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Ultrafast control of lattice strain via magnetic circular dichroism
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Using ultrafast x-ray diffraction, we directly monitor the lattice dynamics induced by femtosecond laser pulses
in nanoscale thin films of bismuth iron garnet in external magnetic fields H.,,. We control the ultrafast laser-
induced lattice strain amplitude by changing the laser pulse helicity. The strength of Hy, is used as an external
parameter to switch the helicity dependence on and off, respectively. Based on magneto-optical spectroscopic
measurements, we explain these phenomena by magnetic circular dichroism. Our findings highlight an important
approach for ultrafast manipulation of lattice strain in magnetic materials, in particular insulators, and open
exciting perspectives towards ultrafast control of lattice strain and heat-induced magnetization switching and
spin waves in bismuth substituted iron garnets using the polarization of light.

DOI: 10.1103/PhysRevB.103.064301

Controlling the properties of matter has always been a
major issue in condensed-matter physics. From a fundamen-
tal point of view, it requires a deep understanding of the
interactions among spins, charge, and lattice degrees of free-
dom and their response to external stimuli. Traditionally,
such control has been realized by changing external condi-
tions such as temperature, pressure, and electric or magnetic
fields [1,2]. Recently, intense ultrashort laser pulses have
been proven to be an efficient tool for manipulating magnetic
[3-5], electric [6,7], optic [8], and crystallographic [9-11]
properties of materials on ultrashort time scales. The coupled
dynamics is measured in real time with high spatiotempo-
ral resolution using time-resolved pump-probe techniques,
which are selective for one of the subsystems [3—11]. This
unique opportunity provided by ultrafast laser pulses has
led to the discovery of important phenomena for both fun-
damental science and technological applications, such as
laser-induced room temperature superconductivity [12], in-
verted strain pulses [13,14], control of the ferroelectric [15]
and magnetic [3,4,16,17] order, and triggering coherent spin
[4,18-20] and phonon [21,22] dynamics. Some of these phe-
nomena are explained via processes involving the coupling
and energy transfer between the degrees of freedom in solids
[3-5,12,14,20,23] and others are triggered by nonlinear op-
tical processes like impulsive simulated Raman scattering
[4,5,16,18,19,21]. These nonlinear optical processes can offer
the advantage of controlling physical properties using the
light polarization [4,5,16,18,19]. For linear absorption such
control has been reported in very few cases [24-28]. In par-
ticular, the effect of magnetic circular dichroism has mainly
been discussed in the context of helicity-dependent all-optical
switching in metallic magnets [25,28].
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In magnetic materials, one of the most important ap-
proaches used for ultrafast control of their properties is based
on the interaction between the lattice and the magnetiza-
tion. So far, this approach has attracted attention in two
different ways: The first is related to controlling the mag-
netization dynamics with picosecond strain pulses generated
in metallic film by femtosecond laser pulses [29-33]. It was
demonstrated that a strain pulse can trigger a coherent mag-
netization precession in metal [29-31], semiconductor [32],
and dielectric [33,34] magnetic films. Because of its long
propagation distance of several millimeters combined with
low energy losses [35,36], strain pulses offer an important
opportunity to excite magnetization precession in magnetic
materials deeply embedded in opaque heterostructure devices
[32-34]. The second way is related to control the lattice
strain by the ultrafast modification of the magnetic order
[14,23,37-41]. Most studies in this direction focus on measur-
ing the lattice response upon the ultrafast demagnetization of a
metallic magnet with femtosecond laser pulses [14,23,37—41].
The results of these investigations are explained by consid-
ering the transfer of angular momentum [37,40] and energy
[14,23,38,39] from the spins to the lattice. By now, these
efforts have yielded great progress in the fundamental under-
standing of lattice-spin interactions on ultrashort time scales.
However, an important question remains: Is it possible to
use the magnetization for ultrafast manipulation of the lattice
strain via an external parameter of the laser pulse like the state
of its polarization? If yes, what is the fundamental mechanism
behind this phenomenon? In addition, what can be the impact
of such control on the ultrafast magnetization dynamics, espe-
cially in magnetic insulators?

