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A B S T R A C T   

The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and 
monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, 
Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups 
with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to 
explore the accumulation, the subcellular distribution and transformations occurring in natural pico- 
nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green 
algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms 
prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg pref-
erentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg 
concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico- 
nanoplankton demethylate added 201MMHg (~4 and 12% per day depending on cellular compartment), 
although the involved pathways are to further explore. Comparison of the concentrations of 201iHg formed from 
201MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was 
biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was 
observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively 
with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the con-
centrations of TN, Mg2+, NO3

− , NO2
− , NH4

+ and negatively with the concentrations of DOC, K+, Na+, Ca2+, SO4
2− . 

Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation 
and demethylation, however further research is needed to better understand the underlying mechanisms and 
interconnection between heterotrophic and autotrophic microorganisms.   

1. Introduction 

Mercury (Hg) is naturally present in the Earth crust, however human 
activities have significantly disturbed its natural biogeochemical cycle 
(Driscoll et al., 2013; Eagles-Smith et al., 2016). Consequently, the 
concentrations of mercury compounds in the aquatic environment have 
significantly increased (Streets et al., 2017). In aquatic environment 
mercury speciation is dominated by inorganic (iHg) and monomethyl 
mercury (CH3Hg+, MMHg), but their relative abundance depends on key 

transformations, such as reduction/oxidation and methyl-
ation/demethylation (Branfireun et al., 2020; Dranguet et al., 2014; Le 
Faucheur et al., 2014). These transformations processes, and thus Hg 
speciation, can be influenced by various abiotic factors, such as light 
radiations (Deng et al., 2009; Deng et al., 2008; Du et al., 2019; Mon-
perrus et al., 2007), organic matter (Bravo et al., 2017; Lavoie et al., 
2019; Lee and Fisher, 2017), pH (Boullemant et al., 2009; Kelly et al., 
2003; Le Faucheur et al., 2011), micro- and macronutrients (Driscoll 
et al., 2012; Kim et al., 2014; Van et al., 2016) and, by biotic factors, 
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such as the microbial community activity (Bravo and Cosio, 2020; Du 
et al., 2019). Therefore, the understanding of the Hg transformations is a 
key for assessing the impact of Hg in the aquatic environment, given 
different reactivity of Hg species to biota, their bioaccumulation and 
biomagnification potential (Branfireun et al., 2020; Gregoire and Pou-
lain, 2014; Hsu-Kim et al., 2013; Le Faucheur et al., 2014). 

In this study, we focus on mercury bioaccumulation and biotrans-
formation by natural pico-nanoplankton. Pico-nanoplankton comprise 
primarily bacterioplankton, mycoplankton and phytoplankton with size 
between 0.2 and 20 μm (Sieburth et al., 1978). Up to now, a significant 
attention has been paid on Hg transformation in anoxic aquatic envi-
ronment by the heterotrophic bacteria and other methanogens (Bratkic 
et al., 2018; Du et al., 2019; Hsu-Kim et al., 2013; Lin, 2011; Pedrero 
et al., 2012). The role of phytoplankton in both abiotic and biotic 
transformations of Hg is understudied. The limited literature revealed 
that phytoplankton could affect Hg speciation directly by accumulation 
(Lanza et al., 2017; Lee and Fisher, 2016; Pickhardt and Fisher, 2007) 
and subsequent biotic (Bravo et al., 2014; Wu and Wang, 2014) and 
abiotic transformations (Kritee et al., 2018), and/or indirectly via the 
production of biogenic ligands with the potential to alter Hg speciation 
and thus its bioavailability (Chen et al., 2014; Gregoire and Poulain, 
2014; Wang et al., 2011). Laboratory studies have demonstrated the 
ability of cyanobacterium Synechococcus leopoldiensis, green alga Chlor-
ella autotrophica, dinoflagellate Isochrysis galbana and diatom Tha-
lassiosira weissflogii to reduce iHg into dissolved gaseous mercury (DGM, 
Hg0) (Lefebvre et al., 2007; Wu and Wang, 2014). Photoreduction of iHg 
to DGM was significantly accelerated by the presence of green alga 
Chlorella vulgaris or cyanobacteria Anabaena cylindrica (Deng et al., 
2009; Deng et al., 2008). It is rather rare to find studies showing the 
capacity of phytoplankton to methylate iHg (Gregoire and Poulain, 
2014; Sigel et al., 2015). For example, cyanobacterium Nostoc poludosum 
produced MMHg, however it represented only 0.0023% of the THg in 
the cyanobacterium biomass (Franco et al., 2018). In addition, green 
alga Chlamydomonas reinhardtii was shown to demethylate MMHg 
(Bravo et al., 2014). Some cyanobacteria and green algae produced 
cinnabar (α-HgS) and meta-cinnabar (β-HgS), a process catalysed by 
intracellular thiols (R–SH), such as glutathione, phytochelatins and/or 
metallothionein (Gregoire and Poulain, 2014; Kelly et al., 2006). These 
transformations were species-specific with highest transformation rates 
observed for green algae and the lowest for diatoms (Wu and Wang, 
2014). Phytoplankton species also excrete biogenic ligands, such as 
thiols, which were shown to alter Hg speciation, bioaccumulation and 
transformations (Skrobonja et al., 2019). 

