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Reduced Order Modeling of flow fields in cylinder

arrangements in the context of fluid structure

interaction
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Résumé :

Une méthode de réduction de modèles dédiée à des problèmes d’interaction fluide/structure en dyna-
mique en grands déplacements est proposée. La performance de l’approche est évaluée sur des configu-
rations élémentaires mettant en jeu des vibrations de cylindres en réseaux soumis à des écoulements de
fluides externes monophasiques. La construction d’un modèle réduit paramétrique est présentée dans
la première partie et une étude de sensibilité de la stabilité de ces systèmes dynamiques est menée.
L’approche de réduction de modèle est déclinée dans le cadre dynamique au moyen d’une formulation
fluide/solide compatible avec la présence d’une interface solide mobile. Une étude paramétrique est
ensuite proposée à partir d’un modèle réduit unique de référence ; une amélioration possible prévue
dans des travaux ultérieurs consistera en une interpolation de modèles réduits pour différentes valeurs
d’un paramètre. Le choix de l’interpolation est crucial lorsque l’on remarque que l’ensemble des bases
réduites a une structure de variété différentielle et non pas d’un espace vectoriel.

Abstract :

A reduced order modeling method devoted to fluid structure interaction problems is proposed in sta-
tics and dynamics, for large magnitude motion. The performance is evaluated through model problems
involving vibrations of cylinders under cross flows of external single-phase fluid. A parametric redu-
ced model is also built and applied to the sensitivity analysis of a cylinder arrangement stability to
fluid parameters. The reduced order modeling approach is formulated in a dynamic context through
a fluid/solid formulation compatible with moving solid interfaces. The parametric model is built by
using a single reference reduced basis, but it would be possible to use an interpolation of reduced basis
corresponding to several values of the considered parameter. The interpolation choice is a challenge
since we remark that the reduced order basis make up a differential manifold and not a vector space.

Keywords : Fluid-Structure Interaction, Reduced-Order Models, Tube Arrays

1 Introduction

In this article the application of a Reduced-Order Method to large structure displacements due to
the presence of a flowing fluid is investigated. The proposed model, called Multiphase-POD, is based
on a classical POD-Galerkin method including adaptation to fluid-structure interaction. It consists
in building a global velocity field for both fluid and solid domains, in order to tackle the problem
of moving solid interface. A low-order dynamical system is obtained by a Galerkin projection of the
global velocity field equations onto a POD basis. This technique is known to give satisfying results
for small structure displacements [9]. Its ability to reproduce large displacements is highlighted in the
present study. The approximation of flow fields and structure displacements in a cylinder arrangements
is investigated. Moreover, as sensitivity studies are an integral part of instable mechanism numerical

1
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studies, their contribution to the total cost has to be taken into account. That is why the last section
is devoted to a method enabling to perform parametric analyses.

2 Reduced order model formulation

One considers a POD-Galerkin method [4] and its adaptation to fluid-solid interaction through a
Multiphase-fluid-solid-POD formulation [6]. Complete calculations are performed with a pseudo-
eulerian approach involving a moving grid method for modeling moving interfaces [8]. Thus, in dynamic
case, in the presence of flow-induced vibrations, a classic POD-Galerkin method cannot be used be-
cause of the presence of a moving interface. POD modes are only spatial and consequently, they do
not contain any dynamic information although snapshots have been taken for several positions of
mesh nodes. To get round this problem, a method is proposed [6] to address fluid-structure interaction
problem with an adaptation of the POD-Galerkin technique. It is called Multiphase-POD method,
where a non-moving mesh is involved.

