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ABSTRACT

The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the
10−100 µas level. Measurements at this high precision crucially depend on the control of systematic effects. We investigate how aberrations
introduced by small optical imperfections along the path from the telescope to the detector affect the astrometry. We develop an analytical model
that describes the effect of these aberrations on the measurement of complex visibilities. Our formalism accounts for pupil-plane and focal-plane
aberrations, as well as for the interplay between static and turbulent aberrations, and it successfully reproduces calibration measurements of a
binary star. The Galactic Center observations with GRAVITY in 2017 and 2018, when both Sgr A* and the star S2 were targeted in a single
fiber pointing, are affected by these aberrations at a level lower than 0.5 mas. Removal of these effects brings the measurement in harmony with
the dual-beam observations of 2019 and 2020, which are not affected by these aberrations. This also resolves the small systematic discrepancies
between the derived distance R0 to the Galactic Center that were reported previously.

Key words. Galaxy: center – Galaxy: fundamental parameters – instrumentation: interferometers – instrumentation: high angular resolution –
methods: data analysis

1. Introduction

The distance to the Galactic Center (GC), R0, can be measured
directly from stellar orbits around Sgr A*, the radio source
associated with the GC massive black hole (MBH) (see, e.g.,
Genzel et al. 2010 and Bland-Hawthorn & Gerhard 2016 for a
recent overview of alternative methods). To this end, the stellar
proper motion, given in angle per unit time, is compared to
its radial velocity, obtained in absolute length per unit time
from spectroscopic observations. The GC distance then directly
follows as a scaling parameter between the two measurements.
Best suited for measuring R0 is S2, a massive young main-
sequence B star on a 16-year orbit with a semimajor axis of
a ' 125 mas and an apparent K-band magnitude mk ' 14 (Ghez
et al. 2003; Eisenhauer et al. 2005; Martins et al. 2008; Gillessen
et al. 2009a, 2017; Habibi et al. 2017). During its pericenter
passage in 2018, S2 was closely monitored in astrometry and
spectroscopy (Gravity Collaboration 2018; Do et al. 2019). In

? GRAVITY is developed in a collaboration by the Max Planck
Institute for extraterrestrial Physics, LESIA of Observatoire de
Paris/Université PSL/CNRS/Sorbonne Université/Université de Paris
and IPAG of Université Grenoble Alpes/CNRS, the Max Planck Insti-
tute for Astronomy, the University of Cologne, the CENTRA – Centro
de Astrofisica e Gravitação, and the European Southern Observatory.
?? Corresponding authors: J. Stadler (e-mail:jstadler@mpe.mpg.de)
and F. Widmann (e-mail: fwidmann@mpe.mpg.de).

particular, the GRAVITY instrument (Gravity Collaboration
2017) directly measured the distance between S2 and Sgr A*
during the flyby at a high angular resolution of around 30 µas.
The combination of ultra-high astrometric precision from
near-infrared interferometry and the spectroscopic precision
of .10 km s−1 allowed us to determine the GC distance at the
unprecedented precision of <1% (Gravity Collaboration 2019).

Operating in the K-band, GRAVITY combines the light from
either the four Unit Telescopes (UTs) or Auxiliary Telescopes
(AT) of the ESO Very Large Telescope Interferometer (VLTI).
Fringe-tracking on a bright reference object enables minute-long
integration times on the fainter science target and measuring dif-
ferential complex visibilities. The extremely high angular resolu-
tion of '3 mas results in very accurate astrometry with error bars
between 10 µas and 100 µas (Gravity Collaboration 2017). How-
ever, the latest R0 measurement in Gravity Collaboration (2020)
indicates a possible systematic difference with earlier determi-
nations (Gravity Collaboration 2018, 2019). While the shift is
small, of only O (1%) , it is nevertheless significant because of
the high precision of the measurement.

The difference in the measured GC distance coincides with a
change in the observing mode. GRAVITY observes the GC with
two different methods, depending on the separation between
Sgr A* and S2. Close to pericenter passage, that is, in 2017 and
2018, the sources were detected simultaneously in a single fiber
pointing in the so-called single-beam mode. In later epochs, their
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separation exceeded the fiber field of view (FOV), and S2 and
Sgr A* were targeted individually. This is referred to as dual-
beam mode.

In single-beam mode, it is not possible to align the two sources
with the fiber center. To further improve the GRAVITY astrom-
etry, we therefore conducted an analysis of how optical aberra-
tions affect the visibility measurement across the full FOV. A
similar concept of field-dependent errors already exists in radio
interferometry, where it is known as direction-dependent effects
(DDEs; see, e.g., Bhatnagar et al. 2008; Smirnov 2011; Smirnov
& Tasse 2015; Tasse et al. 2018 and references therein). The DDEs
can arise either at the instrument level from the antenna beam
pattern or at the atmospheric level, for example, from the iono-
sphere. In particular for the latest generation of interferometers
(e.g. VLA, MeerKAT, and LOFAR1) with a wide FOV and a large
fractional bandwidth, DDEs cannot be neglected. However, to our
knowledge, there is no equivalent discussion in the context of
optical/near-IR interferometry.

Our analysis indeed shows that small optical imperfections
in the beam combiner induce field-dependent phase errors that
are reflected in the inferred binary separation. We developed an
analytical model to describe this effect, and verified it by appli-
cation to a dedicated test-case observation. When it is applied to
the GC observations, the model induces a shift in the S2 relative
position of about 0.1−0.2 mas in 2018 and ∼0.5 mas in 2017 in
both right ascension (RA) and declination (Dec). Despite being
small, the change is non-negligible at the high astrometric accu-
racy achieved by GRAVITY. We can show that the corrected
2017 and 2018 data agree with the dual-beam observations of
2019 and 2020. Furthermore, when the correction is retroactively
applied to the data sets used in Gravity Collaboration (2018,
2019), the ensuing GC distance is fully consistent with the latest
result (Gravity Collaboration 2020).

We introduce the analytical model in Sect. 2 and compare
it to calibration measurements in Sect. 3. Verification from the
binary test case and the improved S2 position are presented in
Sect. 4, and we discuss the implications for the GC distance in
Sect. 5. Finally, we conclude in Sect. 6.

2. Formal description of static aberrations and their
effect on visibility measurements

Static aberrations along the optical path of the instrument
affect the measured visibilities by introducing a complex field-
dependent factor for each telescope. We express this gain in its
polar representation and decompose it into a phase map φi (α)
and an amplitude map Ai (α). Here, the index i labels the tele-
scope, and α denotes positions in the image plane. Phase- and
amplitude-maps lead to a modification of the observed complex
visibilities Vobs from the well-known van Cittert-Zernike theo-
rem (cf. Eq. (23)). As we demonstrate in the following, they are
given by

Vobs =

∫
dα Ai (α) A j (α) O (α) e−2πiα·bi, j/λ+i(φi(α)−φ j(α))√∫

dα A2
i (α) O (α)

∫
dα A2

j (α) O (α)
, (1)

where bi, j is the baseline vector between the two telescopes, and
O (α) denotes the intensity distribution of the observed astro-
nomical object.

1 VLA stands for Very Large Array and LOFAR for Low Frequency
Array.

In this section, we show that the phase- and amplitude-
maps follow from optical aberrations. To this end, we start from
the overlap integral, which determines the electromagnetic field
from a single telescope arriving at the beam combiner. Subse-
quently, we propagate the effect of static aberrations from the
overlap integral to the measured complex visibility to arrive at a
rigorous derivation of Eq. (1). Finally, we account for the super-
position of static and turbulent aberrations to obtain a formalism
that is applicable in realistic observation scenarios.

2.1. Static field-dependent aberrations at fiber injection

Single-mode fibers transport the light collected by each tele-
scope Etel to the beam-combiner instrument. The overlap inte-
gral between light and the fiber mode Efib then determines the
transmitted electric field (Neumann 1988),

E (β) = Efib (β) × η = Efib ×

∫
dξ Etel (ξ) E∗fib (ξ) . (2)

We assumed a normalized fiber mode
∫

dξ |Efib (ξ)|2 = 1 and
expressed image-plane positions by two-dimensional vectors, ξ
and β. Following the description of Perrin & Woillez (2019),
the overlap integral was converted into the pupil plane by the
Parseval-Plancharel theorem,

η =

∫
du F −1

[
Eobj

]
P (u) F −1

[
E∗fib

]
(u) , (3)

where F −1 denotes the inverse Fourier transform, that is, trans-
formation from the image to the pupil plane, and Eobj is the light
emitted by the astronomical object. The latter is connected to
F −1 (Etel) by multiplication with the pupil function P (u), cor-
responding to a convolution in the image plane. In the most
simple case of a single point source located at α0, the light is
described by a pure phase F −1[Eps

obj] = exp (−2πi u · α0). The
pupil- and image-plane coordinates, ξ and u, respectively, are
Fourier-conjugate to each other and chosen to be dimensionless.
That is, any length scale in the pupil plane is given by λu, where
λ refers to the wavelength and u = |u|. To discuss our results,
we converted the dimensionless image plane coordinates ξ into
the corresponding angular separation in UT observations. In an
aberration-free scenario, the pupil function of a spherical tele-
scope with diameter 2rtel and central obscuration 2rcent simply
is

P̃ (u) =


0 if u 6 rcent/λ

1 if rcent < u 6 rtel/λ

0 if u > rtel/λ

. (4)

Optical aberrations multiply the pupil function by a position-
dependent complex phase, and we considered the case of purely
static aberrations. These are characterized by an optical path dif-
ference (OPD) dpup (u) in the pupil plane that can be expanded
in terms of Zernike polynomials Zm

n ,

dpup (u) =

nmax∑
n=0

n∑
m=−n

Am
n Zm

n (λu/rtel) . (5)

We adopted the convention that Zm
n is dimensionless and the

coefficient Am
n corresponds to the root mean square of the term

over the unit circle. When the turbulence-free complex fiber
mode apodized by the pupil function is defined as

Π} = e2πi dpup(u)/λ P̃ (u) F −1
[
E∗fib

]
(u) , (6)
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the overlap integral reads

η =

∫
du F −1

[
Eobj

]
(u) Π} (u) . (7)

The overlap integral obviously depends on the fiber profile,
which for a perfectly aligned ideal single-mode fiber is

F −1
[
Ẽ∗fib

]
= exp

− λ2u2

2σ2
fib

 . (8)

GRAVITY was designed for optimal fiber injection (Pfuhl et al.
2014), which is obtained for σfib = 2rtel

√
2 ln 2/ (πε) (Wallner

et al. 2002). Here, the parameter ε is of order unity and describes
the pupil shape.

