Carroll et al., 2019; Thorson, 2019), while confirming that
results are qualitatively similar when increasing the number of
knots (Supplementary Table 2). Species density was predicted at
each knot by multiplying the predicted probability of occurrence
by the predicted density. Density estimates for each knot were
then interpolated to a standard grid of 0.1◦ spatial resolution
(latitudinal range: 43◦–49◦N; longitudinal range: 1◦–10◦W) to
match with the spatial resolution of the environmental data (see
“Identification of Main Drivers” section) and multiplied by the

2https://github.com/James-Thorson-NOAA/VAST/blob/main/manual/VAST_
model_structure.pdf
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area of the grid cell to create annual surfaces of common dolphin
abundances across the BoB.

The annual abundances of common dolphin predicted for the
study area were then analyzed by means of a linear regression
to identify significant temporal trends and compared by means
of a correlation test with an observed abundance index to check
model fit. The observed abundance index was based on the
encounter rate (individuals/km) of common dolphin estimated
from monthly at-sea observations taken by a team of experienced
observers in a constant effort-based systematic sampling scheme,
i.e., the Pride of Bilbao ferry (Louzao et al., 2015; Robbins
et al., 2020). This survey consistently crosses the BoB using the
same route every year (Figure 1), and although it was also used
as input for the baseline model, it only forms the 8% of the
whole data set. Thus, we believe it can be used to compare the
observed (ferry) and predicted (VAST) abundance indices and
to determine whether the model predictions have been biased by
differences in the effort.

An additional analysis with predicted abundances was also
conducted to identify areas in which significant spatio-temporal
changes occurred over the study period. For that, predicted
abundances per grid cell were analyzed as a function of year by
means of a linear regression. The slope and the p-value obtained
in each cell, as indicators of change rate and its significance, were
then plotted over the standard grid covering the study area.

Distribution Shift Metrics
Shifts in distribution were summarized by calculating the
centroid of the distribution for a given year (termed center
of gravity, CoG) after having predicted the density associated
with every knot and year in the previous step. By means of the
SDF estimator implemented in the VAST model, the CoG was
calculated for the BoB population domain and standardized by
the total abundance predicted for the study area, so that our
analysis focused on changes in distribution after controlling for
changes in total abundance (Thorson et al., 2016). Shifts in CoG
were displayed in terms of “Eastings” and “Northings,” meaning
km from the most western point of the study area and km from
the Equator, respectively. Significant trends were identified using
a linear regression against year.

Identification of Main Drivers
To understand spatio-temporal patterns, three main groups of
drivers were analyzed (Table 1), classified into local and regional
covariates according to their spatio-temporal structure (a local
covariate varies across space while a regional covariate is a
univariate time series representing the covariate over the entire
study area; Thorson, 2019):

(1) Local oceanographic conditions integrated at 100 m depth,
specifically temperature and chlorophyll a concentration
(Chl-a), based on their direct relationship with climate
change and their importance for predicting top predators
distribution (Hazen et al., 2012; García-Barón et al., 2020).

(2) Regional climate indices, specifically North Atlantic
Oscillation (NAO), East Atlantic Pattern (EA), and Atlantic
Multidecadal Oscillation (AMO) climate indices (details in
Table 1), due to their ability to extract the leading pattern

in weather and climate variability over the North Atlantic
and their relationship to cetacean and prey populations
(Simmonds and Isaac, 2007; Borja et al., 2008; Evans et al.,
2010; Evans and Waggitt, 2020).

(3) Regional biomasses of potential prey species, based on
the assumption that climate change will affect cetaceans
distribution through changes in their prey (Robinson et al.,
2005; Simmonds and Isaac, 2007; Evans and Waggitt, 2020).

