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Résumé :  
La modélisation numérique de manière efficace de problèmes incluant des non linéarités liés au matériau, à 
la géométrie et aux conditions de contact reste de nos jours un défi. Souvent ce genre de problème est 
modélisé par des méthodes adaptatives par éléments finis. Les méthodes sans maillage offre des possibilités 
attractive d’adaptation sans remaillage.la procédure se fait par Une simple addition ou suppression de 
nœuds. Ce papier cherche à proposer un algorithme de résolution de problème élastoplastic incluant le 
contact par la méthode « Element Free de Galerkin » basée sur l’approximation des moindres carrés 
mobiles. Les conditions de contact sont traitées par une méthode de pénalisation. Les multiplicateurs de 
Lagrange sont utilisés pour corriger les écarts dans les conditions aux limites essentielles. Dans cette étude 
sont testées une méthode matricielle et la programmation mathématique. Le programme développé est 
implémenté dans l’environnement Matlab.des exemples pratiques sont présentés à la fin de ce travail. 

 

Abstract : 
The numerical modeling  problems including both material, geometric and contact nonlinearities remains 
challenging. Often these problems are modeled with an adaptive finite element method. Meshless methods 
offer the attractive possibility of simpler adaptive procedures involving no remeshing, simple insertion or 
deletion of nodes. In this paper, a meshless approach for elastoplastic behavior and contact is developed. 
The Free Galerkin Method based on Moved Least Squares “MLS” approximation has been used. The 
penalty method for imposition of contact constraint is proposed and the Lagrange multipliers method is 
implemented to impose essential boundary conditions. In this work, the mathematical programming and the 
matrix method are implemented and tested on the Matlab environment. 
 

Mots clefs : élastoplasticité; formulation incrémentale, element free Galerkin, moved 
least square, pénalité, multiplicateur de Lagrange 

Keys words: elastoplasticity, incremental formulation, element free Galerkin, moved least square, 
penalty, lagrangian multiplier, mathematical programming, matrix method. 
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1. Introduction 
Recently there has been a fast development progress in meshless methods. Particularly, the Element Free 

Galekin “EFG” method has been applied successfully to non-linear problems in mechanics. We quote the 
contact [1] and plasticity [2]. The current study is paid attention to performing a meshless model to solve 
frictionless contact problems with elastoplasticity. The “EFG” method based on Moved Least Squares 
“MLS” approximation is chosen for its performances in stability and convergence. In this paper, the MLS 
approximation, the elastoplastic model and the contact law will be reviewed. The difficulties due to the 
imposition of essential boundary conditions and the numerical integration are discussed. To show the 
feasibility of the model, some practical examples will be presented in the end.    

2.  MLS approximation 
The MLS as an approximation method has been introduced by Shepard [3] and Lancaster [4]. It consists of 
three components: a basis function, a weight function associated with each node, and a set of coefficients that 
depends on node position. 
Using MLS approximation, a data value   at nodes  is approximated by a function 

in a weighted square sense namely [1,5]: 
  (1) 
 
Where  are monomial basis functions,  is the 
number of terms in the basis, and  are the coefficients of the basis functions. In 
general, the basis functions are as follows: For example, for a 1-D problem, the linear basis is:  and the 
quadratic basis is  . For a 2-D problem, the linear basis is: , and the quadratic basis is 

 where   
The coefficient vector   is determined by minimizing a weight discrete square norm, which is defined as 
  (2) 

               
where  is the weight function associated with the node i, n is the number of nodes in  
for which the weight function  and  are the fictitious nodal values, but not the nodal values of 
the unknown trial function   i.e. . 
 
The stationary point of J, in equation (2), with respect to  leads to the following linear 
relation between  and : 
   (3) 

                                                                      
where the matrices   and  are defined by: 
 
                        (4) 

 
 
  (5) 

           
The matrix  is often called the moment matrix, it is of size .Computing   using 
equation (3) and substituting it into equation (1), give: 
 
                                (6) 

 
Where   (7) 

  
Or  (8) 

                                    
 are called the shape functions of the MLS approximation, corresponding to nodal point , similar to 

the interpolation function in FEM .  
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3.  Elastoplastic analysis 
The classical hypothesis of elastoplastic decomposition of the total strain rate in two parts is considered 

[6,7]: 
 pe εεε ɺɺɺ += . (9) 

Where eεɺ  is the elastic part verifying the generalised Hooke’s law and pεɺ  the plastic part given by the 
classical normality law.  