From the comparison of the model predictions and the cal-
ibration measurements in Sect. 3.2, we find that pupil-plane
distortions alone are not sufficient to describe the observed aber-
ration pattern. We also need to account for optical errors in the
focal plane. Misalignment of the optical fiber as well as higher
order aberrations at fiber injection introduce a complex phase in
Eq. (8) and can distort the amplitude of the fiber profile.

To illustrate the effect of focal plane aberrations, we can
consider the three types of misalignment depicted in Fig. 1:
(A) Lateral misplacement of the fiber by (δx, δy), which in the
pupil plane produces a phase slope ξfib = (δx/ f , δy/ f ), where
f is the focal length. (B) Fiber tilt by an angle ϕfib = (ϕ1, ϕ2)
with respect to the optical axis of the system, which shifts the
back-propagated fiber mode by ufib = ϕ · f /λ. Finally (C), a
defocus or axial fiber misplacement by δz that introduces an
additional phase curvature exp

[
π iδzλ/ f 2 u2

]
. When all three

effects are taken into account, the generalized fiber profile, pro-
jected onto the pupil, is (Wallner et al. 2002)

F −1
[
E∗fib

]
= F −1

[
Ẽ∗fib

]
(u − ufib) (9)

× exp
{
−2π i

[
πδz
2 f 2 (u − ufib)2 − ξfib · (u − ufib)

]}
.

By rearranging the phase term in the pupil plane, we can decom-
pose it into a piston, tip-tilt, and defocus

dpiston
fib (u) = −λ

(
δzλ
f 2 ufib + ξfib

)
· ufib −

δz
4 f 2 , (10)

dtip−tilt
fib (u) = λ

(
δzλ
f 2 ufib + ξfib

)
· u , (11)

ddefocus
fib (u) = −

δz
4 f 2

(
2λ2u2 − 1

)
. (12)

The phase terms in Eqs. (10)–(12) thus affect the overlap integral
in the same way as the lowest order aberrations in dpup (u). For
the coordinate shift of the Gaussian profile, on the other hand,
there is no such correspondence, and it alters the way in which
the optical fiber scans the pupil-plane aberrations.

During GRAVITY observations, the misplacement term (A)
depends on the performance of the fiber tracker, but also on the
uncertainty of the source position. In particular for exoplanet
observations, the latter can be sizable. Fiber tilt (B) is controlled
by the GRAVITY pupil tracker, and the adaptive optics calibra-
tion is one example that affects the defocus (C).

While lateral misplacement (A) and defocus (C) describe
the misplacement of a point-like fiber entrance, fiber tilt (B)
accounts for the alignment of the fiber surface. This surface
can exhibit irregularities beyond a simple tilt, which lead to a

dpup puq dfoc pxq optical fiber

δx “ f ¨ ξfib
A

f δz
C

ϕ
B

Fig. 1. Schematic depiction of the pupil and focal plane aberrations that
enter the overlap integral. Both effects in combination are required to
describe the aberration patterns observed in calibration measurements.
The lowest order aberrations in the pupil function are shown explicitly,
which are (A) lateral fiber misplacement, (B) fiber tilt, and (C) defocus.
Their effect is further explained in the text.

position-dependent OPD in the focal plane, dfoc (x), as illustrated
in Fig. 1. Generally, aberrations from optical elements not con-
jugated to the pupil are field-dependent and known as Seidel
aberrations. In this context, dfoc (x) arising in the focal plane
constitutes an extreme example. It is still possible to decom-
pose the focal plane distortions into a series of Zernike polyno-
mials, in analogy to Eq. (5). In this representation, axial fiber
offset (C) and fiber tilt (B) simply correspond to the lowest
order coefficients, and higher order terms amount to a general-
ization of Wallner et al. (2002). Again, the phase terms intro-
duced in F −1

[
Ẽ∗fib

]
by higher order aberrations are degenerate

with dpup (u), but the amplitude distortions need to be modeled
explicitly by themselves.

Finally, for a single point source located at α0 in the image
plane, the overlap integral averaged over a timescale much
longer than the source coherence time 〈...〉obj is

〈ηps〉obj ∝

∫
du e−2πi u·α0Π} (u) = F [Π}] (α0) . (13)

Evaluation of the Fourier transform as a function of α0 results
in a two-dimensional complex map. We show several examples
of such maps in Fig. 2, assuming different Zernike coefficients to
determine dpup (u). The perfect Airy pattern, obtained in the limit
of zero aberrations, exhibits zero phase in the central part and a
phase jump by 180◦ at |α| ' 1.22 λ/ (2rtel). Antisymmetric terms,
such as tilt, coma, and trefoil (not shown), only alter the location
and shape of the phase jump, while defocus (not shown), astig-
matism, and higher order terms produce smooth phase gradients.
For a general choice of dpup (u) and in the absence of focal-plane
aberrations, there is a saddle point where the phase maps aver-
age to zero, but significant phase shifts are encountered at larger
radii.

Focal-plane aberrations break the radial symmetry of the
fiber profile. If the perturbations are small enough, however,
the phase maps show a saddle point, but its value differs from
zero and its location may be shifted. In any case, the transmit-
ted amplitude is deformed and/or misplaced from the perfect
Airy case. Pupil-plane aberrations typically widen the amplitude,
while image-plane aberrations have the opposite effect. They
lead to a widening of the fiber in the pupil plane, and corre-
spondingly, to a narrower image-plane profile. The exact scaling
relation for the position of the Airy ring remains true only
approximately in the presence of higher order aberrations such
that maps at two different wavelengths, λ1 and λ2, can be related
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Fig. 2. Example phase screens (top) and amplitude maps (bottom) in the image plane induced by low-order Zernike aberrations in the pupil plane
at a wavelength of λ0 = 2.2 µm. From left to right: the considered aberrations are a perfect Airy pattern, a vertical tilt of 0.4 µm RMS, a vertical
astigmatism of 0.2 µm RMS, a vertical coma of 0.2 µm RMS, and a combination of astigmatism, coma, and trefoil (with RMS 0.2 µm, 0.2 µm, and
0.1 µm, respectively). The rightmost panel also considers an additional fiber tilt with 0.2 µm RMS.

by

〈ηps〉obj (α0, λ1) ' 〈ηps〉obj

(
α0

λ2

λ1
, λ2

)
. (14)

2.2. Effect on visibility measurements and astrometry

The overlap integral defines the electromagnetic wave transmit-
ted to the beam combiner from each of the four telescopes.
After pairwise beam combination, the complex visibilities are
obtained from the inference pattern Ii, j,

Ii, j =

∫
dβ

〈∣∣∣Ei (β) + E j (β)
∣∣∣2〉

obj
(15)

=
〈
|ηi|

2
〉

obj
+

〈∣∣∣η j

∣∣∣2〉
obj

+ 2<
〈
ηiη
∗
j

〉
obj
, (16)

where i and j denote the telescopes involved in the measurement,
and I is the intensity. The complex pupil function enters each of
these terms. Focusing on the single-telescope component first,
we find from Eq. (7)

〈
|ηi|

2
〉

obj
=

∫
dα F

[
Π},i ⊗ Π},i

]
(α) O (α)

=

∫
dα

∣∣∣F [
Π},i

]
(α)

∣∣∣2 O (α) , (17)

where the ⊗-operator denotes autocorrelation, and O (α) =∣∣∣Eobj (α)
∣∣∣2 is the brightness distribution of the observed astro-

nomical object, which obeys

〈
F −1

[
Eobj

]
(u) F −1

[
Eobj

]∗
(u)

〉
obj

= F −1 [O (α)] (u − u) . (18)

Similarly, the inference term is given by〈
ηiη
∗
j

〉
obj

=

∫
dα F

[
Π},i ⊗ Π}, j

]
(α) O (α) e−2πiα·bi, j/λ

=

∫
dα F

[
Π},i

]
(α) F

[
Π}, j

]∗
(α) O (α) e−2πiα·bi, j/λ ,

(19)

where bi, j is the baseline vector.
All optical aberrations discussed previously are encoded in

the back-projected apodized pupil, which is a complex field-
dependent function. Expressing the pupil function in its polar
representation,

F
[
Π},i

]
= Ai (α) eiφi(α) , (20)

we refer to Ai as the telescope-dependent amplitude map and to
φi as the phase map. These quantities are closely related to the
photometric and the interferometric lobes, Li (α) = A2

i (α) and

Li,j (α) = Ai (α) eiφi(α) Aj (α) e−iφj(α) , (21)

respectively.
From the measured inference pattern, the complex visibili-

ties are obtained as

Vobs
(
bi, j/λ

)
=

〈
ηiη
∗
j

〉
obj

/√〈
|ηi|

2
〉

obj

〈∣∣∣η j

∣∣∣2〉
obj
. (22)