Temperature and Chl-a values were sourced from the Iberian
Biscay Irish Ocean Reanalysis Model available at the Marine
Environmental Monitoring Systems,3 providing values at a 0.08◦

spatial resolution, a 1-month temporal resolution and at 22
discrete depth intervals ranging from surface to 100 m depth. To
test their effect on the annual estimates predicted by the baseline
spatio-temporal model, the annual mean of both temperature
and Chl-a was estimated integrating the data available in the
first 100 m of the water column and then resampled with the
raster package (Hijmans et al., 2017) at 0.1◦ (∼10 km) resolution
(Waggitt et al., 2020). The three climate indices were downloaded
from the National Oceanic and Atmospheric Administration
(NOAA) at a monthly scale and averaged to obtain annual
values,4 while the biomass of prey species was acquired from the
International Council for The Exploration of Seas (ICES) website
at annual scale.5 We selected prey species based on their relative
importance in the common dolphin’s diet in the BoB (Meynier
et al., 2008; Santos et al., 2013) as well as data availability and
suitability because not every potential prey species (e.g., sprat,
myctophids) was available for the spatio-temporal scale defined
in this study. European anchovy (Engraulis encrasicolus) was the
only prey species whose biomass had been estimated exclusively
for the BoB. Horse mackerel (Trachurus trachurus) estimates
were for the Northeast Atlantic, Atlantic mackerel (Scomber
scombrus) and blue whiting (Micromesistius poutassou) for the
Northeast Atlantic and adjacent waters and sardine (Sardina
pilchardus) estimates for the Cantabrian-Atlantic Iberian waters
(for information on the extent of stocks see Table 1). Although
there is an assessment for the sardine stock of the BoB, data were
only available from 2000 onward (ICES, 2019c), so we decided
to use the biomass estimations from the Cantabrian sea and
Atlantic Iberian waters instead after having checked that both
indices were highly correlated (r = 0.87) and followed similar
trends (Supplementary Figure 2). Finally, the biomasses of all
species were summed and used as a proxy for total prey biomass
available in the BoB.

For modeling purposes, local temperature and Chl-a variables
were included as quadratic forms in the model to allow for
non-linear responses (Perretti and Thorson, 2019). Regional
climate indices were included as “spatially varying coefficients”
as in Thorson (2019), which means that instead of estimating a
single slope parameter presenting the effect of an oceanographic
index on density, the model estimates a separate slope parameter
for every modeled location (every knot). The biomass of each

3www.ncdc.noaa.gov
4https://marine.copernicus.eu/
5https://standardgraphs.ices.dk/
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TABLE 1 | Summary of the local oceanographic, regional climatic and regional prey variables used in this study accompanied by a little description and the source from
which they were obtained.

Variable Measure Description Source

Local oceanographic conditions Temperature ◦C Mean annual temperature between 0 and 100 m depth The Iberian Biscay Irish
Ocean Reanalysis
Model

Chlorophyll a Mg/m3 Mean annual chlorophyll between 0 and 100 m depth

Regional climatic indices NAO − Both NAO and EA are estimated from the difference of
atmospheric pressure at sea level between the Icelandic
Low and Azores High, but the anomaly centers of the EA
pattern are displaced southeastward to the approximate
nodal lines of the NAO pattern

NOAA (National
Oceanic and
Atmospheric
Administration)

EA −

AMO − Average anomalies of sea surface temperatures

Regional prey biomasses Anchovy Tons Mean spawning stock biomass in subarea 8 (Bay of Biscay) ICES (International
Council for The
Exploration of Seas):
stock assessment
models

Sardine Tons Mean spawning stock biomass in division 8.c and 9.a
(Cantabrian Sea and Atlantic Iberian waters)

Mackerel Tons Mean spawning stock in subareas 1–8 and 14, and in
Division 9.a (the Northeast Atlantic and adjacent waters)

Horse mackerel Tons Mean spawning stock biomass in Subarea 8 and divisions
2.a, 4.a, 5.b, 6.a, 7.a–c., and 7.e–k (the Northeast Atlantic)

Blue whiting Tons Mean spawning stock biomass in subareas 1–9, 12, and 14
(Northeast Atlantic and adjacent waters)

prey species, as well as the total biomass index, were first log
transformed and then included as spatially varying coefficients
since they were also available as a single regional time-series.

