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Abstract

We study the setting in which a mobile agent must locate
a hidden target in a bounded or unbounded environment,
with no information about the hider’s position. In particular,
we consider online search, in which the performance of the
search strategy is evaluated by its worst case competitive ra-
tio. We introduce a multi-criteria search problem in which the
searcher has a budget on its allotted search time, and the ob-
jective is to design strategies that are competitively efficient,
respect the budget, and maximize the total searched ground.
We give analytically optimal strategies for the line and the star
environments, and efficient heuristics for general networks.

Introduction
We study a general search problem, in which a mobile agent
with unit speed seeks to locate a target that hides in some
unknown position of the environment. Specifically, we are
given an environment which may be bounded or unbounded,
with a point O designated as its root. There is an immobile
target (or hider) H that is hiding in some unknown point in
the environment, whereas the searcher is initially placed at
the root O. The searcher has no information concerning the
hider’s position. A search strategy S determines the precise
way in which the searcher explores the environment, and we
assume deterministic strategies. The cost of S given hider
H , denoted by d(S,H), is the total distance traversed by
the searcher the first time it reaches the location of H , or
equivalently the total search time.

There is a natural way to evaluate the performance of the
search strategy that goes back to (Bellman 1963) and (Beck
and Newman 1970): we can compare the cost paid by the
searcher in a worst-case scenario to the cost paid in the ideal
situation where the searcher knows the hider’s position. We
define the competitive ratio of strategy S as

cr(S) = sup
H

d(S,H)

d(H)
, (1)

with d(H) the distance of H from O in the environment.
Competitive analysis allows to evaluate a search strat-

egy under a status of complete uncertainty, and pro-
vides strict, worst-case guarantees. Competitive analysis
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has been applied to several search problems in robotics,
for example (Sung and Tokekar 2019), (Magid and Rivlin
2004), (Taylor and Kriegman 1998) (Isler, Kannan, and
Daniilidis 2003). See also the survey (Ghosh and Klein
2010).

In this work we will study the following classes of envi-
ronments: First, we consider the problem of searching on the
line, informally known as the cow path problem (Kao and
Littman 1997), in which the environment is the unbounded,
infinite line. Next, we consider a generalization of linear
search, in which the environment consists of m unbounded
rays, concurrent at O; this problem is known as the m-ray
search or star search problem. This environment can model
much broader settings in which we seek an intelligent allo-
cation of resources to tasks under uncertainty. Thus, it is a
very useful paradigm that arises often in applications such
as the design of interruptible systems based on contract al-
gorithms (Bernstein, Finkelstein, and Zilberstein 2003; An-
gelopoulos 2015; Kupavskii and Welzl 2018), or pipeline fil-
ter ordering (Condon et al. 2009). Last, we consider general
undirected, edge-weighted graph networks, and a target that
can hide anywhere over an edge or a vertex of this graph.

In some previous work, online search may refer to the set-
ting in which the searcher has no information about the envi-
ronment or the position of the target. In this work we assume
that the searcher knows the environment, but not the precise
position of the target. This is in line with some foundational
work on competitive analysis of online search algorithms,
e.g. (Koutsoupias, Papadimitriou, and Yannakakis 1996).

Searching With a Budget
Most previous work on competitive analysis of searching
has assumed that a target is indeed present, and so the
searcher will eventually locate it. Thus, the only consider-
ation is minimizing the competitive ratio. However, this as-
sumption does not reflect realistic settings. Consider the ex-
ample of Search-And-Rescue (SAR) operations: first, it is
possible that the search mission may fail to locate the miss-
ing person, in which case searching should resume from its
starting point instead of continuing fruitlessly for an exorbi-
tant amount of time. If, say, the first day’s efforts were un-
successful, it would be best to have covered as much ground
as possible before restarting. Second, and more importantly,
SAR operations come with logistical constraints and limited
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resources, notably in terms of the time alloted to the mission.
To account for such situations, in this work we study on-

line search in the setting where the searcher has a certain
budget T , which reflects the total amount of search time
that it can afford, and a desired competitive ratio R that the
search must attain. If the target is found within this budget,
the search is successful, otherwise it is deemed unsuccessful.
We impose two optimization constraints on the search. First,
it must be competitively efficient, i.e., its competitive ratio,
as expressed by (1) is at most R, whether it succeeds or not.
Second, if the search is unsuccessful, the search has maxi-
mized the total clearance by time T . In the case of the envi-
ronments we study in this work, the clearance is the measure
of the part of the environment, i.e, the total length, that the
searcher has explored by time T . We call this problem the
Maximum Clearance problem with budget T and competi-
tive ratio R, and we denote it by MAXCLEAR(R,T).

