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Measuring image resolution in 

Ultrasound Localization Microscopy 
 

V. Hingot, A. Chavignon, B. Heiles, O. Couture 

 

Abstract— The resolution of an imaging system is usually determined by the width of its point 

spread function and is measured using the Rayleigh criterion. For most system, it is in the order 

of the imaging wavelength. However, super resolution techniques such as localization 

microscopy in optical and ultrasound imaging can resolve features an order of magnitude finer 

than the wavelength. The classical description of spatial resolution no longer applies and new 

methods need to be developed. 

In optical localization microscopy, the Fourier Ring Correlation has showed to be an effective 

and practical way to estimate spatial resolution for Single Molecule Localization Microscopy 

data. In this work, we wish to investigate how this tool can provide a direct and universal 

estimation of spatial resolution in Ultrasound Localization Microscopy. Moreover, we discuss 

the concept of spatial sampling in Ultrasound Localization Microscopy and demonstrate how the 

Nyquist criterion for sampling drives the spatial/temporal resolution tradeoff. 

We measured spatial resolution on five different datasets over rodent’s brain, kidney and 

tumor finding values between 11 m and 34 m for precision of localization between 11 m and 

15 m. Eventually, we discuss from those in vivo datasets how the spatial resolution in 

Ultrasound Localization Microscopy depends on both the localization precision and the total 

number of detected microbubbles.  

This study aims to offer a practical and theoretical framework for image resolution in 

Ultrasound Localization Microscopy.  

 

Index Terms—Ultrasound Localization Microscopy, Fourier Ring Correlation, Temporal and 

Spatial Resolutions, Nyquist Criterion 
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I. INTRODUCTION 

THE classical definition of the resolution of an imaging system is its ability to distinguish close objects 

and is usually derived from the system’s Point Spread Function (PSF) using the Rayleigh criterion [1]. 

Because of diffraction, the width of the PSF is usually limited to the order of the imaging wavelength 

and the resolution as defined with the Rayleigh criterion is limited to half the imaging wavelength. 

Localization based methods like Single Molecule Localization Microscopy (SMLM) in optics [2]–[4] 

and Ultrasound Localization Microscopy (ULM) in ultrasound [5]–[10], differ from conventional 

imaging, they rely on the subwavelength localization of individual and punctual sources. This allows a 

resolution improvement far beyond the PSF based resolution limits and creates a need for new methods 

to measure resolution.  

The precision at which microbubbles (MB) could be localized was first used as an indicator of 

resolution. The first studies primarily compared the distribution of the localizations with the width of a 

tube with flowing MB to estimate this localization precision [8], [11]–[13]. Other studies proposed a 

maximum localization precision based on the uncertainty of time of flights using the Cramer Rao lower 

bound [14]. However, it was later demonstrated that the resolution of the imaging system alone was 

insufficient to describe the resolution of images as motion artifacts [15]–[17] and acquisition times [18], 

[19] were equally important in ULM.  

Several methods were proposed directly on the final images, to account for image resolution in the sense 

of finding the smallest separable features. For instance, it was proposed to analyze features directly on 

images, and define the resolution using statistical considerations on a vessel profile [3] or the separability 

at a bifurcation [20]. Although they are technically adapted for in vivo imaging, they rely on a crucial 

step of selection and segmentation which in itself can introduce heavy biases which limit their 

application and generalization. Moreover, the vasculature is usually complex and tortuous and therefore 

misrepresented in 2D.  

In this study, we wish to build on this previous characterization of the resolution and to provide both 

practical and theoretical tools to describe resolution in ULM. The first concept we want to introduce is 

the Fourier Ring Correlation (FRC) to measure the resolution derived from the consistency of the spatial 

frequency content. The second is the notion of spatial sampling and the necessity to acquire enough 

samples to ensure adequate coverage of the image. Indeed, localization microscopy is not a conventional 

imaging method but rather a digital sampling and the issues of spatial resolution are tightly associated 

with the Shannon/Nyquist theorem. With those two notions, we propose two approaches to spatial 

resolution for ULM, a practical measure based on the FRC, and a theoretical model based on both the 

localization precision and on a typical sampling length. This length is the Nyquist dimension and 

represents the quality of the spatial coverage by the detected positions of the MB. 