The plastic flow is a quasistatic problem. Consequently, the time plays the role of a simple parameter of 
evolution. The stress state doesn't depend on the intensity of the velocity. While applying the implicit 
integration scheme introduced first by Moreau [8] and known as the “catching up” algorithm, the time can be 
eliminated. This method suggests calculating of a function called the superpotential of dissipation. For the 
incremental formulation, the following notations will be used: 
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(10) 

where the index 0 (resp. 1) is relative to the beginning (resp. to the end) of the step.  
According to the implicit integration, the plastic strain increment is given by [6,7]: 
 pp

1ετε ɺ∆=∆ . (11) 

In the frame of Convex Analysis, the incremental law and its inverse will be expressed by the following 
relations [6,7]: 
 )( σε σ ∆∆∂∈∆ ∆ p

p W ; )( p
pVp εσ ε ∆∆∂∈∆

∆ , (12) 

where pV∆  represents the incremental energy of plastic deformation and pW∆  is its complementary. pV∆  

can be calculated from the so-called plastic dissipation which, for the Von-Mises material, is given by the 
following expression: 
 p

Y
p

p eeV ɺɺ σ3
2)( = , (13) 

where Yσ  is the yield stress of the material and the symbol peɺ  represents the Euclidean norm of the plastic 

strain deviator peɺ . 
Finally, to determine the incremental elastoplastic superpotentiel )( ε∆∆V  that will be used in the 

variational formulation, the inf-convolution concept is used and defined by [6,7]: 
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(14) 

where  eV∆  and pV∆  are respectively the elastic and plastic incremental superpotentials.  

4. Problem of contact  
4.1 Contact law  

The Signorini law of contact can be rewritten analytically as follows: 
 
If          0    then0 >= nn ut ɺ ,                                                        non contact 

Else if   0         then0 >= nn tuɺ ,                                                                        contact                      (15) 

nuɺ  and nt  denote the normal components of velocity and contact force. 

 

4.2  Incremental formulation and penalty procedure 
 
Let's note by 0 and 1 the beginning and the end of the step, the incremental displacement is defined by: 
 

101 nnnn uuuu ɺτ∆=−=∆ . (16) 
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To implement the penalty method, practically we introduce a fictitious rigidity as follows [6,7]: 
 

α
nf

nn

t
uu

∆
+∆=∆    

(17) 

where α  is the penalisation factor. f
nu∆  is fictitious increment computed from the actual displacement 

increment u∆  and the previous of the contact forces increments. The regularisation of the contact law leads 
us to introduce the following differentiable function, [6,7]:  
 
 2)( f

nnc uub ∆+∆−=∆ α  (18) 

The detailed procedure of penalization applied to contact problem with the meshless method is presented in 
[1]. 
5. Meshless formulation 
The approximation of the increment of displacement, can be presented as follow: 
 Uxxu T ∆Φ=∆ )()( ,   UxB ∆=∆ )(ε  (19) 

where )(xΦ is the matrix of the shape functions of the MLS approximation defined by (7,8), corresponding 

to nodal point   and   ))(()( xgradxB s Φ= .  

After this step the variational principle concept can be used similarly to “FEM”. 
 Using the variational principle approach, the functional, in the meshless method context is given by: 
 ∫∫∫ ∆Φ∆−∆∆Φ−∆+Ω∆∆=∆∆Φ

Ω 12

 . ),( )()(
S

TT

S

c dSUtdStUbdUBVU  (20) 

To solve the system (20), the matrix method and the mathematical programming are used for elastostatic 
problems. For the nonlinear problems, a procedure of minimisation by the Newton method is used. 
 
6. Difficulties 
6.1Boundary condition 
The enforcement of essential boundary conditions remains an area of ongoing research, since 
the shape functions in meshless methods are not strict interpolates, i.e. they do not satisfy the 
Kronecker delta condition:     

 
Consequently the approximated value on the boundary depends on interior nodes as well as boundary nodes. 
Boundary conditions are in terms of linear combinations of nodal values. Various ways of implementing 
boundary conditions for meshless methods have been suggested, such as combining the Element Free 
Galerkin method (EFG) with finite element shape functions close to the boundary, the use of a modified 
variational principle, the use of window or correction functions that vanish on the boundary , and the use of 
Lagrange multipliers. In this paper, the essential boundary condition is imposed using the Lagrange 
multipliers method [1,5]. 
 
6.2 Numerical integration 
In the MLS method, the concept of element does not exist, and the shape functions are not polynomial, thus 
the integrals cannot be evaluated as for the finite element method. However, direct integration nodes or an 
underlying grid that serves only in the numerical integration, and does not interfere in the approximation 
scheme can be used. In this way, the second method [1,5] was used. 

7. Examples 
7.1  hollow disk  
a hollow disk  is considered as shown (Figure 1). ,   
and .  
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Figure 1 Geometry and boundary conditions                               Figure 2 Deformed model         

                                           
Figure 3 Displacement toward the axis ()                            Figure 4 Distribution of  toward  
 
7.2 The Contact problem 
A deformable bloc (60mmx30mm) in contact with a rigid foundation is analyzed in this section. The 
geometry and boundary conditions are showed on Figure 5  and Figure 6 , the mechanical properties are: 
E= 2.1104 N/mm2, υ=0.3. 
The surface of contact is defined by the contact nodes. In this work, this surface is considered as known.  
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Figure 5 Geometry and load (P=100N)                                             Figure 6 nodal Distribution 30 ×15 
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Figure 7 Deformation of the structure for α=102              Figure 8 Deformation of the structure for α=108  
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Figure 9 Vertical displacements for different values of the contact penalty parameter (α). 

 
 
8. Conclusion 
An algorithm for solving the elastoplastic evolution problem taking account the unilateral contact using a 
meshless method has been presented. To show the feasibility of the method, some numerical examples have 
been presented. The works are under the way for testing the method on complex non-linear problems. 
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