It should be clear that the competitive ratio and the clear-
ance are in a trade-off relation with respect to any given
budget T : by reducing the competitive efficiency, one can
improve the clearance, and vice versa. Hence, our goal is
to find strategies that attain the optimal tradeoff, in a Pareto
sense, between these two objectives.

Contributions
We study Maximum Clearance in three environments: the
unbounded line, the unbounded star, and a fixed network. We
begin with the line: here we show how to use a linear pro-
gramming formulation to obtain a Pareto-optimal solution.
We also show that the Pareto-optimal strategy has a natural
interpretation as the best among two simple strategies.

We then move to the m-ray star, which generalizes the
line, and which is more challenging. Here, we argue that
the intuitive strategies that are optimal for the line are not
optimal for the star. We thus need to exploit the structure
of the LP formulation, so as to give a Pareto-optimal strat-
egy. We do not require an LP solver, instead, we show how
to compute the theoretically optimal strategy efficiently, in
time O(m logm log T + m log T log log T ). Experimental
evaluations confirm the superiority of this optimal strategy
over other candidate solutions to the problem.

Finally, we consider the setting in which the environment
consists of a network. Here, there is a complication: we
do not known the optimal competitive ratio as, for exam-
ple, in the star (the problem is NP-hard if the target hides
on vertices), and only O(1) approximations of the optimal
competitive ratio are known (Angelopoulos and Lidbetter
2020). Hence, in this context, we define MAXCLEAR(R,T)
with R ≥ 1, as the problem of maximizing clearance given
budget T , while guaranteeing that the strategy is an R-
approximation of the optimal competitive ratio. Previous
approaches to competitive searching in networks typically
involve a combination of a solution to the Chinese Post-
man Problem (CPP) (Edmonds and Johnson 1973) with it-
erative doubling of the search radius. For our problem, we
strengthen this heuristic using the Rural Postman Problem
(RPP) (Frederickson, Hecht, and Kim 1978), in which only
a subset of the network edges need to be traversed. While
RPP has been applied to the problem of online coverage in

robotics (Xu and Stentz 2010), (Easton and Burdick 2005),
to the best of our knowledge, no previous work on compet-
itive search has addressed its benefits. Although there is no
gain on the theoretical competitive ratio, our experimental
analysis shows that it has significant benefits over the CPP-
based approach. We demonstrate this with experiments us-
ing real-world data from the library Transportation Network
Test Problems (Bar-Gera 2002), which model big cities.

We conclude with some extensions and applications. We
first explain how our techniques can be applied to a prob-
lem “dual” to Maximum Clearance, which we call Earliest
Clearance. We also show some implications of our work for
contract scheduling problems. In particular, we explain how
our results extend those of (Angelopoulos and Jin 2019) for
contract scheduling with end guarantees.

Due to space limitations, we omit several technical proofs.
We refer the reader to (Angelopoulos and Voss 2020) for the
full version of this paper.

Other Related Work
It has long been known that linear search has optimal com-
petitive ratio 9 (Beck and Newman 1970), which is achieved
by a simple strategy based on iterative doubling. Star search
on m rays also has a long history of research, going back
to (Gal 1974) who showed that the optimal competitive ratio
is

R∗m = 1 + 2ρ∗m, where ρ∗m =
mm

(m− 1)m−1
, (2)

a result that was later rediscovered by computer scien-
tists (Baeza-Yates, Culberson, and Rawlins 1993). Star
search has been studied from the algorithmic point of view
in several settings, such as randomized strategies (Kao, Reif,
and Tate 1996); multi-searcher strategies (López-Ortiz and
Schuierer 2004); searching with an upper bound on the tar-
get distance (Hipke et al. 1999; Bose, Carufel, and Durocher
2015); fault-tolerant search (Kupavskii and Welzl 2018);
and probabilistic search (Jaillet and Stafford 1993; Kao and
Littman 1997). For general, edge-weighted networks only
O(1)-approximation strategies are known (Koutsoupias, Pa-
padimitriou, and Yannakakis 1996; Angelopoulos and Lid-
better 2020).

