
HAL Id: hal-03439212
https://hal.science/hal-03439212

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A column generation based heuristic for the generalized
vehicle routing problem with time windows

Yuan Yuan, Diego Cattaruzza, Maxime Ogier, Frédéric Semet, Daniele Vigo

To cite this version:
Yuan Yuan, Diego Cattaruzza, Maxime Ogier, Frédéric Semet, Daniele Vigo. A column
generation based heuristic for the generalized vehicle routing problem with time windows.
Transportation Research Part E: Logistics and Transportation Review, 2021, 152, pp.102391.
�10.1016/j.tre.2021.102391�. �hal-03439212�

https://hal.science/hal-03439212
https://hal.archives-ouvertes.fr

A column generation based heuristic for the

generalized vehicle routing problem with time windows

Yuan Yuan1, Diego Cattaruzza1, Maxime Ogier1, Frédéric Semet1, Daniele Vigo2

1: Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

yuanyuannpu@163.com

{diego.cattaruzza, maxime.ogier, frederic.semet}@centralelille.fr

2: DEI, University of Bologna, Italy

daniele.vigo@unibo.it

Abstract: The generalized vehicle routing problem with time windows (GVRPTW) is defined

on a directed graph G = (V,A) where the vertex set V is partitioned into clusters. One cluster

contains only the depot, where is located a homogeneous fleet of vehicles, each with a limited

capacity. The other clusters represent customers. A demand is associated with each cluster. Inside

a cluster, the vertices represent the possible locations of the customer. A time window is associated

with each vertex, during which the visit must take place if the vertex is visited. The objective

is to find a set of routes such that the total traveling cost is minimized, exactly one vertex per

cluster is visited, and all the capacity and time constraints are respected. This paper presents a set

covering formulation for the GVRPTW which is used to provide a column generation based heuristic

to solve it. The proposed solving method combines several components including a construction

heuristic, a route optimization procedure, local search operators and the generation of negative

reduced cost routes. Experimental results on benchmark instances show that the proposed algorithm

is efficient and high-quality solutions for instances with up to 120 clusters are obtained within short

computation times.

Keywords: generalized vehicle routing problem; time windows; last mile delivery; delivery

options; trunk/in-car delivery.

1 Introduction

Nowadays, e-commerce is becoming more and more popular and the growing e-commerce poses

a huge challenge for the last mile delivery since ordered items need to be delivered to individual

customers. Currently, there exist several last mile delivery services. The most common one is home

delivery. Customers wait at home to get their packages. Besides, the delivery can be made to pick-

up points such as dedicated lockers or stores (Morganti et al., 2014; Janjevic et al., 2019; Lin et al.,

1

2020). In this case, customers can retrieve their packages after delivery has been accomplished.

This reduces the fragmentation of the deliveries in the last mile, thereby helping to reduce the

congestion and environmental pollution caused by urban freight trips (Morganti et al., 2014). In

recent years, a new concept called trunk/in-car delivery, has been proposed. Here, customers’

packages can be delivered to the trunks of cars. Volvo launched its world-first in-car delivery in

Sweden in 2016 (Kirsten, 2016). Amazon provides the in-car delivery to its prime members in

more than 50 cities in the US (Hawkins, 2019). In-car delivery is different from home delivery and

pick-up points delivery since a car moves and may be in different locations during different periods

of time, e.g., parked at the workplace during the morning and at the commercial center during the

afternoon. As a consequence, synchronization between the car and the courier is required to make

the delivery.

All these delivery services can be combined and proposed to customers, and instead of selecting

one delivery location when purchasing online, a customer can propose a set of delivery locations

(home, pick-up points and car trunk) with the associated time constraints. To deliver a package to

a specific customer, the courier only needs to choose one of the locations provided by the customer.

Customers thus benefit from greater flexibility according to their own convenience. In addition, it

could increase the rate of successful first-time deliveries and decrease delivery costs. In Figure 1, we

give an example of the application. Six customers are represented with their associated locations

grouped into a dotted circle, representing the different clusters. Every location is associated with a

TW during which delivery should occur. In the case of home or in-car delivery, the TW represents

the period during which the customer or the customer’s car is present at that location. In the case

of a pick-up point, the TW represents the period during which the courier can deliver the package

before the customer arrives at the location and picks it up. The problem is to jointly determine the

location visited to serve customer, and for each vehicle, the customers delivered and the sequence

of visits while satisfying TW and capacity restrictions. The feasible solution given in the example

in Figure 1 involves two vehicles, each of them serving three customers.