As a preliminary analysis, potential drivers were correlated
with the abundance and CoG of common dolphin obtained in
the previous baseline spatio-temporal model. Then, covariates-
based modeling was performed in two different ways to identify
the most parsimonious drivers and to uncover the relative
contribution of covariates:

(1) Univariate spatio-temporal models were fitted for each
variable using the same configuration as in the baseline
spatio-temporal model. Univariate models were then
compared with the baseline model by means of the AIC
(Sakamoto et al., 1986). Only a decrease in the AIC > 2
in relation to the baseline spatio-temporal model was
considered an improvement. When models differed by less
than 2 units of AIC (1AIC ≤ 2), they were considered
statistically equivalent (Arnold, 2010). The way in which
covariates were related to the spatio-temporal patterns
of common dolphin was also explored by plotting the
functional relationships from the model parameters.

(2) Univariate models were fitted for each variable after setting
the spatio-temporal variation (i.e., spatio-temporal random
effects) to 0. This was done to remove the contribution
of random effects and isolate the effect of the covariates
since in VAST, random fields can also account for changes
in distribution over time by capturing the residual spatial
patterns that cannot be attributed to the fixed effect
(Thorson et al., 2017). The abundances and CoG obtained
from these models were then compared with those from the
baseline spatio-temporal model to determine the amount of
variation attributable to covariates.

RESULTS

Spatio-Temporal Patterns
Sampling Effort
A total of 1728 sightings of common dolphin collected
in 21 different surveys were analyzed (Figure 1 and
Supplementary Table 1). Those surveys mainly covered
spring-summer months and showed a peak of maximum
effort between the 2007 and 2012 period (Supplementary
Figure 3). The mean latitude of sampling also varied and
shifted significantly south over time (p = 0.001), while no
significant change was observed in the mean longitude of
sampling (Figure 2).

Common Dolphin
The common dolphin abundance estimated by the baseline
spatio-temporal model showed a significant increase (p < 0.001)
throughout the study period, accompanied by high variability
(Figure 3 and Supplementary Table 3). This increase was
most pronounced over the more recent years (2011–2017) and
mainly occurred in the southeast corner of the BoB (Figure 4).
These results agreed with the ferry data, which also showed
an increasing trend and a significant correlation (r = 0.7,
p = 0.003) with the predicted abundances (Supplementary
Figures 4, 5).

The CoG also showed a high interannual variability,
but no significant trend was found over time in either of
the two axes (Figures 5A,B). In contrast, the correlation
between eastings and northings showed as significant pattern
(p = 0.005) in the direction of the shift, indicating that the
distribution of common dolphins generally varied between
the inner (southeast) and the outer part (northwest) of the
BoB (Figure 5C).
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FIGURE 2 | Sampling effort (number of segments of up to 10 km) as a function of year and longitude (A), and year and latitude (B). In both figures the size of the
circle is proportional to the sampling effort; the black line indicates the mean value and the dotted line the linear temporal trend.

Drivers and Covariate Contributions
Neither the annual temperature nor the Chl-a concentration
integrated at 100 m depth revealed a significant (p > 0.05)
temporal trend across the full BoB (Supplementary Figure 6).
The climate index AMO has remained in a positive phase
since 1997, whereas NAO and EA indices have shown a
higher variability with alternation between positive and negative
phases (Supplementary Figure 7). Both anchovy and mackerel
biomasses showed a significant (p ≤ 0.05) recovery after a period
of low abundance, while sardine and horse mackerel underwent a
severe decline (p ≤ 0.001). In contrast, blue whiting did not show
any significant temporal trend (p = 0.2). The prey biomass index,
on the other hand, exhibited a significant increase (p = 0.003),
despite the large variability (Supplementary Figure 8).