By contrast, in an ideal aberration-free setting, the van-Cittert-
Zernike theorem relates the complex visibilities to the object
brightness distribution

Vmod
(
bi, j/λ

)
=

∫
dα O (α) e−2πiα·bi, j/λ∫

dα O (α)
· (23)

Comparison of Eqs. (22) and (23) readily suggests that static
aberrations at fiber injection distort both the measured visibil-
ity phases and amplitudes. We therefore need to adapt the inter-
ferometric equation accordingly. To make this effect even more

A59, page 4 of 17

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040208&pdf_id=2


GRAVITY Collaboration: Improved GRAVITY astrometric accuracy from modeling optical aberrations

explicit, we first considered the case of a single unresolved
object at position α0,

Vobs
ps

(
bi, j/λ

)
=

Li, j (α0)√
Li (α0) L j (α0)

e−2πiα0·bi, j/λ . (24)

In the aberration-free case, the phase- and amplitude-maps of
either telescope are given by the perfect Airy pattern, shown in
the leftmost panel of Fig. 2, and φi/ j (α0) equals zero or 2π. The
presence of static aberrations introduces a phase shift by φi (α0)−
φ j (α0). For an interferometric binary with positions α1, α2 and
flux ratio f bin, the measured visibility becomes

Vobs
bin =

Li, j (α1) e−2πiα1·bi, j/λ + f binLi, j (α2) e−2πiα2·bi, j/λ√[
Li (α1) + f binLi (α2)

]
[L j (α1) + f binL j (α2)]

. (25)

Finally, for a generic extended object with an intensity distri-
bution O (α), the van-Cittert-Zernike theorem generalizes to the
expression stated at the beginning of this section in Eq. (1),

Vobs =

∫
dα Li, j (α) O (α) e−2πiα·bi, j/λ√∫

dα Li (α) O (α)
∫

dα L j (α) O (α)
.

Single-point sources typically are observed at the fiber cen-
ter, where fiber injection is highest and the phase distortions are
close to zero. In situations where a very precise alignment is not
possible, for example, in exoplanet observations, the visibilities
can pick up some small contribution from the phase maps. For
binaries with a separation comparable to the fiber width, a con-
figuration in which the phase- and amplitude-maps are irrelevant
cannot be obtained in principle. In this case, the effect of static
aberrations needs to be modeled and corrected for in the data
analysis.

2.3. Interplay with turbulent aberrations

We did so far not consider the effect of time-varying phase aber-
rations. These are introduced by atmospheric turbulence or time-
varying imperfections in the optical system such as tip-tilt jitter
from the adaptive optics. Their effect is to multiply the static
pupil function by another time-dependent phase,

P} = Π} eiφturb(u,t) . (26)

To determine how time-dependent aberrations affect the visibil-
ity measurement, we briefly recall the arguments of Perrin &
Woillez (2019). When we assume that the detector integration
time exceeds the coherence time of phase fluctuations by far, the
long-time average 〈. . .〉turb over the telescope lobes is

〈Li (α)〉turb =

〈∣∣∣F [
P},i

]
(α)

∣∣∣2〉
= F

[(
Π},i ⊗ Π},i

)
(u) e−

1
2 Dφ(u)

]
, (27)〈

Li,j (α)
〉

turb
=

〈
F

[
P},i

]
(α)

〉
turb

〈
F

[
P},j

]
(α)

〉∗
turb

= F
[(

Π},i ⊗ Π},j
)

(u) e−σφ
]
, (28)

where Dφ (u) is the structure function of the turbulent phase
(Roddier 1981), which saturates to 2σφ on large scales. Two
assumptions underlie these expressions. First, that the fluctua-
tions are stationary, and second, that the baseline between the
telescopes is long enough for the respective apertures to become

uncorrelated. As in Perrin & Woillez (2019), we assumed both
to be fulfilled.

In the case of GRAVITY observations, atmospheric phase
variations across the telescope apertures are corrected for by the
adaptive optics system, and the turbulent aberrations are domi-
nated by tip-tilt jitter. Thus, the turbulent phase is

φturb
i = 2π ti(t) · u , (29)

where the two directions of ti(t) are independent and follow a
Gaussian distribution with zero mean and varianceσ2

t . The struc-
ture function then becomes Dt (u) = (2πσtu)2, and the photomet-
ric lobe is given by

〈Li (α)〉turb =
∣∣∣F [

Π},i
]
(α)

∣∣∣2 ~ exp
(
−
α2

2σ2
t

)
, (30)

where ~ denotes convolution. In case of the interferometric lobe,
we further assume that the jitter is uncorrelated between tele-
scopes, which yields〈
Li,j (α)

〉
turb

=

(
F

[
Π},i

]
~ e
− α2

2σ2
t

)∗ (
F

[
Π}, j

]
~ e
− α2

2σ2
t

)
. (31)

These turbulent lobes replace the static expressions of the previ-
ous sections in the prediction of the observed visibility, that is,
in Eqs. (1), (24), and (25). The tip-tilt jitter acts like a Gaussian
convolution kernel on the static maps, which is applied to the
amplitude map squared in case of the photometric lobe, but to
the full complex map in the case of the interferometric lobe.

3. Measurement and characterization of aberrations
for the GRAVITY beam combiner

GRAVITY observes the GC in its so-called dual-field mode,
which requires the presence of a bright reference target (IRS
16C) within 2′′ of the actual science targets, Sgr A* and S2.
The field at each telescope is split, and reference and science
source are separately injected into the fringe-tracking (FT) and
science-channel (SC) fibers. Short detector integration times on
the FT allow for the optical path delay to be constantly adjusted
for atmospheric turbulence in order to maintain a high fringe
contrast. The science channel then measures a differential visi-
bility phase with respect to the fringe tracker on each baseline.

Phase- and amplitude-maps are inherently single-field effects
in the sense that they individually affect the fringe tracker and
the science channel for each telescope separately. Based on the
optical layout of the fiber coupler (Pfuhl et al. 2014), there is no
reason to expect equal aberrations on the SC and FT. However,
the fringe-tracking object is a bright unresolved source that is
actively tracked by the fiber center in closed loop, such that the
phase distortions introduced from static aberrations are small.
Moreover, any possible phase distortion from the fringe tracker
cancels in the analysis of closure phases or induces a global
shift without affecting the binary separation in the analysis of
visibility phases. However, a description of the SC phase- and
amplitude-maps is essential for robustly measuring a binary sep-
aration in the science channel.

Here we report on measurements with the GRAVITY Cal-
ibration Unit (Blind et al. 2014) and on our subsequent analy-
sis to extract SC phase- and amplitude-maps. We then fitted the
static-aberration model from Sect. 2.1 to these maps in order to
demonstrate its validity and to obtain a compressed represen-
tation of the aberrations in form of a small number of Zernike
coefficients.
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Fig. 3. Examples of the scanning pattern applied in the Calibration Unit
measurements. SC aberration maps were obtained with a slow modula-
tion frequency (left). For the corresponding FT measurement, a faster
scanning was used, and the right panel only shows a single iteration of
in- and out-spiral.

3.1. Phase map measurements with the calibration unit

The GRAVITY Calibration Unit, which we use for the mea-
surement of static aberrations, is directly attached to the beam
combiner and creates the light of an artificial science and fringe-
tracker star. By modulating the voltage on the GRAVITY posi-
tioning mirror, the position of that star relative to the fiber can be
changed. We scan the FOV out to ∼70 mas in a pattern of in- and
out-spiral, which is applied simultaneously to the FT and SC on
one single telescope at a time, see Fig. 3.

In normal observation mode, GRAVITY controls the differ-
ential OPD between science channel and fringe tracker by its
laser metrology and the common path to the telescopes by fringe
tracking. During the phase map calibration measurement, how-
ever, fringe-tracking is not possible because the fringes are lost
at the margins of the scanning region. Instead, the common path
from the telescope to the instrument drifts in time. Thus the
determination of the aberration pattern from the absolute FT and
SC phase requires a drift correction. On the FT, the short detec-
tor integration time with maximum sampling frequency of 1 kHz
allows us to resolve fast modulation of the source position, and
the full FOV can be scanned within ∼15 s. Over this short time
span, the drift is well described by a constant velocity, which we
fitted and subtracted from the data. On the SC, in contrast, the
minimum detector integration time is 0.13 s and a full scan of
the FOV takes 2−3 min, which is too long to model the drift by a
simple polynomial fit. Instead, we obtained the science channel
aberrations via a detour and first analyzed the differential drift-
free SC-FT phase. The pure science channel aberrations then fol-
low from knowledge of the absolute fringe tracker phase.

The data were reduced by the standard GRAVITY pipeline,
and we obtained the correlated flux in six FT spectral channels
(ranging from 1.99−2.38 µm) and in medium resolution for the
SC (233 wavelength bins in the range 1.97−2.48 µm). With the
chosen setup, where the source position is varied on only one of
the two beams forming a baseline, the measured correlated flux
is given by〈
η

ps
i (α0)

(
η

ps
j (0)

)∗〉
obj

= Ai (α0) eiφi(α0) A j (0) e−iφ j(0) . (32)

Thus, the measurement directly scanned the phase- and
amplitude-maps on the modulated channel. Potential offsets in
the accompanying nonmodulated beam, φ j (0) , 0, can only
cause a global phase shift, which we fitted and removed in the
subsequent analysis. Finally, we considered the amplitude maps
normalized to their maximum value, such that A j (0) has no
effect on our result.

