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Abstract: We address the control of a hybrid energy storage system composed of a lead battery
and hydrogen storage. Powered by photovoltaic panels, it feeds a partially islanded building. We
aim to minimize building carbon emissions over a long-term period while ensuring that 35% of the
building consumption is powered using energy produced on site. To achieve this long-term goal, we
propose to learn a control policy as a function of the building and of the storage state using a Deep
Reinforcement Learning approach. We reformulate the problem to reduce the action space dimension
to one. This highly improves the proposed approach performance. Given the reformulation, we
propose a new algorithm, DDPGαrep , using a Deep Deterministic Policy Gradient (DDPG) to learn
the policy. Once learned, the storage control is performed using this policy. Simulations show that
the higher the hydrogen storage efficiency, the more effective the learning.

Keywords: deep reinforcement learning; hybrid energy storage system; smart building

1. Introduction

Energy storage is a crucial question for the usage of photovoltaic (PV) energy because
of its time-varying behavior. In the ÉcoBioH2 project [1], we consider a building with solar
panels providing different usages. The building includes a datacenter that is constrained to
be powered by solar energy. It has a low carbon footprint building with lead and hydrogen
storage capabilities. Our goal is to monitor this hybrid energy storage system with a goal
of low carbon impact.

The building [1] is partially islanded with a datacenter that can only be powered by
the energy produced by the building’s solar panels. The proportion of energy produced
by the PV in the energy consumed by the building, including the datacenter, defines the
self-consumption. The EcoBioH2 project requests the self-consumption to be at least 35%.
Demand flexibility, where the load is adjusted to meet production, is not an option in this
building so that energy storage will be needed to power the datacenter. Daily variations
of the energy production can be mitigated using lead or lithium batteries. However,
due to their low capacity density such technologies cannot be used for interseasonal
storage. Hydrogen energy storage, on the other hand, is a promising solution to this
problem, enabling yearly low-volume, high-capacity, low-carbo-emission energy storage.
Unfortunately, it is plagued by its low storage efficiency. Combining hydrogen storage
with lead batteries in a hybrid energy storage system enables us to leverage the advantages
of both energy storages [2]. Hybrid storage has been shown to perform well in islanded
emergency situations [3]. Lead batteries can deliver a big load but not for long. On the other
hand, hydrogen storage only supports a small load but has a higher capacity than lead or
lithium batteries allowing a longer discharge. The question becomes how to monitor the
charge and discharge of each storage and to balance between the short-term battery and
the long-term hydrogen storage?
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We encounter therefore several short and long-term goals and constraints in opposition
summarized in Table 1. Minimizing the carbon impact discourages from using batteries,
as batteries emit carbon during their lifecycle. It also encourages using H2 storage when
needed, as less carbon is emitted per kW·h than battery storage. The less energy is stored,
the less energy is lost in storage efficiency. This results in more energy available to the
building. Thus, in the short-term, self-consumption increases. However, the datacenter is
not guaranteed to have enough energy available for the long-term. Keeping the datacenter
powered by solar energy requires storing as much energy as possible. Nevertheless, some
energy is lost during charge and discharge leading to a lower self-consumption. This
energy should be stored in the battery first since less energy is lost in efficiency, resulting
in higher emissions. Keeping the datacenter powered is a long-term objective as previous
decisions impact the current state that constraints our capacity to power the datacenter in
the future. Nonetheless, because of their capacities our energy storage systems perform
in opposition. Battery storage has a limited capacity. It allows the withstanding of short-
term production variations. Hydrogen storage has an enormous capacity. It helps with
long-term, interseasonal variations.

Table 1. Contradictory consequences of carbon impact minimization and datacenter powering.

Minimizing Carbon Impact Keeping the Datacenter Powered

short duration long duration
high self-consumption low self-consumption

use only H2 charge batteries first
do not need any capacity need large hydrogen storage capacity

Managing a long-term storage system means that the control system needs to choose
actions (charge or discharge and storage type) depending on their long-term consequences.
We consider a duration of several months. We want to minimize the carbon impact while
having enough energy for a complete year at least, under the constraints of the datacenter
being powered by solar energy. Using convex optimization to solve this problem requires
precise forecasting of the energy production and consumption for the whole year. One
cannot have months of such forecasts in advance [4,5]. In [6], the authors try to minimize
the cost and limit their study to 3 days only. Methods based on genetic algorithms, as [7],
require a detailed model of the building usages and energy production which is not realistic
in our case since all parts are not known in advance. We also want to allow flexible usages.
Therefore, we propose to adopt a solution that can cope with light domain expertise. If the
input and output data of the problem are accessible, supervised learning and deep learning
can be considered [8]. Having contradicting goals with different horizons, reinforcement
learning is an interesting approach [9]. The solution we are looking for should provide
a suitable control policy for our hybrid storage system. Most reinforcement learning
methods quantize the action space to avoid having interdependent action space bounds [10].
However, such a solution comes with a loss in precision in the action’s selection. It requires
more data for learning.

Taking into account theses aspects, we address in the sequel our problem formulation
allowing the deployment of non-quantized Deep Reinforcement Learning (DRL) [11] to
learn the storage decision policy. DRL learns a long-term evaluation of actions and uses it
to train an actor that for each state of the building gives the best action. In our case, the
action is the charge or discharge of the lead and hydrogen storages. Learning the policy
could even improve controlling the efficiency in the short-term [12]. Existing works focus
on non-islanded settings [13] where no state causes a failure. Since our building is partially
islanded, this approach would yield to a failure where the islanded portion is not powered
anymore. Existing DRL for hybrid energy storage systems focuses on minimizing the
energy cost [14]. It does not consider the minimization of carbon emission in a partially
islanded building.
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In this paper, we formulate the carbon impact minimization of the partially islanded
building to learn a hybrid storage policy using DRL. We will reformulate this problem to
reduce the action space dimension and therefore improve the DRL performance.