Pico-nanoplankton are at the base of the aquatic food webs and serve 
as an entry point of Hg species into organisms of higher tropic levels (Lee 
and Fisher, 2016; Wu et al., 2020). Since the biotic transformations by 
microorganisms are presumably intracellular and because the assimi-
lation efficiency of Hg in the food webs is higher when Hg is accumu-
lated in cytosol, both the concentration and subcellular distribution of 
Hg species should be considered to predict its potential for transfer 
through the trophic webs. 

In such a context, the present study aims to get insight into the role of 
natural pico-nanoplankton community in biotic transformations of two 
mercury species prevailing in the aquatic environment: iHg and MMHg. 
To this end, pico-nanoplankton were sampled at two different depths in 
the eutrophic lake Soppen (Switzerland) and spiked with a mixture of 
enriched stable isotopes of 199iHg and 201MMHg. The uptake, the sub-
cellular distribution and the biotic methylation and demethylation were 
assessed, together with the composition of the pico-nanoplankton, and 
major water quality variables. 

2. Material and methods 

2.1. Study site description 

The lake Soppen is located in Buttisholtz (Canton of Lucerne, 

Switzerland, Fig. S1), at an elevation of 596 m. It has a surface area of 
0.227 km2 with a maximal and mean depths of 26 and 12.3 m, respec-
tively (Langenegger et al., 2019). Most of the year the lake is stratified 
with a thermocline around 5 and 10 m depth (Fig. S2) with anoxic 
bottom water (Gruber et al., 2000; Vachon et al., 2019). This anoxic 
conditions persist below 7 m most of the year (during 9–10 months) with 
a mixing period of water occurring at the beginning of the year (Gruber 
et al., 2000). The lake is eutrophic given the intense agriculture activ-
ities in its watershed. The total phosphorus content of the water column 
has been determined at 40 mg L− 1 (Vachon et al., 2019). This lake is 
used as a model system for research in sedimentology and for exploring 
the biological dynamic of higher trophic levels (Gruber et al., 2000; 
Lotter, 2001), but no information is available for planktonic microor-
ganisms and their turnovers. 

2.2. Determination of water physicochemical parameters and pico- 
nanoplankton community composition 

CTD probe (CTD90M, Sea&Sun Technology, Germany) was used for 
in-situ measurements of pH, conductivity and temperature. Dissolved 
organic carbon (DOC) and total nitrogen (TN) concentrations were 
determined by Shimadzu TOC-L series analyser (TOC-5000A, Shimadzu, 
Japan). Major cations and anions were separated (cations: IC Dionex 
IonPac CS12 and, anions: IC Dionex IonPac AS19) and measured by ion 
exchange chromatography (Dionex ICS-3000, ThermoFisher Scientific 
Inc., USA). 

The chlorophyll depth profiles of different algal groups were ob-
tained by fluoroprobe (FluoroProbe, bbe Moldaenke GmbH, Germany), 
and used to assess phytoplankton composition including “blue green 
algae” (cyanobacteria), “green algae”, “diatoms” and “cryptophyta” 
based on the fluorescence emission spectrum of the chlorophyll a of each 
class (Garrido et al., 2019; Schutte et al., 2020). The sampling depths 
were determined to obtain the maximum of biomass and different 
composition of phytoplankton communities. Quantification of hetero-
trophic microorganisms has been done by flow cytometry (Accuri C6, BD 
Biosciences, USA) following staining with SYBR green (Sybr green I 
nucleic acid gel stain, 10000x in DMSO, ThermoFisher Scientific Inc., 
USA) after fixation of samples with glutaraldehyde at a final concen-
tration of 0.25% (grade II, 25% in H2O, Sigma-Aldrich, USA) (Coclet 
et al., 2019; Delpy et al., 2018). 

2.3. Exposure of pico-nanoplankton to a mixture of 199iHg and 201MMHg 

Exposure has been performed in lake water enriched with pico- 
nanoplankton under well controlled laboratory conditions. To this 
end, 20 L of water were sampled at two depths of interest (6.6 m and 8.3 
m) with pre-cleaned Niskin bottles. All the materials for field and lab-
oratory work (e.g. bottles, syringes, vials, tips) were acid pre-cleaned 
using several baths, i.e. 10% HNO3 (pro-analysis, Merck, Darmstadt, 
Germany), and 10% HCl (pro-analysis, Merck, Darmstadt, Germany) 
during 1 h under sonication (Branson Ultrasonic cleaner 5510, Emerson 
Electric Co., USA), then rinsed with ultrapure water (Milli-Q Direct 8, 
Merck, Germany) and left to dry under laminar flow hood. Next, the 
materials were autoclaved at 121 ◦C during 30 min with 1 bar pressure 
(LVSA 50/70, Zirbus Technology, Benelux). Further details can be found 
in a previous work (Dranguet et al., 2017). 