Preliminaries
For the m-ray star, we assume the rays are numbered
0, . . . ,m − 1. A search strategy for the star is defined as
{(xi, ri)}i≥1, with the semantics that in the i-th step, the
searcher starts fromO, visits ray ri to length xi, then returns
toO. A cyclic strategy is a strategy for which ri = i mod m;
we will thus often omit the ri’s for such strategies, since they
are implied. We make the standing assumption that the tar-
get is hiding at least at unit distance from the root, otherwise
there is no strategy of bounded competitive ratio.

A geometric strategy is a cyclic strategy in which xi = bi,
for some b > 1, which we call the base. Geometric strate-
gies are important since they often give optimally compet-
itive solutions to search problems on a star. For instance,
the optimal competitive ratio R∗m is achieved by a geomet-
ric strategy with base b = m

m−1 (Gal 1974). In general, the
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competitive ratio of a cyclic strategy with base b is equal
to 1 + 2 bm

b−1 (Gal 1972). By applying standard calculus, it
follows that, for any given R = 1 + 2ρ ≥ R∗m, the geo-
metric strategy with base b is R-competitive if and only if
b ∈ [ζ1, ζ2], where ζi are the positive roots of the character-
istic polynomial p(t) = tm − ρt+ ρ.

A less known family of strategies for the m-ray star is the
set of strategies which maximize the searched length at the
i-th step. Formally, we want xi to be as large as possible, so
that the strategyX = (xi) has competitive ratioR = 1+2ρ.
It turns out that this problem has indeed a solution, and as
shown in (Jaillet and Stafford 1993), the resulting strategy
Z = (zi) is one in which the search lengths are defined by
the linear recurrence relation zm+i = ρ(zi+1 − zi). (Jaillet
and Stafford 1993) give a solution to the recurrence for ρ =
ρ∗m. We can show that Z is in fact uniquely defined for all
values of R ≥ R∗m, and give a closed-form expression for
zi, as a function of ζ1 and ζ2, defined above. Following the
terminology of (Angelopoulos, Dürr, and Jin 2019) we call
Z the aggressive strategy of competitive ratio R, or simply
the aggressive strategy when R is implied.

For the star we will use a family of linear inequalities in-
volving the search lengths xi to model the requirement that
the search isR-competitive. Such inequalities are often used
in competitive search, see e.g. (López-Ortiz and Schuierer
2001), (Hipke et al. 1999). Each inequality comes from an
adversarial position of the target: for a search strategy of the
form X = {(xi, ri)} in the star, the placements of the target
which maximize the competitive ratio are on ray rj and at
distance xj + ε, for all j and for infinitesimally small ε (i.e.,
the searcher barely misses the target at step j).

There is, however, a subtlety in enforcing competitive-
ness in our problem. In particular, we need to filter out some
strategies that can be R-competitive up to time T , but are
artificial. To illustrate this, consider the case of the line, and
a strategy S that walks only to the right of O up to time
T (it helps to think of T as very large). This strategy is 1-
competitive in the time interval [0, T ], and obviously max-
imizes clearance, but intuitively is not a realistic solution.
The reason for this is that S discards the entire left side with
respect toR-competitiveness. Specifically, for a point at dis-
tance 1 to the left of O, any extension S′ of S will incur a
competitive ratio of at least 2T +1, which can be enormous.

We thus need to enforce a property that intuitively states
that a feasible strategy S to our problem should be extend-
able to an R-competitive strategy S′ that can detect targets
hiding infinitesimally beyond the boundary that has been ex-
plored by time T in S. We call this property extendability of
an R-competitive strategy (see the full version (Angelopou-
los and Voss 2020) for a detailed discussion). Our experi-
mental evaluation shows that the optimal extendable strategy
on the star performs significantly better than other candidate
strategies, which further justifies the use of this notion.