The underlying routing problem in the above application can be modeled as the Generalized

Vehicle Routing Problem with Time Windows (GVRPTW), where clusters represent possible de-

livery locations associated with a customer. The GVRPTW is defined on a directed graph where

the vertex set is partitioned into clusters. One cluster contains only the depot, where is located

a homogeneous fleet of vehicles, each with a limited capacity. The other clusters represent cus-

tomers. Then, the vertices of a cluster are the possible delivery locations of the customer, each

with a time window during which the visit must take place if the vertex is visited. Each customer

is associated with a demand. The objective is to find a set of routes such that the total traveling

cost is minimized, only one vertex per cluster is visited, and all the capacity and time constraints

are respected.

To the best of our knowledge, the GVRPTW has barely been studied before. When TWs are not

considered, the GVRPTW reduces to the Generalized Vehicle Routing Problem (GVRP)(Ghiani

and Improta, 2000). When only one vehicle is available, the GVRPTW reduces to the Generalized

2

1

2

1

2

4

3

1
2

3

1

2

3

1

2

1

2

3

Depot

Car locations

Locker

Home location

[9,12]

[13,18]

[9,12]

[13,16]

[17,20]

[8,10]

[11,17]

[9,12]

[13,17]
[18,21]

[8,10]

[11,14]

[9,14]

[15,17]

[8,9]

[9,15]

[17,19]

Figure 1: An example of the application: a routing problem in the context of last mile delivery with

multiple delivery options.

Traveling Salesman Problem with Time Windows (GTSPTW) (Yuan et al., 2020). One special

case of the GVRPTW is called the Vehicle Routing Problem with Roaming Delivery Locations

(VRPRDL)(Reyes et al., 2017). In the VRPRDL, the TWs of locations provided by the same

customer do not overlap. Moreover, the time between windows of two roaming locations of one

customer is at least the travel time between them.

In this paper, a set covering model is built for the GVRPTW and an efficient column generation

based heuristic is proposed to solve it. This matheuristic relies on a construction heuristic, a

route optimization procedure, local search operators, and a heuristic procedure to provide negative

reduced cost routes. All the procedures mentioned above take into account the main characteristic

of the GVRPTW: given a customer served on a route, we can choose the location to visit. The

proposed solution method is tested on different sets of instances from the literature and their

variants. Results proved the efficiency of the solution method.

The remainder of this paper is organized as follows. Section 2 presents the related literature. The

formal definition of the problem is described in Section 3. The description of the matheuristic is given

in Section 4, including the set covering model, the construction heuristic, the route optimization, the

local search operators, and the negative reduced cost route generation. Section 5 provides details

about the experiments and reports the computational results. Finally, conclusions are drawn in

Section 6.

2 Related literature

To the best of our knowledge, there is very limited literature on the GVRPTW. However, there

exist works addressing related problems as the Generalized Traveling Salesman Problem (GTSP),

3

Generalized Vehicle Routing Problem (GVRP) and Vehicle Routing Problem with Roaming Deliv-

ery locations (VRPRDL). The GVRP is a special case of the GVRPTW where the TWs are not

considered. The GVRP reduces to the GTSP when there is only one vehicle in the fleet. In the

VRPRDL, TWs of locations within the same cluster have a specific structure.

The GTSP was first introduced by Srivastava et al. (1969) and Saskena (1970), and dynamic pro-

gramming was used to solve it. Several papers proposed to transform the GTSP to the well-studied

TSP, and then solve the latter by applying existing exact or heuristic approaches for the TSP (Noon

and Bean, 1993; Laporte and Semet, 1999). Fischetti et al. (1997) proposed an efficient branch-

and-cut algorithm to solve the symmetric GTSP. They developed exact and heuristic separation

procedures for some classes of facet-defining inequalities. Gutin and Karapetyan (2010) proposed

a memetic algorithm combining genetic and powerful local search algorithms. They reported very

good performance of this algorithm on benchmark instances. Helsgaun (2015) extended the Lin-

Kernighan-Helsgaun TSP heuristic (Helsgaun, 2000) to the GTSP. The proposed algorithm could

find high-quality solutions for large-scale instances. Smith and Imeson (2017) presented a GTSP

solver based on adaptive large neighborhood search. Results showed that this algorithm performed

consistently well across different problem libraries and outperformed other approaches on harder

instances.