Fig. 4. Science channel phase maps reconstructed by the procedure of
Sect. 3.1 from the Calibration Unit measurement on 3 March 2020 for
all four GRAVITY beams.

In summary, we applied the following analysis steps to
obtain the FT and the differential SC-FT phase- and amplitude-
maps:
1. We fitted and subtracted a linear time drift from the phases

measured in each spectral channel and on each baseline.
2. Phases and amplitudes were binned on a spatial grid with

resolution 1 mas and averaged over all available periods of
in- and out-spiral.

3. The image plane coordinates do not align perfectly with the
amplitude maximum, that is, the source position for which
the coupling to the fiber is most efficient. We corrected for
this effect by fitting a Gaussian profile and shifting the coor-
dinate origin to its maximum.

4. Interpolation over the gridded data provides the phase- and
amplitude-map per spectral channel and baseline.

5. All spectral channels were combined into a single map at
reference wavelength λ0 = 2.2 µm by applying the approx-
imate coordinate scaling from Eq. (14). We verified that the
individual maps are consistent over the full spectral range.
Cross-validation with simulated maps showed that the error
introduced by the approximate scaling relation is small, except
at the very margins of the map. It furthermore cancels out
between channels above and below λ0 to a very good degree.

6. From consideration of all baselines, three maps are available
for each telescope. We again verified their consistency and
averaged them into a single phase- and amplitude-map.

This method results in an FT and a differential SC-FT map for
each telescope. Subtracting the former from the latter, we finally
arrived at the desired SC phase map, which is shown in Fig. 4.
The amplitude map on the SC, on the other hand, was measured
directly.

The Calibration Unit measurement was performed twice
with a four-month break, in late 2019 and early 2020, and we use
the data to construct two independent sets of maps. These agree
very well in the qualitative features and structures they display.
On the quantitative level, the maps display moderate differences
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of ∼10◦, which are smaller at the center and increase toward the
map margins.

3.2. Representation in the pupil plane

Analyzing the Calibration Unit measurement as described in the
previous subsection, we obtain the phase- and amplitude-maps
on a grid discretizing the image plane. We used this result to
infer the underlying pupil-plane and fiber aberrations, dpup (u)
and dfoc (u), in their Zernike representation. To this end, we
developed a simulation tool that creates complex maps of image-
plane distortions from a set of Zernike coefficients according to
Eqs. (5), (6), and (13).

For the fit we considered the two Calibration Unit measure-
ments from 2019 and 2020 separately and combined the phase-
and amplitude-maps for each telescope into a complex map. We
then minimized the square absolute difference to the model pre-
diction summed over all pixels with respect to the input coef-
ficients. Because of the nature of the approximate coordinate
scaling (step 5 of the analysis pipeline), at the edge of a map,
only the smallest wavelengths contribute. We limited the radius
to which the data are considered in the fit to αmax × λlow/λhigh.
Here, αmax is the size of the full map, and λlow and λhigh are the
wavelength of the lowest and highest channel, respectively. This
choice ensures equal participation of all channels in the fit.

The optical layout of observations with the Calibration Unit
has some important differences with the on-sky situation, for
which the phase maps will be applied later: the lack of a cen-
tral obscuration and an enlarged outer stop rGCU = 9.6 m/2 alter
the shape of the pupil defined in Eq. (4). As a consequence, the
Calibration Unit pupil illuminates image-plane aberrations out
to a slightly larger radius. We chose to normalize the Zernike
polynomials by rtel = 8.0/2 m, that is, the telescope area cov-
ered by the secondary mirror, to optimize our parameteriza-
tion for the on-sky case. Image plane distortions, on the other
hand, are normalized over the image-plane fiber width at λ0,
σ̃fib = ελ0/

(
4rtel
√

ln 2
)
,

dfoc (α) =

nmax∑
n=0

m∑
m=−n

Bm
n Zm

n (α/σ̃fib) . (33)

Of the different types of maps we constructed, the fringe
tracker provides the cleanest system and thus gives an impor-
tant benchmark point for the agreement between model and data.
We thus used the FT maps to determine the order nmax to which
Zernike polynomials in the pupil- and focal-plane aberrations
are considered. Successively increasing the fit order, we found
that pupil-plane aberrations with nmax = 6 and focal-plane aber-
rations with nmax = 2 provide satisfactory model consistency
while still allowing for manageable convergence times. Increas-
ing the Zernike order in the pupil plane is especially important
to reduce phase residuals at larger radii, while the central part of
the maps can also be described by polynomials of lower order.
Fits without focal-plane aberrations reproduce the phase struc-
ture to a satisfactory degree, but show poor consistency between
the phase- and the amplitude-data. Finally, an additional param-
eter accounts for the overall amplitude scaling between mea-
sured and predicted maps, such that each fit constrains at least
34 degrees of freedom. The phase RMS achieved for the fringe
tracker fits is ∼1◦ for all beams and data sets; extrapolation of the
fit result to the full map radius yields an RMS of a few degrees.

In principle, it is possible to directly fit the SC maps by the
same procedure employed for the FT. However, by further refin-
ing the analysis, we can remove additional systematic effects

Fig. 5. Science channel phase maps obtained from fits to the differential
SC-FT maps, measured on 3 March 2020 for all four GRAVITY beams.

from the SC maps. When we created the maps, we corrected for
misalignment of the image plane coordinates with the amplitude
maximum (step 3 in the analysis pipeline). This shift, however,
is not guaranteed to be identical on SC and FT, and as a result,
there can be a small offset between the FT phase entering the dif-
ferential SC-FT measurement. To describe this effect, we fitted a
differential map, predicted from two sets of Zernike coefficients,
to the SC-FT maps. The latter of these two sets of parameters
was largely fixed to the previously obtained FT coefficients, and
only the tip-tilt terms were allowed to vary. The SC parameters,
on the other hand, were all left free, such that the fit eventually
determined the desired SC maps and the offset between the two
channels.

From the best-fit coefficients of the differential SC-FT fit,
which we summarize in Appendix A, we constructed a complex
SC map. Its phase is displayed in Fig. 5. As expected, the struc-
ture agrees very well with the maps obtained by direct evalu-
ation of the Calibration Unit measurement in Fig. 4. Residuals
between measured and fitted SC-FT map, shown in Fig. 6, are
low over the full radius considered for the fit. We obtain a best-
fit RMS of 1◦−2◦ for most beams and data sets and two slightly
worse results with RMS ∼3◦ and ∼5◦. At larger radii, the dis-
agreement between fit and data starts to increase. This can either
be caused by wavelength-dependent errors or by higher order
aberrations beyond those considered for the fit. When we opti-
mized nmax, we noted indeed that every increase improved the
extrapolation to large separations. However, at such large off-
axis distances, fiber damping becomes very significant, resulting
in a poor signal-to-noise ratio. We therefore consider the Zernike
decomposition up to sixth order sufficient for our applications.

4. Application to GRAVITY observations

Static field-dependent aberrations affect the visibility measure-
ment whenever the size of an observed object is comparable to
the fiber FOV. We applied the formalism developed in Sect. 2
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Fig. 6. Phase residuals of the fit to the differential SC-FT map measured
on 3 March 2020 for all four GRAVITY beams. Only the data within the
dashed circle are considered in the fit; the cancellation of wavelength-
dependent scaling errors is not guaranteed at larger radii.

alongside the characterization of aberrations from Sect. 3 to
observations of two different binary systems. First we considered
as a proof of concept a test-case binary observed with the Aux-
iliary Telescopes (ATs), where the system position in the FOV
was systematically varied and thus screened over the phase- and
amplitude-maps. Second we applied the aberration-correction to
GC observations with the UTs from 2017 and 2018. During these
epochs, which are around the pericenter passage of S2, S2 and
Sgr A* where observed simultaneously in a single fiber pointing.

The data considered in either analysis consisted of visibility
amplitudes, squared visibilities, and closure phases with a rela-
tive weighting of (1:1:2). To infer the source separations, we fit
a binary model based on Eq. (25), which we extended to account
for the effect of finite spectral resolution and for a homogeneous
background with flux ratio f bkg relative to the first binary com-
ponent.

Vobs
bin

(
bi, j/λ

)
=

Ãi (α1) Ã j (α1) Vλ

[(
bi, j · α1 − di, j (α1)

)
, ν1

]
+ Ãi (α2) Ã j (α2) Vλ

[(
bi, j · α2 − di, j (α2)

)
, ν2

]
√∏

x=i, j

[
L̃x (α1) Vλ (0, ν1) + f bin L̃x (α2) Vλ (0, ν2) + f bkgVλ

(
0, νbkg

)] .

(34)

Phase distortions enter this expression via the OPD correction
di, j =

(
φ̃i − φ̃ j

)
× λ/2π. Furthermore, the point-source visibility

averaged over a spectral channel is

Vλ (d, ν) =

∫
dλ P (λ)

(
λ

2.2 µm

)−1−ν

e−2πi d/λ . (35)

The spectral bandpass P (λ) is given by a top hat function. The
source positions α1 and α2, the flux ratios f bin and f bkg, and the
spectral index of the central component (ν1) and the background
flux (νbkg) were free fit parameters, while the spectral slope of
the companion was fixed to ν2 = 3.

