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Finitary Idealized Concurrent Algol (FICA) is a prototypical programming language combining functional, imperative, and concurrent computation. There exists a fully abstract game model of FICA, which in principle can be used to prove equivalence and safety of FICA programs. Unfortunately, the problems are undecidable for the whole language, and only very rudimentary decidable sub-languages are known. We propose leafy automata as a dedicated automata-theoretic formalism for representing the game semantics of FICA. The automata use an infinite alphabet with a tree structure. We show that the game semantics of any FICA term can be represented by traces of a leafy automaton. Conversely, the traces of any leafy automaton can be represented by a FICA term. Because of the close match with FICA, we view leafy automata as a promising starting point for finding decidable subclasses of the language and, more generally, to provide a new perspective on models of higher-order concurrent computation. Moreover, we identify a fragment of FICA that is amenable to verification by translation into a particular class of leafy automata. Using a locality property of the latter class, where communication between levels is restricted and every other level is bounded, we show that their emptiness problem is decidable by reduction to Petri nets reachability.

Introduction

Game semantics is a versatile paradigm for giving semantics to a wide spectrum of programming languages [START_REF] Abramsky | Game semantics[END_REF][START_REF] Murawski | An invitation to game semantics[END_REF]. It is well-suited for studying the observational equivalence of programs and, more generally, the behaviour of a program in an arbitrary context. About 20 years ago, it was discovered that the game semantics of a program can sometimes be expressed by a finite automaton or another simple computational model [START_REF] Ghica | Reasoning about Idealized Algol using regular expressions[END_REF]. This led to algorithmic uses of game semantics for program analysis and verification [START_REF] Abramsky | Applying game semantics to compositional software modelling and verification[END_REF][START_REF] Dimovski | A counterexample-guided refinement tool for open procedural programs[END_REF][START_REF] Ghica | Compositional model extraction for higher-order concurrent programs[END_REF][START_REF] Bakewell | On-the-fly techniques for games-based software model checking[END_REF][START_REF] Hopkins | Homer: A Higher-order Observational equivalence Model checkER[END_REF][START_REF] Hopkins | Hector: An Equivalence Checker for a Higher-Order Fragment of ML[END_REF][START_REF] Kiefer | APEX: An Analyzer for Open Probabilistic Programs[END_REF][START_REF] Murawski | Game semantic analysis of equivalence in IMJ[END_REF][START_REF] Dimovski | Symbolic game semantics for model checking program families[END_REF][START_REF] Dimovski | Probabilistic analysis based on symbolic game semantics and model counting[END_REF]. Thus far, these advances concerned mostly languages without concurrency.

In this work, we consider Finitary Idealized Concurrent Algol (FICA) and its fully abstract game semantics [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF]. It is a call-by-name language with higherorder features, side-effects, and concurrency implemented by a parallel composition operator and semaphores. It is finitary since, as it is common in this context, base types are restricted to finite domains. Quite surprisingly, the game semantics of this language is arguably simpler than that for the language without concurrency. The challenge comes from algorithmic considerations.

Following the successful approach from the sequential case [START_REF] Ghica | Reasoning about Idealized Algol using regular expressions[END_REF][START_REF] Ong | Observational equivalence of 3rd-order Idealized Algol is decidable[END_REF][START_REF] Murawski | Games for complexity of second-order call-by-name programs[END_REF][START_REF] Murawski | Third-order Idealized Algol with iteration is decidable[END_REF][START_REF] Cotton-Barratt | ML, visibly pushdown class memory automata, and extended branching vector addition systems with states[END_REF], the first step is to find an automaton model abstracting the phenomena appearing in the semantics. The second step is to obtain program fragments from structural restrictions on the automaton model. In this paper we take both steps.

We propose leafy automata: an automaton model working on nested data. Data are used to represent pointers in plays, while the nesting of data reflects structural dependencies in the use of pointers. Interestingly, the structural dependencies in plays boil down to imposing a tree structure on the data. We show a close correspondence between the automaton model and the game semantics of FICA. For every program, there is a leafy automaton whose traces (data words) represent precisely the plays in the semantics of the program (Theorem 3). Conversely, for every leafy automaton, there is a program whose semantics consists of plays representing the traces of the automaton (Theorem 5). (The latter result holds modulo a saturation condition we explain later.) This equivalence shows that leafy automata are a suitable model for studying decidability questions for FICA.

Not surprisingly, due to their close connection to FICA, leafy automata turn out to have an undecidable emptiness problem. We use the undecidability argument to identify the source, namely communication across several unbounded levels, i.e., levels in which nodes can produce an unbounded number of children during the lifetime of the automaton. To eliminate the problem, we introduce a restricted variant of leafy automata, called local, in which every other level is bounded and communication is allowed to cross only one unbounded node. Emptiness for such automata can be decided via reduction to a number of instances of Petri net reachability problem.

We also identify a fragment of FICA, dubbed local FICA (LFICA), which maps onto local leafy automata. It is based on restricting the distance between semaphore and variable declarations and their uses inside the term. This is a first non-rudimentary fragment of FICA for which some verification tasks are decidable. Overall, this makes it possible to use local leafy automata to analyse LFICA terms and decide associated verification tasks.

Related work Concurrency, even with only first-order recursion, leads to undecidability [START_REF] Ramalingam | Context-sensitive synchronization-sensitive analysis is undecidable[END_REF]. Intuitively, one can encode the intersection of languages of two pushdown automata. From the automata side, much research on decidable cases has concentrated on bounding interactions between stacks representing different threads of the program [START_REF] Qadeer | Context-bounded model checking of concurrent software[END_REF][START_REF] Torre | Reducing context-bounded concurrent reachability to sequential reachability[END_REF][START_REF] Aiswarya | Verifying communicating multi-pushdown systems via split-width[END_REF]. From the game semantics side, the only known decidable fragment of FICA is Syntactic Control of Concurrency (SCC) [START_REF] Ghica | Syntactic control of concurrency[END_REF], which imposes bounds on the number of threads in which arguments can be used. This restriction makes it possible to represent the game semantics of programs by finite automata. In our work, we propose automata models that correspond to unbounded interactions with arbitrary FICA contexts, and importantly that remains true also when we restrict the terms to LFICA. Leafy automata are a model of computation over an infinite alphabet. This area has been explored extensively, partly motivated by applications to database theory, notably XML [START_REF] Schwentick | Automata for XML -A survey[END_REF]. In this context, nested data first appeared in [START_REF] Björklund | Shuffle expressions and words with nested data[END_REF], where the authors considered shuffle expressions as the defining formalism. Later on, data automata [START_REF] Bojańczyk | Two-variable logic on data words[END_REF] and class memory automata [START_REF] Björklund | On notions of regularity for data languages[END_REF] have been adapted to nested data in [START_REF] Decker | Ordered navigation on multiattributed data words[END_REF][START_REF] Cotton-Barratt | Weak and nested class memory automata[END_REF]. They are similar to leafy automata in that the automaton is allowed to access states related to previous uses of data values at various depths. What distinguishes leafy automata is that the lifetime of a data value is precisely defined and follows a question and answer discipline in correspondence with game semantics. Leafy automata also feature run-time "zero-tests", activated when reading answers.

For most models over nested data, the emptiness problem is undecidable. To achieve decidability, the authors in [START_REF] Decker | Ordered navigation on multiattributed data words[END_REF][START_REF] Cotton-Barratt | Weak and nested class memory automata[END_REF] relax the acceptance conditions so that the emptiness problem can eventually be recast as a coverability problem for a well-structured transition system. In [START_REF] Cotton-Barratt | Fragments of ML decidable by nested data class memory automata[END_REF], this result was used to show decidability of equivalence for a first-order (sequential) fragment of Reduced ML. On the other hand, in [START_REF] Björklund | Shuffle expressions and words with nested data[END_REF] the authors relax the order of letters in words, which leads to an analysis based on semi-linear sets. Both of these restrictions are too strong to permit the semantics of FICA, because of the game-semantic WAIT condition, which corresponds to waiting until all sub-processes terminate.

Another orthogonal strand of work on concurrent higher-order programs is based on higher-order recursion schemes [START_REF] Hague | Saturation of concurrent collapsible pushdown systems[END_REF][START_REF] Kobayashi | Model-checking higher-order programs with recursive types[END_REF]. Unlike FICA, they feature recursion but the computation is purely functional over a single atomic type o.

Structure of the paper:

In the next two sections we recall FICA and its game semantics from [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF]. The following sections introduce leafy automata (LA) and their local variant (LLA), where we also analyse the associated decision problems and, in particular, show that the non-emptiness problem for LLA is decidable. Subsequently, we give a translation from FICA to LA (and back) and define a fragment LFICA of FICA which can be translated into LLA.

Finitary Idealized Concurrent Algol (FICA)

Idealized Concurrent Algol [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF] is a paradigmatic language combining higherorder with imperative computation in the style of Reynolds [START_REF] Reynolds | The essence of Algol[END_REF], extended to concurrency with parallel composition (||) and binary semaphores. We consider its finitary variant FICA over the finite datatype {0, . . . , max } (max ≥ 0) with loops but no recursion. Its types θ are generated by the grammar Fig. 1: FICA typing rules judgments are displayed in Figure 1. skip and div θ are constants representing termination and divergence respectively, i ranges over {0, • • • , max }, and op represents unary arithmetic operations, such as successor or predecessor (since we work over a finite datatype, operations of bigger arity can be defined using conditionals). Variables and semaphores can be declared locally via newvar and newsem. Variables are dereferenced using !M , and semaphores are manipulated using two (blocking) primitives, grab(s) and release(s), which grab and release the semaphore respectively. The small-step operational semantics of FICA is reproduced in Appendix A. In what follows, we shall write div for div com .

We are interested in contextual equivalence of terms. Two terms are contextually equivalent if there is no context that can distinguish them with respect to may-termination. More formally, a term ⊢ M : com is said to terminate, written M ⇓, if there exists a terminating evaluation sequence from M to skip. Then contextual (may-)equivalence

(Γ ⊢ M 1 ∼ = M 2 ) is defined by: for all contexts C such that ⊢ C[M ] : com, C[M 1 ] ⇓ if and only if C[M 2 ] ⇓.
The force of this notion is quantification over all contexts.

Since contextual equivalence becomes undecidable for FICA very quickly [START_REF] Ghica | Syntactic control of concurrency[END_REF], we will look at the special case of testing equivalence with terms that always diverge, e.g. given Γ ⊢ M : θ, is it the case that Γ ⊢ M ∼ = div θ ? Intuitively, equivalence with an always-divergent term means that C[M ] will never converge (must diverge) if C uses M . At the level of automata, this will turn out to correspond to the emptiness problem.

In verification tasks, with the above equivalence test, we can check whether uses of M can ever lead to undesirable states. For example, for a given term x : var ⊢ M : θ, the term

f : θ → com ⊢ newvar x := 0 in (f (M ) || if !x = 13 then skip else div)
will be equivalent to div only when x is never set to 13 during a terminating execution. Note that, because of quantification over all contexts, f may use M an arbitrary number of times, also concurrently or in nested fashion, which is a very expressive form of quantification.

Game semantics

Game semantics for programming languages involves two players, called Opponent (O) and Proponent (P), and the sequences of moves made by them can be viewed as interactions between a program (P) and a surrounding context (O). In this section, we briefly present the fully abstract game model for FICA from [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF], which we rely on in the paper. The games are defined using an auxiliary concept of an arena.

Definition 1. An arena A is a triple M A , λ A , ⊢ A where: -M A is a set of moves; -λ A : M A → {O, P } × {Q, A} is a function determining for each m ∈ M A
whether it is an Opponent or a Proponent move, and a question or an answer; we write λ OP A , λ QA A for the composite of λ A with respectively the first and second projections;

-⊢ A is a binary relation on M A , called enabling, satisfying: if m ⊢ A n for no m then λ A (n) = (O, Q), if m ⊢ A n then λ OP A (m) = λ OP A (n)
, and if m ⊢ A n then λ QA A (m) = Q. We shall write I A for the set of all moves of A which have no enabler; such moves are called initial. Note that an initial move must be an Opponent question. In arenas used to interpret base types all questions are initial and P-moves answering them are detailed in the table below, where i ∈ {0, More complicated types are interpreted inductively using the product (A × B) and arrow (A ⇒ B) constructions, given below.

M A×B = M A + M B λ A×B = [λ A , λ B ] ⊢ A×B = ⊢ A + ⊢ B M A⇒B = M A + M B λ A⇒B = [ λ P O A , λ QA A , λ B ] ⊢ A⇒B = ⊢ A + ⊢ B +{ (b, a) | b ∈ I B and a ∈ I A } where λ P O A (m) = O iff λ OP A (m) = P .
We write θ for the arena corresponding to type θ. Below we draw (the enabling relations of) A 1 = com → com → com and A 2 = (var → com) → com respectively, using superscripts to distinguish copies of the same move (the use of superscripts is consistent with our future use of tags in Definition 9).

O run ♣ ♣ ♣ ❣ ❣ ❣ ❣ ❣ ❣ ❣ ❣ ❣ P run 2 run 1 done O done 2 done 1 O run ♣ ♣ ♣ P run 1 ♥ ♥ ♥ ❢ ❢❢ ❢❢ ❢❢ ❢❢ ❢❢ ❢ done O read 11 write(i) 11 done 1 P i 11 ok 11
Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have a unique pointer to an earlier occurrence of a move m such that m ⊢ A n. We say that n is (explicitly) justified by m or, when n is an answer, that n answers m. If a question does not have an answer in a justified sequence, we say that it is pending in that sequence. Below we give two justified sequences from A 1 and A 2 respectively. run run 1 run 2 done 1 done 2 done run run Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy a well-formedness condition that reflects the "static" style of concurrency of our programming language: any started sub-processes must end before the parent process terminates. This is formalised as follows, where the letters q and a to refer to question-and answer-moves respectively, while m denotes arbitrary moves. Definition 2. The set P A of plays over A consists of the justified sequences s over A that satisfy the two conditions below.