The contributions of this paper are as follows:

• We redefine the action space so that the action bounds are not interdependent.
• We use this reformulation to reduce the action space to a single dimension.
• From this analysis, we deduce a fixed up to a projection (but not learned) repartition

policy between the lead and hydrogen.
• We propose an actor–critic approach to control the partially islanded hybrid energy

storage of the building, to be named DDPGαrep.

Simulations will show the importance of the hydrogen efficiency and carbon impact
normalization in the reward, for the learned policy to be effective.

2. Problem Statement

In this section, we describe the model used to simulate our building. This model is
sketched in Figure 1 and explained next. Action variables are noted in red.

Electric grid

Solar panels

Building

Datacenter

Esolar

Egrid

Ebatt out(t)

EH2 out(t)

Σ=0

EH2 in(t)

Ebatt in(t)

Σ=0

Esurplus

EDC

Ebuilding

Ewaste

Z−1

+
ηH2

Z−1

+
ηbatt Ebatt(t)

EH2
(t)

Figure 1. View of our system. lines in green shows the solar-only part and purple lines shows the
grid-only part. actions are displayed in red.

2.1. Storages

We use a simplified model of the energy storage elements as they are sufficient to
validate the learning approach for our hybrid storage problem. However, the proposed
learning approach can use any batteries model or data since the proposed reformulations
and learning do not depend on the batteries model. As long as the action is limited to how
much we should charge or discharge, any storage model can be used instead. Since we
propose a learning approach, the learned policy could be further improved using real data.
Both energy storages (lead battery and H2) use the same equations:

EH2(t) = EH2(t− 1) + ηH2 EH2 in(t)− EH2 out(t) (1)

with EH2(t) the state of health of the H2 storage at instant t, ηH2 the global (charging
electrolyser and discharging proton-exchange membrane fuel cells) efficiency of H2 stor-



Energies 2021, 14, 4706 4 of 22

age. EH2 in(t) is the charge energy and EH2 out(t) is the energy discharged at instant t.
Equation (1) must satisfy the following constraints:

0 ≤ EH2(t) ≤ EH2 max (2)

0 ≤ EH2 in(t) ≤ EH2 in max (3)

0 ≤ EH2 out(t) ≤ EH2 out max (4)

with EH2 max, EH2 in max and EH2 out max the respective upper bounds for EH2(t), EH2 in(t)
and EH2 out(t). To obtain the lead battery equations replace H2 by batt in Equations (1)–(4).
The lead battery efficiency ηbatt covers the whole battery efficiency: charge and discharge

2.2. Solar Circuit

The solar circuit connects elements that manage the solar energy only. The production
is provided by solar panels Esolar(t). Part of this energy will be stored in short-term (lead
battery) or long-term (hydrogen) storage. Part of this energy will be consumed directly by
a small datacenter , EDC(t). The solar circuit is not allowed to handle grid electricity. We
define Esurplus(t) as:

Esurplus(t) = Esolar(t)− EDC(t) + Ebatt out(t)− Ebatt in(t) + EH2 out(t)− EH2 in(t) (5)

Please note that this equation does not prevent from charging one energy storage by
the other. The solar circuit can only give energy to the general circuit, so that:

Esurplus(t) ≥ 0 (6)

This constraint (6) ensures that the datacenter can only be provided in solar energy,
as is required by our project [1]. Esolar(t) values are computed using irradiance values
from [15] and physical properties of our solar panels.

2.3. General Circuit

The building consumption Ebuilding(t) values come from EcoBioH2 technical office
study [16]. They take into account the power consumption of the housing, the restaurant,
...and other usages that are hosted by the building. We define δEregul(t) as the difference
between Ebuilding(t) and Esurplus(t):

δEregul(t) = Ebuilding(t)− Esurplus(t) (7)

When δEregul(t) > 0, we define it as the consumption from the electric grid:

Egrid(t) = max(0, δEregul(t)) (8)

When δEregul(t) < 0, we define it as the energy discarded since this building is not
allowed to give energy back to the grid:

Ewaste(t) = max(0,−δEregul(t)) (9)

In reality, the energy discarded will not be produced. This will be done by temporarily
disconnecting the solar panels.

We define Egrid(t) and Ewaste(t) in Equations (8) and (9) as they are used in the
simulation metrics in Section 5.2. Variables defined previously and in the remaining of this
paper are displayed in Table 2, parameters are in Table 3.
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Table 2. Nomenclature of variables used.

Symbol Meaning

EH2(t) hydrogen storage state of charge at instant t
EH2 in(t) hydrogen storage charge at instant t

EH2 out(t) hydrogen storage discharge at instant t
Ebatt(t) lead storage state of charge at instant t

Ebatt in(t) lead storage charge at instant t
Ebatt out(t) lead storage discharge at instant t

Esolar(t) Solar production for the hour
EDC(t) Datacenter consumption for the hour

Esurplus(t) Energy going from the solar circuit to the general one
Ebuilding(t) Energy consumed by the building, excluding the datacenter

Egrid(t) Energy coming from the grid
Ewaste(t) Energy overproduced for the building

t time step
at action vector at instant t
st state vector at instant t

f (s, a) carbon impact in state s doing action a
R(s, a) reward in state s doing action a

rt reward in state st doing action at

δEbatt(t) lead battery contribution
δEH2(t) Hydrogen storage contribution

δEstorage(t) Global energy storages contribution
αrep(t) Energy storages contribution repartition

Q(st, at) discounted sum of future reward doing action at in state st
yt estimation of Q(st, at) used in the critic loss
γ discount factor of future rewards

π(s) policy returning an action a in state s
φi critic parameters at time step i
θi policy parameters at time step i

J(φi) critic loss
φold i critic parameters at time step i
θold i policy parameters at time step i

µ step-size for critic learning
λ step-size for actor learning
τ stabilization networks update proportion

N duration: average length of a policy
s self-consumption ratio (62)
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Table 3. Parameters values used during simulations.