The cell density was artificially increased by a factor of 7.3 (from 1.5 
× 105 to 1.1 × 106 cells mL− 1 for depth 1 and, from 3.9 × 105 to 2.8 ×
106 cells mL− 1 for depth 2). To this end, cells were preconcentrated by 
centrifugation and resuspended in lake water filtered on 0.22 μm GPWP 
filters (hydrophilic polyethersulfone) (Fig. S3). According to the 
experimental design and the planktonic classification based on cellular 
size (Sieburth et al., 1978), harvested planktonic microorganisms were 
composed of pico- and nanoplankton with a size between 0.2 and 20 μm, 
which comprised mainly bacterioplankton, mycoplankton and phyto-
plankton. Six sub-samples of 110 mL were further treated. Three of them 
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were spiked with a mixture of Hg enriched stable isotopes containing 1 
× 10− 9 mol L− 1 of inorganic 199iHg (ISC Science, Spain, 199iHg in HCl 
2%, isotopic relative abundance: 91.4%) and 1 × 10− 10 mol L− 1 of 
201MMHg (201MMHg, ISC Science, Spain, 201CH3Hg+ in 3:1 acetic 
acid/methanol solution, isotopic relative abundance: 96.5%). The other 
three sub-samples were used as unexposed biotic control. Exposures 
were performed for 24 h and mimic natural diurnal cycle. At the end, 10 
mL from exposure and from unexposed biotic control were sampled and 
acidified with 4.2 mL of supra pure nitric acid (65%, HNO3) to reach a 
final HNO3 concentration about 5 N for the determination of the total Hg 
concentration in the system (whole system, Fig. S3). 

2.4. Bioaccumulation and transformation of Hg species by pico- 
nanoplankton 

The bioaccumulation and transformation of iHg and MMHg by whole 
pico-nanoplankton cells, membrane/organelles and cytosol fractions 
were determined, as well as total and dissolved iHg, and MMHg con-
centrations in the system (see workflow on supplementary Fig. S3). At 
the end of the 24 h-exposure, pico-nanoplankton were separated from 
the medium by gentle centrifugation (4330×g, 25 min). Supernatant 
was collected, acidified with HCl (supra pure, 30%) to a final concen-
tration of 1% and used to determine the concentration of dissolved 
199iHg and 201MMHg. The pellet containing pico-nanoplankton was 
rinsed with 0.22 μm filtered lake water, acidified with 1 mL of HNO3 
(supra pure, 65%) and digested to determine whole cell Hg concentra-
tion and evaluate uptake and biotic transformations. To get further 
insight into which biological compartment the Hg predominantly ac-
cumulates and possibly transforms, half of the pico-nanoplankton sus-
pension were centrifuged, washed with filtered lake water, and then 
centrifuged again. To separate membranes and organelles from cytosol 
fraction, the pellet was placed in 2 mL Eppendorf and flash-frozen in 
liquid nitrogen. To break cells, 0.5 mL of 50% methanol solution (v/v in 
milliQ water) were added with glass beads, then vortexed 6 × 15 s and 
placed on ice between fractionations. Then, samples were centrifuged 
during 6 min at 12052×g (Centrifuge 541R, Eppendorf, Germany). 
Obtained pellets (membrane/organelles fraction) and supernatant 
(cytosol) were separated, acidified and stored at +4 ◦C before analysis. 

2.5. Mercury compounds isotopic dilution analysis by gas 
chromatography coupled to inductively plasma mass spectrometry 

The Hg analysis was carried out by gas chromatography coupled to 
inductively plasma mass spectrometry (GC–ICP–MS) and the quantifi-
cation of Hg species was achieved by isotopic dilution analysis (Rodri-
guez-Gonzalez et al., 2013). All measurement required a derivatization 
step in order to produce volatile ethylated Hg species allowing its sep-
aration by gas chromatography (Monperrus et al., 2008; Rodri-
guez-Gonzalez et al., 2013). After a microwave digestion for 
pico-nanoplankton pellets (4 min, 75 ◦C, Discover and Explorer SP-D 80 
system, CEM, NC USA), samples were transferred in 22 mL glass vial 
containing 5 mL of acetate buffer (acetic acid/acetate, 0.1 M, pH = 3.9). 
The quantification of spiked Hg isotopes (199iHg and 201MMHg present 
in all studied samples) is made possible by adding to the samples an 
appropriate concentration of a second set of isotopes (198iHg and 
202MMHg) as internal calibration standards (Bouchet et al., 2018). After 
equilibration, pH was adjusted between 3.85 and 4.05. Then, 250 μL of 
GC organic solvent (Isooctane: 2,2,4 trimethylpentane, C8H18) and 80 μL 
of derivatizing agent, tetraethylborate (NaBEt4, 5% v/v, Merseburger 
spezial Chemikalien, Germany) were added and samples were shaken 
during 20 min on elliptic table. At the end, the organic phase containing 
Hg species was recovered in vial for GC–ICP–MS analysis. Determination 
of total mercury species concentration was done on a Thermo Scientific 
GC-ICP-MS (Bouchet et al., 2018; Rodriguez-Gonzalez et al., 2013). The 
detection limit of Hg compounds for GC-ICP-MS analytical method were 
4.72 × 10− 13 mol L− 1 and 7.70 × 10− 14 mol L− 1 for iHg and MMHg, 

respectively. These values allowed to estimate the minimum detectable 
concentration of newly formed Hg species after transformation: 201iHg =
(7.48 ± 3.50) × 10− 12 mol L− 1 and 199MMHg = (4.58 ± 2.73) × 10− 12 

mol L− 1. The natural Hg background in the lake water have been also 
determined. Details about the mathematical approach used for the 
quantification of endogenous (natural) and exogenous (enriched) Hg 
isotope species (iHg and MMHg) concentrations by double-double spe-
cies-specific isotope dilution analysis based on isotopic pattern decon-
volution (IPD) can be found in our previous studies (Bouchet et al., 
2018; Rodriguez-Gonzalez et al., 2013) and supplementary information 
(SI). 