FORK : In any prefix s

′ = • • • q • • • m of s, the question q must be pending when m is played. WAIT : In any prefix s ′ = • • • q • • • a of s
, all questions justified by q must be answered.

It is easy to check that the justified sequences given above are plays. A subset σ of P A is O-complete if s ∈ σ and so ∈ P A imply so ∈ σ, when o is an O-move.

Definition 3. A strategy on A, written σ : A, is a prefix-closed O-complete subset of P A . Suppose Γ = {x 1 : θ 1 , • • • , x l : θ l } and Γ ⊢ M : θ is a FICA-term. Let us write Γ ⊢ θ for the arena θ 1 × • • • × θ l ⇒ θ .
In [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF] it is shown how to assign a strategy on Γ ⊢ θ to any FICA-term Γ ⊢ M : θ. We write Γ ⊢ M to refer to that strategy. For example, Γ ⊢ div = {ǫ, run} and Γ ⊢ skip = {ǫ, run, run done}. Given a strategy σ, we denote by comp(σ) the set of nonempty complete plays of σ, i.e. those in which all questions have been answered. The game-semantic interpretation • • • turns out to provide a fully abstract model in the following sense.

Theorem 1 ([23]). Γ ⊢ M 1 ∼ = M 2 iff comp( Γ ⊢ M 1 ) = comp( Γ ⊢ M 2 ).
In particular, since we have comp(

Γ ⊢ div θ ) = ∅, Γ ⊢ M : θ is equivalent to div θ iff comp( Γ ⊢ M ) = ∅.

Leafy automata

We would like to be able to represent the game semantics of FICA using automata.

To that end, we introduce leafy automata (LA). They are a variant of automata over nested data, i.e. a type of automata that read finite sequences of letters of the form (t,

d 0 d 1 • • • d j ) (j ∈ N)
, where t is a tag from a finite set Σ and each d i (0 ≤ i ≤ j) is a data value from an infinite set D.

In our case, D will have the structure of a countably infinite forest and the sequences d 0 • • • d j will correspond to branches of a tree. Thus, instead of -Infinite branching: pred -1 ({d ⊥ }) is infinite for any d ⊥ ∈ D ∪ {⊥}.

d 0 • • • d j ,
-Well-foundedness: for any d ∈ D, there exists i ∈ N, called the level of d, such that pred i+1 (d) = ⊥. Level-0 data values will be called roots.

In order to define configurations of leafy automata, we will rely on finite subtrees of D, whose nodes will be labelled with states. We say that T ⊆ D is a subtree of

D iff T is closed (∀x ∈ T : pred (x) ∈ T ∪{⊥}) and rooted (∃!x ∈ T : pred (x) = ⊥).
Next we give the formal definition of a level-k leafy automaton. Its set of states Q will be divided into layers, written Q (i) (0 ≤ i ≤ k), which will be used to label level-i nodes. We will write

Q (i1,••• ,i k ) to abbreviate Q (i1) × • • • × Q (i k ) , excluding any components Q (ij ) where i j < 0. We distinguish Q (0,-1) = { †}. Definition 5. A level-k leafy automaton (k-LA) is a tuple A = Σ, k, Q, δ , where -Σ = Σ Q + Σ A is a finite alphabet, partitioned into questions and answers; -k ≥ 0 is the level parameter; -Q = k i=0 Q (i) is a finite set of states, partitioned into sets Q (i) of level-i states; -δ = δ Q + δ A
is a finite transition function, partitioned into question-and answer-related transitions;

-δ Q = k i=0 δ (i) Q , where δ (i) Q ⊆ Q (0,1,••• ,i-1) × Σ Q × Q (0,1,••• ,i) for 0 ≤ i ≤ k; -δ A = k i=0 δ (i)
A , where δ

(i) A ⊆ Q (0,1,••• ,i) × Σ A × Q (0,1,••• ,i-1) for 0 ≤ i ≤ k.
Configurations of LA are of the form (D, E, f ), where D is a finite subset of D (consisting of data values that have been encountered so far), E is a finite subtree of D, and f : E → Q is a level-preserving function, i.e. if d is a level-i data value then f (d) ∈ Q (i) . A leafy automaton starts from the empty configuration κ 0 = (∅, ∅, ∅) and proceeds according to δ, making two kinds of transitions. Each kind manipulates a single leaf: for questions one new leaf is added, for answers one leaf is removed. Let the current configuration be κ = (D, E, f ).

-On reading a letter (t, d) with t ∈ Σ Q and d ∈ D a fresh level-i data, the automaton adds a new leaf d in a configuration and updates the states on the branch to d. So it changes its configuration to κ ′ = (D ∪ {d}, E ∪ {d}, f ′ ) provided that pred (d) ∈ E and f ′ satisfies:

(f (pred i (d)), • • • , f (pred(d)), t, f ′ (pred i (d)), • • • , f ′ (pred (d)), f ′ (d)) ∈ δ (i) Q , dom(f ′ ) = dom(f )∪{d}, and f ′ (x) = f (x) for all x ∈ {pred (d), • • • , pred i (d)}.
-On reading a letter (t, d) with t ∈ Σ A and d ∈ E a level-i data which is a leaf, the automaton deletes d and updates the states on the branch to d. So it changes its configuration to κ ′ = (D, E \ {d}, f ′ ) where f ′ satisfies:

(f (pred i (d)), • • • , f (pred (d)), f (d), t, f ′ (pred i (d)), • • • , f ′ (pred (d))) ∈ δ (i) A , dom(f ′ ) = dom(f )\{d} and f ′ (x) = f (x) for all x ∈ {pred (d), • • • , pred i (d)}.
-Initially D,E, and f are empty; we proceed to κ ′ = ({d}, {d}, {d → q (0) }) if (t, d) is read where

† t --→q (0) ∈ δ (0) 
Q . The last move is treated symmetrically.

In all cases, we write κ

(t,d)
---→κ ′ . Note that a single transition can only change states on the branch ending in d. Other parts of the tree remain unchanged.

Example 1. Below we illustrate the effect of LA transitions. Let

D 1 = {d 0 , d 1 , d ′ 1 } and d 2 ∈ D 1 . Let κ 1 = (D 1 , E 1 , f 1 ), κ 2 = (D 1 ∪ {d 2 }, E 2 , f 2 ), κ 3 = (D 1 ∪ {d 2 }, E 1 , f 1 )
, where the trees E 1 , E 2 are displayed below and node annotations of the form (q) correspond to values of f 1 , f 2 , e.g. f 1 (d 0 ) = q (0) .

d 0 (q (0) ) s s s ▼ ▼ ▼ E 1 , f 1 : d ′ 1 (q) d 1 (q (1) ) d 0 (r (0) ) ✈ ✈ ✈ ✈ ❑ ❑ ❑ ❑ E 2 , f 2 : d ′ 1 (q) d 1 (r (1) ) d 2 (r (2) )
For κ 1 to evolve into κ 2 (on (t, d 2 )), we need (q (0) , q (1) , t, r (0) , r (1) , r (2) ) ∈ δ

Q . On the other hand, to go from κ 2 to κ 3 (on (t, d 2 )), we want (r (0) , r (1) , r (2) , t, q (0) , q (1) 

) ∈ δ (2) A . Definition 6. A trace of a leafy automaton A is a sequence w = l 1 • • • l h ∈ (Σ × D) * such that κ 0 l1 --→κ 1 . . . κ h-1 l h --→κ h where κ 0 = (∅, ∅, ∅). A configuration κ = (D, E, f
) is accepting if E and f are empty. A trace w is accepted by A if there is a non-empty sequence of transitions as above with κ h accepting. The set of traces (resp. accepted traces) of A is denoted by Tr (A) (resp. L(A)).

Remark 1. When writing states, we will often use superscripts (i) to indicate the intended level. So, (q (0) ,

• • • , q (i-1) ) t --→(r (0) , • • • , r (i) ) refers to (q (0) , • • • , q (i-1) , t, r (0) , • • • , r (i) ) ∈ δ (i) Q ; similarly for δ (i)
A transitions. For i = 0, this degenerates to † t --→r (0) and r (0) t --→ †.

Example 2. Consider the 1-LA over

Σ Q = {start, inc}, Σ A = {dec, end}. Let Q (0) = {0}, Q (1)
= {0} and define δ by:

† start ---→0, 0 inc --→(0, 0), (0, 0) dec --→0, 0 end --→ †.
The accepted traces of this 1-LA have the form (start,

d 0 ) (|| n i=0 (inc, d i 1 ) (dec, d i 1 
)) (end, d 0 ), i.e. they are valid histories of a single non-negative counter (histories such that the counter starts and ends at 0). In this case, all traces are simply prefixes of such words.

Remark 2. Note that, whenever a leafy automaton reads (t, d) (t ∈ Σ Q ) and the level of d is greater than 0, then it must have read a unique question (t ′ , pred (d)) earlier. Also, observe that an LA trace contains at most two occurrences of the same data value, such that the first is paired with a question and the second is paired with an answer. Because the question and the answer share the same data value, we can think of the answer as answering the question, like in game semantics. Indeed, justification pointers from answers to questions will be represented in this way in Theorem 3. Finally, we note that LA traces are invariant under tree automorphisms of D.

Lemma 1. The emptiness problem for 2-LA is undecidable. For 1-LA, it is reducible to the reachability problem for VASS in polynomial time and there is a reverse reduction in exponential time, so it is decidable in Ackermannian time [START_REF] Leroux | Reachability in vector addition systems is primitiverecursive in fixed dimension[END_REF] but not elementary [START_REF] Czerwiński | The reachability problem for Petri nets is not elementary[END_REF]. Proof. For 2-LA we reduce from the halting problem on two-counter-machines. Two counters can be simulated using configurations of the form

q ♦ ♦ ♦ ♦ ♦ ❖ ❖ ❖ ❖ ❖ c 1 ⑤ ⑤ ❇ ❇ c 2 ⑤ ⑤ ❇ ❇ P P P P P ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
where there are two level-1 nodes, one for each counter. The number of children at level 2 encodes the counter value. Zero tests can be implemented by removing the corresponding level-1 node and creating a new one. This is possible only when the node is a leaf, i.e., it does not have children at level 2. The state of the 2-counter machine can be maintained at level 0, the states at level 1 indicate the name of the counter, and the level-2 states are irrelevant.

The translation from 1-LA to VASS is straightforward and based on representing 1-LA configurations by the state at level 0 and, for each state at level 1, the count of its occurrences. The reverse translation is based on the same idea and extends the encoding of a non-negative counter in Example 2, where the exponential blow up is simply due to the fact that vector updates in VASS are given in binary whereas 1-LA transitions operate on single branches.

⊓ ⊔ Lemma 2. 1-LA equivalence is undecidable.

Proof. We provide a direct reduction from the halting problem for 2-counter machines, where both counters are required to be zero initially as well as finally.

The main obstacle is that implementing zero tests as in the proof of the first part of Lemma 1 is not available because we are restricted to leafy automata with levels 0 and 1 only. To overcome it, we exploit the power of the equivalence problem where one of the 1-LA will have the task not of correctly simulating zero tests but recognising zero tests that are incorrect. The full argument can be found in Appendix B. ⊓ ⊔

Local leafy automata (LLA)

Here we identify a restricted variant of LA for which the emptiness problem is decidable. We start with a technical definition.

Definition 7. A k-LA is bounded at level i (0 ≤ i ≤ k) if there is a bound b such that each node at level i can create at most b children during a run. We refer to b as the branching bound.

Note that we are defining a "global" bound on the number of children that a node at level i may create across a whole run, rather than a "local" bound on the number of children a node may have in a given configuration.

To motivate the design of LLA, we observe that the undecidability argument (for the emptiness problem) for 2-LA used two consecutive levels (0 and 1) that are not bounded. For the node at level 0, this corresponded to the number of zero tests, while an unbounded counter is simulated at level 1. In the following we will eliminate consecutive unbounded levels by introducing an alternating pattern of bounded and unbounded levels. Even-numbered layers (i = 0, 2, ...) will be bounded, while odd-numbered layers will be unbounded. Observe in particular that the root (layer 0) is bounded. As we will see later, this alternation reflects the term/context distinction in game semantics: the levels corresponding to terms are bounded, and the levels coresponding to contexts are unbounded.

With this restriction alone, it is possible to reconstruct the undecidability argument for 4-LA, as two unbounded levels may still communicate. Thus we introduce a restriction on how many levels a transition can read and modify.

when adding or removing a leaf at an odd level 2i + 1, the automaton will be able to access levels 2i, 2i -1 and 2i -2; while -when adding or removing a leaf at an even level 2i, the automaton will be able to access levels 2i -1 and 2i -2.

In particular, when an odd level produces a leaf, it will not be able to see the previous odd level. The above constraints mean that the transition functions δ

(i) Q , δ (i) 
Q can be presented in a more concise form, given below.

δ (i) Q ⊆ Q (i-2,i-1) × Σ Q × Q (i-2,i-1,i) if i is even Q (i-3,i-2,i-1) × Σ Q × Q (i-3,i-2,i-1,i) if i is odd δ (i) A ⊆ Q (i-2,i-1,i) × Σ A × Q (i-2,i-1)
if i is even

Q (i-3,i-2,i-1,i) × Σ A × Q (i-3,i-2,i-1) if i is odd
In terms of the previous notation developed for LA, (q (i-2) , q (i-1) , x, r (i-2) , r (i-1) , r

(i) ) ∈ δ (i)
Q represents all tuples of the form ( q, q (i-2) , q (i-1) , x, q, r (i-2) , r (i-1) , r (i) ), where q ranges over Q (0,••• ,i-3) . Definition 8. A level-k local leafy automaton (k-LLA) is a k-LA whose transition function admits the above-mentioned presentation and which is bounded at all even levels. Theorem 2. The emptiness problem for LLA is decidable.

Proof (Sketch). Let b be a bound on the number of children created by each even node during a run.

The critical observation is that, once a node d at even level 2i has been created, all subsequent actions of descendants of d access (read and/or write) the states at levels 2i -1 and 2i -2 at most 2b times. The shape of the transition function dictates that this can happen only when child nodes at level 2i + 1 are added or removed. In addition, the locality property ensures that the automaton will never access levels < 2i -2 at the same time as node d or its descendants.