Finally, Ãi/ j, φ̃i/ j, and L̃i/ j in Eq. (34) refer to the phase
maps, amplitude maps, and the photometric lobes as they are
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Fig. 7. Illustration of the AT binary test observations, showing the posi-
tion of the two binary components (circles and diamonds, respectively)
relative to the fiber profile (gray shading). Color gradients are chosen in
accordance with Fig. 8. For this test, the fiber position was only varied
on AT2 and was kept fixed on the other three telescopes.

encountered in on-sky observations. These have two important
differences to the Calibration Unit measurement. First, while the
pupil-plane representation of the aberrations is the same for both
settings, the presence of a central obscuration and the smaller
outer stop affects the realization of the maps in the image plane.
This was conveniently captured by using the Zernike coefficients
found in Sect. 3.2 to create a new set of maps with adjusted pupil
configuration. Second, the maps are subject to turbulent smooth-
ing according to Eqs. (30) and (31).

4.1. Verification for a binary test case

The test-case observations, carried out with the ATs in astro-
metric configuration, targeted HIP 41426, a binary with a K-
band magnitude mK ' 5.393 at RA = 8:26:57.75 h, Dec =
−52:42:17.8 (Cutri et al. 2003). The system has an approximate
separation of 200 mas. Its position relative to the GRAVITY fiber
was kept fixed for three of the four telescopes and was varied in
24 steps between ±400 mas on AT2. At each offset, ten frames
with a 6 s integration time were taken. The setup is illustrated in
Fig. 7, which shows the two binary components relative to the
fiber profile on all four telescopes. The shift was applied along
the x-axis in the frame of the GRAVITY pupil, whose rotation
with respect to the field results in a diagonal movement on the
sky.

We used the Zernike coefficients obtained for the SC in
Sect. 3.2 to produce phase- and amplitude-maps tailored to
observations with the ATs. In this case, the pupil, cf. Eq. (4),
is defined by rtel = 1.82 m/2 and rcent = 0.14 m/2. After beam
collimation, ATs and UTs illuminate the same section on the
GRAVITY mirrors, such that the pupil-plane phase screen can
simply be scaled to the AT radius, that is, rtel = 1.82 m/2 also
applies in the Zernike decomposition of Eq. (5). To authenti-
cate the effect of correct aberration modeling, we compared our
results to a second no-map analysis. In this latter scenario, we set
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Fig. 8. Binary separation inferred for a varying fiber offset on AT2
with (right panel) and without (left panel) application of the phase-
and amplitude-maps. Each data point shows the average over two
polarization states, and the range of offsets corresponds to ±200 mas,
approximately.

all phase maps to zero and all amplitude maps to one, φ̃i/ j = 0,
Ãi/ j = 1.

For fiber offsets that are too large, the signal-to-noise ratio
on AT2 is poor because of the high fiber damping, and we conse-
quently discarded these data. The remaining pointings are shown
in Fig. 7, and the corresponding separation, measured from a
binary fit to the data according to Eq. (34), is given in Fig. 8.

The AT binary test case clearly validates our aberration cor-
rections. Different configurations yield consistent results only
if phase- and amplitude-maps are considered in the analysis.
Including the correct aberration model in the analysis clearly
shifts the result and reduces the scatter. Even more importantly,
however, the separation found in the no-map analysis systemati-
cally depends on the fiber position; it is largest for positive fiber-
offsets and smallest for offsets in the negative direction. When
the aberration correction is applied, this systematic is largely
removed.

We considered the binary test-case observations primarily as
a proof of concept and therefore did not apply a full analysis
of the systematic measurement error as carried out for the GC.
These uncertainties arise from the accuracy to which the phase
maps can be determined and from the uncertainty of the atmo-
spheric smoothing kernel. Furthermore, there can be minor dif-
ferences in the phase- and amplitude-maps between AT und UT
observations, and our treatment is optimized for the UT scenario.

As the shift in its central value indicates, the binary sep-
aration is large enough that even at perfect fiber pointing, at
least one source lies in a region of the FOV where aberration-
induced phase errors are significant. Accurate astrometry is thus
not a question of precise fiber alignment, but is only possible
with a consistent treatment of the pupil-plane distortions in the
analysis.

4.2. Separation between S2 and Sgr A*

After verifying our approach to correct for aberration-induced
systematic errors, we also applied it to GC observations with

Fig. 9. Orbit of S2 relative to the phase maps as applied for the GC
analysis (measurement from 3 March 2020, σt = 10 mas). Dots indicate
the position of S2 on 2017.2, 2017.6, 2018.2, and 2018.7, respectively,
while the cross marks Sgr A*.

GRAVITY. During 2017 and 2018, that is, close to pericenter
passage, S2 and Sgr A* were observed simultaneously in a sin-
gle fiber pointing. In particular during 2017, when the off-axis
distance of S2 was larger, the aberration correction improves
the inferred binary separation. In 2019, in contrast, the Sgr A*-
S2 separation exceeded the single telescope beam size of about
60 mas, and GRAVITY observed both sources separately in
so-called dual-beam mode. Their separation is then obtained by
calibrating Sgr A* with S2 and fitting a point-source model to its
visibilities (see Gravity Collaboration 2020 for details). In this
configuration, each source can be well aligned with the fiber cen-
ter, such that field-dependent aberrations do not affect the mea-
surement.

To derive the aberration-induced shift of the S2 posi-
tion, we examined a subset of the GRAVITY data used in
Gravity Collaboration (2019). In particular, we applied stricter
quality cuts and demanded a high signal-to-noise ratio. Phase-
and amplitude-maps were generated from the coefficients
obtained in Sect. 3.2 by accounting for the specific geometry of
UT observations, that is, rtel = 8.0 m/2 and rcent = 0.96 m/2. The
residual turbulent tip-tilt is between 10 mas and 15 mas per axis
(Perrin & Woillez 2019). In total, we considered four different
realizations of the aberration maps that are given by the indepen-
dent analysis of the two calibration measurements in 2019 and
2020 each convolved with the minimum and maximum smooth-
ing assumption. A representative example for the phase maps
applied in the GC analysis is shown in Fig. 9 in relation to the
orbit of S2.

Our main result, the difference in the position of S2 with and
without aberration corrections averaged per month, is shown in
Fig. 10. As expected, the correction is largest early in 2017 and
smallest around pericenter passage in May 2018. Furthermore,
the mean corrections per epoch obtained with the four different
realizations of the aberration maps are consistent over the full
observational period.
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Fig. 10. Difference in the position of S2
obtained from an analysis with and with-
out the aberration corrections. Colored dots
indicate the epoch-wise mean for different
realizations of the phase- and amplitude-
maps, and gray dots show the results for
individual observations. From these, we
determine a mean position correction as
a function of time with a corresponding
upper and lower limit as indicated by the
solid black line and the gray band. The thin
dashed line finally represents the correction
applied in Gravity Collaboration (2019).

As the orbit of S2 smoothly scans over the phase- and
amplitude-maps (see Fig. 9), we also expect a smooth varia-
tion in the position-correction. The time-dependence in Fig. 10
is indeed well described by a second-order polynomial fit,

∆RA =
(
−0.44 τ2 + 0.11 τ + 0.04

)
mas , (36)

∆Dec =
(
0.41 τ2 − 0.47 τ − 0.06

)
mas , (37)

where τ = t/years− 2018.4 refers to the shifted observation date
in years.

In addition to the mean correction per epoch, Fig. 10 also
shows the individual file-by-file results as gray dots. These give
some insight into the uncertainty of the aberration correction.
When we fit the orbit of S2, any such uncertainty must to be
propagated as a source of systematic error. We constructed a
upper and a lower estimate of the correction, containing 68%
of the files per epoch. This is shown in Fig. 10 as a gray band.

In addition to the systematic error, we also need to account
for the statistical uncertainty of the position of S2. That is, as
the phase- and amplitude-error changes when the position of S2
is varied within its error bars, we need to propagate this effect
to the final correction. To this end, we took the position error
of the original uncorrected data point, from which we drew 100
realizations, and shifted the aberration maps by this. We then
derived the correction from each realization independently and
used their scatter to estimate the statistical error of the correction
for the position of S2. The resulting mean statistical uncertainty
per epoch is small, between 10 µas and 30 µas, but we neverthe-
less also accounted for it in the orbit fitting.

A further check was to determine which correction created
a best match of the 2017 and 2018 GRAVITY positions to the
remaining S2 data. To this end, we included a scaling factor fcorr
in the correction we applied, such that fcorr = 1 was our best
correction and fcorr = 0 was no correction. This parameter was
then included in the orbit fit (see Sect. 5.1). The best fit yields
fcorr = 0.99±0.06, which is identical to the correction we derived
purely from calibration data. This independently confirms our
concept and the resulting aberration correction: Our correction
yields the most consistent S2 orbit.

The aberration correction presented here constitutes a fur-
ther refinement of the analysis in Gravity Collaboration (2020).

There we directly applied the measured aberration maps as
shown in Fig. (4) instead of the fitted decomposition in terms of
pupil-plane Zernike polynomials. To account for the widening
of the maps, which occurs when we project from the enlarged
stop on the Calibration Unit to the telescope pupil, we applied a
wider smoothing kernel of σt = (19 ± 5) mas. The resulting best
estimate for the correction is depicted in Fig. 10 as a dashed line.
Both methods give consistent results, which confirms the robust-
ness of the approach. The only sizable deviation is in 2017.2,
when S2 was observed at a separation comparable to the maxi-
mum radius for which we obtained the calibration measurement
(see Fig. 9). This case shows the strength of the Zernike decom-
position, which allows a well-defined extrapolation.