A Warm-up: Maximum Clearance on the Line
We begin with the simplest environment: an unbounded line
with root O. Fix a competitive ratio R = 1 + 2ρ, for some
ρ ≥ ρ∗2 = 4. Without loss of generality, we assume cyclic

strategies X = (xi) such that xi+2 > xi, for all i.
Let Sk denote the set of all strategies X = (x1, . . . xk)

with k steps. We can formulate MAXCLEAR(R,T) restricted
to Sk using the following LP, which we denote L(k)

2 .

max xk−1 + xk (L(k)
2 )

subject to x1 ≤ ρ (C0)∑j+1

i=1
xi ≤ ρ · xj , j ∈ [1, k − 2] (Cj)∑k

i=1
xi ≤ ρ · xk−1 (Ek−1)

2
∑k−1

i=1
xi + xk ≤ T (B)

In this LP, constraints (C0) and (C1), . . . (Ck−2) model the
requirement for (1 + 2ρ)-competitiveness. (C0) models a
target hiding at distance 1 from O, whereas the remaining
constraints model a target hiding right after the turn points
of x1, . . . xk−2, respectively. Constraint (B) is the budget
constraint. Last, constraint (Ek−1) models the extendability
property, which on the line means remaining competitive for
a target hiding just beyond the turn point of xk−1. For more
details on this type of constraints, see the discussion for the
more general m-ray star problem.

Therefore, an optimal strategy is one of maximum objec-
tive value, among all feasible solutions toL(k)

2 , for all k ≥ 1.
We will use this formulation to show that the optimal strat-
egy has an intuitive statement. Let Z = (zi) be the aggres-
sive strategy of competitive ratio R. From Z we derive the
aggressive strategy with budget T , which is simply the max-
imal prefix of Z that satisfies the budget constraint (B). We
denote this strategy by ZT .

Note that ZT may be wasteful, leaving a large portion of
the budget unused, which suggests another intuitive strat-
egy derived from Z. Informally, one can “shrink” the search
lengths of Z in order to deplete the budget precisely at some
turn point. Formally, we define the scaled aggressive strat-
egy with budget T , denoted by Z̃T as follows. Let l be the
minimum index such that 2

∑l−1
i=1 zi + zl ≥ T , and define γ

as T/(2
∑l−1

i=1 zi+zl). Then Z̃T is defined as (z̃i) = (γ ·zi).
We will prove that one of ZT , and Z̃T is the optimal strat-

egy. We can first argue about constraint tightness in an opti-
mal solution to L(k)

2 .

Lemma 1. In any optimal solution to L(k)
2 , at least one of

the constraints (C0) and (B) is tight, and all other con-
straints must be tight.

Lemma 1 shows that if X∗ is optimal for L(k)
2 , then one

can subtract successive constraints from each other to obtain
the linear recurrence relation x∗i+2 = ρ(x∗i+1 − x∗i ), with
constraint (C1) giving an initial condition. So X∗, viewed
as a point in Rk, is on a line ∆ ⊂ Rk, defined as the set
of all points which satisfy (C1), . . . , (Ek−1) with equality.
This leaves us with two possibilities: either X∗ = X

(k)
0 the

point on ∆ for which (C0) is tight, or X∗ = X
(k)
B the point

on ∆ for which (B) is tight.
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Define now X0 as the set of all feasible points X(k)
0 and

XB as the set of all feasible points X(k)
B . A point X is op-

timal for one of these sets if its objective value is no worse
than any point in that set. The following lemma is easy to
see for ZT , and requires a little more effort for Z̃T .

Lemma 2. ZT is optimal for X0, and Z̃T is optimal for XB .

From Lemma 1 and 2 we conclude that the better of the
two strategies ZT and Z̃T is optimal for MAX(R,T) on the
line. We call this strategy the mixed aggressive strategy.

Maximum Clearance on the Star
We now move to the m-ray star domain. We require that the
strategy be (1 + 2ρ)-competitive, for some given ρ ≥ ρ∗m,
where ρ∗m = mm

(m−1)m−1 , and we are given a time budget T .

A First, but Suboptimal Approach
An obvious first place to look is the space of geometric
strategies. We wish the geometric strategy to have competi-
tive ratio 1 + 2ρ, so the strategy must have base b ∈ [ζ1, ζ2],
using the notation of the preliminaries. Since we want to
maximize the clearance of our strategy, it makes sense to
take b = ζ2. We define the scaled geometric strategy with
budget T similarly to the scaled aggressive strategy: find the
first step at which the budget T is depleted, and scale down
the geometric strategy so that it depletes T precisely at the
end of that step. The scaled geometric strategy represents the
best known strategy prior to this work, but is suboptimal.