2.6. Assessment of potential biotic transformations 

The change in the ratio between the difference of transformed Hg 
species (199MMHg and 201iHg) concentrations before and after exposure 
and, the spiked isotopes concentrations (199iHg and 201MMHg) before 
exposure in the whole-cell and the subcellular fractions were used to 
estimate the percentage of potentially methylated (Eq. (1)) and deme-
thylated (Eq. (2)) mercury species (Bridou et al., 2011). 

% Hg,meth=
[199MMHg]t24 − [199MMHg]t0

[199iHg]t0
× 100 (1)  

% Hg, demeth=
[201iHg]t24 − [201iHg]t0

[201MMHg]t0
× 100 (2)  

2.7. Statistical analysis 

One-way Analysis of Variance (ANOVA) followed by All Pairwise 
Multiple Comparison by Student-Newman-Keuls method (p-value <
0.05) was performed to determine significant differences between data. 
Further statistical analysis were performed to explore possible correla-
tions between Hg accumulation and transformations with both physi-
cochemical and biological variables, using R-Studio with FactoMineR 
(Husson et al., 2008), Vegan (Crist et al., 2003) and Corrplot (Friendly, 
2002) packages. Correlation matrices were built on the base of Pearson 
correlation coefficients (PCC) between each parameter. These analyses 
allowed to determine the influence of physicochemical variables and 
pico-nanoplankton community composition on Hg uptake and trans-
formations. Dependency of each variables found in correlation matrices 
was compared with the distance between each of them by redundancy 
analysis (RDA, SI). 

3. Results and discussion 

3.1. Lake water quality variables at the sampling location and Hg 
background concentrations in water 

Conductivity was 250 μS cm− 1 at 6.6 m and 300 μS cm− 1 at 8.3 m, 
and temperature was 18 ◦C and 10 ◦C for each depth (Table S1). These 
values agreed with the previous measurements in lake Soppen for a 
similar sampling period (Lotter, 2001; Tang et al., 2018). Dissolved 
oxygen concentration decreased with the depth (Fig. S2C). This decrease 
could be linked with the increase of biomass (Fig. 1A) and probably with 
a higher heterotrophic activity. A thermocline and an oxycline were 
between 6 and 10 m during sampling period. The TN concentrations at 
both depths (>2.5 mg L− 1) were higher than the values measured in the 
lake in the past (Lotter, 2001) or in other eutrophic lakes (Wang et al., 
2019) and approached those found in hypereutrophic lakes (Wang et al., 
2012c). The DOC values were 7.4 mg L− 1 for 6.6 m and about 6.5 mg L− 1 

for 8.3 m depth, quite high and consistent with values typically found in 
eutrophic lakes. No significant difference was found between the con-
centrations of the cations for water sampled from two depths, whereas 
the concentrations of the analysed anions were significantly different 
(Table S1). Overall, the high nutrient concentrations are consistent with 

T. Cossart et al.                                                                                                                                                                                                                                 



Environmental Pollution 288 (2021) 117771

4

the eutrophic state of lake Soppen. The natural background concentra-
tions in the filtered lake water were (3.79 ± 1.77) × 10− 11 mol L− 1 for 
iHg and (5.98 ± 3.59) × 10− 12 mol L− 1 for MMHg, concentrations about 
26 and 17 times lower than the added spikes enriched in 199iHg and 
201MMHg isotopes. 

Natural iHg and MMHg concentrations are within the range of the 
total Hg (THg, 2.1 × 10− 11 – 2.3 × 10− 10 mol L− 1) and MMHg (2.0 ×
10− 13 – 1.2 × 10− 12 mol L− 1) measured in the filtered water from other 
shallow eutrophics lakes in China (Chen et al., 2021; Wang et al., 2012a; 
Wang et al., 2012b). However, the background concentrations found in 
lake Soppen were higher than those reported for eutrophic reservoir 
Tianmu, China (Razavi et al., 2015)) or many of the world’s great lakes 
(Chen et al., 2021; Guédron et al., 2017). MMHg represented 10.6% of 
the THg concentration, which is higher than the percentages found in 
lake Taihu (0.12–3.5%) (Wang et al., 2012a), Dianchi (0.22–1.50%) 
(Wang et al., 2012b) or reservoir Tianmu (2.0%) (Razavi et al., 2015). 
Such high percentage of MMHg could be probably related with the in-
crease in organic matter production and remineralization typical for 
eutrophication (Guédron et al., 2017; Soerensen et al., 2016). It could 
stimulate microbial Hg methylation resulting in an increase of MMHg in 
water of shallow lakes where the reemission from lake sediments could 
be high (Yang et al., 2020). 

3.2. Characterization of pico-nanoplankton composition 

Vertical profiles of the chlorophyll a informing about the total 
biomass (Fig. 1A) showed two peaks corresponding to 6.6 m (49.3 μg 
L− 1) and 8.3 m (76.9 μg L− 1), inside the thermocline of the lake 
(Fig. S2B). The first peak corresponded to an increased abundance of 
cyanobacteria (9.5 μg L− 1) and cryptophyta (13.1 μg L− 1) and, the 
second one to diatoms (53.8 μg L− 1). 