We will make use of these facts to construct summaries for nodes on even levels which completely describe such a node's lifetime, from its creation as a leaf until its removal, and in between performing at most 2b reads-writes of the parent and grandparent states. A summary is a sequence quadruples of states: two pairs of states of levels 2i -2 and 2i -1. The first pair are the states we expect to find on these levels, while the second are the states to which we update these levels. Hence a summary at level 2i is a complete record of a valid sequence of read-writes and stateful changes during the lifetime of a node on level 2i.

We proceed by induction and show how to calculate the complete set of summaries at level 2i given the complete set of summaries at level 2i + 2. We construct a program for deciding whether a given sequence is a summary at level 2i. This program can be evaluated via Vector Addition Systems with States (VASS). Since we can finitely enumerate all candidate summaries at level 2i, this gives us a way to compute summaries at level 2i. Proceeding this way, we finally calculate summaries at level 2. At this stage, we can reduce the emptiness problem for the given LLA to a reachability test on a VASS.

The complete argument is given in Appendix C.

⊓ ⊔

Let us remark also that the problem becomes undecidable if we remove either boundedness restriction, or allow transitions to look one level further.

6 From FICA to LA Recall from Section 3 that, to interpret base types, game semantics uses moves from the set

M = M com ∪ M exp ∪ M var ∪ M sem = { run, done, q, read, grb, rls, ok } ∪ { i, write(i) | 0 ≤ i ≤ max }.
The game semantic interpretation of a term-in-context Γ ⊢ M : θ is a strategy over the arena Γ ⊢ θ , which is obtained through product and arrow constructions, starting from arenas corresponding to base types. As both constructions rely on the disjoint sum, the moves from Γ ⊢ θ are derived from the base types present in types inside Γ and θ. To indicate the exact occurrence of a base type from which each move originates, we will annotate elements of M with a specially crafted scheme of superscripts. Suppose

Γ = {x 1 : θ 1 , • • • , x l : θ l }.
The superscripts will have one of the two forms, where i ∈ N * and ρ ∈ N:

-( i, ρ) will be used to represent moves from θ;

-(x v i, ρ) will be used to represent moves from θ v (1 ≤ v ≤ l).
The annotated moves will be written as m ( i,ρ) or m (xv i,ρ) , where m ∈ M. We will sometimes omit ρ on the understanding that this represents ρ = 0. Similarly, when i is omitted, the intended value is ǫ. Thus, m stands for m (ǫ,0) . The next definition explains how the i superscripts are linked to moves from θ . Given X ⊆ {m

( i,ρ) | i ∈ N * , ρ ∈ N} and y ∈ N ∪ {x 1 , • • • , x l }, we let yX = {m (y i,ρ) | m ( i,ρ) ∈ X}.
Definition 9. Given a type θ, the corresponding alphabet T θ is defined as follows

T β = { m (ǫ,ρ) | m ∈ M β , ρ ∈ N } β = com, exp, var, sem T θ h →...→θ1→β = h u=1 (uT θu ) ∪ T β For Γ = {x 1 : θ 1 , • • • , x l : θ l }, the alphabet T Γ ⊢θ is defined to be T Γ ⊢θ = l v=1 (x v T θv ) ∪ T θ . Example 3. The alphabet T f :com→com,x:com⊢com is {run (f 1,ρ) , done (f 1,ρ) , run (f,ρ) , done (f,ρ) , run (x,ρ) , done (x,ρ) , run (ǫ,ρ) , done (ǫ,ρ) | ρ ∈ N}.
To represent the game semantics of terms-in-context, of the form Γ ⊢ M : θ, we are going to use finite subsets of T Γ ⊢θ as alphabets in leafy automata. The subsets will be finite, because ρ will be bounded. Note that T θ admits a natural partitioning into questions and answers, depending on whether the underlying move is a question or answer.

We will represent plays using data words in which the underpinning sequence of tags will come from an alphabet as defined above. Superscripts and data are used to represent justification pointers. Intuitively, we represent occurrences of questions with data values. Pointers from answers to questions just refer to these values. Pointers from questions use bounded indexing with the help of ρ.

Initial question-moves do not have a pointer and to represent such questions we simply use ρ = 0. For non-initial questions, we rely on the tree structure of D and use ρ to indicate the ancestor of the currently read data value that we mean to point at. Consider a trace w(t i , d i ) ending in a non-initial question, where d i is a level-i data value and i > 0. In our case, we will have

t i ∈ T Γ ⊢θ , i.e. t i = m (••• ,ρ) . By Remark 2, trace w contains unique occurrences of questions (t 0 , d 0 ), • • • , (t i-1 , d i-1 ) such that pred (d j ) = d j-1 for j = 1, • • • , i. The pointer from (t i , d i )
goes to one of these questions, and we use ρ to represent the scenario in which the pointer goes to

(t i-(1+ρ) , d i-(1+ρ) ).
Pointers from answer-moves to question-moves are represented simply by using the same data value in both moves (in this case we use ρ = 0).

We will also use ǫ-tags ǫ Q (question) and ǫ A (answer), which do not contribute moves to the represented play. Each ǫ Q will always be answered with ǫ A . Note that the use of ρ, ǫ Q , ǫ A means that several data words may represent the same play (see Examples 4,[START_REF] Bakewell | On-the-fly techniques for games-based software model checking[END_REF]. 2) , d ′ 3 ) (done (x,0) , d 3 ), represents the play

Example 4. Suppose that d 0 = pred (d 1 ), d 1 = pred (d 2 ) = pred (d ′ 2 ), d 2 = pred (d 3 ), d ′ 2 = pred (d ′ 3 ). Then the data word (run, d 0 ) (run f , d 1 ) (run f 1 , d 2 ) (run f 1 , d ′ 2 ) (run (x,2) , d 3 ) (run (x,2) , d ′ 3 ) (done x , d 3 ), which is short for (run (ǫ,0) , d 0 ) (run (f,0) , d 1 ) (run (f 1,0) , d 2 ) (run (f 1,0) , d ′ 2 ) (run (x,2) , d 3 ) (run (x,
run run f run f 1 run f 1 run x run x done x O P O O P P O. Example 5. Consider the LA A = Q, 3, Σ, δ , where Q (0) = {0, 1, 2}, Q (1) = {0}, Q (2) = {0, 1, 2}, Q (3) = {0}, Σ Q = {run, run f , run f 1 , run (x,2) }, Σ A = {done, done f , done f 1 , done x }, and δ is given by † run --→0 0 run f ---→(1, 0) (1, 0) done f ----→2 2 done ---→ † (1, 0) run f 1 ---→(1, 0, 0) (1, 0, 0) run (x,2) -----→(1, 0, 1, 0) (1, 0, 1, 0) done (x,0) ------→(1, 0, 2) (1, 0, 2) done f 1 ----→(1, 0)
Then traces from Tr (A) represent all plays from σ = f : com → com, x : com ⊢ f x , including the play from Example 4, and L(A) represents comp(σ).

Example 6. One might wish to represent plays of σ from the previous Example using data values

d 0 , d 1 , d ′ 1 , d ′′ 1 , d 2 , d ′ 2 such that d 0 = pred (d 1 ) = pred (d ′ 1 ) = pred (d ′′ 1 ), d 1 = pred (d 2 ) = pred (d ′ 2 )
, so that the play from Example 4 is represented by (run

(ǫ,0) , d 0 ) (run (f,0) , d 1 ) (run (f 1,0) , d 2 ) (run (f 1,0) , d ′ 2 ) (run (x,0) , d ′ 1 ) (run (x,0) , d ′′ 1 ) (done (x,0) , d ′ 1 )
. Unfortunately, it is impossible to construct a 2-LA that would accept all representations of such plays. To achieve this, the automaton would have to make sure that the number of run f 1 s is the same as that of run x s. Because the former are labelled with level-2 values and the latter with incomparable level-1 values, the only point of communication (that could be used for comparison) is the root. However, the root cannot accommodate unbounded information, while plays of σ can feature an unbounded number of run f 1 s, which could well be consecutive.

Before we state the main result linking FICA with leafy automata, we note some structural properties of the automata. Questions will create a leaf, and answers will remove a leaf. P-moves add leaves at odd levels (questions) and remove leaves at even levels (answers), while O-moves have the opposite effect at each level. Finally, when removing nodes at even levels we will not need to check if a node is a leaf. We call the last property even-readiness.

Even-readiness is a consequence of the WAIT condition in the game semantics. The condition captures well-nestedness of concurrent interactions -a term can terminate only after subterms terminate. In the leafy automata setting, this is captured by the requirement that only leaf nodes can be removed, i.e. a node can be removed only if all of its children have been removed beforehand. It turns out that, for P-answers only, this property will come for free. Formally, whenever the automaton arrives at a configuration κ = (D, E, f ), where d ∈ E and there is a transition

(f (pred (2i) (d)), • • • , f (pred (d)), f (d), t, f ′ (pred (2i) (d)), • • • , f ′ (pred (d))) ∈ δ (2i) A ,
then d is a leaf. In contrast, our automata will not satisfy the same property for O-answers (the environment) and for such transitions it is crucial that the automaton actually checks that only leaves can be removed. Theorem 3. For any FICA-term Γ ⊢ M : θ, there exists an even-ready leafy automaton A M over a finite subset of T Γ ⊢θ + {ǫ Q , ǫ A } such that the set of plays represented by data words from Tr (A M ) is exactly Γ ⊢ M : θ . Moreover, L(A M ) represents comp( Γ ⊢ M : θ ) in the same sense.

Proof (Sketch). Because every FICA-term can be converted to βη-normal form, we use induction on the structure of such normal forms. The base cases are:

Γ ⊢ skip : com (Q (0) = {0}; † run --→0, 0 done ---→ †), Γ ⊢ div : com (Q (0) = {0}; † run --→0), and Γ ⊢ i : exp (Q (0) = {0}; † q --→0, 0 i --→ †).
The remaining cases are inductive. When referring to the inductive hypothesis for a subterm M i , we shall use subscripts i to refer to the automata components, e.g.

Q (j) i , m --→ i etc. In contrast, Q (j) , m
--→ will refer to the automaton that is being constructed. Inference lines will indicate that the transitions listed under the line should be added to the new automaton provided the transitions listed above the line are present in the automaton obtained via induction hypothesis. We discuss a selection of technical cases below.

Γ ⊢ M 1 ||M 2 In this case we need to run the automata for M 1 and M 2 concurrently. To this end, their level-0 states will be combined (Q

(0) = Q (0) 1 ×Q (0) 2 ), but not deeper states (Q (j) = Q (j) 1 + Q (j) 2 , 1 ≤ j ≤ k).
The first group of transitions activate and terminate the two components respectively:

† run --→1q (0) 1 † run --→2q (0) 2 † run --→(q (0) 1 ,q (0) 2 ) , q (0) 1 done ---→1 † q (0) 2 done ---→2 † (q (0) 1 ,q (0) 2 ) done ---→ †
. The remaining transitions advance each component:

(q (0) 1 ,••• ,q (j) 1 ) m --→1(r (0) 1 ,••• ,r (j ′ ) 1
)

q (0) 2 ∈Q (0) 2 ((q (0) 1 ,q (0) 2 ),••• ,q (j) 1 ) m --→((r (0) 1 ,q (0) 2 ),••• ,r (j ′ ) 1
)

,

q (0) 1 ∈Q (0) 1 (q (0) 2 ,••• ,q (j) 2 ) m --→2(r (0) 2 ,••• ,r (j ′ ) 2 ) ((q (0) 1 ,q (0) 2 ),••• ,q (j) 2 ) m --→((q (0) 1 ,r (0) 
2 ),••• ,r

(j ′ ) 2
)

, where m = run, done.

Γ ⊢ newvar x := i in M 1 By [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF], the semantics of this term is obtained from the semantics of Γ, x ⊢ M 1 by 1. restricting to plays in which the moves read x , write(n) x are followed immediately by answers, 2. selecting those plays in which each answer to a read x -move is consistent with the preceding write(n) x -move (or equal to i, if no write(n) x was made), 3. erasing all moves related to x, e.g. those of the form m (x,ρ) .

To implement 1., we will lock the automaton after each read x -or write(n) x -move, so that only an answer to that move can be played next. Technically, this will be done by adding an extra bit (lock) to the level-0 state. To deal with 2., we keep track of the current value of x, also at level 0. This makes it possible to ensure that answers to read x are consistent with the stored value and that write(n) x transitions cause the right change. Erasing from condition 3 is implemented by replacing all moves with the x subscript with ǫ Q , ǫ A -tags.

Accordingly, we have

Q (0) = (Q (0) 1 + (Q (0) 1 × {lock })) × {0, • • • , max } and Q (j) = Q (j) 1 (1 ≤ j ≤ k).
As an example of a transition, we give the transition related to writing:

(q (0) 1 ,••• ,q (j) 1 ) write(z) (x,ρ) --------→1(r (0) 1 ,••• ,r (j ′ ) 1 ) 0≤n,z≤max ((q (0) 1 ,n),••• ,q (j) 1 ) ǫ Q --→((r (0) 1 ,lock,z),••• ,r (j ′ ) 1
)

.

Γ ⊢ f M h • • • M 1 : com with (f : θ h → • • • → θ 1 → com)
Here we will need

Q (0) = {0, 1, 2}, Q (1) = {0}, Q (j+2) = h u=1 Q (j) u (0 ≤ j ≤ k).
The first group of transitions corresponding to calling and returning from f :

† run --→0, 0 run f ---→(1, 0), (1, 0) done f ----→2, 2 done ---→ †.
Additionally, in state (1, 0) we want to enable the environment to spawn an unbounded number of copies of each of Γ ⊢ M u : θ u (1 ≤ u ≤ h). This is done through rules that embed the actions of the automata for M u while (possibly) relabelling the moves in line with our convention for representing moves from game semantics. Such transitions have the general form

(q (0) u ,••• ,q (j) u ) m (t,ρ) ----→u(q (0) u ,••• ,q (j ′ ) u ) (1,0,q (0) u ,••• ,q (j) u ) m (t ′ ,ρ ′ ) -----→(1,0,q (0) u ,••• ,q (j ′ ) u
)

. Note that this case also covers f : com

(h = 0).
More details and the remaining cases are covered in Appendix D. In Appendix D.2 we give an example of a term and the corresponding LA. ⊓ ⊔

Local FICA

In this section we identify a family of FICA terms that can be translated into LLA rather than LA. To achieve boundedness at even levels, we remove while5 .