The correlation between the potential drivers and the CoG
(easting and northings) of common dolphin only showed
weak relationships. In contrast, predicted abundance revealed
several strong relationships (r > 0.5) with prey species,

specifically mackerel and anchovy (positive correlation), and
sardine and horse mackerel (negative correlation) (Figure 6).
After prey species, only EA and NAO climate indices showed
a moderate correlation with abundance (r∼0.40). Blue whiting
was not significant (p > 0.05), while temperature, Chl-a,
AMO and the prey biomass index showed weak relationships
(r∼0.20) (Figure 6).

For covariates-based models, the AIC score showed that
the most substantial decrease was for the NAO index and
regional prey species biomasses (especially anchovy and
sardine). Local Chl-a concentration, as well as horse mackerel
and mackerel, only contributed slightly, while remaining
drivers (temperature, AMO, EA, blue whiting and prey
species biomass index) were not relevant in terms of AIC
(Table 2). Functional relationships of those important
drivers revealed positive responses for NAO, anchovy,
mackerel and negative for Chl-a, horse mackerel and sardine
(Supplementary Figure 9).
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FIGURE 3 | Abundance of common dolphin in the BoB predicted by the baseline spatio-temporal model with standard deviation (shaded area), the linear trend, and
its significance.

FIGURE 4 | Spatio-temporal changes in the abundance of common dolphin (predicted by the baseline model) illustrated by means of the change rate (the slope of
the linear regression). Hatched areas indicate those areas where change rate is not significant (p > 0.05).

Similarly, covariate-only models (with no random
effects) showed that the NAO index and prey species
biomasses were able to explain the increase in region-
wide abundance of common dolphin (Figure 7). Chl-a
concentration, despite having shown a decrease in AIC
score (Table 2), did not contribute to explain the variability
in the relative abundance (Figure 7), and neither did
temperature, AMO index, or blue whiting (Supplementary
Figure 10). EA and biomass indices did show a higher

contribution in terms of variability, but they were not
identified as important drivers according to AIC score
(Supplementary Figure 10).

In the case of CoG, only Chl-a and temperature contributed
to explain the observed variability but, even then, only in a
very small proportion (Figure 8). In fact, the variation in the
CoG explained by these variables only accounted for about
10–20 km, while the spatio-temporal model suggested variation
of 100–300 km.
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FIGURE 5 | The variation in the center of gravity (CoG) of common dolphin
expressed in eastings (A) and northings axes (B), and as a function of both
(C). Shaded area means the standard error, while the dashed line indicates
the linear trend.

DISCUSSION

The evaluation of the spatio-temporal patterns of common
dolphin in the BoB agrees with the MSFD aiming to assess
the abundance and distribution of species in European waters.
Surveys providing information on species distribution and
abundance in this region, however, have shown significant shifts
in the spatial distribution of observations, which make necessary
the application of methods such as VAST to account for uneven
sampling effort.

Spatio-Temporal Trends in Common
Dolphin Abundance
The modeling of common dolphin sightings revealed a significant
increase in abundance, which is in agreement with previous
studies conducted in the BoB (Hemery et al., 2007; Authier
et al., 2018; Saavedra et al., 2018) and in the wider Northeast
Atlantic (Hammond et al., 2017; Evans and Waggitt, 2020) that
also reported an increasing trend. In addition, data from ferry
surveys, known to perform the same route every year, showed the
same pattern and confirmed that the results were not biased by
the detected latitudinal shift in effort.

In addition, the predicted abundance estimates were found
to be quite coherent with those obtained in previous surveys
conducted in summer 2012 in the BoB (Laran et al., 2017) and
in summer 2016 in the Northeast Atlantic (ICES, 2020), in which
490,000 (95% CI: 340,000–720,000) small delphinids (common
and striped dolphins) and 634,000 (95% CI: 353,000–1,140,000)
common dolphins were estimated, respectively. Although it is not
possible to make a direct comparison with our predictions, the
ratios for common/striped dolphins and Northeast Atlantic/BoB
estimated from Hammond et al. (2017) would lead to an
approximate abundance of 360,000 (95% CI: 250,000–526,000)
and 425,000 (95% CI: 237,000–764,000) individuals of common
dolphin in the BoB for 2012–2016, respectively. These numbers
were similar to our predictions in those years (359,000 ± 49,000
and 376,000 ± 71,500 individuals, respectively; Supplementary
Table 2), and would indicate that, overall, abundance estimates
from VAST were consistent with previous studies. This good
agreement is remarkable, given the heterogeneity of the data
used in this study that comprised 21 datasets, and emphasizes
the importance of applying methods that are robust to shifts in
sampling effort. In addition, the concordance between our results
and those estimates made on summer also suggest that the spatio-
temporal patterns obtained in this study should be interpreted as
spring-summer trends, as this was the period of the year when
most data were collected (Supplementary Figure 2B).