The abundance of green algae in the deeper sample was also high 
(~16.8 μg L− 1, Fig. 1A). The total biomass and the proportion between 
different phytoplankton groups (Fig. 1B), i.e. cyanobacteria and di-
atoms, suggest that the lake was mesotrophic/eutrophic during the 
sampling period (early autumn) (Chen et al., 2008; Poste et al., 2015; 
Wetzel, 2001; Yu et al., 2020). The obtained chlorophyll a profiles at the 
sampling period could be also explained by a recent phytoplankton 

bloom event in the lake Soppen. The abundance of green algae remained 
constant from the water surface until the end of the thermocline (~14.6 
± 2 μg L− 1) then quickly dropped (Fig. 1A). The biomass of diatoms was 
close to the one of green algae at the water surface (~16.7 ± 2 μg L− 1) 
but reached a first peak around 2.5 m depth (27.1 μg L− 1) and fell to a 
minimal value around 6 m depth (1.4 μg L− 1). 

A second peak for diatoms was observed at 8.3 m with a maximum of 
53.89 μg L− 1. The abundance of diatoms then decreased significantly 
around 14 m depth and increased again (~14.4 μg L− 1) (Fig. 1A). This 
increase could be related to the presence of a deep chlorophyll 
maximum (DCM) (Leach et al., 2018). Several studies have shown that 
DCM is usually dominated by diatoms (Hamilton et al., 2010; Leach 
et al., 2018; Simmonds et al., 2015). In addition, quite high bacterial 
density was found in the DCM in comparison with the water column 
(Leach et al., 2018). Indeed, the abundance of heterotrophic pico-
plankton was found higher at depth 2 than at depth 1 (Fig. 1B). This is 
consistent with dissolved oxygen profile (Fig. S2) and suggests that the 
heterotrophic activity is to considered when exploring Hg trans-
formations. Cyanobacteria and cryptophyta followed almost the same 
trend as diatoms throughout the depth profile. They were absent in the 
shallowest water whereas below 5 m, their abundance quickly increased 
to reach a maximum at 6.6 m corresponding to 9.48 μg L− 1 for cyano-
bacteria and 13.16 μg L− 1 for cryptophyta. The abundances of cyano-
bacteria and cryptophyta then slowly decreased reaching a background 
value of 1.47 μg L− 1 at 10 m depth and beyond for cyanobacteria while 
no cryptophyta were detected below 13.7 m depth (Fig. 1A). 

The proportions of different groups of pico- and nanoplankton at the 
two sampling depths diverged (Fig. 1B). The community at 6.6 m was 
composed by 20% of cyanobacteria, 25% of diatoms, 17% of crypto-
phyta, 31% of green algae and 7% of heterotrophic microorganisms. The 
community at 8.3 m was dominated by diatoms (~60% of the com-
munity) and contained 2% of cyanobacteria, 3% of cryptophyta, 25% of 
green alga and 10% of heterotrophic microorganisms. Diversity index, 
H′ considering both the abundance and evenness, was higher for the 
community in shallower sample (H’ = 2.2 at depth 1 versus H’ = 1.5 at 
depth 2) and, evenness index, J′ was lower for the community at depth 2 
(J’ = 0.95 at depth 1 and, J’ = 0.67 at depth 2). 

Fig. 1. Pico-nanoplankton groups. (A) biomass and chlorophyll a profiles of phytoplankton (μg L− 1 of pigment) determined in-situ with FluoroProbe; (B) proportion 
of bacterioplankton + mycoplankton and different phytoplankton groups expressed in percentages in the total biomass. The abundance of heterotrophic microor-
ganisms was determined by flow cytometry following SYBR green staining. Dash lines represent two depths chosen for sampling 6.6 and 8.3 m. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.3. Bioaccumulation and subcellular distribution of iHg and MMHg 

Pico-nanoplankton communities sampled in the lake Soppen accu-
mulated a significant amount of both Hg species: (3.5 ± 0.3) × 10− 19 

mol cell− 1 and (3.7 ± 0.2) × 10− 19 mol cell− 1 of 199iHg and, (2.3 ± 0.8) 
× 10− 20 mol cell− 1 and (3.1 ± 0.1) × 10− 20 mol cell− 1 of 201MMHg for 
depth 1 and depth 2, respectively (Fig. S4). The concentrations of the 
199iHg accumulated by pico-nanoplankton were about 10 times higher 
than that of 201MMHg in agreement with the their exposure concen-
trations and despite the Hg losses measured in the system. 

Comparison of the concentrations of iHg and MMHg in the whole 
system (lake water + pico-nanoplankton) and the sum of the dissolved 
and whole cell iHg and MMHg showed an existence of losses over 24h 
period corresponding to about 45% for iHg and 38% for MMHg (Fig. S4). 
These losses could be due to a volatilization of Hg0 following the biotic 
and abiotic transformations in the system or adsorption to the glassware. 
Additional leaching experiments with HNO3 on the empty containers at 
the end of exposure, revealed that the amount of the adsorbed Hg to the 
glassware corresponded to less than 10% of the amount of Hg added in 
the exposure medium. Thus, it seems more plausible that biotic and 
abiotic transformations or other unknow processes contribute to these 
losses. 