For the GTSP with time windows (GTSPTW), Yuan et al. (2020) developed a branch-and-cut

algorithm and proposed several valid inequalities. Instances with up to 30 clusters are solved to

optimality within one hour of computation time.

The GVRP was introduced by Ghiani and Improta (2000). Multiple service locations and a given

demand are associated with each customer. The GVRP consists of determining a set of routes for

a given number of vehicles with limited capacity such that exactly one location of each customer is

visited. The objective is to minimize the total traveling cost. The GVRP has many applications

in urban waste collection (Bautista et al., 2008), ship routing in maritime transportation, and

healthcare logistics (Bektaş et al., 2011). Moreover, Baldacci et al. (2010) showed that several

problems like the TSP with profits, the VRP with selective backhauls, the covering VRP, and the

windy routing problem can be modeled as GVRPs.

Kara and Bektas (2003) proposed a compact integer linear programming formulation for the

GVRP, adapting the well-known Miller-Tucker-Zemlin (MTZ) constraints for the TSP to the GVRP.

Bektaş et al. (2011) proposed four integer linear programming formulations for the GVRP and

developed an efficient branch-and-cut algorithm to solve it to optimality. They also developed an

adaptive large neighborhood search (ALNS) heuristic to compute upper bounds.

Ha et al. (2014) and Afsar et al. (2014) studied a variant of the GVRP where the size of the fleet

is not fixed. Ha et al. (2014) proposed a branch-and-cut algorithm, that provides better results than

the one presented by Bektaş et al. (2011). Afsar et al. (2014) developed a very efficient iterated

local search (ILS) which is able to find near optimal solutions in a few seconds.

Reihaneh and Ghoniem (2018) developed a branch-cut-and-price algorithm for the GVRP. Their

computational study indicated that the proposed algorithm is competitive with respect to the

4

branch-and-cut algorithm proposed by Bektaş et al. (2011). Moreover, it solved eight benchmark

instances to optimality that were previously unsolved.

Zhou et al. (2018) introduced a city logistics problem called the multi-depot two-echelon VRP

with delivery options. In the second level of the distribution network, two delivery options are

considered: customer location and pick-up points. The second level can be formulated as a GVRP.

Moccia et al. (2012) studied the GVRPTW and proposed a tabu search heuristic. However, the

instances used to test the algorithm have a special structure and are such that all the vertices that

form a cluster share the same TW.

The VRPRDL was introduced by Reyes et al. (2017), inspired by the trunk/in-car delivery. The

objective is to find a minimum-cost set of routes for a fleet of capacitated vehicles in which the

order of a customer has to be delivered to the trunk of the customer’s car. Deliveries have to take

place when the car is parked at one of the locations visited on the customer’s travel itinerary. The

VRPRDL is a special case of the GVRPTW in which one cluster contains all possible car locations

for one customer. The TWs of the locations within a cluster have a specific structure since they

are non-overlapping. The authors proposed a dynamic programming procedure to optimize the

delivery costs for a fixed customer sequence. Based on this procedure, they developed construction

and improvement heuristics. The results highlighted the economic benefits for delivery companies

to consider trunk deliveries instead of the traditional home delivery. The core procedure of this

heuristic is based on the dynamic programming, which takes advantage of the special structure of

the non-overlapping TWs in the problem and, as a consequence, results to be very efficient.

Ozbaygin et al. (2017) developed a branch-and-price algorithm for the VRPRDL. This algorithm

was able to solve to optimality instances with up to 60 clusters in few minutes. For most of the large

instances with 120 clusters, the algorithm ended with an optimality gap after 6 hours of computation.

Ozbaygin et al. (2017) also provided another set of instances for a hybrid delivery strategy combining

trunk delivery and home delivery. This instance set also has a specific TW structure. In each cluster

the TW associated with the home location corresponds to the planning horizon and overlaps all other

TWs, while the other TW associated with trunk locations are non-overlapping. The results revealed

that employing this combined strategy led to an average cost savings of nearly 20% compared to

the classical delivery system when only home delivery is available. Note that the special structure

of the TWs of the VRPRDL well fits a branch-and-price resolution scheme. The non-overlapping

TW structure allows to eliminate arcs from the graph in the preprocessing phase as well as limiting

the combinatorial explosion during the pricing phase.