The increasing trend in abundance found in this study for the
BoB, however, does not necessarily imply an overall population
increase at the Northeast Atlantic level (i.e., species whole
distribution range), and instead, could be due to the arrival of
individuals from unsampled areas. That is why the results found
in this study should be treated with caution and never be used to
downplay the effects of incidental capture on common dolphin,
especially when recent estimates suggest that the bycatch in the
BoB is unsustainable for the population as a whole (ICES, 2020).

Regional vs. Locally Estimated
Environmental Variables
Local environmental variables, such as temperature and Chl-
a used in this study, are often unable to capture complex
associations between environment and ecological process due
to time lags in species responses coupled with the non-linear
intrinsic nature of population dynamics (Hallett et al., 2004).

This can be particularly true for Chl-a and cetaceans species
that feed on zooplanktivorous fishes, since the abundance of the
latter has been related to a period of zooplankton grazing and
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FIGURE 6 | Pearson correlation among the common dolphin’s predicted abundance, CoG and potential drivers. Circle sizes are proportional to the correlation
coefficient, which is indicated inside the circles. Non-significant correlations (p > 0.05) are shown without a circle.

a phytoplankton decay (Díaz López et al., 2019). Under such
circumstances, many researchers working with cetaceans often
apply time-lagged Chl-a concentration for one and/or 2 months
prior to the sighting month (Tobeña et al., 2016; Prieto et al.,
2017; Pérez-Jorge et al., 2020; Barlow et al., 2021).

In this study, however, predictors were introduced at an
annual scale to match the available temporal scales of both prey
and climatic indices, which prevented its incorporation in a
lagged phase and likely led to the low contribution of Chl-a
in explaining the spatio-temporal patterns of common dolphin.
Similarly, the lack of importance shown by temperature could
be also a consequence of this annual resolution or could instead
suggest that, within the core of the species range, temperature
is not such an important variable to explain its abundance
and distribution.

On the contrary, regional indices of climate, spanning
several months and considering wider areas of influence, are
less disturbed by local variability and very often outperform
locally estimated environmental variables (Hallett et al.,
2004). In addition, they usually hold information about
several environmental factors (e.g., temperature, storms and
precipitation, mixed layer depths or circulation patterns), which
make them act as an integrated measure of meteo-oceanographic
conditions that tend to explain more of the variability of the
system than just, for example, ocean temperature (Hurrell and
Deser, 2009; Thorson, 2019).

The results found in this study are a good example of this,
as the NAO climate index was found to be the best predictor
explaining the abundance of common dolphin according to
AIC scores. Specifically, results showed a positive relationship
between both, meaning that common dolphin abundance is
enhanced during positive phases of NAO, which are characterized
by colder and drier conditions over Mediterranean regions,
central and southern Europe (e.g., BoB), and warmer and wetter
conditions in northern Europe (Visbeck et al., 2001; Aravena
et al., 2009; Hurrell and Deser, 2009).