5. Results

5.1. Determination of the S2 orbit

In the following we evaluate the effect of the aberration
correction on the S2 orbit. The data used are similar to those
of Gravity Collaboration (2020) and are described in detail in
Appendix B. We employed the same fitting procedure as in
Gravity Collaboration (2020), using a 13-parameter post-
Newtonian orbit model. Six of these parameters describe the
Kepler orbit (a, e, i, ω, Ω, and tperi), and another six describe
the reference frame relative to the AO spectroscopy and assumed
correction for the local standard of rest (LSR) (x0, y0, R0, ẋ0, ẏ0,
ż0). Here, R0 is the distance to the GC, the prime focus of this
work, and M• is the central mass. The best-fit parameters are
given in Table 2.

To determine the systematic uncertainty, we followed the
approach in Gravity Collaboration (2019) of varying our
assumptions and tracing the associated changes in R0. Compared
to our earlier work, we also included the uncertainty due to the
aberration correction, as given by the gray band in Fig. 10. The
individual contributions are given in Table 1. The aberration cor-
rection is the dominant contributor to the systematic error. The
total systematic uncertainty is 33 pc when the contributions are
added quadratically.

Our best estimate of the GC distance thus is

R0 = 8275 ± 9|stat. ± 33|sys. pc . (38)
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Table 1. Contribution to the systematic errors affecting the measure-
ment of R0, for details see Gravity Collaboration (2019).

Misalignment of mass and IR-emission 12 pc
Wavelength calibration of SINFONI 9 pc
GRAVITY astrometry 29 pc

Baseline accuracy 4 pc
Wavelength accuracy 9 pc
Model and data selection 9 pc
Atmospheric differential dispersion 5 pc
Aberration correction 23 pc
Metrology correction 10 pc

Notes. Adding all contributions quadratically, we find a total systematic
uncertainty of 33 pc.

Table 2. Orbital parameters of S2 with their statistical uncertainties.

Parameter Value

a [mas] 124.982 ± 0.034
e 0.884215 ± 0.000058

i [deg] 134.685 ± 0.029
ω [deg] 66.259 ± 0.030
Ω [deg] 227.175 ± 0.029
P

[
yr

]
16.0458 ± 0.0013

tperi
[
yr

]
2018.378990 ± 0.000082

x0 [mas] −0.79 ± 0.10
y0 [mas] 0.00 ± 0.11

ẋ0

[
mas yr−1

]
0.0780 ± 0.0091

ẏ0

[
mas yr−1

]
0.0342 ± 0.0094

ż0

[
mas yr−1

]
−2.6 ± 1.4

M•
[
106 M�

]
4.297 ± 0.013

R0
[
pc

]
8274.9 ± 9.3

5.2. Comparison to previous results

Our previous determinations of the GC distance in Gravity
Collaboration (2018, 2019), and Gravity Collaboration (2020)
were biased by the field-dependent aberrations. Taking them into
account brings all our measurements into agreement, as shown in
Fig. 11 and Table 3. In contrast to Gravity Collaboration (2020),
we here also applied a correction for the 2018 data, when S2 and
Sgr A* were close to each other and close to the field center. We
note that, the small aberration corrections lead to a small upward
correction of R0 of around 30 pc. However, this shift is compa-
rable to the systematic error. Further, we find that the orbit is
particularly sensitive to the pericenter data. This causes a strong
decrease in the statistical uncertainty with time, while the sys-
tematic uncertainty even increases slightly because varying the
assumptions then leads to stronger variations in the fit result.

5.3. Comparison with further S2-based results

We estimate that the accuracy of our VLT-based result is at the
40 pc level. However, it deviates significantly from the Keck-
based value reported in Do et al. (2019), with the difference
being at the 300 pc level. Because both works use the orbit of
S2 around Sgr A* to determine R0, it is important to investigate
the cause of the discrepancy, and we address this in Appendix C.
Overall, we conclude that the combination of a difference in the

radial velocity data and a modest offset of the Keck coordinate
system in the declination direction might explain the discrep-
ancy. Each effect contributes roughly 50%.

About 20% of the radial velocity difference can be attributed
to the Doppler formula in StarKit that was implicitly used by Do
et al. (2019). The remaining 80% are unexplained and might lie
either in the Keck or the VLT data.

The origin of the coordinate system offset is unclear as well.
Trying to explain the offset with a shift in the VLT coordinate
systems is much harder than imposing a shift in the Keck system
because the precision of the GRAVITY data is so high.

6. Conclusions

GRAVITY delivers high-resolution astrometry, which in com-
bination with spectroscopic data, allows a very precise deter-
mination of the distance to the Galactic Center. The values
inferred from different epochs (Gravity Collaboration 2018,
2019, 2020) show a small discrepancy at the 1% level, which
nevertheless is significant because of the high precision of the
measurement.

We were able to relate this shift to optical aberrations intro-
duced in the instrument, which lead to a field-dependent distor-
tion of the visibility phase. Their effect is stronger the farther
off-axis an object lies within the FOV. In particular, GC obser-
vations close to the S2 pericenter passage are affected, when
S2 and Sgr A* are detected simultaneously in a single fiber
pointing but at a separation comparable to the FOV. In earlier
and later epochs, in contrast, we employed the so-called dual-
beam method and targeted each source individually. In this case,
as for most other GRAVITY science observable, each source
can be well centered and aberration corrections become irrel-
evant. The dual-beam observation mode was also assumed to
derive the astrometric error budget in Lacour et al. (2014),
who did not include the effect of phase maps for this precise
reason.

The full analytical description we developed here allowed us
to propagate the effect of optical aberrations at fiber injection
to the measured visibilities. Fitting this model to dedicated cal-
ibration measurements confirmed its validity and enabled us to
account for the effect in the data analysis. We further verified the
approach with dedicated test-case observations.

The formalism we developed is applicable beyond GRAV-
ITY to any optical/near-IR interferometer in which aberrations
are introduced in the pupil or the focal plane. In several cases
in the literature, more than one object lay in the interferometer
FOV, for example, some Keck (Colavita et al. 2013), CHARA
(Ten Brummelaar 2005), or NPOI (Armstrong et al. 1998) results
on binary stars. How severely aberrations affect an observation
depends not only on their strength for a particular instrument,
however, but also on the off-axis distance considered and on the
statistical noise in the measurement. In the example of GRAV-
ITY on the UTs, the mean phase error introduced at 20 mas
separation is 4−5 degrees per telescope and increases to 14−20
degrees at 50 mas. While a binary test case as presented in
Sect. 4.1 can serve as a general strategy to diagnose whether
aberration-induced systematics are a problem, dedicated calibra-
tion measurement are required for their correction in the analysis
for each individual instrument.

With the results from the GRAVITY Calibration Unit mea-
surements and our refined analysis scheme, we were able to fur-
ther improve the separation between S2 and Sgr A* in 2017 and
2018, introducing shifts up to 0.5 mas caused by the phase aber-
rations. In Fig. 12 we show a detailed view of the S2 orbit in
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Fig. 11. Measurements of the GC distance over time with a focus on studies of the S2 orbit. Blue points show results obtained with the SINFONI,
NACO, and GRAVITY data with (dark blue) and without (light blue) application of the aberration corrections. Gray R0 determinations are based
on data from the Keck observatory. For comparison, we show in black results that are based on the statistical parallax of the nuclear star cluster
(Chatzopoulos et al. 2015) and from modeling the Milky Way dynamics based on observations of molecular masers (Reid et al. 2019). Bland-
Hawthorn & Gerhard (2016) finally reported the GC distance based on a combination of various methods.

Table 3. Published values of R0 (bold) and the corresponding values
when the aberrations are taken into account (right column).

Phasemaps None 2017 only 2017 and 2018

GRAV. coll 2018 8122 ± 31 8231 ± 16 ± 24
GRAV. coll. 2019 8178 ± 13 ± 22 8275 ± 13 ± 31
GRAV. coll. 2020 8249 ± 9 ± 45 8275 ± 9 ± 33
This work 8246 ± 9 ± 33 8275 ± 9 ± 33

Notes. All values in pc.
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Fig. 12. Detailed view of the S2 orbit in 2017. Dual-beam points do
not suffer from aberration-related systematic errors and agree very well
with our corrected data points.

2017, in which we also included two dual-beam measurements
that do not suffer from phase aberrations. The improved data
agrees very well with these positions.

Of all orbital parameters, the distance to the GC R0 is most
strongly affected by the change in the S2 position. This can
be easily understood when R0 is viewed as the scaling fac-
tor between angular and proper velocity. The field-dependent
phase errors discussed in this work then fully explain the shift
between earlier R0 measurements with GRAVITY data. Apply-
ing the analysis scheme developed here lifts any such discrepan-
cies (see Sect. 5.2). In particular, Fig. 11 demonstrates that later
corrected data sets of earlier publications give fully consistent
results whose accuracy increases with time.
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Appendix A: List of Zernike coefficients

Table A.1. Zernike coefficients for science-channel aberrations fit to the
calibration measurement on 3 November 2019.