Considering a global domain containing the fluid and the solid, the latter is seen as another fluid with
its specific characteristics, particularly the non-deformability. Thus, the whole domain is considered
as a zone occupied by a two-phase flow. A unique and fixed mesh is created on this global domain
and then, data obtained from a fluid moving-mesh complete calculation are interpolated on this fixed
mesh, so that a classic POD basis can be constructed. The description of the Multiphase-POD method
is the following : let us consider a global domain Ω containing the fluid domain Ωf (t) and the solid
domain Ωs(t) at each time step t, where the solid domain is considered as a particular fluid with its
own physical characteristics (density, viscosity). We have Ω = Ωf (t)∪Ωs(t)∪Γi(t), where Γi(t) is the
interface between fluid and solid domains. A global velocity field u ∈ H(Ω) (with H a Hilbert space)
is considered :

u(x, t) = uf (x, t)χΩf
(x, t) + us(x, t)χΩs

(x, t) (1)

where χΩf
and χΩs

are respectively characteristics functions defining if the considered point position
is in the fluid or in the solid domain :

χΩs
(x, t) =

{
1 if x ∈ Ωs

0 if x /∈ Ωs
(2)

and χΩf
(x, t) = 1−χΩs

(x, t). Taking into account this notations, a global weak form of Navier-Stokes
equations on Ω is made possible to formulate :

∫
Ω
ρ
∂u(x, t)

∂t
u∗dx+

∫
Ω

(u · ∇)u · u∗dx =

∫
Ω

(∇ · σ)u∗dx

∫
Ω
∇ · uqdx = 0

(3)

where u∗ is a test-function defined as u∗ ∈ H(Ω) with the non-deformable solid constraint condition :

τ(u∗) = 0 in Ωs(t) (4)

and q ∈ L2
0(Ω). Each variable (density and viscosity) and each field is decomposed following the

example of equation (1). Let us define both components of the constraints tensor σ :

σf,ij(x, t) = −pδji + 2µfτij(uf ) (5)

where δji is the Kroenecker symbol and τij is the deformation velocity tensor. The definition of the
structural compotent σs(x, t) allows taking into account that the solid has its specific viscosity and the
non-deformable structural condition. For the viscosity, a penalization term is used : in order to specify
that the domain Ωs(t) is solid, the viscosity is artificially increased. To insure the non-deformable
condition, a Lagrange multiplier Λ is added. Thus, the structural component of the stress tensor is :

σs,ij(x, t) = −pδji + Λ + 2µsτij(us) (6)
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Developing the global weak form with these definitions and making the Proper Orthogonal Decompo-
sition on the global velocity flow field leads to the construction of a dynamical system for the whole
domain Ω which is fixed all over the time interval of interest. Taking into account the space-time
decomposition of the global velocity field as :

u(x, t) =

N∑
i=1

an(t)Φn(x) (7)

where Φn, n = 1, .., N are elements of the POD basis and an(t), n = 1, .., N are time coefficients, the
final dynamical system is the following :

N∑
i=1

dai
dt
Ain =

N∑
i=1

N∑
j=1

Bijnaiaj +

N∑
i=1

Cinai + En

D(u) = 0 on Ωs(t) (non deformability)
∂χΩs

∂t
+ u · ∇χΩs

= 0 (characteristic function transfer)

(8)

for each n = 1, .., N where N is the number of modes in the POD basis. Coefficients Ain, Bijn, Cin, En

are not detailed here, but we precise that the coefficient En contains a boundary pressure term which
is treated thanks to a penalization technique [1]. The interface pressure term disappears since the test
functions are the POD modes, and this is precisely the interest of the Multiphase-POD technique. A
very important point to notice is that they are not all exclusively spatial coefficients, because some
of them contain the physical characteristics ρ(x, t) and µ(x, t). Thus, they have to be re-calculated at
each time step : the time calculation is increased in comparison with a classic POD model without
moving structure. But this computational effort is still less than what is required for a complete calcu-
lation. Another approach consists in making the proper orthogonal decomposition of the characteristic
function χΩf

(x, t) also, which allows avoiding the time dependence of all coefficients of the dynamical
system. For more precisions, see [7]. Structural properties (damping, stifness) are contained into the
volume force. Practical implementation of the Multiphase-POD technique is described below.

1. Perform a complete fluid calculation of the fluid-structure interaction problem during a time
interval [0,T] using a moving mesh pseudo-eulerian formulation.