Uptake of 199iHg was similar for the pico-nanoplankton sampled at 
depth 1 and 2, whereas 201MMHg uptake was significantly higher in the 
community at depth 2 (Fig. 2A). The concentrations of both Hg species 
were higher in the community dominated by diatoms sampled at depth 
2. This observation could be related with differences in the cell wall 
composition of the different groups of pico-nanoplankton, e.g. silica 
frustule of diatoms is known to influence trace metal – cell interactions 
(Ellwood and Hunter, 2000; Jaccard et al., 2009; Mu et al., 2017). For 
both 199iHg and 201MMHg accumulated preferentially in the mem-
brane/organelle fractions. Indeed, the concentrations of iHg and MMHg 
in the membrane/organelle fraction were 7 and 2 times higher than 
those determined in the cytosolic fraction (Fig. 2B). Even not predomi-
nant (relative abundance 7%–10%), heterotrophic microorganisms 
could also play an important role in the accumulation of Hg by the 
pico-nanoplankton (Gregoire and Poulain, 2014). However, the 
composition of bacterio- and mycoplankton need also to be better 
characterized to be able to decipher their role in Hg fate in eutrophic 
lakes dominated by autotrophs (Fig. 1). 

The ratios of Hg concentrations determined in membrane/organelles 

and cytosol fractions were comparable for 199iHg and 201MMHg 
(Fig. S5). This observation is somehow opposite to the previous findings 
obtained from axenic cultures of green alga C. reinhardtii showing that 
MMHg accumulated predominantly in cytosolic fraction (2 h exposure 
to several Hg concentrations: 10− 11 – 10− 8 mol L− 1 iHg and 10− 11 – 
10− 9 mol L− 1 MMHg) (Beauvais-Fluck et al., 2017), whereas for the 
same alga iHg prevailed in membrane fraction (5 × 10− 7 mol L− 1 iHg 
compared with 3.5 × 10− 9 mol L− 1 MMHg after 72 h exposure) (Le 
Faucheur et al., 2014; Wu and Wang, 2011). However, the concentration 
of MMHg in the cellular membranes of other green alga Selenastrum 
capricornutum was much higher than the one in the cytosol fraction 
(Skrobonja et al., 2019). X-ray fluorescence mapping also revealed that 
Hg species were more concentrated in the cell-wall of diatoms ([THg] =
5 × 10− 9 mol L− 1, mixture of several diatoms sampled in Oak Ridge, 
Tennessee) (Gu et al., 2014). Another study on marine diatom 
T. weissflogii revealed that Hg species mainly accumulated in cytosol and 
more specifically in metallothionein-like proteins (MTLP) (Wu and 
Wang, 2013), but in this case the Hg concentrations and the speciation, 
exposure duration as well as experimental procedure for the distinction 
between cytosolic (i.e. intracellular) and adsorbed Hg contents were 
very different to enable direct comparison with our findings. In addition, 
the distinction between cytosolic and membrane/organelles fractions is 
operational and subject to high uncertainty. Nevertheless, the knowl-
edge of the subcellular distribution of iHg and MMHg is central for better 
understanding of mercury trophic transfer and toxicity outcome (Le 
Faucheur et al., 2014). 

Statistical analysis that the accumulation of iHg in both subcellular 
fractions was positively correlated with TN, Mg2+, NO3

− , NO2
− , NH4

+

concentrations and negatively correlated with the concentrations of 
DOC, K+, Na+, Ca2+; SO4

2− (Fig. 3A). The formation of complexes be-
tween the dissolved organic matter (DOM) and iHg is known to reduce 
the uptake by various algae and bacteria (Branfireun et al., 2020; French 
et al., 2014). Therefore the negative correlation between the iHg accu-
mulation by pico-nanoplankton dominated by phototrophs is plausible. 
However, 201MMHg accumulation in membrane/organelles fraction 
were positively correlated with concentrations of K+, Na+, Ca2+, SO4

2−

and DOC. Such positive correlation between the MMHg accumulation 
and the DOC could be expected given the role of fresh humic and algal 
derived organic matter in the increase of the MMHg concentrations in 
surface waters (Herrero Ortega et al., 2018). The above observations are 
in general agreement with the current understanding that metal 

Fig. 2. Accumulation of 199iHg and 201MMHg in pico-nanoplankton. (A) whole cell accumulation, (B) subcellular distribution of Hg species in the subcellular 
fractions versus Hg in whole cell. The values are average ± standard deviation for triplicate experiments (n = 3). Letters indicate statistically significant difference 
between treatments (Student-Newman-Keuls test, p-value < 0.05). 
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bioavailability is dependent on the complexation by DOM, competition 
with major ions and nature of the microorganisms (Beauvais-Fluck et al., 
2019; Branfireun et al., 2020; Hsu-Kim et al., 2013). 

The accumulation of iHg and MMHg in whole cells was positively 
correlated with the percentage of diatoms and heterotrophic microor-
ganism present in the pico-nanoplankton and negatively correlated with 
the percentage of green alga, cyanobacteria and cryptophyta (Fig. 3A). 
These findings were consistent with a published study showing that 
diatoms are the major Hg accumulators in river (Tien, 2004). However, 
the comparison is difficult given the possible differences in community 
composition. Similarly, the accumulation of 199iHg in both cellular 
compartments was positively correlated with the percentage of diatoms 
and heterotrophic microorganisms, as it was the case for 201MMHg in the 
cytosol. The RDA confirmed the strong dependency of iHg and MMHg 
accumulation on the abundance of diatoms and heterotrophic organisms 
in pico-nanoplankton (Fig. S6). Overall, these results suggest that bio-
accumulation and subcellular distribution of both iHg and MMHg in the 
natural pico-nanoplankton from eutrophic lake Soppen were dependent 
on both community composition and the concentrations of DOC, major 
cation and anion concentrations. 