To achieve restricted communication, we will constrain the distance between a variable declaration and its use. Note that in the translation, the application of function-type variables increases LA depth. So in LFICA we will allow the link between the binder newvar/newsem x and each use of x to "cross" at most one occurrence of a free variable. For example, the following terms

-newvar x := 0 in x := 1 || f (x := 2), -newvar x := 0 in f (newvar y in f (y := 1) || x :=!y)
will be allowed, but not newvar x := 0 in f (f (x := 1)).

To define the fragment formally, given a term Q in βη-normal form, we use a notion of the applicative depth of a variable x : β (β = var, sem) inside Q, written ad x (Q) and defined inductively by the table below. The applicative depth is increased whenever a functional identifier is applied to a term containing x.

shape of Q ad x (Q) x 1 y (y = x), skip, div, i 0 op(M ), !M, release(M ), grab(M ) ad x (M ) M ; N, M ||N, M := N, while M do N max(ad x (M ), ad x (N )) if M then N 1 else N 2 max(ad x (M ), ad x (N 1 ), ad x (N 2 )) λy.M , newvar /newsem y := i in M ad x (M [z/y]), where z is fresh f M 1 • • • M k 1 + max(ad x (M 1 ), • • • , ad x (M k ))
Note that in our examples above, in the first two cases the applicative depth of x is 2; and in the third case it is 3.

Definition 10 (Local FICA). A FICA-term Γ ⊢ M : θ is local if its βη-normal form does not contain any occurrences of while and, for every subterm of the normal form of the shape newvar /newsem x := i in N , we have ad x (N ) ≤ 2. We write LFICA for the set of local FICA terms. Theorem 4. For any LFICA-term Γ ⊢ M : θ, the automaton A M obtained from the translation in Theorem 3 can be presented as a LLA.

Proof (Sketch). We argue by induction that the constructions from Theorem 3 preserve presentability as a LLA.

The case of parallel composition involves running copies of M 1 and M 2 in parallel without communication, with their root states stored as a pair at level 0. Note, though, that each of the automata transitions independently of the state of the other automaton. In consequence, if the automata M 1 and M 2 are LLA, so will be the automaton for M 1 ||M 2 . The branching bound after the construction is the sum of the two bounds for M 1 and M 2 .

For Γ ⊢ newvar x := i in M , because the term is in LFICA, so is Γ, x : var ⊢ M and we have ad x (M ) ≤ 2. Then we observe that in the translation of Theorem 3 (Γ, x : var ⊢ M : θ) the questions related to x, (namely write(i) (x,ρ) and read (x,ρ) ) correspond to creating leaves at levels 1 or 3, while the corresponding answers (ok (x,ρ) and i (x,ρ) respectively) correspond to removing such leaves. In the construction for Γ ⊢ newvar x in M , such transitions need access to the root (to read/update the current state) and the root is indeed within the allowable range: in an LLA transitions creating/destroying leaves at level 3 can read/write at level 0. All other transitions (not labelled by x) proceed as in M and need not consult the root for additional information about the current state, as it is propagated. Consequently, if M is represented by a LLA then the interpretation of newvar x := i in M is also a LLA. The construction does not affect the branching bound, because the resultant runs can be viewed as a subset of runs of the automaton for M , i.e. those in which reads and writes are related.

For f M h • • • M 1 , we observe that the construction first creates two nodes at levels 0 and 1, and the node at level 1 is used to run an unbounded number of copies of (the automaton for) M i . The copies do not need access to the states stored at levels 0 and 1, because they are never modified when the copies are running. Consequently, if each M i can be translated into a LLA, the outcome of the construction in Theorem 3 is also a LLA. The new branching bound is the maximum over bounds from M 1 , • • • , M h , because at even levels children are produced as in M i and level 0 produces only 1 child.

⊓ ⊔ Corollary 1. For any LFICA-term Γ ⊢ M : θ, the problem of determining whether comp( Γ ⊢ M ) is empty is decidable. Theorems 1 and 2 imply the above. Thanks to Theorem 1, it is decidable if a LFICA term is equivalent to a term that always diverges (cf. example on page 4).

In case of inequivalence, our results could also be applied to extract the distinguishing context, first by extracting the witnessing trace from the argument underpinning Theorem 2 and then feeding it to the Definability Theorem (Theorem 41 [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF]). This is a valuable property given that in the concurrent setting bugs are difficult to replicate.

8 From LA to FICA

In this section, we show how to represent leafy automata in FICA. Let A = Σ, k, Q, δ be a leafy automaton. We shall assume that Σ, Q ⊆ {0, • • • , max } so that we can encode the alphabet and states using type exp. We will represent a trace w generated by A by a play play(w), which simulates each transition with two moves, by O and P respectively. The child-parent links in D will be represented by justification pointers. We refer the reader to Appendix F for details. Below we just state the lemma that identifies the types that correspond to our encoding, where we write

θ max +1 → β for θ → • • • → θ max +1 → β.
Lemma 3. Let A be a k-LA and w ∈ Tr (A). Then play(w) is a play in θ k , where θ 0 = com max +1 → exp and θ i+1 = (θ i → com) max +1 → exp (i ≥ 0).

Before we state the main result, we recall from [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF] that strategies corresponding to FICA terms satisfy a closure condition known as saturation: swapping two adjacent moves in a play belonging to such a strategy yields another play from the same strategy, as long as the swap yields a play and it is not the case that the first move is by O and the second one by P. Thus, saturated strategies express causal dependencies of P-moves on O-moves. Consequently, one cannot expect to find a FICA-term such that the corresponding strategy is the smallest strategy containing { play(w) | w ∈ Tr (A) }. Instead, the best one can aim for is the following result.

Theorem 5. Given a k-LA A, there exists a FICA term ⊢ M A : θ k such that ⊢ M A : θ k is the smallest saturated strategy containing { play(w) | w ∈ Tr (A) }.

Proof (Sketch). Our assumption Q ⊆ {0, • • • , max } allows us to maintain Astates in the memory of FICA-terms. To achieve k-fold nesting, we rely on the higher-order structure of the term: λf (0) .f (0) (λf (1) .f (1) (λf (2) .f (2) 

(• • • λf (k) .f (k) ))).
In fact, instead of the single variables f (i) , we shall use sequences f

(i) 0 • • • f (i)
max , so that a question t (i) Q read by A at level i can be simulated by using variable f

(i) t (i) Q (using our assumption Σ ⊆ {0, • • • , max }).
Additionally, the term contains state-manipulating code that enables moves only if they are consistent with the transition function of A.

⊓ ⊔

Conclusion and further work

We have introduced leafy automata, LA, and shown that they correspond to the game semantics of Finitary Idealized Concurrent Algol (FICA). The automata formulation makes combinatorial challenges posed by the equivalence problem explicit. This is exemplified by a very transparent undecidability proof of the emptiness problem for LA. Our hope is that LA will allow to discover interesting fragments of FICA for which some variant of the equivalence problem is decidable. We have identified one such instance, namely local leafy automata (LLA), and a fragment of FICA that can be translated to them. The decidability of the emptiness problem for LLA implies decidability of a simple instance of the equivalence problem. This in turn allows to decide some verification questions as in the example on page 4. Since these types of questions involve quantification over all contexts, the use of a fully-abstract semantics appears essential to solve them.

The obvious line of future work is to find some other subclasses of LA with decidable emptiness problem. Another interesting target is to find an automaton model for the call-by-value setting, where answers enable questions [START_REF] Abramsky | Call-by-value games[END_REF][START_REF] Honda | Game-theoretic analysis of call-by-value computation[END_REF]. It would also be worth comparing our results with abstract machines [START_REF] Fredriksson | Abstract machines for game semantics, revisited[END_REF], the Geometry of Interaction [START_REF] Lago | The geometry of concurrent interaction: handling multiple ports by way of multiple tokens[END_REF], and the π-calculus [START_REF] Berger | Sequentiality and the pi-calculus[END_REF].

V ⊢ skip||skip, s -→ skip, s V ⊢ if i then N1 else N2, s -→ N1, s, i = 0 V ⊢ skip; c, s -→ c, s V ⊢ if 0 then N1 else N2, s -→ N2, s V ⊢ op(i), s -→ op(i), s V ⊢ (λx.M )N, s -→ M [N/x], s V ⊢ newvar x := i in c, s -→ c, s V ⊢ !v, s ⊗ (v → i) -→ i, s ⊗ (v → i) V ⊢ newsem x := i in c, s -→ c, s V ⊢ v := i ′ , s ⊗ (v → i) -→ skip, s ⊗ (v → i ′ ) V ⊢ grab(v), s ⊗ (v → 0) -→ skip, s ⊗ (v → 1) V ⊢ release(v), s ⊗ (v → i) -→ skip, s ⊗ (v → 0), i = 0 V ⊢ while M do N, s -→ if M then (N ; while M do N ) else skip, s
Fig. 2: Reduction rules for FICA Typing rules Using mkvar and mksem, one can define div θ as syntactic sugar using div = div com only.

Γ ⊢ M : exp → com Γ ⊢ N : exp Γ ⊢ mkvar(M, N ) : var Γ ⊢ M : com Γ ⊢ N : com Γ ⊢ mksem(M, N ) : sem Reduction rules V ⊢ (mkvar(M, N )) := M ′ , s -→ M M ′ , s V ⊢ !(mkvar(M, N ), s -→ N, s V ⊢ grab(mksem M N ), s -→ M, s V ⊢ release(mksem M N ), s -→ N,
div θ =            div θ = com div; 0 θ = exp mkvar(λx exp .div, div exp ) θ = var mksem(div, div) θ = sem λx θ1 .div θ2 θ = θ 1 → θ 2 B Additional material for Section 4 B.1 Proof of Lemma 2
We proceed by reducing from the halting problem for deterministic two-counter machines [34, pp. 255-258].

The input to the halting problem is a deterministic two-counter machine C = (Q C , q 0 , q F , T ), where Q C is the set of states, q 0 , q F ∈ Q C are the initial and final states respectively, and T :

Q C \ {q F } → (INC ∪ JZDEC) is the step function.
Steps in INC are of the form (i, q ′ ) ∈ {1, 2} × Q C (increment counter i and go to state q ′ ). Steps in JZDEC are of the form (i, q ′ , q ′′ ) ∈ {1, 2}×Q C ×Q C (if counter i is zero then go to state q ′ ; else decrement counter i and go to state q ′′ ). The question is whether, starting from q 0 with both counters zero, C eventually reaches q F with both counters zero.

We first construct a 1-LA that recognises the language of all data words such that:

the underlying word (i.e., the projection onto the finite alphabet) encodes a path through the transition relation of C from the initial state to the final state, in other words a pseudo-run where the non-negativity of counters and the correctness of zero tests are ignored; -the occurrences of the letters that encode increments and decrements of C form pairs that are labelled by the same level-1 data values, where each increment is earlier than the corresponding decrement, which assuming that both counters are zero initially ensures their non-negativity throughout the pseudo-run and their being zero finally.

The second 1-LA is slightly more complex. It accepts data words that have the same properties as those accepted by the first 1-LA, and in addition:

there exists some increment followed by a zero test of the same counter before a decrement with the same data value has occurred, in other words there is at least one incorrect zero test in the pseudo-run.

The two sets of accepted traces will be equal if and only if all pseudo-runs that satisfy the initial, non-negativity and final conditions necessarily contain some incorrect zero test, i.e. if and only if C does not halt as required. We give the formal construction below.

The two LAs we compute are

A 1 (C) = Σ, 1, Q, δ 1 and A 2 (C) = Σ, 1, Q, δ 2 .
The alphabet, Σ = Σ Q ∪ Σ A , is defined as follows:

Σ Q = {start, inc 1 , inc 2 , zero 1 , zero 2 } Σ A = {end, dec 1 , dec 2 , zero ′ 1 , zero ′ 2 }
Traces of A 1 (C) and A 2 (C) represent pseudo-runs of C, i.e. sequences of steps of the machine. Aside from start and end, each letter in the trace corresponds to the machine performing either an INC step (inc), the "then" of a JZDEC step (zero), or the "else" of a JZDEC step (dec). The zero ′ transition is a necessity which allows us to erase leaves added by zero. Each of inc, dec, zero, zero ′ has two variants which encode i, the counter number in the corresponding step. We will say that two letters match if they have the same data value.

By construction A 1 (C) will accept exactly the traces with the following properties, which correspond to the high-level description of our first 1-LA:

-The first letter in the trace is start and the last is a matching end.

-For each occurrence of inc i , there is a matching dec i later in the trace.

-For each occurrence of zero i , there is a matching zero ′ i later in the trace. -The letters in the trace (excluding start and end) form a sequence (a 0 , . . . , a n-1 ); there exists some sequence of states (s 0 , . . . , s n ) ∈ Q n+1

C

such that for all i ∈ (0, . . . , n -1), s i+1 appears as the second or third component of T (s i ), and a i is a step which may be performed at state s i (irrespective of counter values).

The state space of the root,

Q (0) = Q C ×{•, ⋆, 1, 2}
, comprises pairs where the first component corresponds to a state of C and the second tracks an observation of some invalid sequence. The second component is only used in A 2 (C). We denote the pair at the root by square brackets. The states of the leaves at level 1 are Q (1) = {i, 0 i , i⋆} i ∈ {1, 2} , where 0 i denotes a temporary leaf generated by zero i , i denotes a counter, and i⋆ denotes a counter being observed in A 2 (C).