For Maximum Clearance on the line, we proved that the
optimal strategy is the best of the aggressive and the scaled
aggressive strategies. One may ask then whether the optimal
strategy in the star domain can also be expressed simply as
the better of these two strategies. The answer is negative, as
we show in the experimental evaluation.

Modeling as an LP
As with the line, we first show how to formulate the problem
using a family of LPs, denoted byLm

k , partitioning strategies
according to their length k. For a given step j, we denote by
̄ the previous step for which the searcher visited the same
ray, i.e, the maximum ̄ < j such that r̄ = rj , assuming it
exists, otherwise we set x̄ = 1. We denote by lr the last step
at which the searcher explores ray r. Finally, we denote by j0
the last step in which the searcher searches a yet unexplored
ray, i.e., the largest step j such that ̄ = 0. This gives us:

max
∑m

i=1
xli (L(k)

m )

subject to
∑j0

i=1
xi ≤ ρ (C0)∑j−1

i=1
xi ≤ ρ · x̄, j ∈ [j0 + 1, k] (Cj)∑k

i=1
xi ≤ ρ · xlr , r ∈ [1,m], lr 6= rk (Er)

2
∑k−1

i=1
xi + xk ≤ T (B)

Here, constraints (C0), (Cj0), . . . (Ck) model the (1 +
2ρ)-competitiveness of the strategy, and constraint (B)
models the budget constraint. See (Hipke et al. 1999) for the
derivation of these constraints. Constraints (E1), . . . , (Em)
model the extendability property, by giving competitiveness
constraints for targets placed just beyond the turn points at
xl1 , . . . , xlr . Indeed, once the search is completed, in or-
der for it to be extendable, the searcher must be able to re-
turn just beyond the boundary of the cleared area, while re-
maining (1 + 2ρ)-competitive. For a point just beyond the
searcher’s final position this is trivially verified; for all other
final turn points this incurs a competitiveness constraint,
which has a similar form to the (Cj) constraint.

As is standard in star search problems, we can add some
much-needed structure in the above formulation.

Theorem 1. Any optimal solution X∗ = (x∗i , ri) to L(k)
m

must be monotone and cyclic: (x∗i ) is increasing and ri = i
mod m up to a permutation.

This means that we can formulate the problem using a
much simpler family of LPs which we denote by P

(k)
m ,

where constraints (Mi) model monotonicity.

max
∑m−1

i=0
xk−i (P (k)

m )

subj to
∑m−1

i=1
xi ≤ ρ (C0)∑j+m−1

i=1
xi ≤ ρ · xj , j ∈ [1, k −m] (Cj)∑k

i=1
xi ≤ ρ · xj , j ∈ [k −m+ 1, k − 1] (Ej)

xi ≤ xi+1, i ∈ [1, k − 1] (Mi)

2
∑k−1

i=1
xi + xk ≤ T (B)

Solving P (k)
m

While proving cyclicality, we also prove that for any optimal
solution toL(k)

m , most of the constraints are tight, similarly to
Lemma 1. Applying this result to P (k)

m gives the following.

Lemma 3. In an optimal solution to the LP P
(k)
m , con-

straints (Mi) are not necessarily tight, at least one of the
constraints (C0) and (B) is tight, and all other constraints
must be tight.

Subtracting (Ci) from (Ci+1) and (Ck−m) from
(Ek−m+1) gives a linear recurrence formula which any op-
timal solution X∗ must satisfy:

x∗i+m = ρ(x∗i+1 − x∗i ). i ∈ [1, k −m]

The constraints (Ej) give us m− 1 equations to help deter-
mine the solution: ρx∗k−m+1 = · · · = ρx∗k−1 = Sk. So X∗,

viewed as a point in Rk, is on a line ∆
(k)
m ⊂ Rk, defined

as the set of all points which satisfy (C1), . . . , (Ek−1) with
equality. Lemma 3 shows that the solution to P (k)

m is either
the point X(k)

0 ∈ ∆m
k for which constraint (C0) is tight, or

the point X(k)
B ∈ ∆m

k for which constraint (B) is tight.
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We can compute these two strategies efficiently for a fixed
k, as we will demonstrate for X(k)

B . We rewrite the condi-
tions X(k)

B ∈ ∆m
k and “(B) is tight” as a matrix equation:

Mm
k,B ×X = (0 · · · 0 T )

> (3)

whereMm
k,B is the following k × k matrix:



ρ −ρ 0 0 · · · 1 0 · · · 0 0 0
0 ρ −ρ 0 · · · 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

. . .
...