Quantity Value Unit

ηsolar opacity 0.6
ηsolar 0.21
Spanels 1000 m2

Csolar 55 gCO2eq/kW·h
Esolar Max 185 kW·h
ηbatt 0.81
Cbatt In 68.66 gCO2eq/kW·h
Cbatt Out 86 gCO2eq/kW·h
Ebatt Max 650 / 2 kW·h
Ebatt In Max Ebatt Max kW·h
Ebatt Out Max Ebatt Max kW·h
ηH2 0.35
CH2 In 1.75 gCO22eq/kW·h
CH2 Out 5 gCO22eq/kW·h
EH2 Max 1000 kW·h
EH2 In Max 2× 10 kW·h
EH2 Out Max 2× 5 kW·h
Cgrid 53 gCO2eq/kW·h
EDC max 10 kW·h
Ebuilding Max 100 kW·h

2.4. Long-Term Carbon Impact Minimization Problem

We gather the building consumption, the solar panels production at instant t and the
previous stored energy state at t− 1 variables in a so-called state defined as:

st = [Ebuilding(t), Esolar(t), Ebatt(t− 1), EH2(t− 1)] (10)

We define the action variables in

at = [Ebatt in(t), Ebatt out(t), EH2 in(t), EH2 out(t)] (11)

to control the energy storage at the current hour t. We define in Equation (12) the instanta-
neous carbon impact at state st when performing action at as f (st, at):

f (st, at) = CsolarEsolar(t) + Cbatt outEbatt out(t) + Cbatt inEbatt in(t) + CH2 outEH2 out(t) + CH2 inEH2 in(t)

+ Cgrid(t)max(0, Ebuilding(t) + EDC(t)− Esolar(t)− Ebatt out(t) + Ebatt in(t)− EH2 out(t) + EH2 in(t))
(12)

with Csolar the carbon intensity per kW·h from the complete lifecycle of PV usage. Cbatt in,
Cbatt out, CH2 in, CH2 out are the carbon intensity from the complete lifecycle per kW·h of
respectively lead battery charge, discharge, hydrogen storage charge and discharge. Cgrid(t)
quantifies the carbon emissions per kW·h associated with energy from the grid. Their
values for simulations are provided in Table 3. Our goal is to minimize the long-term
carbon impact taking into account the carbon emissions at the current and future states
st, . . . , st+H as induced by the current and future actions at, . . . , at+H :

at = arg min
at

H

∑
h=0

f (st+h, at+h) (13)

under the constraints (2), (3), (4) and (6). We call this initial formulation TwoBatts.
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The challenge comes from our ignorance of the actions that will be taken in the future
at+1, . . . , at+H . Yet, we need to account for their impact. DRL approaches are meant for
such kind of challenges.

3. Problem Reformulations

In this section, we reformulate our problem (13) to simplify its resolution. We consider
in particular the reduction of the action space to reduce the complexity and improve the
convergence of learning.

3.1. Battery Charge or Discharge

The current formulation of our problem, TwoBatts, allows the policy to charge and
discharge a battery simultaneously. We note that the cost function to be minimized (12)
is increasing with the different components of at. This leads to multiple actions that, in
the same state st, yield to the same st+1 while having different costs. To avoid having to
deal with such cases, we impose that the energy storage systems can only be charged or
discharged at a given instant t:

Ebatt in(t)× Ebatt out(t) = 0 (14)

Therefore, we express the charge and discharge of each battery in a single dimension:

δEbatt(t) := Ebatt out(t)− Ebatt in(t) (15)

δEH2(t) := EH2 out(t)− EH2 in(t) (16)

We propose to use these new variables as the action space:

at = [δEbatt(t), δEH2(t)] (17)

To obtain the new model equations, we replace the following variables in Equations (1)–(12):

Ebatt out(t) := max(δEbatt(t), 0) (18)

Ebatt in(t) := max(−δEbatt(t), 0) (19)

EH2 out(t) := max(δEH2(t), 0) (20)

EH2 in(t) := max(−δEH2(t), 0) (21)

Thus, we obtain the formulation 2Dbatt of (13) with

f (st, at) = CsolarEsolar(t)

+ Cbatt out max(δEbatt(t), 0) + Cbatt in max(−δEbatt(t), 0)

+ CH2 out max(δEH2(t), 0) + CH2 in max(−δEH2(t), 0)

+ Cgrid(t)max(Ebuilding(t) + EDC(t)− Esolar(t)− δEbatt(t)− δEH2(t), 0)

(22)

Next, we revisit the constraints with this new action space. When we only charge
(δEH2(t) = −EH2 in(t)), straightforward calculations result in (2) being equivalent to

−
EH2 max − EH2(t− 1)

ηH2

≤ δEH2(t) (23)

and (3) turns into:

−EH2 in max ≤ δEH2(t) (24)

When we only discharge (δEH2(t) = EH2 out(t)) (2) becomes:

δEH2(t) ≤ EH2(t− 1) (25)
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Accordingly, (4) is equivalent to:

δEH2(t) ≤ EH2 out max (26)

The battery is constrained by variations of (23)–(26). Both storages are constrained by
Equation (6) that turns into:

0 ≤ Esolar(t)− EDC(t) + δEbatt(t) + δEH2(t) (27)

The 2Dbatt formulation is the minimization of (13) over (17) constrained by
Equations (23)–(26), their battery variant and (27).

3.2. Batteries Storage Repartition

In the 2Dbatt formulation, one storage can discharge when the other is charging
which results in a loss of energy. Moreover, the actions bound (27) depends not only on the
state but also on the action itself. The bounds are therefore interdependent. If we select an
action outside the action bounds, there is a need to project it inside the bounds which is
non-trivial because of this interdependence.