The transition function δ

1 of A 1 (C) is defined as follows. † start ---→ 1 [q 0 , •] [q F , •] end --→ 1 † q INC --→(i, q ′ ) ∈ T [q, •] inci --→ 1 ([q ′ , •], i) q JZDEC ----→(i, q ′ , q ′′ ) ∈ T ([q, •], i) deci --→ 1 [q ′′ , •] [q, •] zeroi ---→ 1 ([q ′ , •], 0 i ) q ∈ Q C ([q, •], 0 i ) zero ′ i ---→ 1 [q, •]
By construction A 2 (C) accepts exactly those traces of A 1 (C) where at least one zero i letter occurs in between an inc i letter and the matching letter dec i . In other words, the "then" of a JZDEC step has been taken while the counter was nonzero. This is not a legal step, and so such a trace does not represent a computation of C. This implements the high-level description of our second 1-LA.

In order to accept a word, A 2 (C) must change the second component of the root's state from ⋆ to •. It does this by nondeterministically choosing to observe some inc transition. From here, it proceeds as in A 1 (C) until either it meets the matching dec, in which case the automaton rejects, or it meets an ifz transition on the same counter, at which point it marks the second component with • and proceeds as in A 1 (C).

The transition function δ 2 of A 2 (C) is defined as follows:

† start ---→ 2 [q 0 , ⋆] [q F , •] end --→ 2 † q INC --→(i, q ′ ) ∈ T x ∈ {•, ⋆, 1, 2} [q, x] inci --→ 2 ([q ′ , x], i) [q, ⋆] inci --→ 2 ([q, i], i⋆) q JZDEC ----→(i, q ′ , q ′′ ) ∈ T x ∈ {•, ⋆, 1, 2} [q, x] zeroi ---→ 2 ([q ′ , x], 0 i ) [q, i] zeroi ---→ 2 ([q ′ , •], 0 i ) q ∈ Q C x ∈ {•, ⋆, 1, 2} ([q, x], 0 i ) zero ′ i ---→ 2 [q, x] q JZDEC ----→(i, q ′ , q ′′ ) ∈ T x ∈ {•, ⋆, 1, 2} ([q, x], i) deci --→ 2 [q ′′ , x] ([q, •], i⋆) deci --→ 2 [q ′′ , •]
A 1 (C) captures every correctness condition for halting computations of C except the legality of zero steps. Hence, A 2 (C) accepts exactly those accepted traces of A 1 (C) which are not halting computations of C, and so C performs a halting computation if and only if A 1 (C) = A 2 (C).

C Additional material for Section 5 C.1 Proof of Theorem 2

We present a proof of decidability of the emptiness problem for LLA, Theorem 2. There are two main steps in the proof. The first step uses a notion of summary for some even layer 2i. This allows to restrict an automaton to first 2i layers. The second step is a method for computing a summary for layer 2i from a summary for layer 2i + 2.

Summaries

The structure of transitions of LLA provides a notation of a domain for data values. The domain of a data value d ∈ D is the set of data values whose associated state may be modified by a transition that adds or removes d, i.e., when reading a letter annotated by d.

dom(d) =

{pred 2 (d), pred (d), d} if d is at an even level {pred 3 (d), pred 2 (d), pred (d), d} if d is at an odd level Domains give us a notion of independence: Two letters (t 1 , d 1 ), (t 2 , d 2 ) are independent if the domains of d 1 and d 2 are disjoint. We remark that if w is a trace of some LLA then every sequence obtained by permuting adjacent independent letters of w is also a trace of the same LLA ending in the same configuration.

Let us fix an k-LLA automaton A = Σ A , k A , Q A , δ A , and let b be its evenlayer bound.

Suppose, on an accepting trace on A, we encounter some data value d at even layer 2i. On an accepting trace value d occurs twice: the first occurrence corresponds to adding d, the second to deleting d. Let w be the part of the trace in between, and including, these two occurrences of d.

We can classify letters (t ′ , d ′ ) in w into one of three categories: The d-frontier letters divide w into subwords, giving us a sequence of transitions:

κ 1 m1 --→κ ′ 1 w1 --→κ 2 m2 --→κ ′ 2 w2 --→ . . . κ l m l --→κ ′ l w l --→κ l+1 m l+1 ---→κ ′ l+1 ( 1 
)
where m 1 , . . . , m l are d-frontier letters; m 1 adds node d while m l+1 deletes d. Configuration κ ′ 1 is the first in which d appears in the tree, so d is a leaf node in κ ′ 1 . Likewise, κ l is the last configuration in which d appears, as it is removed by m l+1 , so d is a leaf node in κ l+1 .

We now use independence properties. Every word w j contains only d-internal and d-external letters. Due to independence, w j is equivalent to some u j v j , with u j containing only d-internal letters of w j and v j containing only the d-external letters of w j . (Actually u 1 and u l are empty but we do not need to make a case distinction in the rest of the argument)

From here, we can see that the d-internal parts u 1 , • • • , u l of w only interact with the d-external parts at a bounded number of positions, and those positions exactly correspond to the frontier transitions m 2 , • • • , m l . Hence, if we could characterize the interactions that can occur at level 2i, then we could replace the sequences of transitions on every u j by a single short-cut transition. This would eliminate the need for levels ≥ 2i in the automaton.

We introduce a notion of a summary to implement the idea of short-cut transitions. A summary for level 2i is a function f : {1, . . . , 2(l + 1)} → Q 2i-2 × Q 2i-1 ; for some l ≤ b+1. Intuitively, from some trace w expanded as in Equation 1, we can extract f such that f (2j -1) is a pair of states labelling pred 2 (d) and pred (d) in κ j , while f (2j) is a pair of states labelling these nodes in κ ′ j . This is only the intuition because we do not have runs of A at hand to compute f .

To formalise the idea of summaries for a given automaton, we will introduce the notion of a cut automaton. Intuitively, the behaviour of a cut automaton A ↓ (2i, f ) will represent the behaviours of A contained within some subtree rooted in a data value at layer 2i.

The states and transitions of A ↓ (2i, f ) are those of A but lifted up so that level 2i becomes the root level:

Q ↓(l-2i) = Q (l) δ ↓(l-2i) Q = δ (l) Q δ ↓(l-2i) A = δ (l) A for l ≥ 2i + 2
The two to layers, 0 and 1, are special as just lifting transitions would make them stick above the root. Here is also the place where we use the summary f .

Q ↓(0) = Q (2i) × dom(f ) Q ↓(1) = Q (2i+1)
The extra component at layer 0 will be used for layer 1 transitions.

Before defining transitions we introduce some notation. For a summary f we write max(dom(f )) for the maximal element in the domain of f . We use an abbreviated notation for transitions. If f (j) = (q (2i-2) , q (2i-1) ), and f (j + 1) = (q ′(2i-2) , q ′(2i-1) ) then we write f (j) a --→(f (j + 1), q ′(2i) ) instead of (q (2i-2) , q (2i-1) ) a --→(q ′(2i-2) , q ′(2i-1) , q ′(2i) ) .

Transitions at levels 0 and 1 are adaptations of those of levels 2i and 2i + 1 in the original automaton. A node that was at level 2i is now the root so it has no predecessors anymore. The initial and final moves of A ↓ (2i, f ) create and destroy the root. They use f to predict what are states of predecessors in a corresponding move of A.

δ ↓(0) Q contains † a --→(q ′(2i) , 1) if there is a transition f (1) a --→(f (2), q ′(2i) ) in δ (2i) Q δ ↓(0) A contains (q, r) a --→ † if r = max(dom(f )) -1 and there is (f (r), q) a --→f (r + 1) in δ (2i) A
Finally, we have transitions that add and delete nodes on level 1:

in δ ↓(1) Q we have (q (2i) , r) a --→((q ′(2i) , r + 2), q ′(2i+1) ) if (f (r), q (2i) ) a --→(f (r + 1), q ′(2i) , q ′(2i+1) ) ∈ δ (2i+1) Q in δ ↓(1) A
we have ((q (2i) , r), q (2i+1) ) a --→((q ′(2i) , r + 2)) if (f (r), q (2i) , q (2i+1) ) a --→(f (r + 1), q ′(2i) ) ∈ δ (2i+1) A

We can now formally define the set of summaries for an even layer 2i:

Summary(A, 2i) = {f : A ↓ (2i, f ) accepts some trace}
The next step is to define an automaton that uses such a set of summaries. The idea is that when a node of layer 2i is created it is assigned a summary from the set of summaries. Then all moves below this node are simulated by consulting this summary. So we will never need layers below 2i.

Let S be a set of summaries at level 2i. We will now define A ↑ (2i, S). It will be (2i + 1)-LLA automaton. The states and transitions of A ↑ (2i, S) are exactly the states and transitions of A for levels 0 to 2i -1. The set of states at level 2i is

Q (2i) = {(f, r) : f ∈ S, r ∈ dom(f )} .
So a state at layer 2i is a summary function and a use counter indicating the part of the summary that has been used.

For technical reasons we will also need one state at layer 2i + 1. We set

Q (2i+1) = {•}. The transitions δ ↑(2i) Q and δ ↑(2i) A are defined as follows. in δ ↑(2i) Q we have f (1) a --→(f (2), (f, 3)) if f ∈ S in δ ↑(2i) A we have (f (r), (f, r)) a --→f (r + 1) if r = max(dom(f )) -1
These transitions imply that for every node created at level 2i, the automaton guesses a summary and sets the summary's use counter to 3. It is 3 and not 1 because the first two values of f are used for the creation of the node. The node can be deleted once this bounded counter value is maximal.

Finally, we define the transitions in δ

↑(2i+1) Q and δ ↑(2i+1) A : In δ ↑(2i+1) Q we have (f (r), (f, r)) a --→(f (r + 1), (f, r + 2), •) if r < max(dom(f )) -1 In δ ↑(2i+1) A we have (f (r), (f, r), •) a --→(f (r), (f, r)) if r = max(dom(f )) -1
So the automaton creates a child node whenever it uses a summary. The use counter is increased by 2 at such a transition. Once the use counter cannot be increased anymore, δ

↑(2i+1) A
provides transitions for deleting children at layer 2i + 1. No other transitions are applicable at this point. Once there are no children, the root can be removed by a δ ↑(2i) A transition. The next lemma states formally the relation between the two automata we have introduced and the original one. Recall that A ↓ is used to define a set of summaries. The lemma is proved by stitching runs of A ↑ and A ↓ . Lemma 4. For every k-level automaton A and level 2i < k, A accepts a trace iff A ↑ (2i, Summary(A, 2i)) accepts a trace.

The next lemma shows how to use summaries of level 2i + 1 to compute summaries at level 2i.

Lemma 5. Take a summary f of some level 2i, and consider B = A ↓ (2i, f ). Then B accepts some trace iff B ↑ (2, Summary(A, 2i + 2)) accepts some trace.

Proof. Follows from Summary(A, 2i + 2) = Summary(B, 2) and the previous lemma.

The lemma reduces the task of computing summaries to checking emptiness of automata with 3 layers. In the next subsection we show how to reduce the later problem to the reachability problem in VASS. With this lemma we can compute Summary(A, 2i) inductively. Once we compute Summary(A, 2), we can reduce testing emptiness of A ↑ (2, Summary(A, 2)) to VASS reachability. This turns out to be degenerate case of computing summaries, so the same technique as for computing summaries applies.

Computing summaries

We compute Summary(A, 2i) assuming that we know Summary(A, 2i + 2). For this we use Lemma 5. We reduce testing emptiness of B ↑ (2, Summary(A, 2i + 2)) from that lemma to VASS reachability. Since presenting a VASS directly would be quite unreadable, we present a nondeterministic program that will use variables ranging over bounded domains and some fixed set of non-negative counters. By construction, every counter will be tested for 0 only at the end of the computation. This structure allows us to emulate our nondeterministic program in a VASS, such that acceptance by the program is equivalent to reachability of a particular configuration in the VASS.

We fix a summary f of level 2i. Observe that the number of summaries at level 2i is bounded, and so it is sufficient to check whether a given candidate summary f is a valid summary.

The variables of the program are as follows:

r ∈ dom( f ) state ∈ Q 2i ∪ {⊥} state[j] ∈ Q 2i+1 ∪ {⊥, ⊤} j ∈ {1, . . . , b} children [j, f, r] ∈ N f summary at level (2i + 2), r ∈ dom(f )
Intuitively, state and r represent a state from

Q (0) of B ↑ (2, Summary(A, 2i + 2)).
The initial configuration is empty so state = ⊥. Variable state[j], represents the state of j-th child of the root. By boundedness, the root can have at most b children. Value state[j] = ⊥ means that the child has not yet been yet created, and state[j] = ⊤ that the child has been deleted. Counter children [j, f, r] indicates the number of children of the j-th child of the root with a particular summary f of level 2i + 2 and usage counter r. Following these intuitions the initial values of the variables are r = 1, state = ⊥, state[j] = ⊥ for every j, and children [j, f, r] = 0 for every j, f and r.

The program TEST( f ) we are going to write is a set of rules that are executed nondeterministically. Either the program will eventually accept, or it will block with no further rules that can be applied. We later show that the program has an accepting run for f iff f ∈ Summary(A, 2i). The rules of the program refer to transitions of A and simulate the definition of B ↑ (2, Summary(A, 2i + 2)) from Lemma 5. They are defined as follows.

Initializing the root We have a rule

if state = ⊥ then state = q ′(2i) r = 3 for every transition f (1) a --→(f (2), q ′(2i) ) in δ (2i) Q .
Removing the root and accepting. The program is able to accept when it has completed all of its interaction with the outside world. Observe that this is the only time that the counters are tested for zero. Since this occurs at the end of the program, it can be easily checked by VASS reachability.

if state = q (2i) r = max(dom( f )) -1 ∀j : state[j] = ⊤ ∀(j, f, r) : children [j, f, r] = 0 then accept for every (f ( r), q (2i) ) a --→f ( r + 1) in δ (2i) 
A .