...
...

0 0 0 0 · · · 0 0 · · · ρ −ρ 0
1 1 1 1 · · · 1 1 · · · 1 1− ρ 1
2 2 2 2 · · · 2 2 · · · 2 2 1


Mm

k,B has a very nice structure, and is very sparse, as all
coefficients are concentrated in three diagonals (numbered 1,
2, and m+ 1) and the last two lines. This is good for us: we
can solve (3) in timeO(k) using Gaussian elimination.X(k)

0
can be computed similarly, using the matrixMm

k,0, which is
identical to Mm

k,B except for the last line, which contains

(C0), and (3) becomesMm
k,0 ×X

(k)
0 = (0 · · · 0 ρ)>. When

solving (3) we discarded the constraint (C0), so we need to
check whether X(k)

B is feasible for this constraint. Similarly,
we need to check whether X(k)

0 is feasible for (B).

Finding the Optimal Strategy
At this point, we have determined how to compute two
families of strategies, the sets X0 = {X(k)

0 , k ∈ N} and
XB = {X(k)

B , k ∈ N}, and we have shown that any optimal
strategy belongs to one of these two families. Define k0 the
highest k for which X(k)

0 is feasible, and kB the lowest k
for which X(k)

B is feasible. We conclude with our two main
results.

Theorem 2. X(k)
0 is feasible if and only if k ≤ k0, andX(k)

B

is feasible if and only if k ≥ kB . Moreover, X(k0)
0 is optimal

for X0, and X(kB)
B is optimal for XB .

Proof sketch. We show first that any point (xi) that is feasi-
ble for P (k)

m is positive: ∀i, xi ≥ 0. Denote X(k)
0 = (xi) and

X
(k−1)
0 = (yi). Using the convention y0 = 1, the strategy

D = (xi − yi−1) is feasible for P k
m, therefore positive. This

means that X has a higher objective value than Y , and also
requires a larger budget: this shows that k0 is well-defined
and optimal. Because X(k)

0 and X(k)
B are scaled versions of

each other, we get kB = k0 or k0+1. Additional calculations
show that the objective values of X(k)

B are decreasing.

Theorem 3. The optimal strategy for the m-ray star can be
computed in time O(m log(T ) log(m log(T ))).

Proof sketch. The scaled geometric strategy with base b =
m

m−1 is a feasible point for a certain P
(kG)
m , with kG =

O(logb(T )) = O(m log(T )). This means that X(kG)
B is fea-

sible, and so kB ≤ kG gives us an upper bound. We can use
binary search to find kB , solving (3) at each step at a cost of
O(kG). We know that k0 is either kB or kB − 1, so all that
remains is to compare the two strategies, which gives us a
total complexity of O(m log(T ) log(m log(T ))).

Maximum Clearance in a Network
In this section we study the setting in which the environment
is a network, represented by an undirected, edge-weighted
graph Q = (V,E), with a vertex O designated as the root.
Every edge has a non-negative length which represents the
distance of the vertices incident to the edge. The target can
hide anywhere along an edge, which means that the search
strategy must be a traversal of all edges in the graph. We can
think of the network Q as being endowed with Lebesgue
measure corresponding to the length. This allows as to de-
fine, for a given subset A of the network, its measure l(A).
Informally, l(A) is the total length of all edges (partial or
not) that belong in A. Given a strategy S and a target t, the
cost d(S, t) and the distance d(t) are well defined, and so
is the competitive ratio according to (1). We will denote by
Q[r] the subnetwork that consists of all points in Q within
distance at most r from O.

The exact competitive ratio of searching in a network is
not known, and there are only O(1)-approximations (Kout-
soupias, Papadimitriou, and Yannakakis 1996; Angelopou-
los and Lidbetter 2020) of the optimal competitive ratio.
For this reason, as explained in the introduction, we inter-
pret MAXCLEAR(R,T) as a maximum clearance strategy
with budget T that is an R-approximation of the optimal
competitive ratio. The known approximations use searching
based on iterative deepening, e.g. strategy CPT(r), which in
each round i, searches Q[ri] using a Chinese Postman Tour
(CPT) (Edmonds and Johnson 1973) ofQ[ri], for some suit-
ably chosen value of r.