To alleviate this problem, we propose to rotate the action space frame. We merge the
two action dimensions into the energy storage systems contribution and the contribution
repartition defined as:

δEstorage(t) := δEbatt(t) + δEH2(t) (28)

αrep(t) :=
δEH2(t)

δEstorage(t)
(29)

so that the action becomes at = [δEstorage(t), αrep(t)]. αrep(t) is the proportion of hydrogen
in the storing. It is equal to 0 when the sole battery storage is used and to 1 when only the
hydrogen storage is used. αrep(t) is bounded between 0 and 1 by definition, so that one
energy storage cannot charge the other. Furthermore, we only convert from Repartition to
2Dbatts and not the other way around. This is illustrated in Figure 2. To insert the new
variables in the 2Dbatt formulation, we use the following equations:

δEbatt(t) = (1− αrep(t))× δEstorage(t) (30)

δEH2(t) = αrep(t)× δEstorage(t) (31)

δEH2

δEbatt

αrep

0

1

√2

δEstorage

Figure 2. Repartition formulation (green), δEstorage(t) and αrep(t), in the 2Dbatt (blue) action space.
Actions where one storage is charged and the other discharged are highlighted in red.
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We transform Equations (23)–(26) using (31):

−
EH2 max − EH2(t− 1)

ηH2

≤ αrep(t)× δEstorage(t) (32)

−EH2 in max ≤ αrep(t)× δEstorage(t) (33)

αrep(t)× δEstorage(t) ≤ EH2(t− 1) (34)

αrep(t)× δEstorage(t) ≤ EH2 out max (35)

We obtain the battery variant of those equations using (31):

−Ebatt max − Ebatt(t− 1)
ηbatt

≤ (1− αrep(t))× δEstorage(t) (36)

−Ebatt in max ≤ (1− αrep(t))× δEstorage(t) (37)

(1− αrep(t))× δEstorage(t) ≤ Ebatt(t− 1) (38)

(1− αrep(t))× δEstorage(t) ≤ Ebatt out max (39)

Moreover, using (28), (27) becomes:

EDC(t)− Esolar(t) ≤ δEstorage(t) (40)

Equation (40) depends only on one variable, δEstorage(t). Using this variable change,
we have removed the interdependency of the constraint in (27).

Next, we propose bounds on δEstorage(t) and αrep(t) that will be critical in the sequel.

Proposition 1. δEstorage(t) is constrained by δEstorage min(t) ≤ δEstorage(t) ≤ δEstorage max(t)
and their values are defined by:

δEstorage min(t) = max(EDC(t)− Esolar(t),

− Ebatt in max − EH2 in max,

− Ebatt max − Ebatt(t− 1)
ηbatt in

−
EH2 max − EH2(t− 1)

ηH2 in
,

− Ebatt in max −
EH2 max − EH2(t− 1)

ηH2 in
,

− Ebatt max − Ebatt(t− 1)
ηbatt in

− EH2 in max)

(41)

δEstorage max(t) = min(Ebatt(t− 1) + EH2(t− 1),

Ebatt out max + EH2(t− 1),

Ebatt(t− 1) + EH2 out max,

Ebatt out max + EH2 out max)

(42)

Proof of Proposition 1 is in Appendix A.
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Proposition 2. αrep(t) is constrained by αrep min(t) ≤ αrep(t) ≤ αrep max(t) with values are
defined by:

αrep min(t) =



max(1 +
Ebatt in max
δEstorage(t)

,

1 +
Ebatt max − Ebatt(t− 1)

ηbatt × δEstorage(t)
)

if δEstorage(t) < 0

max(1− Ebatt(t− 1)
δEstorage(t)

,

1− Ebatt out max
δEstorage(t)

)

if δEstorage(t) > 0

(43)

αrep max(t) =



min(−
EH2 in max

δEstorage(t)
,

−
EH2 max − EH2(t− 1)

ηH2 × δEstorage(t)
)

if δEstorage(t) < 0

min(
EH2(t− 1)
δEstorage(t)

,

EH2 out max

δEstorage(t)
)

if δEstorage(t) > 0

(44)

Proof of Proposition 2 is in Appendix B. Please note that when δEstorage(t) = 0, αrep(t)
does not matter. We will set it to αrep(t) = 0.5 as a convention.

The interest of bounds (43) and (44) is that they depend on δEstorage(t) only, whereas
the bounds on δEstorage(t) do not depend on αrep(t). Thus, given δEstorage(t), we only
need to decide the contribution of the distribution αrep(t). The interdependence has been
completely removed.

Moreover, we use (30) and (31) to obtain the expression of the modified carbon impact
function (12):

f (st, at) = CsolarEsolar(t)

+ Cgrid(t)max(0, Ebuilding(t) + EDC(t)− Esolar(t)− δEstorage(t))

+



Cbatt out × (1− αrep(t))× δEstorage(t)
+CH2 out × αrep(t)× δEstorage(t)

if δEstorage(t) > 0

−Cbatt in × (1− αrep(t))× δEstorage(t)
−CH2 in × αrep(t)× δEstorage(t)

if δEstorage(t) < 0

(45)

The problem (13) with action at = [δEstorage(t), αrep(t)], the carbon impact (45) and
under the constraints (41)–(44) is called the Repartition formulation.

3.3. Repartition Parameter Only

We have noticed that δEstorage(t) can be seen as a single global storage. To provide
energy for as long a duration as possible, i.e., to respect (40), we want to charge as much as
possible and discharge only when needed. We call this the frugal policy. It corresponds to
δEstorage(t) being equal to its lower bound:

δEstorage(t) = δEstorage min(t) (46)
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To reduce even more the action space dimensionality, we propose to use the frugal
policy and to focus on learning only αrep(t) the repartition between the lead and hydrogen
energy storage systems contribution.

Using this remark, we propose the αrep reformulation with the goal (13), in order
to find the single action at = αrep(t), given the state st, using the carbon impact (45) and
under constraints (43) and (44) with δEstorage(t) derived in (46). Unless specified, this is the
formulation we use in the sequel of this paper.