Adding a node at level 2i + 1. We ensure that we are in the correct state and ensure that the summary we are testing aligns with some transition from the automaton.

if state = q (2i) f ( = (q (2i-2) , q (2i-1) ) f ( r + 1) = (q ′(2i-2) , q ′(2i-1) ) r + 2 < max(dom( f )) ∃j : state[j] = ⊥ then state := q ′(2i) state[j] := q ′(2i+1) r = r + 2
for every transition (q (2i-2) , q (2i-1) , q (2i) ) t -→ (q ′(2i-2) , q ′(2i-1) , q ′(2i) , q ′(2i+1) ) ∈ δ (2i+1) Q

Removing a node at level 2i + 1. We delete a child according to some transition from δ (2i+1) Q

. While the zero test (ensuring j is a leaf) is not performed here directly, no further operations will be made on children counters of this child and hence the zero test performed at the end of the simulation does the job.

if state = q (2i) f ( r) = (q (2i-2) , q (2i-1) ) f ( r + 1) = (q ′(2i-2) , q ′(2i-1) ) r + 2 < max(dom( f )) ∃j : state[j] = q (2i+1) then state := q ′(2i) state[j] := ⊤ r = r + 2
for every transition (q (2i-2) , q (2i-1) , q (2i) , q (2i+1) ) t -→ (q ′(2i-2) , q ′(2i-1) , q ′(2i) ) ∈ δ (2i+1) A

Adding a node at level 2i + 2. Firstly we ensure that there is some child j where such a node can be appended. We simulate creation of a child by nondeterministically choosing a summary and increasing the corresponding unbounded counter. Index 3 in children [j, f, 3] means that this child is after the first interaction with its ancestors at levels 2i and 2i + 1, that happened at its creation.

if state = q (2i) ∃j : state[j] = q (2i+1) then state = q ′(2i) state[j] = q ′(2i+1) children [j, f, 3] += 1 for some f ∈ Summary(2i + 2) s.t.
f (1) = (q (2i) , q (2i+1) ) and f (2) = (q ′(2i) , q ′(2i+1) )

Progressing a child at level 2i + 2. We identify an appropriate child j which itself has a child in state (f, r). We use the test r + 2 < max(dom(f )) to ensure that the last interaction of the node is reserved for deletion of our root node.

if state = q (2i) ∃(j, f, r) : state[j] = q (2i+1)
and f (r) = (q (2i) , q (2i+1) ) and f (r + 1) = (q ′(2i) , q ′(2i+1) ) and (r + 2) < max(dom(f )) and children [j, f, r] ≥ 1

then state := q ′(2i) state[j] := q ′(2i+1) children [j, f, r + 2] += 1 children [j, f, r] -= 1
Observe that the test children [j, f, r] ≥ 1 can be simulated by a VASS because we have children[j, f, r] -= 1 in the statement that follows.

Removing a node at level 2i+2. We find a child which has completed its summary to the point that it can now be removed. We use the last values in f to determine how to remove the node.

if state = q (2i) ∃(j, f, r) : state[j] = q (2i+1)
and f (r) = (q (2i) , q (2i+1) )

and f (r + 1) = (q ′(2i) , q ′(2i+1) ) and (r + 1) = max(dom(f ))

and children [j, f, r] ≥ 1

then state := q ′(2i) state[b] := q ′(2i+1) children [j, f, r] -= 1 Lemma 6. Program TEST( f ) accepts iff f ∈ Summary(A, 2i).
Proof. By definition, f ∈ Summary(A, 2i) if automaton B = A ↓ (2i, f ) accepts a trace. By Lemma 5 this is equivalent to B ↑ (2, Summary(A, 2i + 2)) accepting some trace. It can be checked that the instructions of TEST( f ) correspond one-toone to transitions of B ↑ (2, Summary(A, 2i + 2)). So an accepting run of TEST( f ) can be obtained from a trace accepted by B ↑ (2, Summary(A, 2i + 2)), and vice versa.

D Additional material for Section 6

D.1 Proof of Theorem 3

Because every FICA-term can be converted to βη-normal form, we use induction on the structure of such normal forms. The base cases are:

-Γ ⊢ skip : com:

Q (0) = {0}, † run --→0, 0 done ---→ †; -Γ ⊢ div com : com: Q (0) = {0}, † run --→0; -Γ ⊢ div θ : θ: Q (0) = {0}, † m --→0, assuming θ = θ l → • • • → θ 1 → β and m ranges over question-moves from M β ; -Γ ⊢ i : exp: Q (0) = {0}, † q --→0, 0 i --→ †.
Observe that they are clearly even-ready, because only one node is ever created.

The remaining cases are inductive. Note that we will use m to range over T Γ ⊢θ + {ǫ Q , ǫ A }, i.e. not only M Γ ⊢θ , and recall our convention that m ∈ M Γ ⊢θ stands for m (ǫ,0) .

When referring to the inductive hypothesis, i.e. the automaton constructed for some subterm M i , we will use the subscript i to refer to its components, e.g. Q (j) i , m --→ i etc. In contrast, we shall use Q (j) , m --→ to refer to the automaton that is being constructed. The construction will often use inference lines to indicate that the transitions listed under the line should be added to the new automaton as long as the transitions listed above the line are present in an automaton given by the inductive hypothesis. Sometimes we will invoke the inductive hypothesis for several terms, which can provide several automata of different depths. Without loss of generality, we will then assume that they all have the same depth k, because an automaton of lower depth can be viewed as one of higher depth.

-Γ ⊢ op(M 1 ) : exp:

Q (j) = Q (j) 1 (0 ≤ j ≤ k).
In order to interpret unary operators it suffices to modify transitions carrying the final answer in the automaton for M 1 . Formally, this is done as follows.

(q

(0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) m = i (q (0) 1 , • • • , q (j) 1 ) m --→(r (0) 1 , • • • , r (j ′ ) 1 ) q (0) 1 i --→ 1 † q (0) 1 op(i) ---→ †
Above, j ranges over {-1, 0, • • • , k}, so that (q

(0) 1 , • • • , q (j)
1 ) can also stand for †. Even-readiness is preserved by the construction, because the configuration graph of the original automaton is preserved.

-Γ ⊢ M 1 ||M 2 : com: Q (0) = Q (0) 1 × Q (0) 2 , Q (j) = Q (j) 1 + Q (j) 2 (1 ≤ j ≤ k).
The first group of transitions activate and terminate the two components respectively:

† run --→ 1 q (0) 1 † run --→ 2 q (0) 2 † run --→(q (0) 1 , q (0) 2 ) q (0) 1 done ---→ 1 † q (0) 2 done ---→ 2 † (q (0) 1 , q (0) 
2 )

done ---→ † .

The remaining transitions allow each component to progress.

(q

(0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) q (0) 2 ∈ Q (0) 2 m = run, done ((q (0) 1 , q (0) 2 ), • • • , q (j) 1 ) 
m --→((r

(0) 1 , q (0) 
2 ), • • • , r

(j ′ ) 1 ) q (0) 1 ∈ Q (0) 1 (q (0) 2 , • • • , q (j) 2 ) m --→ 2 (r (0) 2 , • • • , r (j ′ )
2 ) m = run, done

((q (0) 1 , q (0) 2 ), • • • , q (j) 2 ) 
m --→((q

(0) 1 , r (0) 
2 ), • • • , r

(j ′ )
2 ) Even-readiness at even levels different from 0 follows from even-readiness of the automata obtained in IH, because the construction simply runs them concurrently without interaction at these levels. For level 0, we observe that, whenever the root reaches state (q

(0) 1 , q (0)
2 ), even-readiness of the two automata implies that each of them has removed all nodes below the root, i.e. the root will be a leaf.

-Γ ⊢ M 1 ; M 2 : com:

Q (i) = Q (i) 1 + Q (i) 2 (0 ≤ i ≤ k).
We let the automaton for M 1 run first (except for the final step done):

† run --→ 1 q (0) 1 † run --→q (0) 1 (q (0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) m = done (q (0) 1 , • • • , q (j) 1 ) m --→(r (0) 1 , • • • , r (j ′ ) 1 )
.

Whenever the automaton M 1 can terminate, we pass control to the automaton for M 2 via

q (0) 1 done ---→ 1 † † run --→ 2 q (0) 2 q (0) 2 m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) m = run q (0) 1 m --→(r (0) 2 , • • • , r (j ′ )
2 )

and allow it to continue (q

(0) 2 , • • • , q (j) 2 ) m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) m = run (q (0) 2 , • • • , q (j) 2 ) m --→(r (0) 2 , • • • , r (j ′ ) 2 )
.

Note that the construction relies crucially on even-readiness of the automaton for M 1 , because we move to the automaton for M 2 as soon as the automaton M 1 arrives at a configuration with level-0 state q (0) 1 such that q (0) 1 done ---→ 1 †. Thanks to even-readiness, we can conclude that the root will be the only node in the configuration then and the transition can indeed fire, i.e. M 1 is really finished. Even-readiness of the new automaton follows from the fact that the original automata were even-ready, because we are re-using their transitions (and when the automaton for M 2 is active, that for M 1 has not left any nodes).

-Γ ⊢ M 1 ; M 2 : β
The general case is nearly the same as the com case presented above except that we need to keep track of what initial move has been played in order to perform the transition to M 2 correctly. This is especially important for β = var, sem, where there are multiple initial moves. This extra information will be stored at level 0, while the automaton corresponding to M 1 is active. Below we present a general construction parameterized by the set I of initial moves. The set I is defined as follows.

• β = com:

I = {run} • β = exp: I = {q} • β = var: I = {read, write(0), • • • , write(max )} • β = sem: I = {grb, rls} States Q (0) = (Q (0) 1 × I) + Q (0) 2 
Q (i) = Q (i) 1 + Q (i) 2 (0 < i ≤ k) Transitions † run --→ 1 q (0) 1 x ∈ I † x --→(q (0) 1 , x) (q (0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) m = done x ∈ I ((q (0) 1 , x), • • • , q (j) 1 ) m --→((r (0) 1 , x), • • • , r (j ′ ) 1 )
.

q (0) 1 done ---→ 1 † † x --→ 2 q (0) 2 q (0) 2 m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) x ∈ I m ∈ I (q (0) 1 , x) m --→(r (0) 2 , • • • , r (j ′ ) 2 ) (q (0) 2 , • • • , q (j) 2 ) m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) m ∈ I (q (0) 2 , • • • , q (j) 2 ) m --→(r (0) 2 , • • • , r (j ′ )
2 ) None of the M 1 ; M 2 cases requires an adjustment of pointers, because the inherited indices are accurate.

-Γ ⊢ newvar x := i in M 1 : β. By [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF], Γ ⊢ newvar x := i in M 1 can be obtained by • first restricting Γ, x ⊢ M 1 to plays in which the moves read x , write(n) x are followed immediately by answers, • selecting only those plays in which each answer to a read x -move is consistent with the preceding write(n) x -move (or equal to i, if no preceding write(n) x was made), • erasing all moves related to x, e.g. those of the form m (x,ρ) . To implement the above recipe, we will lock the automaton after each read xor write(n) x -move, so that only an answer to that move can be played next. Technically, this will be done by annotating the level-0 state with a lock -tag. Moreover, at level 0, we will also keep track of the current value of x. This will help us ensure that answers to read x are consistent with the stored value and that write(n) x transitions cause the right change. Eventually, all moves with the x subscript will be replaced with ǫ Q , ǫ A to model hiding. Accordingly, we take

Q (0) = (Q (0) 1 + (Q (0) 1 × {lock })) × {0, • • • , max } and Q (j) = Q (j)
1 (1 ≤ j ≤ k). First, we make sure that the state component is initialised to i and that it can be arbitrary at the very end:

† m --→ 1 q (0) 1 † m --→(q (0) 1 , i) q (0) 1 m --→ 1 † 0 ≤ n ≤ max (q (0) 1 , n) m --→ † .
Transitions involving moves different from write(z) x , ok x , read x , z x (and the moves handled above) progress unaffected while preserving n (the current value of x recorded at level 0):

(q

(0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) m = read x , z x , write(z) x , ok x 0 ≤ j, j ′ 0 ≤ n ≤ max ((q (0) 1 , n), • • • , q (j) 1 ) m --→((r (0) 1 , n), • • • , r (j ′ ) 1 )
.

Transitions using read x , write(z) x add a lock at level 0. The lock can be lifted only if a corresponding answer is played (because of the lock, a unique write(z) x or read x will be pending). Its value must be consistent with the value of x recorded at level 0.

(q

(0) 1 , • • • , q (j) 1 ) write(z) (x,ρ) --------→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) 0 ≤ n, z ≤ max ((q (0) 1 , n), • • • , q (j) 1 ) ǫ Q --→((r (0) 1 , lock , z), • • • , r (j ′ ) 1 ) (q (0) 1 , • • • , q (j) 1 ) read (x,ρ) -----→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) 0 ≤ n ≤ max ((q (0) 1 , n), • • • , q (j) 1 ) ǫ Q --→((r (0) 1 , lock , n), • • • , r (j ′ ) 1 )) (r (0) 1 , • • • , r (j ′ ) 1 ) ok x --→ 1 (t (0) 1 , • • • , t (j) 1 ) 0 ≤ n ≤ max ((r (0) 1 , lock , n), • • • , r (j ′ ) 1 ) ǫ A --→((t (0) 1 , n), • • • , t (j) 1 ) 
(r

(0) 1 , • • • , r (j ′ ) 1 ) n x --→ 1 (t (0) 1 , • • • , t (j) 1 ) 0 ≤ n ≤ max ((r (0) 1 , lock , n), • • • , r (j ′ ) 1 ) ǫ A --→((t (0) 1 , n), • • • , t (j) 
1 ) As the construction involves running the original automaton and transitions corresponding to P-answers are not modified, even-readiness follows directly from IH. For the same reason, the indices corresponding to justification pointers need no adjustment.

-The case of newsem x := i in M 1 is similar to newvar x := i in M 1 . We represent the state of the semaphore using an additional bit at level 0, where 0 means free and 1 means taken. We let

Q (0) = (Q (0) 1 + (Q (0) 1 × {lock}))× {0, 1} and Q (j) = Q (j) 1 (1 ≤ j ≤ k).
First, we make sure the bit is initialised to i and can be arbitrary at the very end. †

m --→ 1 q (0) 1 i = 0 † m --→(q (0) 1 , 0) † m --→ 1 q (0) 1 i > 0 † m --→(q (0) 1 , 1) q (0) 1 m --→ 1 † z ∈ {0, 1} (q (0) 1 , z) m --→ †
Transitions involving moves other than rls (x,ρ) , grb (x,ρ) and ok x proceed as before, while preserving the state of the semaphore.