 

The localization error is the average precision δLoc at which MB can be localized on the images. It 

depends on many factors including signal to noise ratio, efficiency of clutter filters and precision of the 

localization algorithms. As the dimensions of the PSF for our acquisitions is similar in both directions, 

we consider axial and lateral localization error to be similar and combine them in a single average error. 

It is an ultimate limit for the resolution.  

Although it is still debated whether the refreshing rate of MB can be described as a deterministic process 

based on microvascular flow [18] or a probabilistic  process described by a Poisson’s distribution [19], 

[21], [22], it is consensual that a large number of samples is required to reach super resolution. This is 

best described with the Nyquist/Shannon sampling theorem stating that structures finer than twice the 

Nyquist dimension δNyq defined in (1) can’t be appropriately reconstructed [23], [24]. It is the maximum 



resolution obtainable when the whole vascular space is explored by MB. Seeing that a pixel is considered 

complete when a MB has been localized in it, we can consider that the size of a pixel, otherwise seen as 

the distance between two neighboring pixels, depends on the expected localized MB density 𝜌. Similarly 

to Nyquist sampling theory, we can consider that the maximum resolution attainable spatial frequency 

is half the normalized density 𝜌1/𝜅
, where 𝜅 = 1,2,3 the dimension in space. It is measured on the whole 

image. 

 

δNyq =
2

ρ1/κ            (1) 

 

Spatial resolution R can then be modeled as the root mean square of the localization error and the Nyquist 

dimension (2).  

 

R = √δLoc
2 + δNyq

2              (2) 

 

Nonetheless, this definition allows for a synthetic characterization of the tradeoff between the spatial 

and acquisition time as the Nyquist dimension is a direct function of MB detection and therefore of the 

acquisition time. 

A crucial question for image reconstruction is the choice of the finest grid size that allows a meaningful 

representation of MB localizations density map. We propose that this choice can be motivated by the 

calculation of both the FRC curve and the theoretical estimation of the resolution. We foresee that these 

considerations on the resolution could help researchers better understand their data and represent their 

images in richer and more relevant ways. 

II. MATERIAL & METHODS 

A. Animal experimentation 

In order to cover different imaging situations, we performed this study on five different datasets. The 

first dataset for ULM is the rat’s brain after craniotomy BrainInfusion [18] that we chose to use here for 

general reference as it was already published and is available upon request. During the acquisition, MB 

were injected at a constant and slow rate to ensure low and steady MB concentration. For comparison, 

a second rat brain BrainBolus was imaged with MB injected in a unique bolus. Acquisitions were also 

performed over a mouse subcutaneous tumor and a rat’s kidney to produce a third and fourth datasets 

Tumor and KidneyBolus. A fifth dataset was produced from the rat’s kidney by applying motion 

compensations strategies KidneyMoCo. 

All experimental procedures were performed in accordance with the European Community Council 

Directive and approved by the institutional committee C2EA-59:” Comité d’éthique en matière 

d’experimentation animale Paris Centre et Sud” under the protocols 2015-23 and APAFIS # 16874-

2017122914243628 v9, and by the institutional committee 34 under the protocol APAFIS #25169-

202008071746473. 

Experimental procedures were thoroughly described in [6], [18], [20].  Animals were anesthetized 

and a catheter placed in the jugular vein. For the rat’s brain experiments, a cranial window was carved 

to expose the naked brain which was immediately covered with saline and acoustic gel. For the rat’s 

kidney, a small incision was performed on the side of the animal so as to allow the stabilization of the 

organ and limit respiratory motions to the minimum. 