3.4. Fixed Repartition Policy

In Section 4, we will propose a learning algorithm for the different formulations. To
show the interest of learning, we want to compare the learned policies to a frugal policy (46)
where αrep(t) is preselected and fixed to a value v. At each instant, we will only verify that
v ∈ [αmin(t), αmax(t)] and project it into this interval otherwise. We call αrep = v the policy
where αrep is preset to value v. So that:

αrep(t) = projection[αrep min(t),αrep max(t)](v) (47)

In Section 1, we explained that the battery is intended for short-term storage and that
the H2 storage is intended for long-term. Our intuition therefore suggests charging or
discharging the lead battery first. This corresponds to a preset value of αrep = 0, so that
αrep(t) = αrep min(t).

One should wonder, what is the best preselected αrep? To find it, we simulated 100
different values of αrep between 0 and 1. For each value v, we run a simulation for each
day starting at midnight on a looping year 2006. A detailed description of this data is
available in Section 5.1. We use the parameters in Table 3 and PV production computed
using irradiance data [17,18] in (48):

Esolar(t) = Psolar(t)ηsolarηsolar opacitySpanels (48)

If the simulation does not last the whole year, we reject it (hatched area in Figure 3).
Otherwise, we compute the hourly carbon impact:

T

∑
t=0

f (st, at)

T
(49)

with T the number of hours in 2006. This hourly impact is averaged over 365 different
runs, each starting at midnight, one for each day of 2006. Figure 3 shows the carbon impact
versus αrep. The αrep value that minimizes the average hourly impact while lasting the
whole year is therefore αrep = 0.2. It will be used for comparison.
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Figure 3. Mean impact versus αrep preset. Hatched area corresponds to rejected αrep values where
the policy does not last the whole year.

4. Learning the Policy with DDPG

In the reformulation αrep reformulation, we want to select at given the state st. The
function that provides at given st is referred to as the policy. We want to learn the policy
using DRL with an actor–critic policy-based approach: the Deep Deterministic Policy
Gradient (DDPG) [19]. Experts may want to skip Sections 4.2 and 4.3.

4.1. Actor–Critic Approach

We call env for the environment, the set of equations: (1) and its battery variant that
allows the obtaining of st+1 from at and st, st+1 = env.step(st, at). Its corresponding
reward, the short-term evaluation function, is defined as a function of st and at, rt =
R(st, at). We use [19], an actor–critic approach, where the estimated best policy for a given
environment st+1 = env.step(st, at) is learned through a critic as in Figure 4. The critic
transforms this short-term evaluation into a long-term evaluation, the Q-values Q(st, at),
through learning. It will be detailed in Section 4.2. The actor πθ : st → at is the function
that selects the best possible action at possible. It uses the critic as to know what is the best
action in a given state (as detailed in Section 4.3).

st

stst+1 st

env

at atat

ActorCritic rt Q(st,at)πθQφ

Z−1Z−1

Figure 4. Overview of the actor–critic approach. Curved arrows indicate learning. Time passing with
t = t + 1 is displayed Z−1.
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In Section 2.4, we set our objective to minimize the long-term carbon impact (13).
However, in reinforcement learning we try to maximize a score, defined as the sum of
all rewards:

T

∑
t0

rt (50)

To remove this difference, we maximize the negative carbon impact ∑− f (st, at).
However, the more negative terms you add, the lower the sum is. This leads to a policy
trying to stop the simulation as fast as possible, in contradiction to our goal to always
provide the datacenter in energy. To counter this, we propose, inspired by [20], to add a
living incentive of 1 at each instant. Therefore, we propose to define the reward as:

rt = R(st, at) = 1− f (st, at)

maxa f (st, a)
(51)

The reward accounting for the carbon impact is now normalized between 0 and 1
so that the reward is always positive. Still in this reward the normalization depends on
the state st. When the normalization depends on the state, two identical actions can have
different rewards associated with them. Therefore, the reward is not proportional to the
carbon impact (45) making the reward harder to interpret. To alleviate this problem, we
propose to use the global maximum instead of the worst case for the current state:

rt = R(st, at) = 1− f (st, at)

maxs,a f (s, a)
(52)

By convention rt is set to zero after the simulation ends.
The actor and critic are parameterized using artificial neural networks, respectively

denoted θ and φ. They will be learned alternatively and iteratively. Two stabilization
networks are also used for the critic supervision with weights θold and φold.

4.2. Critic Learning

Now that we have defined a reward, we can use the critic to transform it into a
long-term metric. As time goes, we have less and less trust in the future. Therefore, we
discount the future rewards using a discount factor 0 < γ < 1. We define the critic
Q : st, at → ∑+∞

k=0 γkrt+k. It estimates the weighted long-term returns of taking an action at
in a given state st. This weighted version of (50) also allows the binding of the infinite sum
to learn it. Q can be expressed recursively:

Q(st, at) =
+∞

∑
k=0

γkrt+k

= rt + γ
+∞

∑
k=0

γkrt+1+k

Q(st, at) = rt + γQ(st+1, at+1) (53)

We learn the Q-function using an artificial neural network of weights φ. At the ith
iteration of our learning algorithm and for a given value of φold i and θold i, we define a
reference value yt from the recursive expression (53). Since we do not know at+1, we need
to select the best action possible at t + 1. The best estimator of this action is provided by
the policy πθold i , so that we define the reference as:

yt = rt + γQφold i (st+1, πθold i (st+1)) (54)

where at+1 has been estimated by πθold i (st+1).
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The squared difference between the estimated value Qφ(st, at), and the reference value
yt [21] is defined as:

J(φi) = ∑
(st ,at ,rt ,st+1)∈D

(
Qφi (st, at)− yt

)2 (55)

To update φi, we minimize J(φi) in (55) using a simple gradient descent:

φi+1 = φi − µ∇J(φi) (56)

where ∇J(φi) is the gradient of J(φ) in (55) with respect to φ taken at the value φi. µ is
a small positive step-size. To stabilize the learning [19] suggests updating the reference
network φold slower, so that:

φold i+1 = τφi + (1− τ)φold i with 0 < τ � 1 (57)

φold 0 = φ0 at weight initialization.