2. Extract enough snapshots from this complete calculation.

3. Create a unique Cartesian fixed mesh containing both fluid and solid domains.

4. Interpolate each extracted snapshot onto the fixed reference mesh : new fixed snapshots are
created.

5. Apply the classic POD approach for the new snapshots constructed on the reference mesh.

6. Construct the dynamical system following (8) and resolve it with a classic method (Runge-Kutta
for example).

3 Stability analysis of dynamical system

One considers a configuration involving a square cylinder arrangement subjected to an external single-

phase fluid flow caracterized by a low Reynolds number Re =
ρUpD

µ
. The gap fluid velocity Up takes

into account the confinement and is defined as : Up = U∞
P

P −D
where U∞ is the equivalent mean

flow velocity in an infinite domain and P the pitch ratio.
Only the central cylinder is moving in the cross direction (y - direction). A 2D domain including
only one cylinder and its neighbours is considered. Thus, the domain is not representing a whole tube
bundle but a confined case. Complete calculations are performed with Code Saturne [2] which has
been used in various studies involving FSI in tube bundle systems [5, 8]. Geometrical and physical
values are gathered in table 1. Two cases are considered : a case denoted “stable” with limited and
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Geometrical values

Cylinder diameter D 1.10−2 m
Pitch ratio
(center-to-center distance) P 1, 44 D

Physical values

Fluid
Dynamical viscosity µ 1.10−3 kg.m−1.s−1

Density ρ 1.103 kg.m−3

Solid (moving cylinder)
Mass m 6, 13.10−3 kg
Stiffness k 1, 512 kg.s−1

Damping in air ζ 0, 0437 %
Frequency in air f 2, 5 Hz

Table 1 – Characteristic values of the problem

Case Inlet velocity Re

Stable 0.015 m.s−1 491
Unstable 0.03 m.s−1 982

Table 2 – Definition of the flow-induced vibrations studied cases

decreasing vibrations of the central cylinder and a case where instability is clear, called “unstable”,
where the amplitude of vibrations is increasing. For theses different cases, we choose low Reynolds
numbers since the computation is bidimensional. Here the goal is not to work on a case validated by
comparison with experiments or with specific models, but to observe the ability of the Multiphase-
POD method to reproduce several configurations with their own properties (amplitude, frequency,
etc.). Table 2 gathers the chosen Reynolds numbers corresponding to the incoming flow, and associated
inlet velocities.
To study these cases, we modify the inlet flow velocity in order to obtain various Reynolds numbers.

The mesh contains 633, 000 cells. The goal here is to observe the ability of the Multiphase-POD
method to fulfill two functions : reproduce complete calculation features (flow and structure velocity,
structure displacement) and be predictive in the case of a parameter modification. That is why the
2D configuration seems to be a good compromise, giving low cost computations and memory storage
to construct the correlation matrices. The application to a more realistic case (3D computation, high
Reynolds numbers) represents an advanced step in this work. Here we work on simple cases in order to
observe the Multiphase-POD method behaviour. Results of complete calculations required to collect
snapshots and obtained for the two chosen cases are displayed. Fig. 1 shows snapshots of the global
velocity field for each case.
The Multiphase-POD method is applied to the stable and unstable cases and one observes the

reconstruction of the gravity centrer diplacement of the cylinder by this method over one displacement
period. Complete calculations are performed with the CFD code Code Saturne [2] and data at the
interface are interpolated to the cylinder gravity center. No stabilization technique has been applied to
dynamical systems here, in order to respect the numerical behaviour of these systems : for example, a
stabilization could false the conclusion of a stable case reconstruction. However, it is very interesting to
use stabilization techniques in order to offset the destabilization induced by the POD basis truncature
(very useful and simple to use stabilization methods such as Cazemier-Rempfer type are presented in
[3]). The results are presented with snapshots extracted over one period of the displacement. In the
stable case, the reduced-order model is constructed with the following characteristics : 148 snapshots
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Figure 1 – Snapshots of the global velocity flow field for the two cases : left stable interaction, right
unstable interaction