 

 



B. ULM acquisition sequence and processing 

All the datasets were acquired on a Supersonic Imagine ultrafast system using a 15 MHz probe (128 

elements, 0.1 mm pitch). Acquisitions sequences consist of sending a set of compounded plane waves 

(PW) that are then beamformed using a Delay and Sum method and saved every second. All imaging 

parameters are summed up in Table 1. No contrast specific sequence was used. Frame rates are given 

after compounding. Although they were not directly measured, the MI of these acquisition are 

sufficiently low to no burst MB, and should therefore be within FDA standards. 

 

 
MB Dose 

(L) 

Injection 

method 

Frame rate 

(Hz) 
Compounding 

Number of 

frames 

BrainInfusion 400 Infusion 1000 -5:5:5 240 k 

BrainBolus 200 Bolus 1000 -5:5:5 182 k 

Tumor 100 Bolus 500 -11:2:11 30 k 

KidneyBolus 300 Bolus 1000 -5:5:5 182 k 

KidneyMoCo 300 Bolus 1000 -5:5:5 182 k 

 

Table 1: Injection and Imaging parameters for ULM in the different rodent datasets 

 

On the beamformed data, a combination of Singular Value Decomposition (SVD) filters (removing 

of the 10 first singular values per bloc of 800 frames) and temporal Butterworth high pass filters (2nd 

order, 50 Hz cut-off) were applied to extract MB signals from surrounding tissue signal.  

Individual MB were localized using a radial symmetry-based algorithm and tracked using the 

simpletracker code adapted from the Kuhn-Munkres algorithm for assignment, which was developed 

for single particle tracking (https://github.com/tinevez/simpletracker). MB whose track was shorter than 

20 points were discarded. 

KidneyMoCo is similar to KidneyBolus except that motion was compensated in a two steps frame to 

frame method using affine registration on tissue low pass filtered as described in [15]. For each bloc of 

800 compounded frames, all the frames were registered on the central frame of the bloc. A second step 

consists in registering all the central reference frames to allow the adequate registration for all the 

frames.  

All tracks were interpolated to a 1 m distance between consecutive points and binned on 1 m x 1 m 

pixel grid as showed on Fig. 1. The evaluation of the Nyquist dimension was performed on the raw 

detection prior to this interpolation step. 

C. Fourier Ring Correlation to measure the resolution 

The FRC is a method that can be directly computed from the images, which makes it applicable to both 

in vitro and in vivo situations. It provides a correlation criterion on the spatial frequency content of the 

dataset to estimate the resolution. It was first introduced in cryo-microscopy and proved to be robust, 

independent of the imaging conditions and have since then become a standard method in optical 

nanoscopy and SMLM [25], [26]. FRC codes were adapted to ULM data from 

https://github.com/bionanoimaging/cellSTORM-MATLAB/. 

The original list of tracks is randomly split in two form two sub-images Im1 and Im2. The correlation of 

the spatial frequency content is calculated as the normalized correlation of the two spectrum F1 and F2 

along iso-spatial frequency rings r (3). 

 



FRC(r) =
∑ F1(r)F2(r)∗

ring

√∑ |F1(r)|ring
2 ∑ |F2(r)|ring

2
                    (3) 

 

This creates a curve that starts at 1 for low spatial frequencies that are evenly distributed in the dataset, 

before decreasing and eventually tending to 0 for high spatial frequencies that do not contribute more 

than noise with consistent information on the final image. 

To calculate the FRC curve as in (3), the list of tracks is randomly split in two as in Fig. 2(a). The random 

assignation is performed by taking odd and even numbered tracks. As the number of tracks is high, the 

randomization method does not affect the FRC method. The variation between random assignations is 

less than 1 m. Then, two independent sub-images can be reconstructed from those two subsets as  

illustrated in Fig. 2(b). The 2D Fourier transforms of these sub-images can be calculated as in Fig. 2(c). 