4.3. Actor Learning

Since we alternate the updates of the critic and of the actor, we address next the
learning of the actor. To learn what is the best action to select, we need a loss function that
grades different actions at. Using the reward function (52), as a loss function, the policy
would select the best short-term, instantaneous, action. Since the critic Q(st, at) depends on
the action at, we replace at by πθ(st). At iteration i, to update the actor network θi, we use
the gradient ascent of the average Qφi (st, πθ(st)) taken at θ = θi. This can be expressed as:

θi+1 = θi + λ∇∑(st ,at ,rt ,st+1)∈D
Qφi

(
st, πθi (st)

)
(58)

where λ is a small positive step-size.
To learn the critic a stabilized actor is used. Like the stabilized critic, πθold is updated by:

θold i+1 = τθi + (1− τ)θold i with 0 < τ � 1 (59)

with θold 0 = θ0 at the beginning.
During learning, an Ornstein–Uhlenbeck noise [22], n, is added to the policy decision

to make sure we explore the action space:

at = πθ i(st) + n (60)

4.4. Proposition: DDPG αrep Algorithm to Learn the Policy

From the previous section, we propose the DDPGαrep Algorithm 1. This algorithm
alternates the learning of the networks of the actor and of the critic. We select randomly the
initial instant t to avoid learning time patterns. We start each run with full energy storage.

Once learned, we use the last weights θi of the neural network parameterizing the
actor to select the action using πθi : st → at directly.

To learn well an artificial neural network needs the different samples of learning data
to be uncorrelated. In reinforcement learning two consecutive states tends to be close, i.e.,
correlated. To overcome this problem, we store all experiences (st, at, rt, st+1) in a memory
and use a tiny random subset as the learning batch [23]. The random selection of a batch
from the memory is called sample.
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Algorithm 1: DDPGαrep

Result: trained policy πθ i
i← 0;
φold 0 = φ0, θold 0 = θ0;
memory← [ ];
select random t;
st ← [Ebuilding(t), Esolar(t), Ebatt max, EH2 max];
score = 0;
while score improves do

at = αrep(t)← πθ i(st) + n;
st+1 ← env(st, αrep(t));
rt ← R(st, αrep(t));
memory[i] = (st, αrep(t), rt, st+1);
b← sample(memory);
update φi+1 using (56);
update θi+1 using (58);
update φold i+1 using (57);
update θold i+1 using (59);
if lasted whole year or cannot power DC then

select random t;
st ← [Ebuilding(t), Esolar(t), Ebatt max, EH2 max];
score = 0;

else
t = t + 1;
score = score + rt;

end
i← i + 1;

end

5. Simulation

We have just proposed DDPGαrep to learn how to choose αrep(t) with respect to the
environment. In this section, we display the simulations settings and results.

5.1. Simulation Settings

Production data are computed using (48) from real irradiance data [17,18] measured
at the building location in Avignon, France. The building has Spanels = 1000 m2 of solar
panels with ηsolar opacity = 60% opacity and an efficiency of ηsolar = 21%. Those solar panels
can produce a maximum of Esolar Max = 185 kW·h per hour.

Consumption data comes from projections of the engineering office [16]. It consists
of powering housing units with an electricity demand fluctuating daily between 30 kW·h
(1 a.m. to 6 a.m.) and 90 kW·h. The weekly variations of the consumption varies with a
factor between 1 and 1.4 during awake hours between workdays and the weekend. There
is little interseasonal variation, standard deviation of 0.6 kW·h (0.01% of yearly mean)
between seasons, as heating uses wood pellets. In those simulations, the datacenter is
consuming a fixed amount of EDC max = 10 kW·h. The datacenter consumption adds up
to 87.6 MW·h per year, around 17% of the 496 MW·h that the entire building consumes
in a year. To power this datacenter, our building’s solar panels produce an average of
53.8 kW·h/h during the 12.7 sunny hours on average day counts, for a yearly total of 249
MW·h/year. This covers a maximum of 2.8 times the consumption of our datacenter, but
lowers to 99% if all energy goes through the hydrogen storage. The same solar production
covers at most 50% of the building yearly consumption. When accounting for hydrogen
efficiency, the solar production covers at most 17% of the building consumption.

We only use half of the lead battery capacity to preserve the battery health longer
Ebatt Max = 650/2 = 325 kW·h. The lead battery carbon intensity is split between
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the charge and discharge Cbatt Out = 172/2 = 86 gCO2eq/kW·h. Since the charge
quantity comes before the efficiency, its carbon intensity must account for efficiency:
Cbatt In = Cbatt Outηbatt = 86× 0.81 = 68.66 gCO2eq/kW·h. The carbon intensity of the elec-
trolysers, accounting for the efficiency, is used for CH2 in = 5× ηH2 = 1.75 gCO2eq/kW·h.
The carbon intensity of the fuel cells corresponds to CH2 out = 5 gCO2eq/kW·h. ηH2 ac-
count for both the electrolysers and fuel cells efficiency. Cgrid = 53 gCO2eq/kW·h uses the
average French grid carbon intensity. All those values are reported in Table 3.

The simulations use an hourly simulation step t.
We train on the production data from year 2005, validate and select hyperparameters,

using best score (50) values, on the year 2006 and test finally on year 2007. Each year lasts
8760 h.

To improve learning, we normalize between −1 and 1 all state and action inputs and
outputs. For a given value d bounded between dmin and dmax:

dnorm = 2× d− dmin
dmax − dmin

− 1 (61)

dnorm is then used as an input for the networks.
To accelerate the learning, all gradient descents are performed using Adam [24].