We could apply a similar heuristic to the problem of Max-
imum Clearance. However, searching using a CPT of Q[ri]
is wasteful, since we repeatedly search parts of the network
that have been explored in rounds 1 . . . i − 1. Instead, we
rely on heuristics for the Rural Postman Problem (Freder-
ickson, Hecht, and Kim 1978). In this problem, given an
edge-weighted network Q = (V,E), and a subset Ereq ⊆ E
of required edges, the objective is to find a minimum-cost
traversal of all edges in Ereqin Q; we call this tour RPT for
brevity. Unlike the Chinese Postman Problem (CPP), find-
ing an RPT is NP-hard. The best known approximation ra-
tio is 1.5 (Frederickson, Hecht, and Kim 1978), but sev-
eral heuristics have been proposed, e.g. (Corberán and Prins
2010), (Hertz, Laporte, and Hugo 1999).

We thus propose the following strategy, which we call
RPT(r). For each round i ≥ 1, let Ri−1 = Q[ri] \ Q[ri−1]
denote the part of the network that the searcher has not yet
explored in the beginning of round i (and needs to be ex-
plored). Compute both tours CPT(Q[ri]) and RPT(Q[ri]),
the latter with required set of edges the edge set ofRi−1 (us-
ing the 1.5-approximation algorithm), and choose the tour
of minimum cost among them. This continues until the time
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Figure 1: Clearance ratios for m = 4 and R = R∗4, as func-
tion of T .

budget T is exhausted. It is very hard to argue from a theo-
retical standpoint that the use of RPT yields an improvement
on the competitive ratio; nevertheless, the experimental eval-
uation shows that this is indeed beneficial to both competi-
tiveness and clearance. Since RPT(r) is at least as good as a
strategy that is purely based on CPTs, we can easily show
the following, which is proven analogously to the random-
ized strategies of (Angelopoulos and Lidbetter 2020).

Proposition 1. For every r > 1, RPT(r) is a r2

r−1 -
approximation of the optimal competitive ratio. In partic-
ular, for r = 2, it is a 4-approximation.

Note that RPT(r) is, by its statement, extendable, since it
will always proceed to search beyond the boundary of round
i in round i+1. Moreover, RPT(r) is applicable to unbounded
networks as well, provided that for any D, the number of
points in the network at distance D from O is bounded by
a constant. This is necessary for the competitive ratio to be
bounded (Angelopoulos and Lidbetter 2020).

Experimental Evaluation
m-ray Star
In this section we evaluate the performance of our optimal
strategy against two other candidate strategies. The first can-
didate strategy is the scaled geometric strategy, with base
ζ2,which we consider as the baseline for this problem prior
to this work. The second candidate strategy is the mixed ag-
gressive strategy. Recall that we defined both strategies at
the beginning of the star section, and that all these strategies
are defined for the same competitive ratio R.

Figure 1 depicts the relative performance of the optimal
strategy versus the performance of the other two strategies,
for m = 4, and optimal competitive ratio R = R∗4, for a
range of budget values T ∈ [10, 1015]. Once the budget T
becomes meaningfully large (i.e, T ≥ 50), the optimal strat-
egy dominates the other two, outperforming both by more
than 20%. In contrast, the mixed aggressive strategy offers
little improvement over the scaled geometric strategy for ev-
ery reasonably large value of T .

Figure 2 depicts the influence of the parameter m on the
clearance achieved by the three strategies, for a relatively

Figure 2: Clearance as function of m, for T = 108 and R =
R∗m.

Figure 3: Clearance as function of R, for m = 4 and T =
104.

large value of T = 108. For each value of m in [2, 18],
we require that the strategies have optimal competitive ratio
R = R∗m. For the line (m = 2) we see that the mixed ag-
gressive strategy is optimal. We observe that as m increases,
each strategies’ clearance decreases, however the optimal
strategy is far less impacted. This means that asm increases,
the relative performance advantage for the optimal strategy
also increases, in comparison to the other two.