The FRC can then be calculated as the correlation of these two Fourier transforms along iso-frequency 

rings corresponding to the colored circles. 

The resolution can be derived from this FRC curve using various thresholding methods thus defining 

the resolution as the inverse of the spatial frequency where the FRC drops below the threshold. Fixed 

threshold at 0.5 and 1/7 have been used but more advanced methods seem to have taken their place in 

SMLM.  

The  threshold curve computes the maximum spatial frequency that allows a correlation higher than 

the noise equivalent. The bit-based curves which computes the highest spatial frequency that allows the 

collection of information required to fill a half bit with signal [27], [28]. Images can be decomposed into 

signal and noise. In the calculation of the FRC for such a decomposition is a noise correlation term 

which depends on the number of pixels N in the ring. Both threshold curves depend on the number of 

pixels within the iso frequency ring. It is common to use threshold curves proportional to these curves, 

and we will focus here on the and the 2 and ½ bit threshold curves corresponding respectively to a 

correlation higher than twice the equivalent noise level and the information  

required to fill a half bit. The 2- (in green) and ½ bit (in red) curves are displayed on Fig. 2(d) and 

resolution is determined as the intersection with the FRC curve. A smoothing window of 10 points was 

used on the FRC curve prior to resolution determination. In case two or more crossing can be observed, 

we always chose the one corresponding to the lower resolution. 

III. RESULTS 

A. Resolution measurements in vivo 

The FRC curves are presented in Fig. 3, start at 1 for low frequencies and drop around zeros for higher 

frequencies. Sharper looking images have FRC curves extending further to the right, indicating that higher 

frequencies are present in the dataset. The measured resolutions with the 2 threshold criterions are presented in 

Table 2. 

 FRC 2 FRC ½ bit Model 

BrainInfusion 9 M 11 M 12 M 

BrainBolus 10 M 13 M 14 M 

KidneyBolus 22 M 34 M 17 M 

KidneyMoCo 20 M 25 M 19 M 

Tumor 23 M 29 M 23 M 

 

An advantage of the FRC method is that it can also be extended to its directional equivalent called the Fourier 

Line Correlation (FLC). Instead of correlating the two spatial spectrums on iso-frequency rings, it can be integrated 



along a straight line orthogonal to a given wave vector as can be seen on Fig. 4(a). This operation is repeated along 

all wave vector of the 2D plane to reconstruct a complete FLC image representing the consistency of the frequency 

content in a given direction as can be seen in Fig. 4(b) with the isolines. The values of the FLC along the vertical 

and horizontal lines enable the measurement of the axial and lateral resolutions as for the final ULM image. 

B. Localization Precision 

The localization precision depends on multiple factors: primarily on the accuracy of localization algorithm [20], 

the efficiency of the clutter filtering [29], but also on beamforming methods [30]–[32], and can also be heavily 

impacted by the label density on each frame [18], [33] as it is fundamental that MB signals do not overlap.  

Given that MB can be paired and tracked on sufficiently long trajectories, we postulate that the localization 

precision can be estimated as the average deviation of each MB along a smoothed track. This smoothed track was 

obtained using the smooth function from matlab which makes a sliding average on 5 points, in axial and lateral 

coordinates. Indeed, we can assume that the trajectories of microbubbles follow a relatively smooth and straight 

trajectory of the blood flow, aside in turbulent and heavily tortuous vascularization. MB tracks that were shorter 

than 20 points were discarded in the process. 

This localization precision can be measured for all MB tracks as described in Fig. 5(a) and the distribution of 

errors can be represented as a violin plot as in Fig. 5(b). The localization precision is then defined as the mean of 

this distribution. Overall, the difference between datasets is only of a few m and seems to be convincingly in the 

order of /10. 