Although the NAO index and similar climate indices have
been previously related to the abundance of wide ranging
predators in the BoB (Hemery et al., 2007; Louzao et al., 2015),
responses are likely mediated through the influence of the climate
indices on food resources rather than directly on higher trophic
predators such as cetaceans (Drinkwater et al., 2003; Lusseau
et al., 2004). Indeed, the NAO climatic index has been related
to some biologically important phenomena, such as upwelling
(Pérez et al., 2010), river run-off (Dupuis et al., 2006) and Ekman
transport (Guisande et al., 2004), which are known to influence
the recruitment of some of the main prey species (i.e., anchovy,
sardine) of common dolphin (Guisande et al., 2004; Borja et al.,
2008; Planque and Buffaz, 2008). We could therefore hypothesize
a potential bottom-up process, in which NAO affects common
dolphins through its influence on prey. In fact, bottom-up control
has been suggested for the continental shelf food web of the BoB,
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TABLE 2 | Model terms.

Model AIC 1 AIC

Baseline spatio-temporal No covariates 27814.85 0

Local oceanographic conditions Temperature 27820.78 5.93

Chlorophyll 27811.99 −2.86

Regional climate indices NAO 27806.3 −8.55

EA 27816.38 1.53

AMO 27817.57 2.72

Regional prey biomasses Anchovy 27807.76 −7.09

Sardine 27809.77 −5.08

Mackerel 27812.81 −2.04

Horse mackerel 27812.63 −2.22

Blue whiting 27816.69 1.84

Biomass index 27814.12 −0.73

Second column refers to the AIC score of each model, while the third column refers to the difference in the AIC (1AIC) resulting from the comparison of each univariate
model with the spatio-temporal model (reference model). Positive values mean that higher AIC were obtained relative to the baseline spatio-temporal model while negative
values mean that lower AIC scores were achieved. Numbers in bold mean improvement in model fitting (1AIC < −2) and hence, substantial contribution of the given
variable.

where a highly diverse and abundant community of forage fishes
regulates higher trophic levels (Lassalle et al., 2011).

The Role of Prey
Common dolphins are assumed to be opportunistic predators
that feed on a wide variety of species, although a preference for
energy-rich species, such as the anchovy, sardine, mackerel and
horse mackerel investigated in this study, has been suggested
(Meynier et al., 2008). Atlantic mackerel, however, is only present
in large quantities during the first half of the year in the
BoB, coinciding with its spawning period (Uriarte and Lucio,
2001), while Atlantic horse mackerel and the Iberian sardine
are currently in serious decline (ICES, 2018, 2019b). European
anchovy, in contrast, has been at a sustainable level since 2010,
with an overall increasing trend that reached its maximum in
2019 (ICES, 2019a). The importance of prey species in common
dolphin diet has been found to be related to their availability
in terms of abundance (Santos et al., 2004; Meynier et al.,
2008), which could explain the negative responses shown by
species with low abundances (e.g., Iberian sardine and Atlantic
horse mackerel) and the positive and larger contribution in
terms of AIC made by those species with higher abundance
(i.e., European anchovy). Blue whiting, on the other hand,
did not seem to be relevant in explaining the variability of
common dolphin over the study period, despite being more
abundant than, for example, anchovy or mackerel. Evidence
of blue whiting in the diet of the common dolphin was
found in the BoB in the 1980s (Desportes, 1985), which could
mean that it was important in the past but less so now, or
that it is only important, given its poorer energetic condition
(4.4 kJ g−1), in the absence of other remarkable prey species
(Santos et al., 2013).

However, not all potential prey species were included
and differences in the distribution of stocks may have also
affected the results. In fact, only anchovy’s biomass had
been estimated exclusively for the BoB. Remaining species
biomasses were either estimated using adjacent areas (i.e., Iberian

sardine) or distribution areas that extended considerably the
observations range of common dolphin (i.e., blue whiting,
mackerel and in a lesser extent horse mackerel), which could have
contributed, for example, to the higher prominence of anchovy
detected in this study.