During training, we use the following step sizes µ = 10−3 to learn the critic and λ = 10−4

for the actor. For the stabilization networks, τ = 0.001. To learn, we sample batches of
64 experiences from a memory of 106 experiences. The actor and critic both have 2 hidden
layers with a ReLU activation function. Hidden layers have respectively 400 and 300 units
in them. The output layer uses a tanh activation to bound its output. The discount factor,
gamma in (54) is optimized as a hyperparameter between 0.995 and 0.9999. We found the
best value for the discount factor to be 0.9979.

5.2. Simulation Metrics

We name duration and note N the average length of the simulations. When all
simulations last the whole year, the hourly carbon impact is evaluated as in (49). To select
the best policy, the average score is computed using (50). Self-consumption, defined as the
energy provided by the solar panels, directly or indirectly using one of the storages, over
the consumption, is computed using:

s =
∑T

t=0 Esurplus(t) + EDC(t)− Ewaste(t)

∑T
t=0 Ebuilding(t) + EDC(t)

(62)

Per the ÉcoBioH2 project, the goal is to reach 35% of self-consumption: s ≥ 0.35.

5.3. Simulation Results

The following learning algorithms are simulated on data from Avignon from 2007 and
our building:

• DDPGTwoBatts: DDPG with actions at = [Ebatt in(t), Ebatt out(t), EH2 in(t), EH2 out(t)]
• DDPGRepartition: DDPG with actions at = [δEstorage(t), αrep(t)]
• proposed DDPGαrep with action at = [αrep(t)]

where DDPGTwoBatts and DDPGRepartition are algorithms similar to DDPGαrep with
action spaces of the corresponding formulations respectively (11) and (17). The starting
time is randomly selected from any hour of the year.

To test the learned policies, the duration, hourly impact (49), score (50) and self-
consumption (62) metrics are computed on the 2007 irradiance data and averaged over
all runs. We compute those metrics over 365 different runs, starting each 2007 day at
midnight. For the sake of comparison, we also compute those metrics when applicable for
the preselected values αrep = 0 and αrep = 0.2 using (47) on the same data. Recall that the
fixed αrep values are bounded to (43) and (44) to ensure the long-term duration.
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The metrics over the different runs are displayed in Table 4.

Table 4. Results computed on the year 2007. n.a.: not applicable.

Policy
Duration Hourly Impact

Score
Self-Consumption

(h) (gCO2eq/h) (%)

DDPGTwoBatts 442 n.a. 413 n.a.
DDPGRepartition 8567 n.a. 7850 35%
αrep = 0 8760 4591 n.a. 35%
αrep = 0.2 8760 4510 n.a. 33.6%
DDPGαrep 8760 4586 8020 34.9%

We can see in Table 4 that DDPGTwoBatts and DDPGRepartition do not last the
whole year. This shows the importance of our reformulations to reduce the action space
dimensions. We observe that all policies using the αrep reformulation last the whole year
(N = 8760). This validates our proposed reformulations and dimension reduction.

αrep = 0.2 achieves the lowest carbon impact; however, it cannot ensure the target
of self-consumption. On the other hand, αrep = 0 achieves the target self-consumption at
the price of a higher carbon impact. The proposed DDPGαrep provides a good trade-off
between the two by adapting αrep(t) to the state st. It reaches the target self-consumption
minus 0.1% and lowers the carbon impact with respect to αrep = 0. The carbon emis-
sion gain over the intuitive policy αrep = 0, using hydrogen only as a last resort, is of
43.8 × 103 gCO2eq/year. This shows the interest of learning the policy once the problem is
well formulated.

5.4. Reward Normalization Effect

In Section 4.1, we presented two ways to normalize the carbon impact in the reward.
In this section, we show that the proposed global normalization (52) yields better results
than the local state-specific normalization (51).

In Table 5, we display the duration for both normalizations. We see that policies that
use the locally normalized reward have a lower duration than the ones using a globally
normalized reward. This confirms that the local normalization is harder to learn as two
identical actions have different rewards in different states.

Table 5. Learned policies duration depending on the reward normalization: local or global. Using
simulations on 2007 test dataset.

Policy Local n. Global n.

DDPGTwoBatts 248 442
DDPGRepartition 4312 8567
DDPGαrep 8760 8760

Therefore, the higher dynamic of the local normalization is not worth the variability
induced by this normalization. This validates our choice of the global normalization (52)
for the proposed DDPGαrep algorithm.

5.5. Hydrogen Storage Efficiency Impact

In our simulations, we have seen the sensibility of our carbon impact results to the
parameters in Table 3. Indeed, the efficiency of the storage has a great impact on the system
behavior. Hydrogen storage yields lower carbon emissions when its efficiency ηH2 is higher
than some threshold. The greater is ηH2 , the greater αrep(t) could be and so the range
for adapting αrep(t) via learning is more important. To find the threshold in ηH2 , we first
compute the total carbon intensity of storing one kW·h in a given storage, including the
carbon intensity of energy production. For H2, we obtain:
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CH2 tot = CH2 Out +
CH2 In + Csolar

ηH2

gCO2eq/kW·h (63)

We display the value of (63) of both storages in Figure 5 with respect to ηH2 , the other
parameters are taken from Table 3. When CH2 tot < Cbatt tot learning is useful since the
policy must balance the lower carbon impact (using the hydrogen storage) with the low
efficiency (using the battery storage). When CH2 tot > Cbatt tot the learned policy converges
to αrep = 0, as both objectives (minimizing the carbon impact and continuous powering of
the datacenter) align.

We calculate from (63) and its battery variant, the threshold point where
CH2 tot = Cbatt tot to be at efficiency:

η∗H2
=

CH2 In + Csolar

Cbatt tot − CH2 Out
(64)

Using values in Table 3 on (64), hydrogen improves the carbon impact only when
ηH2 > η∗H2

= 0.24. The current value is ηH2 = 0.35 > 0.24, learning is also useful as shown
in the simulations Table 4. We can also suggest that when the hydrogen storage efficiency
will improve in the future, the impact of learning will be even more important.
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H2
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200
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1000

C t
ot

0.24

CH2 tot

Cbatt tot

Figure 5. The total hydrogen storage impact depending on the efficiency of storage.