are extracted from the complete fluid calculation, 4 POD modes are constituting the POD basis.
The fixed reference mesh contains 200 × 200 points. If one observes the behaviour of the dynamical
system over a longer time (several cycles), we can see that, for the stable case, the Multiphase-POD
method is predictive since snapshots have been captured only over the first period (see Fig. 2 left).
This predictivity is very interesting : engineers ensure that they can perform long computations with
this POD basis (here we had to perform the complete computation on all the long time interval just
to check the system behaviour). On the contrary, the unstable case is less predictive since only the
two first cycles are correctly reconstructed by the dynamical system (snapshots are also gathered over
the first cycle), see Fig. 2 right.
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Figure 2 – Gravity center displacement reconstruction of the cylinder for the stable case over several
cycles. complete calculation ; multiphase-pod reconstruction (4 modes left, 7 modes right)

Now, for the willingness of studying instability behaviours with parametric studies, a question arises :
is the Multiphase-POD basis used for the stable case able to reproduce an unstable behaviour ? This
question is the basis of an on-going work presented in the next section.

4 Parametric analysis using ROM

If we consider the Reynolds number as a changing parameter, we want to know if it is possible
to cover an instability mechanism with few POD computations. A first step consists in taking the
Multiphase-POD basis associated with the stable case and to project the discrete Navier-Stokes equa-
tions associated with the unstable Reynolds number onto this basis, and observing if the dynamical
system thus obtained can correctly reproduce the fields (velocity and displacement). Fig. 3 shows the
reconstruction of the unstable cylinder displacement with 9 POD modesfrom the stable basis, and
even if one observes a delay between both complete and Multiphase-POD computations, the ampli-
tude increase is reproduced. The above presented test is a first step in a work-in-progress : the stable
POD basis does not contain a rich enough amount of information, thus features of the fluid flow could

5
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Figure 3 – Gravity center displacement reconstruction of the cylinder over several cycles, stable basis
and unstable case (parametric study). complete calculation ; multiphase-pod reconstruction (9
modes)

be not captured with this method. The next step will consist in making a collection of various POD
basis (each is associated with a value of the considered parameter) and constructing an interpolation
between them in order to obtain a sustainable Multiphase-POD basis which could cover a range of
values of the studied parameter. The challenge is to find the interpolation which is the best in terms
of efficiency (gather a lot of information by keeping short computations).

Conclusion
In this paper, the Multiphase-POD method is presented and applied to the case of a confined cylinder
in tube array under cross-flow. The method was already shown to be efficient in the case of small
and large displacements of a structure under flow sollicitations and here, we show its efficiency in the
case of a stable then unstable phenomenon. The application of parametric studies with the help of
POD and Multiphase-POD consists in a work-in-progress : the main interest of reduced-order models
consists in their ability to reconstruct various solutions of a system where one or several parameters
have been changed. Indeed, the reconstruction of a solution for which we already have the complete
calculation is not sufficient. Our goal consists in the application of these methods to the case of a
fluid-elastic instability, in order to capture the critical velocity.
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de doctorat, Ecole doctorale des Sciences Pour l’Ingénieur de Lille, 2008.

[6] Liberge E., Hamdouni A. Reduced order modelling method via proper orthogonal decomposition (POD) for flow
around an oscillating cylinder. Journal of Fluids and Structures, (26(2)) :292 – 311, 2010.

[7] Liberge E., Pomarede M., Hamdouni A. Reduced-order modeling by POD-multiphase approach for fluid-structure
interaction. European Journal of Computational Mechanics, (19) :41 – 52, 2009.

[8] Longatte E., Bendjeddou Z., Souli M. Methods for numerical study of tube bundle vibrations in cross-flows.
Journal of Fluids and Structures, (18) :513 – 528, 2003.

[9] Pomarède, M. and Liberge, E. and Hamdouni, A. and Sigrist, J.-F. and Longatte, E. Mise en place
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