3.4. Biotic transformations of 199iHg and 201MMHg by pico- 
nanoplankton 

The percentage of newly formed 201iHg, used as a measure for 
201MMHg demethylation by the phyto- and bacterioplankton with a size 
between 0.2 and 20 μm, corresponded to 9.1 ± 1.1% and 11.8 ± 0.4% 
for depths 1 and 2, respectively (Fig. 4). Comparison of the proportion of 
201MMHg demethylated in the whole system, medium and whole cell 
showed that 82% of the demethylation was biologically mediated by 
pico-nanoplankton (Fig. S7). Biotic transformation of MMHg to iHg by 
aerobic and anaerobic microorganisms is considered as a major mech-
anism of MMHg degradation and involves reductive and oxidative 
demethylation (Du et al., 2019). MMHg can be also transformed abiot-
ically by photoreduction and photodemethylation in the presence of 

DOM (Jeremiason et al., 2015). However, in the eutrophic lakes char-
acterized by higher biomass, as well as a higher turbidity Hg photo-
reduction/demethylation is expected to be of rather limited 
contribution. 

The percentage of newly formed 201iHg in the cytosol fraction was 
comparable for both pico-nanoplankton sampled at both depths. How-
ever, twice more newly formed 201iHg was found in in membrane/ 

Fig. 3. Pearson correlation matrices for (A) Hg uptake and (B) MMHg biotic demethylation by pico-nanoplankton and selected physicochemical parameters of lake 
water and abundance of different groups determined in pico-nanoplankton. iHg: 199iHg, MMHg: 201MMHg, WC: whole cell, Cyto: cytosol, Mb, membrane/organelles 
fraction, Med: dissolved fraction in medium, Green: green algae, Cyano: cyanobacteria, Crypto: cryptophyta, Bacteria: bacterioplankton + mycoplankton, Upt: 
uptake. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Percentages of demethylated 201MMHg by natural pico-nanoplankton 
communities exposed to an isotopic mixture of 1 × 10− 9 mol L− 1 199iHg and 
0.1 × 10− 9 mol L− 1 201MMHg. Standard deviations are given for triplicate ex-
periments (n = 3). Letters indicate statistically significant difference (Student- 
Newman-Keuls test with p-value < 0.05). 
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organelles fraction for the pico-nanoplankton from depth 2 (Fig. 4). 
These observations could be explained by differences in the community 
composition between the sampling depths (i.e. the higher abundance of 
diatoms and heterotrophic microorganisms at depth 2). Indeed, het-
erotrophic bacteria exhibit a dedicated detoxification pathway of 
reductive or oxidative demethylation (Gregoire and Poulain, 2014; 
Hsu-Kim et al., 2013). The oxidative demethylation leading to a for-
mation of iHg, is mainly conducted by sulphate reducers and metha-
nogens. The reductive process might occur through two pathways, one 
involving the mer operon, considered as more common and other, 
leading to the formation of Hg0 and a net loss of mercury via volatili-
zation (Grégoire et al., 2018). The obtained results are also consistent 
with literature pointing out that MMHg demethylation could occur in 
laboratory experiment with axenic culture of the green alga C. reinhardtii 
(Bravo et al., 2014). Moreover, it has been also shown that some 
microscopic fungi found in contaminated environments could accumu-
late iHg and transform it in a volatile form (Urík et al., 2014). 

No significant methylation of 199iHg was observed during the 24 h 
exposure for both communities of the lake Soppen (Fig. S8). The per-
centage of 199MMHg formed by the transformation of 199iHg by pico- 
nanoplankton was low, although measurable in the two subcellular 
fractions. It corresponded to a formation yield for 199MMHg below 
0.42%, a value comparable to the detection limit. These findings are 
consistent with the existing literature demonstrating lack of iHg 
methylation by different model phytoplankton (Bravo et al., 2014; 
Franco et al., 2018; Kelly et al., 2007; Lefebvre et al., 2007). Indeed no 
methylation was found for C. reinhardtii (exposed to 4.2 × 10− 9 mol L− 1 

of HgCl2 during 48 h (Bravo et al., 2014)), Synechococcus leopoldiensis 
(exposed to 7.4 × 10− 7 mol L− 1 of HgCl2 during 100 h (Lefebvre et al., 
2007)), Nostoc poludosum (exposed to 1.3 × 10− 7 mol L− 1 of HgCl2 
(Franco et al., 2018)), Selenastrum minutum or Navicula pellicosa 
(exposed to 2.2 × 10− 6 mol L− 1 of HgCl2 during 48h (Kelly et al., 2007)). 
However, our results contrasted with previous field work showing that 
MMHg formation could be enhanced by the presence of cyanobacteria in 
floodplain of tropical regions (Lazaro et al., 2013). Other studies showed 
that some groups of the natural pico-nanoplankton could provide a 
favourable environment to methylator organisms by releasing organic 
molecules fuelling microbial activity (Bravo and Cosio, 2020; Heim-
burger et al., 2010). 