In this paper, we use ultrafast x-ray diffraction (UXRD)
to directly monitor the lattice dynamics induced by a fem-
tosecond laser excitation in nanoscale thin films of bismuth
iron garnet under external magnetic fields, H.y, applied

©2021 American Physical Society
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FIG. 1. Experimental configuration and static x-ray diffraction
results. (a) Sketch of the UXRD configuration with pump pulses
and external magnetic field perpendicular to the film. (b) X-ray
diffraction line profile recorded along the ¢, direction around the
004 Bragg reflections of the BIG layer and the GGG substrate. The
arrows indicate the 004 Bragg reflection related to BIG and the GGG.
The inset shows the reciprocal space map around the 004 Bragg
reflections of BIG layer and GGG substrate.

perpendicular to the film plane [see Fig. 1(a)]. By changing
the helicity of the laser pulse, we demonstrate ultrafast ma-
nipulation of the lattice strain: A huge 20% difference of the
strain amplitude is controlled by the light helicities when the
magnetization is saturated perpendicular to the film plane. In
addition, we find that the lattice strain can be controlled by
varying the strength of H.y. Both effects rely on ultrafast
but long lived stress and the concomitant strain dynamics are
only limited by the sound velocity. Based on magneto-optical
spectroscopic measurements, we demonstrate that these phe-
nomena can be explained considering the circular magnetic
dichroism.

Our study is based on a 90-nm thick bismuth iron gar-
net (BizFes0;,, BIG) film grown by pulsed laser disposition
onto a (100) gadolinium gallium garnet (Gd;Gas0;,, GGG)
substrate. A detailed description of the growth conditions
can be found in Ref. [42]. The BIG material is a fer-
rimagnetic insulator with a high Curie temperature (7¢ ~
680 K) [43], large optical band gap (E, ~ 2.4¢eV) [44,45] and

giant magneto-optical Faraday rotation (~37 deg/um at
2.3 eV) [46,47]. These combined properties make this mate-
rial a promising candidate for nonreciprocal magneto-optical
devices [48,49]. The UXRD measurements are performed at
the XPP-KMC3 experimental station of the synchrotron ra-
diation source BESSY II, Helmholtz-Zentrum Berlin (HZB),
during the standard multibunch operation mode. In this op-
eration mode, the bending magnet emits hard x-ray pulses
with a duration of ~100 ps. The sample is excited at normal
incidence with a pump beam at the central wavelength of
514 nm, obtained by frequency doubling the output of a
Yb:KGW laser system operating at 104 kHz repetition rate
and with 600-fs pulse duration. At this pump wavelength, the
BIG film absorbs about 38% of the incident energy. The pump
pulse is focused onto the sample in a circular spot with a
diameter of 560 um, while the x-ray probe has a rectangular
shape with dimensions of 460 x 150 um?. The x-ray pho-
ton energy 9 keV (A = 1.38 A) was selected by a Si double
crystal monochromator. The polarization of the pump beam
is controlled using a quarter-wave plate (QWP). The external
magnetic field Hy, is applied perpendicular to the plane of the
film. All measurements are performed at room temperature.

Before the UXRD measurements, we investigated the static
crystalline properties of the BIG/GGG sample using the same
x-ray setup. Figure 1(b) shows the x-ray diffraction line pro-
file recorded along the g, direction under symmetric Bragg
diffraction at g, = 0, where ¢, and g, represent the scatter-
ing wave vector components along the out-of-plane and the
in-plane directions of the sample. The corresponding recip-
rocal space map of diffracted intensity as a function of g,
and g, is shown in the inset of Fig. 1(b). We observe two
well-separated diffraction peaks at ¢. = 1.92A~! and ¢, =
2.03 A~!, corresponding to the 004 Bragg diffraction of BIG
and GGG, respectively. The absence of any other diffraction
peaks indicates the single-crystalline and single-phase nature
the BIG film. This is in agreement with transmission elec-
tron microscopy measurements in BIG samples obtained in
identical growth conditions [50]. The width of the BIG Bragg
reflection Ag, = 0.007 A~! and the Laue oscillations indicate
that the coherence length coincides with the film thickness. In
the UXRD experiments, we measured the shift of this peak
induced by laser excitation and we extracted via Bragg’s law
the corresponding lattice strain 7(¢) as a function of the time
delay ¢ between the pump and the probe pulses.

Figure 2 shows the lattice strain induced by right (o ™) and
left (o7) circularly polarized laser pulses with a fluence of
Foump = 3.5m] cm~2 at an external magnetic field of Hey =
450 mT. At this pump fluence, the static optical heating of the
sample is about 50 K. This increases the global static temper-
ature of the sample to 350 K, which is very small compared
to Tc(BIG) ~ 680 K. The lattice dynamics are governed by
two distinct time scales. Within the first 150 ps an ultrafast
lattice expansion by 0.02% is observed. The signal is limited
by the x-ray pulse duration. The time of maximum expansion
is given by T = d /v = 17 ps, where d is the thickness of the
film and v is the sound velocity of BIG [51]. The long-lived
expanded state exhibits very slow relaxation dynamics. In the
measured time window of 5 ns, the strain amplitude decays
only a little by heat transport to the substrate. The central
observation depicted in Fig. 2 is the change of ~20% in the
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FIG. 2. Time-resolved lattice dynamics induced by right (o™,
squares) and left (o, solid circles) circular polarization pump beam
with a pump fluence Fyynp = 3.5mlJ cm~? for H,, = 450 mT.

generated strain amplitude by reversing the helicity of the
pump beam.