Figure 3 depicts the strategies’ performance for m = 4,
and T = 104, as a function of the competitive ratioR ≥ R∗4.
In particular, we consider R ∈ [R∗4, 3R

∗
4]. We observe that

as R increases, the mixed aggressive strategy is practically
indistinguishable from the scaled geometric. The optimal
strategy has a clear advantage over both strategies for all
values of R in that range.

Networks
We tested the performance of RPT(r) against the perfor-
mance of CPT(r). Recall that the former searches the net-
work Q[ri] iteratively using the best among the two tours
CPT(Q[ri]) and RPT(Q[ri]), whereas the latter uses only
the tour CPT(Q[ri]). We found r = 2 to be the value that
optimizes the competitive ratio in practice, as predicted also
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Figure 4: Comparison of the two strategies on the Berlin net-
work (633 nodes, 1042 edges).

Figure 5: Comparison of the two strategies on the Chicago
network (933 nodes, 1475 edges).

by Proposition 1, so we chose this value for our experiments.
We used networks obtained from the online library Trans-

portation Network Test Problems (Bar-Gera 2002), after
making them undirected. This is a set of benchmarks that
is very frequently used in the assessment of transportation
network algorithms (see e.g. (Jahn et al. 2005)). The size
of the networks we chose was limited by the O(n3) time-
complexity of CPT(r) and RPT(r) (n is the number of ver-
tices). For RPT we used the algorithm due to (Frederickson,
Hecht, and Kim 1978).

Figures 4 and 5 depict the clearance achieved by each
heuristic, as function of the budget T , for a root chosen uni-
formly at random. The first network is a European city with
no obvious grid structure, whereas the second is an Amer-
ican grid-like city. We observe that the clearance of CPT(r)
exhibits plateaus, which we expect must occur early in each
round, since CPT must then traverse previously cleared
ground. We also note that these plateaus become rapidly
larger as the number of rounds increases, as expected. In
contrast, RPT(r) entirely avoids this problem, and performs
significantly better, especially for large time budget.

Figure 6 depicts the ratio of the average clearance of
RPT(r) over the average clearance of CPT(r) as a function of
the time budget T , calculated over 10 random runs of each
algorithm on the Berlin network (each run with a root chosen

Figure 6: Clearance ratio of RPT(r) versus CPT(r), for 10
randomly chosen roots, for the Berlin network.

uniformly at random). We observe that RPT(r) consistently
outperforms CPT(r), by at least 8% for most values of T ,
and up to 16% when T is comparable to the total length of
all edges in the graph (173299). At T = 250000, in most
runs, RPT(r) has cleared the entire network.

The average competitive ratios for these runs are 160 for
CPT(r) and 132 for RPT(r), demonstrating a clear advantage.

Extensions and Conclusions
One can define a problem “dual” to Maximum Clearance,
which we call Earliest Clearance. Here, we are given a
bound L on the desired ground that we would like the
searcher to clear, a required competitive ratio R, and the ob-
jective is to design an R-competitive strategy which min-
imizes the time to attain clearance L. The techniques we
use for Maximum Clearance can also apply to this problem,
in fact Earliest Clearance is a simpler variant; e.g., for star
search, optimal strategies suffice to saturate all but one con-
straint, instead of all but two.

Maximum Clearance on a star has connections to the
problem of scheduling contract algorithms with end guar-
antees (Angelopoulos and Jin 2019). More precisely, our
LP formulation has certain similarities with the formulation
used in that work (see the LP Pm, on page 5496 in (An-
gelopoulos and Jin 2019)), and both works use the same
general approach: first, a technique to solve the LP of in-
dex k, and then a procedure for finding the optimal index
k∗. However, there are certain significant differences. First,
our formulations allow for any competitive ratio ρ ≥ ρ∗m,
whereas (Angelopoulos and Jin 2019) only works for what
is the equivalent of ρ∗m. Related to this, the solution given
in that work is very much tied to the optimal performance
ratios, and the same holds for the optimality proof which
is quite involved and does not extend in an obvious way to
any ρ. The theoretical worst-case runtime of the algorithm
in (Angelopoulos and Jin 2019) is O(m2 logL), whereas
the runtime of our algorithm has only an O(m logm) de-
pendency on m, as guaranteed by Theorem 3.
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