 

C. Temporal sampling and Nyquist dimension 

A good spatial sampling is achieved with the acquisition of enough MB to fill the whole image with fine enough 

resolution.  

Fig. 6(a) shows the instantaneous MB count, which should be proportional to the intravascular MB 

concentration along time. Fig. 6(b) displays the cumulative MB count representing the total density of sample used 

to calculate the Nyquist dimension. The total MB count is of several million of detections for each acquisition. For 

all the data acquired as boluses, the saturation curves in Fig. 6(c) show a more rapid growth but also quickly a 

plateau whereas the infusion has a steadier and complete filling.  

The Nyquist dimension is plotted for the different datasets in Fig. 6(d). This Nyquist dimension is a direct 

representation of the acquisition time as it is a direct function of MB count, which is in itself a function of MB 

concentration and acquisition time. 

It is worth noting than in all the conditions, reaching the 10 m mark took more than a full minute while it takes 

longer and longer to reach for smaller Nyquist dimension. Still, reaching small Nyquist dimension does not grant 

a high resolution as the limiting factor is ultimately the localization precision. 

 

D. Fundamental spatial/temporal resolution tradeoff  

To explore the link between the spatial resolution and acquisition time, we can compute the resolution as 

measured with the FRC calculated at different time points and represent it as a function of the resolution we 

modeled in (2). Both the resolutions measured with the 2 (in green) and the ½ bit (in red) thresholds are 

represented in Fig. 7. All the final resolutions as measured and predicted can be found in Table 2. Globally, all 

curves are aligned around the first diagonal, indicating an overall relevance for the modelisation, especially for the 

two brain datasets in Fig. 7(a) and (b), where there is no motion.  

 The resolution measured with the ½ bit threshold and the 2 threshold seems to follow parallel temporal 

behaviors even though the 2 is slightly but consistently smaller. In the other datasets, the predicted resolution is 

strongly underestimated as it does not account for motions. In the KidneyMoCo dataset in Fig. 7(c), where motions 

were corrected, the prediction is closer although still a little underestimated. For the tumor in Fig. 7(d), the modeled 

resolution is slightly underestimated.  

All these examples demonstrate how the FRC and Nyquist dimension can be used in practice to measure and 

predict the resolution of an ULM acquisition. 

IV. DISCUSSION 

 The FRC curve is a simple yet effective way to measure spatial resolution in ULM. It provides a reading richer 

than the localization precision or individual vessel segmentation as it characterizes the final image in its globality. 

The FRC measure does not depend on the imaging system, nor on the operator but on the choice of the threshold. 

In optical nanoscopy, the question of the threshold has long been debated and is to this day still not consensual. 



The first studies proposed to use fixed arbitrary thresholds at 0.5 or 0.2 although they have been shown to 

overestimate the resolution [27]. The  curves and bit based methods where later introduced [27].  

Nonetheless, the FRC is quite versatile and can be extended in various ways. In particular, we showed that the 

FLC could provide resolution estimated in all directions. It is important as ultrasound imaging is often anisotropic. 

The FRC can also be easily implemented in 3D by correlating along iso-frequency shells instead of rings, and is 

often refers to as Fourier Shell Correlation (FSC). 

Moreover, FRC is not really specific to ULM. For any imaging modality that can produce two independent 

images or two independent realization of a media/sample, the FRC curve could be computed and should provide 

a resolution measurement. In particular, it could be applied to ultrafast Doppler or any imaging modality. 

It is also important to keep in mind that the FRC is a tool to estimate the resolution with advantages and 

drawbacks, and in some conditions, it will underperform. For instance, the measurement can easily be biased for 

very under-sampled data or when strong and local artefacts appear. This can create spurious correlations which 

may under or overestimate the resolution reading. It can appear because of aliasing or quantization errors, or 

because of some processing effects. A good indicator of a clean measurement is to have a regular FRC curve 

without strong and irregular peaks. 