6. Conclusions

We have addressed the problem of monitoring the hybrid energy storage of a partially
islanded building with a goal of carbon impact minimization and self-consumption. We
have reformulated the problem to reduce the number of components of the action to one,
αrep(t), the proportion of hydrogen storage given the building state st. To learn the policy,
πθ : st → αrep(t), we propose a new DRL algorithm using a reward tailored to our problem,
DDPGαrep. The simulation results show that when the hydrogen storage efficiency is large
enough, learning of αrep(t) allows a decrease to the carbon impact while lasting at least
one year and maintaining 35% of self-consumption. As hydrogen storage technologies
improve, the proposed algorithm should have even more impact.

Learning the policy using the proposed DDPGαrep can also be done when the storage
model includes non-linearities. Learning can also adapt to climate changes in time using
more recent data for learning. To measure such benefits, we will use in the future the
ÉcoBioH2 real data to be measured in the sequel of the project. Learning from real data will
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reduce the gap between the model and the real system. Reducing this gap should improve
performance. The proposed approach could also be used to optimize other environmental
metrics with a multi-objective cost in f (st, at).

With our current formulation, policies cannot assess what day and hour it is as
they only have two state variables to compute the hour: Esolar(t) and Ebuilding(t). They
cannot differentiate between 1 a.m. and 4 a.m. at night as those two times have the same
consumption and no PV production. They also cannot differentiate between a cloudy
summer and a clear winter as production and consumption are close in those two cases.
In the future, we will consider taking into account the knowledge of the current time to
enable the learned policy to adapt its behavior to the time of the day and month of the year.
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Appendix A. Proof of Proposition 1

Considering (23)–(26) for H2 and batt for all cases we find more upper and lower
bounds on δEstorage(t).

Appendix A.1. When δEstorage(t) < 0

Using (28), (24) and its battery variant:

δEstorage(t) ≥ −Ebatt in max − EH2 in max (A1)

Using (28), (23) and its battery variant:

δEstorage(t) ≥ −
Ebatt max − Ebatt(t− 1)

ηbatt
−

EH2 max − EH2(t− 1)
ηH2

(A2)

Using (28), (23) and the battery variant of (24):

δEstorage(t) ≥ −Ebatt in max −
EH2 max − EH2(t− 1)

ηH2

(A3)

http://www.soda-pro.com/web-services/radiation/helioclim-3-archives-for-pay
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives-for-pay
https://zent-eco.com/
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Using (28), (24) and the battery variant of (23):

δEstorage(t) ≥ −
Ebatt max − Ebatt(t− 1)

ηbatt
− EH2 in max (A4)

We obtain the global lower bound (41) by obtaining the min of (40), (A1)–(A4).

Appendix A.2. When δEstorage(t) > 0

Using (28), (25) and its battery variant:

δEstorage(t) ≤ Ebatt(t− 1) + EH2(t− 1) (A5)

Using (28), (26) and its battery variant:

δEstorage(t) ≤ Ebatt out max + EH2 out max (A6)

Using (28), (25) and the battery variant of (26):

δEstorage(t) ≤ Ebatt out max + EH2(t− 1) (A7)

Using (28), (26) and the battery variant of (25):

δEstorage(t) ≤ Ebatt(t− 1) + EH2 out max (A8)

We obtain the global upper bound (42) by obtaining the max of (A5)–(A8).

Appendix B. Proof of Proposition 2

Appendix B.1. When δEstorage(t) > 0

Given (29) and (26)

αrep(t) ≤
EH2 out max

δEstorage(t)
(A9)

Given (29) and (25)

αrep(t) ≤
EH2(t− 1)
δEstorage(t)

(A10)

From (30) and the battery variant of (26)

(1− αrep(t))δEstorage(t) ≤ Ebatt out max

1− αrep(t) ≤
Ebatt out max
δEstorage(t)

1− Ebatt out max
δEstorage(t)

≤ αrep(t) (A11)

From (30) and the battery variant of (25)

(1− αrep(t))δEstorage(t) ≤ Ebatt(t− 1)

1− αrep(t) ≤
Ebatt(t− 1)
δEstorage(t)

1− Ebatt(t− 1)
δEstorage(t)

≤ αrep(t) (A12)



Energies 2021, 14, 4706 21 of 22

Appendix B.2. When δEstorage(t) < 0

Given (31) and (24)

αrep(t)δEstorage(t) ≥ −EH2 in max

αrep(t) ≤ −
EH2 in max

δEstorage(t)
(A13)

Given (31) and (23)

αrep(t)δEstorage(t) ≥ −
EH2 max − EH2(t− 1)

ηH2

αrep(t) ≤ −
EH2 max − EH2(t− 1)

ηH2 δEstorage(t)
(A14)

From (30) and (24) battery variant

(1− αrep(t))δEstorage(t) ≥ −Ebatt in max

1− αrep(t) ≤
−Ebatt in max
δEstorage(t)

1 +
Ebatt in max
δEstorage(t)

≤ αrep(t) (A15)

From (30) and (23) battery variant

(1− αrep(t))δEstorage(t) ≥ −
Ebatt max − Ebatt(t− 1)

ηbatt

1− αrep(t) ≤ −
Ebatt max − Ebatt(t− 1)

ηbattδEstorage(t)

1 +
Ebatt max − Ebatt(t− 1)

ηbattδEstorage(t)
≤ αrep(t) (A16)

We obtain the global upper bound (44) by obtaining the min of (A9) and (A10) when
δEstorage(t) > 0 and the max of (A13), (A14) when δEstorage(t) < 0. We obtain the global
lower bound (43) by obtaining the min of (A11) and (A12) when δEstorage(t) > 0 and the
max of (A15), (A16) when δEstorage(t) < 0.
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