Distributional Shifts
The common dolphin is considered a warm-temperate species,
and accordingly, its range is expected to expand in response to
increasing water temperature (MacLeod, 2009). This northward
expansion seems to be already happening, at least at the northern
limit of the species range, as evidenced by a higher frequency
of strandings and sightings in northern Britain and southern
Scandinavia (MacLeod et al., 2005; Evans and Waggitt, 2020). The
BoB, however, does not constitute a range edge within common
dolphin’s distribution, which can explain why we did not find
a northward shift in its CoG, but instead, switches between the
inner (i.e., southeast) and the outer (i.e., northwest) part of the
BoB. This pattern has also been detected when forecasting the
future distribution of anchovy’s egg density in the BoB for spring
(Erauskin-Extramiana et al., 2019a) and was associated to the
contraction (southeast) and expansion (northwest) of anchovy
population (Motos et al., 1996). A prey driven distribution was
already suggested for albacore tuna in the area (Lezama-Ochoa
et al., 2010), so we could hypothesize that the distributional
shifts of common dolphins in the BoB are also driven by the
distribution of their main prey. Similarly, the increase in common
dolphin abundance detected in the southeast corner of the BoB
could be also related to a higher prey availability. Indeed, other
important prey species of the diet of common dolphin (e.g., horse
mackerel, sprat) also shifted to the southeast of the BoB in the past
30 years (Baudron et al., 2020).

The prey variables considered in this study, however, could
not explain much of the observed spatio-temporal variability
of the CoG as a result of being introduced as a biomass index
that changed across time but not across space, and hence, could
not confirm or reject the hypothesized prey-driven distribution.
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FIGURE 7 | Abundance estimates predicted by the baseline spatio-temporal model (black line) and by the covariates-based model (with no random effects, colored
line) so that the contribution made by each variable (A–F) can be visualized. Only drivers identified as relevant by AIC score are shown.

Whether top predator abundance and distribution is driven by
the environment or prey is a much debated question in ecology
(Grinnell, 1917; Elton, 1927; Torres et al., 2008). However,
acquiring co-occurring top predator and prey data in space and
time to test these hypotheses is challenging. In this study, we
have taken advantage of a large spatio-temporal compilation of
top predator sightings, but in contrast, we have only been able to
incorporate annual, non-spatial biomass indices of prey. Future
work, therefore, should focus on improving prey data inputs to
better understand their role in driving top predator distributional
shifts in the BoB, a question that remains open. Climate indices,
as for prey biomasses, were regional time-series rather than
spatio-temporal datasets (i.e., changed across time but not across
space), so their effect on the CoG is also difficult to understand.
Local oceanographic variables did account for spatio-temporal

changes, but even so, only explained a very small proportion of
spatial shifts, which means that most of the distributional shifts
occurred due to unidentified sources. This inability to attribute a
source to distributional shifts was also found in previous studies
with fishes (Thorson et al., 2017; Perretti and Thorson, 2019),
and suggests that more effort must be made to understand when
distributional shifts can be attributed to covariates in spatial
random effects models (Hodges and Reich, 2010).

CONCLUSION

Climate change is believed to affect marine mammals through
changes in their physical environment but also in their prey.
However, many studies aimed at understanding climate impacts
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A B

FIGURE 8 | Center of gravity estimates predicted by the baseline spatio-temporal model (black line) and by the temperature and chlorophyll-based models (with no
random effects, colored line), expressed in easting (A) and northings (B) axes.

often employ environmental characteristics as proxies for prey
distribution. In this study, we incorporated both environmental
and prey variables estimated at local and regional scale and
explored the relative importance of each of them in explaining the
spatio-temporal variability in common dolphin data. Although
we could not attribute much of the detected distributional shifts
to the variables considered in this study, we could conclude
that, in the BoB, climate indices and prey species biomasses can
play an important role in driving the abundance patterns of
the common dolphin.

Further research on climate change effects on common
dolphin, however, should focus on comprising the whole
distribution range of the species, given the increasingly feasible
possibility for combining surveys across areas and regions
provided by methods such as those used here. This way, we could
address important knowledge gaps that have not been solved
here, for example, if the increasing trend found in abundance is
due to the arrival of new individuals or it is the result of an overall
population growth. Answering to this question will undoubtedly
help understand population dynamics and bycatch implications,
but meanwhile, we reiterate our call for caution when interpreting
the abundance patterns predicted in this study.
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