GV1 GV2 GV3 GV4

A0
0 −0.005 −0.028 −0.019 −0.014

A−1
1 0.000 0.008 0.062 −0.014

A1
1 0.021 −0.030 0.053 0.022

A−2
2 0.009 −0.009 0.028 0.010

A2
2 −0.010 −0.012 0.015 −0.035

A0
2 −0.034 −0.012 −0.016 −0.002

A−1
3 0.032 −0.042 0.028 0.065

A1
3 0.032 0.071 0.081 0.013

A−3
3 −0.056 0.011 0.032 0.021

A3
3 0.013 −0.017 −0.026 0.054

A−2
4 −0.005 −0.020 −0.036 −0.016

A2
4 −0.049 −0.014 −0.046 −0.034

A−4
4 0.011 −0.005 0.049 0.002

A4
4 −0.005 −0.006 −0.029 −0.012

A0
4 −0.039 −0.001 −0.023 −0.019

A−1
5 0.011 0.030 0.013 0.014

A1
5 −0.003 −0.026 0.032 −0.032

A−3
5 0.018 −0.026 −0.015 −0.013

A3
5 −0.020 0.002 −0.026 −0.030

A−5
5 0.013 −0.018 0.008 −0.027

A5
5 0.003 −0.003 0.047 −0.002

A−6
6 −0.003 0.009 0.018 −0.001

A6
6 −0.009 0.013 −0.019 0.015

A−4
6 −0.002 0.004 −0.017 0.002

A4
6 0.021 0.000 0.018 0.018

A−2
6 0.001 −0.001 0.002 −0.000

A2
6 0.003 0.002 0.003 0.002

A0
6 0.024 0.001 0.024 0.007

B−1
1 0.010 0.113 0.065 0.033

B1
1 0.035 −0.043 0.062 0.042

B0
2 −0.006 −0.011 0.005 0.007

B−2
2 −0.045 0.053 −0.086 0.024

B2
2 0.011 0.033 −0.004 0.031

Notes. All coefficient are given in units of µm.

The Zernike coefficients obtained by fitting the Calibration Unit
measurements from late 2019 and early 2020 are summarized
in Tables A.1 and A.2, respectively. We provide the science

Table A.2. Zernike coefficients for science-channel aberrations fit to the
calibration measurement on 3 March 2020.

GV1 GV2 GV3 GV4

A0
0 −0.009 −0.059 −0.019 −0.027

A−1
1 −0.018 0.034 0.066 −0.003

A1
1 0.008 0.016 0.045 0.043

A−2
2 0.008 −0.005 0.047 0.006

A2
2 −0.012 −0.010 0.019 −0.023

A0
2 −0.043 −0.012 −0.024 0.012

A−1
3 0.020 −0.039 0.038 0.075

A1
3 0.042 0.079 0.063 0.026

A−3
3 −0.031 0.009 0.029 0.023

A3
3 −0.001 −0.006 0.022 0.032

A−2
4 −0.028 −0.049 −0.042 −0.014

A2
4 −0.030 −0.052 −0.019 −0.017

A−4
4 0.014 −0.014 0.023 −0.014

A4
4 −0.004 −0.001 −0.016 −0.016

A0
4 −0.049 −0.027 0.001 −0.023

A−1
5 0.022 0.026 −0.000 −0.000

A1
5 −0.014 −0.031 0.034 −0.041

A−3
5 0.005 −0.027 −0.011 −0.017

A3
5 −0.007 −0.005 −0.025 −0.017

A−5
5 0.004 −0.015 0.008 −0.007

A5
5 −0.008 0.001 0.058 0.004

A−6
6 −0.006 0.018 0.040 0.014

A6
6 0.001 0.008 −0.002 0.008

A−4
6 0.013 0.017 −0.005 0.001

A4
6 0.012 0.021 0.014 0.015

A−2
6 −0.001 0.002 0.003 0.001

A2
6 −0.001 −0.001 0.006 0.004

A0
6 0.030 0.007 0.016 0.009

B−1
1 0.002 0.115 0.036 0.023

B1
1 0.068 −0.032 0.086 0.035

B0
2 −0.004 −0.000 0.004 0.015

B−2
2 −0.027 0.035 −0.076 0.012

B2
2 0.043 0.065 −0.040 0.008

Notes. All coefficient are given in units of µm.

channel results for all for GRAVITY beams (GV1 to GV4) in
units of µm according to the definitions in Eqs. (5) and (33),
where Am

n labels pupil-plane aberrations and Bm
n those in the

focal plane.
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Appendix B: Data

We used the data set presented in Gravity Collaboration (2020)
with the following changes. Each single-beam astrometric posi-
tion was corrected according to Eq. (37), and we added the sta-
tistical error of this correction in quadrature, which increased
the individual uncertainties by around 15 µas. Further, we cor-
rected the radial velocity of the epoch 2018.1277, which was
13 km s−1 too high in the previous data set. Finally, we were
able to add one interferometric position measurement of S2 from
early March 2020. Like in 2019, the separation between S2 and
Sgr A* exceeds the fiber FOV, and hence a dual-beam measure-
ment needed to be employed.

Because the observability of the GC is limited in early March
and we expected observations in the following months, we did
not attempt to observe Sgr A* in March 2020, but only pointed to
S2 and to our usual calibrator star R2, with the aim of testing the
stability of the GRAVITY astrometry. Pointings to Sgr A* were
planned for later in the year. They had to be canceled due to the
pandemic-related closure of the VLT(I) from mid-March on. To
still determine the S2 – Sgr A* separation vector from this obser-
vation, we needed to proceed in two steps and first measured the
S2 – R2 distance, then we referenced R2 to Sgr A*.

The distance between S2 and R2 was measured with the
dual-beam method (Sect. 4.2), where we calibrated the S2 files
with R2. In addition to the 2020 measurement, this separation
is also available for 56 epochs in 2017, 2018, and 2019. It can
be measured very precisely because the two stars are bright.
Because the S2 – Sgr A* vectors were previously determined
in Gravity Collaboration (2020), we can also refer R2 to Sgr A*
in these earlier epochs. We then fit a simple quadratic function
for the time evolution of the R2 coordinates relative to Sgr A*
and extrapolated it to March 2020. Given the large number of
data and the small time range to extrapolate for, the additional
uncertainty that this introduces is well below the 100 µas level.

We derived the S2 position in 2020 from the four scientif-
ically usable exposures as their mean. We assigned an error of
150 µas to each coordinate for this data point, which reflects both
the smaller number of files compared to what we typically had
available in 2019 and the additional uncertainty due to the addi-
tional step of referencing via R2. The new data point falls well
onto the expected orbit, but its error bar is too large to have a
significant effect on the fitted parameters.

Our data set consists of 128 AO-based astrometric points, 58
GRAVITY-based astrometric points, and 97 radial velocities, of
which the first three before 2003 are from Do et al. (2019).

Appendix C: Analysis of the difference between R0
determinations from Keck and VLT data sets

We expect that our determination of R0 is accurate to the 40 pc
level, but we note that the value published in Do et al. (2019) is
discrepant at the 300 pc level. Both teams used the orbit of the
star S2 around Sgr A* to determine R0, and it is therefore natural
to ask what caused the differences.

C.1. Data

In addition to our (VLT) data set (Appendix B), we used the
Keck data set published in Do et al. (2019). We applied the
NIRC2 radial velocity offset of +80 km s−1 as determined in Do
et al. (2019) to the NIRC2 data, that is, we added 80 km s−1 to
these radial velocities. Unlike Do et al. (2019), we then did not
fit for this offset. Furthermore, we dropped the last astrometric

data point (epoch 2018.67148268), as suggested by the authors
in a private communication. The data set consisted of 45 astro-
metric points and 116 radial velocities, of which 41 are actually
from the VLT data set between 2003 and 2016. The published
table also includes one radial velocity from the epoch 2019.3567,
which may not have been part of the data set used in Do et al.
(2019).

C.2. Difference in R0

We fit the orbit with a simple 13-parameter model: The six
orbital elements of the star (corresponding to the initial condi-
tions of the star in phase space), six parameters for the posi-
tion and velocity of the MBH, and the mass of the MBH. The
fits were made using the relativistic corrections as in Gravity
Collaboration (2020), that is, we fixed fRS = fS P = 1. For
this non-Keplerian motion, the meaning of the orbital elements
is that they osculate at a reference epoch, for which we chose
T = 2010.35, which is close to the apocenter passage time of
S2.

To fit the VLT data set, we used the same approach as
in Gravity Collaboration (2020): for the GRAVITY data, we
assumed that the astrometry directly refers the S2 positions to
the mass center and we directly measure the separation vec-
tor between the two objects interferometrically. For the NACO
(AO-imaging based) data, we allowed a coordinate system off-
set, on which we set priors following Plewa et al. (2015), and we
included the NACO flare positions as an additional constraint to
locate the mass. This fit yields

R0 = 8274.9 ± 9.3 pc
a = 124.982 ± 0.034 mas
i = 134.685 ± 0.029◦

Ω = 227.175 ± 0.029◦, (C.1)

where a is the semimajor axis, i is the inclination, and Ω is the
position angle of the ascending node of the S2 orbit, and the
errors are the statistical fit uncertainties. The VLT astrometry is
dominated by the GRAVITY points, as illustrated by dropping
all AO data points, which results in R0 = 8276 ± 10 pc.

Fitting the Keck data set with the same 13-parameter model
as used for Eq. (C.1) yields

R0 = 7935 ± 44 pc
a = 126.64 ± 0.27 mas
i = 133.78 ± 0.15◦

Ω = 227.66 ± 0.13◦. (C.2)

This is not the same number as in Do et al. (2019), who reported
R0 = 7959 ± 59 pc. The small (and statistically insignificant)
difference is most likely due to the noise model that Do et al.
(2019) included in their analysis, which we do not have readily
available. Applying the noise model at hand (Plewa & Sari 2018;
Gravity Collaboration 2019) yields R0 = 7965 ± 56 pc. This
shows that the value reported by Do et al. (2019) lies between
the two numbers we obtain by refitting their data. In the follow-
ing, we use for simplicity and for equal treatment of the data the
value and approach as in Eq. (C.2). We therefore have a differ-
ence of ∆R0 = 340 ± 45 pc.