We also introduced a synthetic model for spatial resolution that can be summarized with the localization 

precision and the Nyquist dimension. It describes the resolution as the error associated with the complete ULM 

process which is classically the root mean square of all the sources of errors. Here, we accounted for the 

localization error via the localization precision, and a sampling error via the Nyquist dimension, but the model 

could be extended to describe a motion-based error, an aberration-based error, etc…  

It should be noted than a hypothesis for the Nyquist dimension is that the vasculature is considered 

homogeneous. If the vasculature is non-homogeneous, for instance in the kidney, where the middle of the medullar 

area is almost not vascularized, this can introduce an overestimation of the Nyquist dimension and therefore of the 

modeled resolution.  

Still, this synthetic form allows for an expression of the trade-off between spatial and temporal resolution in 

ULM as the acquisition time is driving the Nyquist dimension.  

V. CONCLUSION 

In this study, we proposed a practical and theoretical framework for the description spatial resolution in 

Ultrasound Localization Microscopy. We adapted the Fourier Ring Correlation to the field of ultrasound as a 

simple and general tool to adapt the notion of resolution for localization microscopy data, directly on in vivo 

images and independently of the operator and imaging system. Because of its simplicity and versatility, we foresee 

that the FRC can become a valuable tool for ultrasound imaging in general as it can provide a simple measure for 

image resolution not only for ULM but to any imaging modality.  

Moreover, the simplicity and generality of the model we introduced can serve as a base for more advanced 

descriptions of spatial and temporal resolution in ULM. 
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Figure 1 (a) ULM over the rat’s brain with bolus of MB reconstructed from BrainBolus. (b) ULM over the rat’s 

brain with infusion of MB reconstructed from BrainInfusion. (c) ULM over the rat’s kidney with MB bolus 

injection reconstructed from KidneyBolus. (d) ULM over the rat’s kidney with bolus injection and motion 

correction reconstructed from KidneyMoCo. (e) ULM over a mouse tumor with MB bolus injection reconstructed 

from Tumor. Scale bar 1 mm. 

 



 
 

 

 

 

Figure 2: FRC calculation for ULM(a). Reconstruction of all MB tracks and separation 

in two equally filled subsets. (b) Reconstruction of the two corresponding sub-images. (c) 

Calculation of the two 2D Fourier spectrums. (d) Calculation of the FRC along iso-

frequency rings and measure of resolution as the intersection with the 2- curve. 



 
 

 

 

 

 

 

 

 

Figure 3: FRC curve with the 2-  and the ½ bits threshold curves for the four datasets: 

(a) BrainBolus, (b) Tumor, (c) KidneyBolus, and (d) KidneyMoCo. 

 

 



 
 

 

Figure 4: Adaption of the FRC for directional resolution estimation for the 

different datasets. (a) Principle of the Fourier Line Correlation calculation. (b) 

Corresponding FLC representation in BrainInfusion, (c) BrainBolus, (d) Tumor,(e) 

KidneyBolus, and (f) KidneyMoCo. 



 
 

 

 

 

 

 

 

Figure 5: Estimation of the localization precision on in vivo data. (a) Principle of track-based 

localization estimation in BrainInfusion. (b) Localization precision estimated for all the datasets and 

represented as a violin plot with the corresponding mean written on top. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Temporal aspect of the different acquisitions in ULM. (a) Instantaneous MB 

count along time per bloc of 1s. (b) Cumulated MB count in time. (c) Saturation curves 

corresponding to the total area covered by MB detections on the image along time. (d) 

Corresponding Nyquist dimension calculated as in (1). 



 

 

Figure 7: Relation between FRC measurement of resolution and the Nyquist dimension. (a) 

Theoretical representation of the resolution tradeoff with a curve following (2). (b) – (d), plotting of 

the FRC resolution for different acquisition times represented as a function of the corresponding 

Nyquist dimension in the different datasets. Points are separated by 2000 new detections. 