The correlation matrix revealed that the percentage of demethylated 
201MMHg in the whole cell and membrane/organelles fraction was 
positively correlated with the abundance of diatoms and heterotrophic 
microorganisms in the pico-nanoplankton (Fig. 3B and S9). The deme-
thylated MMHg present in cytosolic fraction was positively linked with 
the abundance of cyanobacteria, green algae and cryptophyta (Fig. 3B). 
Demethylation in whole cell and membrane/organelles fraction was 
positively correlated with TN, NH4

+, Mg2+, NO3
− and NO2

− (Fig. 3B), 
suggesting that demethylation may be linked with N bioavailability. 
Nitrogen containing enzymes are known to play a key role in electron 
transfers, e.g., hydroxylamine oxidoreductase, nitrite oxidase, nitrate 
reductase, and hydrazine dehydrogenase in different bacteria (Lin et al., 
2021). A negative correlation between demethylation in the cytosol and 
TOC, Ca2+, K+, SO4

2− and Cl− was also found (Fig. 3B). This observation 
is consistent with a negative relationship between iHg and MMHg 
accumulated in the pico-nanoplankton cells (Fig. 3A). There are 
currently no studies showing if and how the demethylation process 
could be influenced by variation of the concentration and composition of 
major cations and anions. 

The results of the present study demonstrated that natural pico- 
nanoplankton could influence Hg speciation through a demethylation, 
thus the role of these microorganisms is not limited to the biouptake/ 
decrease in the ambient Hg concentration (Zhang et al., 2020). The 
accumulation of both Hg species and their subcellular distribution were 
dependent on the pico-nanoplankton community composition in the 
lake water column following the stratification. The subcellular distri-
bution of iHg and MMHg in the cells has important implication for 

mercury trophic transfer and biomagnification in lake ecosystem, since 
(i) the pico-nanoplankton are at the base of the pelagic food web, and (ii) 
the assimilation of a pollutant is dependent on its subcellular distribu-
tion with a higher assimilation efficiency of the metals in the cytosolic 
fraction (Le Faucheur et al., 2014). Heterotrophic bacteria were shown 
to exert a differential role in Hg cycling where phytoplankton co-exist 
(Bravo and Cosio, 2020; Mangal et al., 2019). Further in-depth investi-
gation of the interconnection between heterotrophic and autotrophic 
microorganisms will be necessary to decipher their relative importance 
and role in Hg biogeochemical cycle. 

In the present study we have employed double-double species-spe-
cific isotope dilution analysis to follow the bioaccumulation and po-
tential transformation of iHg and MMHg by natural pico-nanoplankton 
communities. Among several mathematical approaches used to study 
the speciation using enriched isotopes (Björn et al., 2007; Hintelmann 
and Evans, 1997; Lambertsson et al., 2001; Rodríguez-González et al., 
2007), double-double species-specific isotope dilution analysis based on 
IPD brings the possibility to explore multiple biogeochemical processes 
in complex aquatic environments (Bouchet et al., 2018; Rodri-
guez-Gonzalez et al., 2013). This approach has an advantage of simul-
taneous and quantitative determination of newly formed and remaining 
species of exogenous (enriched isotopes) Hg species, but also, the 
quantification of endogenous (natural) iHg and MMHg (Bridou et al., 
2011; Rodriguez-Gonzalez et al., 2013). The potential Hg trans-
formations could be influenced by the medium biogeochemistry, dura-
tion of the incubation experiment, ratio between exogenous iHg and 
MMHg and endogenous Hg species concentrations (Bouchet et al., 2013; 
Bridou et al., 2011; Zhang et al., 2021). In our work, the mathematical 
approach based on the IPD allows correcting possible isotope exchanges 
reactions between endogenous and exogenous Hg species. In addition, 
the ratio between exogenous iHg and MMHg and exogenous and 
endogenous was high (26 for iHg and 17 for MMHg), thus the isotopic 
signature of the exogeneous Hg species is overwhelming the one of 
endogenous species. However, the convergence of the spiked exogenous 
mercury isotopes towards endogenous Hg behaviour is considered as a 
prerequisite for the obtaining unbiased and environmentally relevant 
information (Bouchet et al., 2013; Zhang et al., 2021). Further work 
should be therefore undertaken to compare the reaction rates of Hg 
chemical transformation, but also the chemical flux across biological 
membrane between endogenous and exogenous Hg. 

4. Conclusions 

The present study examined the bioaccumulation and methylation/ 
demethylation of iHg and MMHg by natural pico-nanoplankton sampled 
at 2 depths in an eutrophic lake Soppen. Natural pico-nanoplankton, 
containing cyanobacteria, diatoms, cryptophyta, green algae and het-
erotrophic microorganisms, accumulated both iHg and MMHg. The 
whole cell concentration of 199iHg was comparable in the assemblages 
originating from both sampling depths, however 201MMHg concentra-
tion in the pico-nanoplankton in deeper samples was significantly 
higher. Both Hg species were predominantly accumulated in mem-
brane/organelles and the ratios of membrane/cytosol Hg concentrations 
were comparable. Pico-nanoplankton communities from two depths 
demethylated MMHg in the cytosol and membrane/organelles, however 
the governing mechanisms are to be further explored. Correlation 
matrices built on the base of Pearson correlation coefficients revealed 
that iHg and MMHg uptake, and MMHg demethylation were positively 
correlated with the proportion of diatoms and heterotrophic microor-
ganisms in the pico-nanoplankton, the concentrations of TN, Mg2+, 
NO3

− , NO2
− , NH4

+ and negatively correlated with the concentrations of 
DOC, K+, Na+, Ca2+; SO4

2− . No significant methylation of iHg by pico- 
nanoplankton was found during the 24 h exposure. Overall, this study 
provides a novel and an original information about the role of pico- and 
nanoplankton in Hg biogeochemical cycle, however further study needs 
to be done to understand the interconnection between heterotrophic and 
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autotrophic microorganisms. 
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