In order to study this phenomenon in more detail, we
have measured the relative strain amplitude at different time
delays of t = 500 ps, t = 1000 ps, and # = 2000 ps as a func-
tion of the angle 6 between the fast axis of the QWP and
the p-polarized beam [see Figs. 3(a), 3(b), and 3(c)]. For
all time delays, the strain amplitude follows a clear sinu-
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FIG. 3. Strain amplitude n measured as a function of orientation
angle 6 of the quarter wave plate for Fy,, = 3.5mJcm™2. The
absolute strain 7(6) obtained for BIG at three different time delays of
(a) t =500ps, (b) t =1000ps, and (c) t =2000ps for Hey =
450 mT. (d) The relative strain (n(6) — 77)/7 obtained for BIG and
the nonmagnetic reference sample at t = 500 ps for Heyy = 450 mT.
(e) The relative strain for BIG at t = 500 ps for Hey, = 450 mT and
H. = OmT. The arrows in (a) highlight the QWP angles corre-
sponding to circular right (o+), linear (;), and circular left (o+)
polarizations of the pump beam. The solid lines are guides to the eye.
The error bars indicate the standard deviation of the time resolved
data.

soidal form with a periodicity of 180°. The minimum strain
is observed for the left circular polarization ot (6 = +45),
while its minimum is observed for the right circular
polarization 0 ~ (8 = —45). The p- or s- polarized pump beam
7 (6 = 0 and £90) generate the same strain amplitude that is
approximately the average of those induced by ot and o~
polarizations, i.e., n(w) = (n(c™) + n(c~))/2. In Fig. 3(d)
we cross check this finding by comparing the helicity de-
pendence of the photoinduced strain amplitude in BIG to the
helicity dependence observed under the very same excitation
conditions in a StRuO; thin film that is nonmagnetic at room
temperature and is used as a standard reference sample for
finding the zero time delay in pump-probe experiments at the
XPP-KMC3 beamline [52,53]. Clearly, the strain amplitude
for the nonmagnetic reference sample [black in Fig. 3(d)] is
independent of the pump polarization at 450 mT, where the
strain in BIG shows a strong modulation. More importantly,
we find that the helicity-dependent strain modulation gener-
ated in BIG can be nearly switched off by setting Hey = 0.
The black symbols in Fig. 3(e) show nearly the same strain
for any rotation angle of the QWP.

To give a comprehensive understanding of these phenom-
ena, it is important to clarify first the mechanism of strain
generation in BIG thin films by near-band-gap laser excita-
tion. Qualitatively, such processes can be described in the
following way. The light energy is absorbed in the BIG layer
by electronic transitions related to the Fe* ions [46,54,55].
These electronic states are very short lived [51] and rapidly
transfer the entire energy to vibrations of the lattice via
electron-phonon coupling. This lattice temperature rise asso-
ciated with this heat energy induces a lattice expansion, which
is directly quantified by UXRD measurements. We note that
the demagnetization dynamics in iron garnets is a very slow
process that occurs on the nanosecond time scale [56]. There-
fore, the magnetostrictive strain should have a very small or
no contribution to the lattice dynamics measured in the first
50 ps, where the coherent and incoherent phonons are already
generated. The heat in the BIG layer is mainly transported to
the GGG substrate via phonon heat conduction. This process
is characterized by an extremely long time scale (see Fig. 2),
which is in good agreement with the low thermal conductivity
in iron garnets [51,57].

From the above-described processes that lead to the lattice
strain observed in Figs. 2 and 3, we can conclude that the
origin of the polarization-dependent lattice dynamics should
satisfy the following three fundamental criteria: (i) the absorp-
tion of light depends on the state of its polarization, (ii) occurs
only in magnetic materials, and (iii) depends on the strength
of Heys, 1.€., the amplitude of the magnetization. These criteria
are fulfilled by the magnetic circular dichroism (MCD), which
is manifested for a given direction of the magnetization by a
variation in the light absorption when going over from right to
left circular polarization [58].