(q

(0) 1 , • • • , q (j) 1 ) m 
--→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) z ∈ {0, 1} m = rls (x,ρ) , grb (x,ρ) , ok x ((q (0) 1 , z), • • • , q (j) 1 ) m --→((r (0) 1 , z), • • • , r (j ′ ) 1 )
Transitions using rls (x,ρ) , grb (x,ρ) proceed only if they are compatible with the current state of the semaphore, as represented by the extra bit. At the same time, each time grb (x,ρ) or rls (x,ρ) is played, we lock the automaton so that the corresponding answer can be played next. The moves are then hidden and replaced with ǫ Q and ǫ A .

(q

(0) 1 , • • • , q (j) 1 ) grb (x,ρ) -----→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) ((q (0) 1 , 0), • • • , q (j) 1 ) ǫ Q --→((r (0) 1 , lock , 1), • • • , r (j ′ ) 1 ) (q (0) 1 , • • • , q (j) 1 ) rls (x,ρ) ----→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) ((q (0) 1 , 1), • • • , q (j) 1 ) ǫ Q --→((r (0) 1 , lock , 0), • • • , r (j ′ ) 1 ) (r (0) 1 , • • • , r (j ′ ) 1 ) ok x --→ 1 (t (0) 1 , • • • , t (j) 1 ) z ∈ {0, 1} ((r (0) 1 , lock , z), • • • , r (j ′ ) 1 ) ǫ A --→((t (0) 1 , z), • • • , t (j) 1 ) -Γ ⊢ f M h • • • M 1 : com with (f : θ h → • • • → θ 1 → com) ∈ Γ . Note that this also covers the case f : com. Q (0) = {0, 1, 2}, Q (1) = {0}, Q (j+2) = Q (j) (0 ≤ j ≤ k).
First we add transitions corresponding to calling and returning

from f : † run --→0, 0 run f ---→(1, 0), (1, 0) done f ----→2, 2 done ---→ †. -Γ ⊢ f M h • • • M 1 : var.
Here a slightly more complicated adjustment is needed to account for the two kinds of initial moves. Consequently, we need to distinguish two copies of 1, i.e. 1 r and 1 w .

† read --→0 0 read f ---→(1 r , 0) (1 r , 0) i f --→2 i 2 i i --→ † . † write(i) ----→0 i 0 i write(i) f -----→(1 w , 0) (1 w , 0) ok --→2 2 ok --→ † .
All the other rules allowing for transitions between states of the form (1, 0,

• • • ) need to be replicated for (1 r , 0, • • • ) and (1 w , 0, • • • ). -Γ ⊢ f M h • • • M 1 :
sem. This is similar to the previous case. To account for the two kinds of initial moves, we use states 1 g and 1 r .

† grb --→0 g 0 g grb f ---→(1 g , 0) (1 g , 0) ok f --→2 g 2 g ok --→ † † rls --→0 r 0 r rls f --→(1 r , 0) (1 r , 0) ok f --→2 r 2 r ok --→ †
All the other rules allowing for transitions between states of the form (1, 0,

• • • ) need to be replicated for (1 r , 0, • • • ) and (1 g , 0, • • • ). -Γ ⊢ λx.M 1 : θ h → • • • → θ 1 → β:
This is simply dealt with by renaming labels in the automaton for Γ, x :

θ h ⊢ M 1 : θ h-1 → • • • → θ 1 → β: tags of the form m (x i,ρ) must be renamed as m (h i,ρ) . -Γ ⊢ if M 1 then M 2 else M 3 : β
This case is similar to M 1 ; M 2 except that M 1 of type exp, so the associated move is q rather than run. Morever, once M 1 terminates, the automaton for either M 2 or M 3 must be activated, as appropriate.

States

Q (0) = (Q (0) 1 × I) + Q (0) 2 + Q (0) 3 
Q (i) = Q (i) 1 + Q (i) 2 + Q (i) 3 (0 < i ≤ k) Transitions † q --→ 1 q (0) 1 x ∈ I † x --→(q (0) 1 , x) (q (0) 1 , • • • , q (j) 1 ) m --→ 1 (r (0) 1 , • • • , r (j ′ ) 1 ) m ∈ {0, • • • , max } x ∈ I ((q (0) 1 , x), • • • , q (j) 1 ) m --→((r (0) 1 , x), • • • , r (j ′ ) 1 ) . q (0) 1 i --→ 1 † i > 0 † x --→ 2 q (0) 2 q (0) 2 m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) x ∈ I m ∈ I (q (0) 1 , x) m --→(r (0) 2 , • • • , r (j ′ ) 2 ) q (0) 1 0 --→ 1 † † x --→ 3 q (0) 3 q (0) 3 m --→ 3 (r (0) 3 , • • • , r (j ′ ) 3 ) x ∈ I m ∈ I (q (0) 1 , x) m --→(r (0) 3 , • • • , r (j ′ ) 3 ) (q (0) 2 , • • • , q (j) 2 ) m --→ 2 (r (0) 2 , • • • , r (j ′ ) 2 ) m ∈ I (q (0) 2 , • • • , q (j) 2 ) m --→(r (0) 2 , • • • , r (j ′ )
2 )

We will show some simple subterms of this term, and then how to combine them using || and introduce newvar. We will first construct the sub-automaton representing the following subterm:

f (x := 1||x := 13)
For convenience we will call this subterm w as in "write". The states for A(w) are as follows:

Q (0) w = {0 w , 1 w , 2 w } Q (1) w = {0 w } Q (2) w = {0 1 , 1 1 , 2 1 } × {0 13 , 1 13 , 2 13 } Q (3) w = {0 1 , 0 13 }
Note: in the standard construction, the subterms will not be annotated with the subscripts given. We show them here to emphasise that the union operation performed by combining branches is the disjoint union of the states from each side.

The transitions for A(w) are as follows. When we write transitions here, places where values are symbolic (e.g. u or v) represent one transition for every possible value that may appear in those places.

† run --→0 w 2 w done ---→ † 0 w run (f,0) -----→(1 w , 0 w ) (1 w , 0 w ) done (f,0) -----→2 w (1 w , 0 w ) run (f 1,0) -----→(1 w , 0 w , (0 1 , 0 13 )) (1 w , 0 w , (2 1 , 2 13 )) done (f 1,0) ------→(1 w , 0 w ) (1 w , 0 w , (0 1 , v)) write(1) (x,2) -------→(1 w , 0 w , (1 1 , v), 0 1 ) (1 w , 0 w , (1 1 , v), 0 1 ) ok (x,0) ----→(1 w , 0 w , (2 1 , v))
(1 w , 0 w , (u, 0 13 ))

write(1) (x,2)

-------→(1 w , 0 w , (u, 1 13 ), 0 13 ) (1 w , 0 w , (u, 1 13 ), 0 13 ) ok (x,0)

----→(1 w , 0 w , (u, 2 13 ))

where u ∈ {0 1 , 1 1 , 2 1 } and v ∈ {0 13 , 1 13 , 2 13 }.

We now do the same for the following term, r (for "read"):

if !x = 13 then skip else div

The states for A(r) are simpler, as this term is shallow.

Q (0) r = {0 r , 1 r , 2 0 r , • • • , 2 max r } Q (1) r = {0 r }
The transitions for A(r) are as follows. † ----→2 z r where z ∈ {0, • • • , max }. Observe that only reaching state 2 13 r (hence, reading a value 13 from x) will allow this automaton to terminate.

Combining these two automata is relatively simple. We will first apply the procedure for parallel composition (||), and then apply the newvar context. See Theorem 3 for the precise workings of these steps. The final automaton A(t) for our term t is as follows.

States:

Q (0) = (Q ′(0) + Q ′(0) × {lock}) × X where Q ′(0) = Q (0) w × Q (0) r and X = {0, • • • , max } Q (1) = Q (1) r + Q (1)
w where u ∈ {0 1 , 1 1 , 2 1 }, v ∈ {0 13 , 1 13 , 2 13 }, a ∈ {0 w , 1 w , 2 w } and b ∈ {0 r , 1 r , 2 r }.

Q (2) = Q (2) w Q (3) = Q (3)

E Additional material for Section 7

E.1 Proof of Theorem 4

We start with a technical lemma that identifies the level of moves corresponding to free variables of type var and sem. Given x : var, moves of the form write(i) (x,ρ) and read (x,ρ) (by P) will be referred to as the associated questions, while ok (x,ρ) and i (x,ρ) (by O) will be called the associated answers. We use analogous terminology for x : sem: the associated questions are grb (x,ρ) and rls (x,ρ) , while the associated answer is ok (x,ρ) .

Lemma 7. Given a FICA-term Γ ⊢ M : θ in βη-normal form, let A M be the automaton produced by Theorem 3. For any x : var or x : sem such that ad x (M ) = i, the transitions corresponding to the moves associated with x add/remove leaves at odd levels 1, 3, • • • , 2i -1.

Proof. We reason by induction on M , inspecting each construction in turn.

For M ≡ skip, div, i, the result holds vacuously, because there are no moves associated with x (i = 0).

In the following cases, ad x (M ) is calculated by taking the maximum of ad x (M ′ ) for subterms and the automata constructions never modify the level of transitions in automata obtained by IH. Consequently, the lemma can be established by appeal to IH: M 1 ||M 2 , M 1 ; M 2 , if M 1 then M 2 else M 3 , while M 1 do M 2 , !M 1 , M 1 := M 2 , grab(M 1 ), release(M 1 ), newvar y in M 1 , newsem y in M 1 .

The remaining case is

M ≡ f M h • • • M 1 .
-Note that this case also covers f ≡ x, in which case ad x (M ) = 1 and transitions associated with x involved leaves at level 2 •1 -1 = 1, as required. -If f ≡ x then ad x (M ) = 1 + max(ad x (M 1 ), • • • , ad x (M h )). In this case, the automata construction lowers transitions associated with x by exactly two levels, so by IH, they will appear at levels 1 + 2, • • • , (2i -1) + 2. Note that (2i -1) + 2 = 2(i + 1) -1, i.e. the lemma holds.

Observe that subterms of LFICA terms are in LFICA, i.e. we can reason by structural induction. Lemma 8. Suppose Γ ⊢ M : θ is from LFICA. The automaton A M obtained from the translation in Theorem 3 is presentable as a LLA.

Proof. In many cases, the construction merely relabels the given automaton.

Then a simple appeal to the inductive hypothesis will suffice. The relevant cases are: !M 1 , op(M 1 ), release(M 1 ), grab(M 1 ), λx.M 1 . M ≡ M 1 ||M 2 The case of parallel composition involves running copies of M 1 and M 2 in parallel without communication, with their root states stored as a pair at level 0. Note, though, that each of the automata transitions independently of the state of the other automaton, which means that, if the automata M 1 and M 2 are LLA, so will be the automaton for M 1 ||M 2 . The branching bound after the construction is the sum of the two bounds for M 1 and M 2 . M ≡ M 1 ; M 2 The construction schedules the automaton for M 1 first and there is a transition to (a disjoint copy of) the second one only after the configuration of the first automaton consists of the root only. Otherwise the automata never communicate. As the transition from the first to the second automaton happens at the root, it can be captured as a LLA transition. Consequently, if the automata for M 1 , M 2 are LLA, so is the automaton for M . Here the branching bound is simply the maximum of the bounds for M 1 and M 2 .

The same argument applies to if M 1 then M 2 else M 3 , M 1 := M 2 .

trace, we can be sure that after processing w ′ , A enters a configuration in which d is a leaf. Thus, the two answers will satisfy the game-semantic WAIT condition, and play(w) will be well-defined.

The FORK condition is satisfied for play(w), because reading an answer removes the corresponding data value from the configuration and, hence, it cannot be used as a justifier afterwards. In what follows, we write

θ n → β for θ → • • • → θ n → β
for n ∈ N. The lemma below identifies the types that correspond to our encoding of traces.

Lemma 9. Let N = max + 1. Suppose A is a k-LA and w ∈ Tr (A). Then play(w) is a play in θ k , where θ 0 = com N → exp and θ i+1 = (θ i → com) N → exp (i ≥ 0).

F.1 Saturation

The game model [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF] of FICA consists of saturated strategies only: the saturation condition stipulates that all possible (sequential) observations of (parallel) interactions must be present in a strategy: actions of the environment (O) can always be observed earlier if possible, actions of the program (P) can be observed later.

To formalize this, for any arena A, we define a preorder on P A , as the least transitive relation satisfying s o m s ′ s m o s ′ and s m p s ′ s p m s ′ for all s, s ′ , where o and p are an O-and a P-move respectively (in the above pairs of plays moves on the left-hand-side of are assumed to have the same justifiers as on the right-hand-side). Definition 11. A strategy σ : A is saturated iff, for all s, s ′ ∈ P A , if s ∈ σ and s ′ s then s ′ ∈ σ. Remark 3. Definition 11 states that saturated strategies are stable under certain rearrangements of moves. Note that s 0 p o s 1 s 0 o p s 1 , while other movepermutations are allowed. Thus, saturated strategies express causal dependencies of P-moves on O-moves. This partial-order aspect is captured explicitly in concurrent games based on event structures [START_REF] Castellan | Games and strategies as event structures[END_REF]. : com. This ensures that questions and answers respect the tree structure on data. To achieve nesting, we rely on a higherorder structure of the term: λf (0) .f (0) (λf (1) .f (1) (λf (2) .f (2) (• • • λf (k) .f (k) ))). Recall that the semantics of f M consists of an arbitrary number of interleavings

  we can simply write d j , because d j uniquely determines its ancestors: d 0 , . . . , d j-1 . The following definition captures the technical assumptions on D. Definition 4. D is a countably infinite set equipped with a function pred : D → D ∪ {⊥} (the parent function) such that the following conditions hold.

  s η rules for var, sem M -→ mkvar((λx exp .M := x), !M ) M -→ mksem(grab(M ), release(M ))

1 .