C.3. Comparing, combining, and adjusting the astrometry

Gillessen et al. (2009a) have noted that a simple attempt of
comparing the astrometric data sets by plotting them on top
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of each other fails. We need to allow for an offset and a
drift between the two coordinate systems (i.e., four parameters
∆x, ∆y, ∆vx, and ∆vy). This yields a 17-parameter fit. Compar-
ing the best-fitting parameters in Eqs. (C.1) and (C.2) shows that
they differ significantly in Ω . This parameter is fully degenerate
with the angular orientation (called β here) of the coordinate sys-
tem. The difference in Ω thus suggests that the two astrometric
data sets are rotated with respect to each other.

Therefore we extend the combination scheme by an addi-
tional fifth parameter, ∆β, resulting in an 18-parameter fit. With
this, we fit the two data sets simultaneously, omitting the 41 VLT
radial velocities from the Keck data set while also dropping the
three Keck velocities in the VLT data set. This fit matches the
two coordinate systems ideally onto each other and results in

R0 = 8260 ± 9 pc
a = 125.00 ± 0.03 mas
i = 134.66 ± 0.03◦

Ω = 228.16 ± 0.03◦

∆β = 0.32 ± 0.05◦. (C.3)

The value of ∆β matches the difference ∆Ω. We conclude that
the Keck and VLT data are indeed rotated with respect to each
other. The other parameters are very similar to Eq. (C.1), which
is due to the considerably smaller astrometric uncertainties of
the GRAVITY data compared to the adaptive optics data.

With the best-fit coordinate system difference in hand, we
can transform the Keck astrometric data into the VLT coordi-
nate system and vice versa. We chose to do the former because
the VLT data set is more directly calibrated by the interferomet-
ric data. After applying the coordinate system difference to the
Keck data, we fit them again with a 13-parameter model. This
yielded the same best-fit parameters as in Eq. (C.2) (with the
exception of Ω). This shows that transforming the astrometry
does not change the more fundamental differences between the
two orbits, while a direct comparison is now feasible. The value
of Ω can be omitted in the following.

C.4. Discrepancy in the radial velocity data

Chu et al. (2018) have investigated the consistency of the radial
velocity data between the Keck and VLT data sets for 2000 to
2016 and concluded that the data agree with each other. We
repeated the exercise, now also extending into the time of the
pericenter passage in 2018 (Fig. C.1). To our surprise, the radial
velocities differ systematically from ∼2011 on, and the differ-
ence increases as the radial velocity continues to increase. The
difference reaches ∼50 km s−1 in 2018, just before the star passed
pericenter. Moreover, there is one obvious outlier in the Keck
data, the earliest 2018 point. We verified that dropping this mea-
surement does not change the Keck fit result in any significant
way.

The obvious question is what the radial velocity effect is on
R0. To answer this, we swapped the radial velocities between the
two data sets. The VLT set together with the Keck astrometry
yields

R0 = 8094 ± 32 pc
a = 126.08 ± 0.21 mas
i = 134.0 ± 0.13◦. (C.4)

Conversely, the Keck radial velocities together with the VLT
astrometry yield R0 = 8214 ± 14 pc. Because the Keck radial
velocity set contains 35% of the VLT radial velocities, the fit in
Eq. (C.4) is the cleaner test. We thus explain roughly half of the
difference in R0 with the radial velocity data, that is, 159 pc.

So far, we could only find an explanation for ∼20% of the
radial velocity difference: We applied the fitting based on the
stellar atmosphere model with the StarKit package used in Do
et al. (2019) also to the VLT spectroscopy. We found a significant
difference for high radial velocities, which we were able to trace
back to the Doppler formula used by the StarKit package. While
both Do et al. (2019) and Gravity Collaboration (2020) stated
that the spectroscopic observable is vr = z c, that is, the redshift
of a given spectrum, the StarKit package applies a Doppler for-
mula that includes the longitudinal relativistic correction: λ′ =

λ0

√
1+vr/c
1−vr/c

. In this form, the Doppler formula ignores the (sig-
nificant) tangential motion vt of S2. In order to apply a relativis-
tic correction, the full Doppler formula 1 + z =

1+vr/c√
1−(v2

r +v2
t )/c2

(Lindegren & Dravins 2003) is required. For this correction,
however, the spectroscopic information is not sufficient. In gen-
eral, a spectrum cannot be Doppler-corrected in a relativistic way
without knowledge of the other motion component. Furthermore,
even if the full correction were applied, it would be impossible
to fit for the relativistic redshift later.

The difference between the two formulae is small at veloci-
ties far lower than the speed of light, but it becomes large close
to pericenter, when S2 reaches a velocity of nearly 8000 km s−1.
It amounts to ∼25 km s−1 at most, however, and thus is smaller
than the observed difference in Fig. C.1. This difference is also
visible in Fig. 1 of Do et al. (2019): The plotted model spec-
tra are slightly more redshifted than the underlying data suggest.
Changing the Keck radial velocities accordingly yields a fit with
R0 = 7972 ± 44 pc, which accounts for 37 pc of the 159 pc.

Further checks did not yield any clues for the remaining
significant difference in the radial velocities. In this context,
we verified whether the time stamps were assigned consistently
between the two data sets, and did not find a difference. We also
note that in the bottom right panel in Fig. C.1 the redshift peak
around pericenter is clearly visible for both data sets.

C.5. Discrepancy in the astrometry

Comparison of the fits in Eqs. (C.1) and (C.2) shows that they
differ not only in R0, but also in the size of the semimajor
axis a. We find ∆a/a = 1.28 ± 0.22%. This does not hold
for the semiminor axis, however, ∆b/b is consistent with 0.
Interestingly, the projected ellipses as given by the astrometric
data in the plane of sky agree in both semimajor and semiminor
axes to within 0.17%. Hence, the inclinations i need to differ,
which Eqs. (C.1) and (C.2) confirm. We find in accordance with
the above 1 − sin(iVLT)/ sin(iKeck) ∼ 1.3%.

The inclination of the ellipse determines where the projected
center of mass is located. The orientation of the S2 orbit and
the disagreement in a but not in b indicate an offset of the cen-
ter of mass in the declination direction. We show that introduc-
ing an offset to either y or vy (the mass position and velocity
in declination) can indeed explain the remaining discrepancy.
Starting from the fit of the transformed Keck data set, we fixed
vy to its best-fit value of −0.15 mas yr−1. All other parameters
were again left free for a subsequent fit. Additionally using
the VLTI velocities in this fit instead of the Keck velocities
yields
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Fig. C.1. Comparison of the radial velocity data sets. Blue points are data from the VLT data set, and red points are data from the Keck data set.
Top left: radial velocity as a function of time for the VLT fit (Eq. (C.1)). Top right: yearly averages of the residua of the two data sets to the fit from
Eq. (C.1). By construction, the VLT data thus scatter around 0. The Keck data deviate systematically from 2011 on, and the discrepancy increases
in later years. Bottom left: same as the left panel, but zooming in to the period 2015–2020, and showing all individual data points. The best-fit
Keck orbit corresponding to Eq. (C.2) is the red line. The difference is apparently largest when the radial velocity is highest (in 2018 at pericenter
passage). Bottom right: both data sets show a clear peak in radial velocity in 2018 compared with the Keplerian part of the VLT fit (Eq. (C.1)),
i.e., both data sets clearly detect the redshift term.
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Fig. C.2. Comparison of the astrometric residual after forcing an offset in declination such that the fit to the Keck data set matches that to the VLT
(left) and such that the fit to VLT data set matches that to the Keck data (right). Lighter blue corresponds to AO data from the VLT data set, and
darker blue to the GRAVITY data.

R0 = 8277 ± 28 pc
a = 124.76 ± 0.16 mas
i = 134.63 ± 0.11◦ . (C.5)

This fit therefore yields the same value for R0 from the Keck
astrometry as the VLT fit. Moreover, the semimajor axis a and
inclination i have moved to the VLT values when vy is forced to
have an offset. Because the mass position is parameterized with
a time origin at T = 2000.0, the best-fit y also changes, from
−0.972 mas to 1.234 mas. The systematic uncertainty on y and
vy estimated by Do et al. (2019) is 1.16 mas and 0.066 mas yr−1,
respectively. This means that the difference that needs to be
enforced is within ∼2σ of the systematic uncertainty, and the
residuals in Fig. C.2 (left) appear to be acceptable. Essentially
the same can be achieved by forcing an offset to y and leaving vy
free instead.

This argument might be reversed and a similar offset be
applied to the VLT data in order to lower the VLT-based value
of R0. In a first attempt, we applied the same offset to the VLT

AO data. However, even an offset 10 x larger (i.e., 1.2 mas yr−1)
changed R0 by only ∼30 pc. This is expected because the VLT
astrometry is completely dominated by the GRAVITY data. We
therefore instead tried to vary vy and y for the GRAVITY data, giv-
ing up the assumption that the GRAVITY source itself is the mass
center. We also exchanged the VLT radial velocities for the Keck
velocities. We find that we need to change vy by −1.4 mas yr−1 in
order to obtain a similar distance to the Keck value:

R0 = 7928 ± 16 pc
a = 126.89 ± 0.05 mas
i = 133.51 ± 0.03◦. (C.6)

The fit achieves the lower R0 by tilting the orbit similar to the
fit from Eq. (C.2). The enforced change of vy is unrealistically
large (12× larger than what was needed for the Keck data). The
GRAVITY data also show very strong and systematic residuals
of up to 0.5 mas (right panel in Fig. C.2), and the reduced χ2 of
the fit increased from 1.50 to 2.63.
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