In order to confirm the physical origin behind the
helicity-dependent lattice strain dynamics, we investigated
the wavelength- and magnetic-field dependence of the MCD,
which corresponds to the difference in absorption between the
right and left circular polarization [45,59]. The measurements
are carried out using a magneto-optical spectrometer based on
90° polarization-modulation technique. A detailed description
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FIG. 4. Static magneto-optical and magnetic properties of the
BIG film measured in polar configuration. (a) Magnetic circular
dichroism spectrum of the BIG film, including the spectrum of the
pump beam used in the UXRD measurements (green line). (b) Mag-
netic circular dichroism hysteresis loop. The inset shows a magnified
view of the region round O T.

of the experimental setup has been given in Ref. [60]. Briefly,
the white light emitted by a 150-W Xe arc lamp is polarized
by a Rochon polarizer and modulated at a high frequency of
50 kHz by a photoelectric modulator (PEM). The modulated
light is focused onto the sample at normal incidence. The
transmitted light is collimated and analyzed with a Rochon an-
alyzer, and focused into a spectrometer. The MCD is deduced
from the signal measured by a photomultiplier detector signal
that is analyzed by a lock-in amplifier referenced to the first
harmonic of the PEM. Figure 4 shows the spectral dependence
of MCD measured over a wide range of wavelength between
300 and 800 nm with a saturating Hey applied perpendicular
to the film plane. The MCD reaches a large value of ~—20%
at A = 514 nm, which is the wavelength of the pump pulses
used in UXRD experiments [see Fig. 4(a)]. This large differ-
ence of ~20% in the absorption between the opposite light
helicities confirms the proposed origin behind the polarization
dependent lattice strain. It also reveals that the one photon
absorption process is the dominant mechanism at 514 nm,
which is the expected result with a near-band-gap laser ex-
citation. We note that the measured MCD is about 13 times
higher than the one in GdFeCo [25], which is expected to be
at the origin of the helicity-dependent all-optical switching in
metallic magnets [25,28]. From a fundamental point of view,

the large values of MCD in BIG can be explained by the large
spin-orbit induced in Fe-3d orbitals due to their hybridiza-
tion with the Bi-3p ones, which are characterized by a huge
spin-orbit coupling [54,61]. This mechanism is supported by
cluster molecular-orbital theory [62,63] and band-structure
calculations [64]. On the other hand, to reveal the origin of
the small signal modulation observed at zero external mag-
netic field [Fig. 3(e)], we measured the polar MCD hysteresis
loop [see Fig. 4(b)]. It shows a clear remanent magnetization
M, ~ 0.13 M; that is about 20% of the MCD signal for Hey; =
450 mT. This is in good agreement with the remaining strain
modulation at Hex = OmT reported in Fig. 3(e) compared
to the modulation of the strain amplitude at Hexe = 450 mT.
We note that this remnant magnetization corresponds to the
average projection of the magnetic domains on the direction
perpendicular to the film plane. These domains have a very
small size (~0.2 Mmz) [42,65], which guarantees that hun-
dreds of thousands of them are located within the x-ray probe.
On the other hand, for Hex = 450 mT, the magnetization of
BIG is almost saturated perpendicular to the film plane and
the difference in strain amplitude generated by the opposite
helicity of light reaches a large value of ~20%.

These findings should not be restricted to BIG, but occur in
all magnetic materials with good magneto-optical properties.
From a practical point of view, light polarization (helic-
ity) can thus be used to control any ultrafast phenomena
that are influenced by the lattice strain (or lattice heating).
For example, in Bi-substituted iron garnets, it was recently
demonstrated that an ultrafast heating of lattice can excite
high frequency spin waves [20,66,67] and induce a full mag-
netization switching [68]. By choosing the appropriate pump
wavelength to maximize the effect of MCD on lattice heat-
ing, it will be therefore possible to use the polarization of
light in order to: (i) control the amplitude of the spin waves
and (ii) obtain a helicity-dependent optical magnetization
switching in magnetic insulators. Due to the low damping
[49,69], large magneto-optical effect [46,47,49,70,71], and
good transparency in the visible and infrared region [49,70,71]
of bismuth substituted iron garnets, these phenomena are im-
portant for future data storage and processing technologies.

In summary, we demonstrated that femtosecond laser
pulses can induce helicity-dependent ultrafast lattice dynam-
ics in nanoscale thin films of BIG. We demonstrated a huge
long-lived 20% difference in the lattice strain generated by
the opposite light helicities when the magnetization is satu-
rated perpendicular to the film plane. For both right and left
circularly polarized light excitation, a variation of the external
magnetic field strength can control the lattice strain amplitude.
Based on magneto-optical spectroscopic measurements, we
demonstrate that these phenomena can be explained by con-
sidering the MCD. Our findings open different perspectives
on ultrafast manipulation of lattice strain and heat in mag-
netic materials, which allows for controlling magnetization
switching and spin wave excitations in bismuth substituted
iron garnets via the polarization of the laser pulse.

We acknowledge funding by the BMBF Project Grant No.
05K16IPA and M.D. acknowledges the Alexander von Hum-
boldt Foundation for financial support.
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