 1 d-internal, when dom(d ′ ) is included in the subtree rooted at d; 2. d-external, when dom(d ′ ) is disjoint from the subtree rooted at d; 3. d-frontier, when dom(d ′ ) contains d and its parent. Note that these three categories partition the set of all letters in w. The frontier letters are the ones with data value d, as well as those with children of d. The later are from layer 2i + 1. Letters with data values from bigger layers are either d-internal or d-external. At this point we use branching bound b of the automaton. The number of children of d is bounded by b, and every child of d appears twice in w. Hence, the number of d-frontier letters in w is at most b + 2, counting the letters with d.

w

  Transitions: † run --→((0 r , 0 w ), 0) ((2 w ,2 13 r ), n) done ---→ † ((0 w , b), n) run (f,0) -----→(((1 w , b), n), 0 w ) (((1 w , b), n), 0 w ) done (f,0) -----→((2 w , b), n) (((1 w , b), n), 0 w ) run (f 1,0) -----→(((1 w , b), n), 0 w , (0 1 , 0 13 )) (((1 w , b), n), 0 w , (2 1 , 2 13 )) done (f 1,0) ------→(((1 w , b), n), 0 w ) (((1 w , b), n), 0 w , (0 1 , v)) ǫ Q --→(((1 w , b), lock, 1), 0 w , (1 1 , v), 0 1 ) (((1 w , b), lock, n), 0 w , (1 1 , v), 0 1 ) ǫ A --→(((1 w , b), n), 0 w , (2 1 , v)) (((1 w , b), n), 0 w , (u, 0 13 )) ǫ Q --→(((1 w , b), lock, 13), 0 w , (u, 1 13 ), 0 13 ) (((1 w , b), lock, n), 0 w , (u, 1 13 ), 0 13 ) ǫ A --→(((1 w , b), n), 0 w , (u, 2 13 )) ((a, 0 r ), n) ǫ Q --→(((a, 1 r ), lock, n), 0 r ) (((a, 1 r ), lock, n), 0 r ) ǫ A --→((a, 2 n r ), n)

F. 2

 2 Proof of Theorem 5 Proof. Our assumption Q ⊆ {0, • • • , max } allows us to maintain A-states in the memory of FICA-terms. A question t (i) Q read by A at level i is represented by the variable f

A

  are represented by constants t

  assumption Σ ⊆ {0, • • • , max }).The level i of the data tree is encoded by the order of the variable f

.

  For 0 ≤ i < k, the variables f(i) t are meant to have type θ k-i-1 → com and f (k) t

  • • , max }.

	Arena O-question P-answers Arena O-question P-answers
	com	run	done	exp	q	i
	var	read	i	sem	grb	ok
		write(i)	ok		rls	ok

θ ::= β | θ → θ β ::= com | exp | var | semwhere com is the type of commands; exp that of {0, . . . , max }-valued expressions; var that of assignable variables; and sem that of semaphores. The typing

A. Dixon, R. Lazić, A. S. Murawski and I. WalukiewiczΓ ⊢ skip : com Γ ⊢ div θ : θ Γ ⊢ i : exp Γ ⊢ M : exp Γ ⊢ op(M ) : exp Γ ⊢ M : com Γ ⊢ N : β Γ ⊢ M ; N : β Γ ⊢ M : com Γ ⊢ N : com Γ ⊢ M ||N : com Γ ⊢ M : exp Γ ⊢ N1, N2 : β Γ ⊢ if M then N1 else N2 : β Γ ⊢ M : exp Γ ⊢ N : com Γ ⊢ while M do N : com Γ, x : θ ⊢ x : θ Γ, x : θ ⊢ M : θ ′ Γ ⊢ λx.M : θ → θ ′ Γ ⊢ M : θ → θ ′ Γ ⊢ N : θ Γ ⊢ M N : θ ′ Γ ⊢ M : var Γ ⊢ N : exp Γ ⊢ M := N : com Γ ⊢ M : var Γ ⊢!M : exp Γ ⊢ M : sem Γ ⊢ release(M ) : com Γ ⊢ M : sem Γ ⊢ grab(M ) : com

The automaton for while M do N may repeatedly visit the automata for M and N , generating an unbounded number of children at level 0 in the process.

M1 ⊕ M2 = newvar X := 0 in ((X := 0 || X := 1); if !X then M1 else M2).

A Additional material for Section 2

A.1 Operational semantics of FICA The operational semantics is defined using a (small-step) transition relation V ⊢ M, s -→ M ′ , s ′ , where V is a set of variable names denoting active memory cells and semaphore locks. s, s ′ are states, i.e. functions s, s ′ : V → {0, • • • , max }, and M, M ′ are terms. We write s ⊗ (v → i) for the state obtained by augmenting s with (v → i), assuming v ∈ dom(s). The basic reduction rules are given in Figure 2, where c stands for any language constant (i or skip) and op : {0, • • • , max } → {0, • • • , max } is the function corresponding to op. In-context reduction is given by the schemata:

where reduction contexts E[-] are produced by the grammar:

⊢ M : com is said to terminate, written M ⇓, if ∅ ⊢ ∅, M -→ * ∅, skip.

Idealized Concurrent Algol [START_REF] Ghica | Angelic semantics of fine-grained concurrency[END_REF] also features variable and semaphore constructors, called mkvar and mksem respectively, which play a technical role in the full abstraction argument, similarly to [START_REF] Abramsky | Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions[END_REF]. We omit them in the main body of the paper, because they do not present technical challenges, but they are covered in the Appendix for the sake of completeness.

In state (1, 0) we want to enable the environment to spawn an unbounded number of copies of each of Γ ⊢ M u : θ u (1 ≤ u ≤ h). This is done through the following rules, which embed the actions of the automata for M u while relabelling the moves.

• Moves from M u corresponding to θ u obtain an additional annotation f u, as they are now the uth argument of f :

(q

Note that above we mean j, j ′ to range over {-1, 0, • • • , k}, so that (q

u ) and (q

u ) can also stand for †. The pointer structure is simply inherited in this case, but an additional pointer needs to be created to run f from the old initial move for M u , i.e. m (ǫ,0) , which did not have a pointer earlier. Fortunately, because we also use ρ = 0 in initial moves to represent the lack of a pointer, by copying 0 now we indicate that the move m f u,ρ points one level up, i.e. at the new run f move, as required.

• The moves from M u that originate from Γ , i.e. moves of the form m (xv i,ρ)

(1 ≤ v ≤ l), where (x v ∈ θ v ) ∈ Γ , need no relabelling except for question moves that should point at the initial move. These moves correspond to question-tags of the form m (xv,ρ) . Leaving ρ unchanged in this case would mean pointing at m f u,0 , whereas we need to point at run instead.

To readjust such pointers, we simply add 2 to ρ, and preserve ρ in other moves.

(q

The construction clearly preserves even-readiness at level 0. For other even levels, this follows directly from IH as we are simply running copies of the automata from IH.

Here we follow the same recipe as for com except that the initial and final transitions need to be changed from

(q

3 ) None of the cases requires an adjustment of pointers, because the inherited indices are accurate. Even-readiness follows directly from IH.

-Γ ⊢ while M 1 do M 2 : com:

2 ) m = done

2 )

)

)

2 ) m = done

As before, no pointers need adjustment, even-readiness is inherited.

-Γ ⊢ !M 1 : exp To model dereferencing, it suffices to explore the plays that start with read in the automaton for M 1 , the read gets relabelled to q.

1 ) Note that the second rule will also handle transitions with the tag i. No pointer readjustment is needed, as the inherited pointers are accurate. Evenreadiness follows from IH.

For assignment, we first direct the computation into the automaton for M 2 and, depending on the final move i, continue in the automaton for M 1 as if write(i) was played. This is similar to

None of the cases requires an adjustment of pointers, because the inherited indices are accurate.

Here we simply need to direct the automaton to perform the same transitions as M 1 would, starting from grb. At the same time, grb and the corresponding answer ok have to be relabelled as run and done respectively.

Here we simply need to direct the automaton to perform the same transitions as M 1 would, starting from rls. At the same time, rls and the corresponding answer ok have to be relabelled as run and done respectively.

m = grb, rls, ok

Because we are using terms in normal form

which is of smaller size than M 1 . Let us apply IH to N i and write Q (j) 1i and --→ 1i for components of the resultant automaton. Let Q

In this case, after write(i) we redirect transitions to the automaton for N i , and after read -to M 2 , relabelling the initial and final moves as appropriate.

m --→(r

2 (0 ≤ j ≤ k). In this case, after grb we redirect transitions to the automaton for M 1 , and after rls -to

Here is a worked example of Theorem 3 for the term t = f : com → com ⊢ newvar x := 0 in (f (x := 1||x := 13) || if !x = 13 then skip else div)

M ≡ newvar x := i in M 1 Transitions not associated with x are embedded into the automaton for M except that at level 0, the new automaton keeps track of the current value stored in x. Because these transitions proceed uniformly without ever depending on the value stored at the root, this is consistent with LLA behaviour. For transitions associated with x, we note that, because M is from LFICA, we have ad x (M 1 ) ≤ 2. By Lemma 7, this means that the transitions related to x correspond to creating/removing leaves at either level 1 or 3. These transitions need to read/write the root but, because they concern nodes at level 0 or 3, they will be consistent with the definition of a LLA. All other transitions (not labelled by x) proceed as in M and need not consult the additional information about the current state stored in the root (the extra information is simply propagated). Consequently, if M is represented by a LLA then the interpretation of newvar x := i in M is also a LLA. The construction does not affect the branching bound, because the resultant runs can be viewed as a subset of runs of the automaton for M , i.e. those in which reads and writes are related.

The case of

we observe that the construction first creates two nodes at levels 0 and 1, and the node at level 1 is used to run an unbounded number of copies of (the automaton for) M i . The copies do not need access to the states stored at levels 0 and 1, because they are never modified when the copies are running. Consequently, if each M i can be translated into a LLA, the outcome of the construction in Theorem 3 is also a LLA. The new branching bound is the maximum over bounds from M 1 , • • • , M h , because at even levels children are produced as in M i and level 0 produces only 1 child.

F Additional material for Section 8

Word representation Let A = Σ, k, Q, δ be a leafy automaton. We shall assume that Σ, Q ⊆ {0, • • • , max } so that we can encode the alphabet and states using type exp. First we discuss how to assign a play play(w) to a trace w of A. The basic idea is to simulate each transition with two moves, by O and P respectively. The child-parent links in D will be represented by justification pointers.

-Suppose w = w ′ (t, d) with t ∈ Σ Q . We will represent (t, d) by a segment of the form q i run t i . If w ′ = ǫ, we let play(w) = q run t , i.e. i = ǫ. If w ′ = ǫ then, because w is a trace, w ′ must contain a unique occurrence of (t ′ , pred (d)) for some t ′ ∈ Σ Q . Then, if (t ′ , pred (d)) was represented by q i ′ run t ′ i ′ in play(w ′ ), we let play(w) = play(w ′ ) q 1t ′ i ′ run t1t ′ i ′ , where q 1t ′ i ′ points at run t ′ i ′ . -Suppose w = w ′ (t, d) with t ∈ Σ A . Because w is a trace, w ′ must contain a unique occurrence (t ′ , d) for some t ′ ∈ Σ Q . If (t ′ , d) is represented by the segment q i run t ′ i in play(w ′ ), we set play(w) = play(w ′ ) done t ′ i t i , where the two answer-moves are justified by run t ′ i and q i respectively. Because w is a of M . This feature is used to mimic the fact that a leafy automaton can spawn unboundedly many offspring. Finally, instead of single variables f (i) , we will actually use sequences f

max , which will be used to induce the right move run t i when representing t ∈ Σ Q ⊆ {0, • • • , max }. Additionally, the term contains state-manipulating code that enables P -moves only if they are consistent with the transition function of A. To achieve this, every level is equipped with a local variable X (i) of type exp, so that states on a single branch are represented by --→

Given α ∈ {Q, A} and -1 ≤ j ≤ k, we write

α for a tuple of values (r

α ], where -1 ≤ j, j ′ ≤ i, as shorthand for FICA code that checks componentwise whether the values of --→

(if the check fails, the code should diverge). For j = -1 (resp. j ′ = -1), there is nothing to check (resp. update). All occurrences of

α ] will be protected by a semaphore to ensure mutual exclusion. Consequently, they will induce exactly the causal dependencies (cf. Remark 3) consistent with sequences of A-transitions, i.e. with the shape of play(w) for some w ∈ Tr (A). To select transitions at each stage, we rely on non-deterministic choice , which can be encoded in FICA 6 .

Below we define inductively a family of terms ⊢ M i : θ k-i (0 ≤ i ≤ k). Term M A is then obtained by making a simple change to M 0 . For any 0 ≤ i ≤ k, let M i be the term

A ]; release(s); t (i) A

.

We write M k+1 for empty space (this is for a good reason, because f (k) t : com). The above term M i declares a new variable to store the state, and then makes a non-deterministic choice for question transitions that create data values at level i. The update of the state is protected by a semaphore. Then the appropriate f (i) t is applied to term M i+1 that simulates moves of the automaton on data in the subtree of the freshly created node. This is followed by the code making a non-deterministic choice over all answer transitions. To define M A , it now suffices to declare the semaphore in M 0 , i.e. given M 0 = λf 

Q )∈δ 

max . newvar X (1) := 0 in (r

Q ,

--→ u

(1)

(1) Q grab(s);

----------→ X (1) [u

Q ]; release(s); f

(1)

A ,t

A ,u

A )∈δ

(1) A grab(s);

----------→ X (1) [u (0)

A ]; release(s); t (1) A ;

(r (0)

A , †)∈δ (0) A grab(s);

A ]; release(s); t

A )

where --------→ X (0) [u

Q ) else Ω ----------→ X (1) [u (0)

A ] = if ((X (0) = r (0) A ) ∧ (X (1) = r