Another type of problems worth mentioning is the close-enough TSP (CETSP) and VRP

(CEVRP). In the CETSP, a set of nodes is given. Each node is associated with a neighborhood that

is usually defined as a disk centered on the node. A node is served if the vehicle passes through its

neighborhood. Note that the CETSP intrinsically is a continuous optimization problem. However,

it is common to propose a discretization of the neighborhood of each node. Thus, only one of

the points resulting from the discretization in the neighborhood of a node needs to be visited to

perform the service (Carrabs et al. (2017, 2020)). It follows that after determining a discretization,

5

the GTSP must be solved in order to obtain a feasible solution for the CETSP.

With regard to the column generation based heuristic/metaheuristic approach, to the best of our

knowledge, there is no related research having been done for the GVRP, VRPRDL or GVRPTW.

However, such algorithms have already been proposed in the literature and proved to provide good

results for various problems, e.g., VRPTW (Prescott-Gagnon et al., 2009; Beheshti and Hejazi,

2015), multi-period VRP (Mourgaya and Vanderbeck, 2007), CVRP with loading constraints (Mah-

vash et al., 2017), heterogeneous fleet VRP (Taillard, 1999; Salhi et al., 2013), dial-a-ride prob-

lem (Parragh and Schmid, 2013), waste collection routing problem (Hauge et al., 2014), etc. For

most of these approaches, heuristics/metaheuristics are integrated within the column generation

and used to solve the subproblems. A route pool is initialized with a feasible solution and columns

of negative reduced cost are generated by means of tabu search (Hauge et al., 2014; Beheshti and

Hejazi, 2015), variable neighborhood search (Parragh and Schmid, 2013), heuristic procedure based

on dynamic programming (Furini et al., 2012), specific designed heuristics (Mahvash et al., 2017;

Salhi et al., 2013), etc. For the method proposed in this work, the difference from the above ap-

proaches is that columns are not only generated by exploiting the dual information, moreover they

are identified starting with routes with a zero reduced cost.

3 Problem description and notation

The generalized vehicle routing problem with time windows (GVRPTW) can be formally defined as

follows. Given a directed graph G = (V,A), the set of vertices V = {0, 1, ..., N} is partitioned into

C0 = {0}, C1, ..., CK clusters, where K = {0, 1, ...,K} denotes the cluster index set. Hence, we have⋃K
k=0 Ck = V and Ck

⋂
Ck′ = ∅, ∀k, k′ ∈ K, k 6= k′. Cluster C0 contains only the depot 0 where a

fleet of M homogeneous vehicles is located. Each vehicle has a capacity Q. Cluster Ck, k ∈ K \ {0},
represents the set of alternative locations in which customer k can be delivered. Moreover, each

customer has a demand Qk ≥ 0, k ∈ K \ {0}. We suppose that the demand at the depot Q0 is 0. A

time window (TW) [Ei, Li] is associated with each vertex i ∈ V with [E0, L0] = [0, T] representing

the overall time horizon. A visit can only be made to a vertex during its TW, and an early arrival

leads to a waiting time while a late arrival causes infeasibility. Without loss of generality, we suppose

that the loading and service times are equal to zero. The arc set contains arcs that link vertices

belonging to different clusters, that is, A = {(i, j)|i ∈ Ck, j ∈ Cl, k 6= l, k, l ∈ K}. A traveling cost

Cij and a traveling time Tij are associated with each arc (i, j) ∈ A.

The GVRPTW consists in finding a set of M vehicle routes on G such that the traveling cost

is minimized and: (i) every route starts and ends at the depot; (ii) exactly one vertex from each

cluster is visited by a single vehicle; (iii) the sum of the customer demands served by the same

vehicle does not exceed Q; (iv) the service at vertex i starts during its TW [Ei, Li], and (v) every

vehicle leaves and returns to the depot during [0, T].

The GVRPTW can be modeled using a set covering formulation. Let Ω denote the set of all

feasible routes, i.e., all the routes respecting the capacity and time constraints. Let Wr be the cost

6

of route r ∈ Ω and let Akr, ∀k ∈ K \ {0}, r ∈ Ω indicate whether cluster k is visited on route r

(Akr = 1) or not (Akr = 0). This formulation makes use of binary variables zr, ∀r ∈ Ω, that indicate

whether route r is selected or not in the solution. The set covering formulation of the GVRPTW is

as follows:

minimize
∑
r∈Ω

Wrzr (1)

s.t.
∑
r∈Ω

Akrzr ≥ 1 ∀k ∈ K \ {0}, (2)∑
r∈Ω

zr ≤M, (3)

zr ∈ N ∀r ∈ Ω. (4)

The objective function (1) minimizes the overall delivery costs. Constraints (2) ensure that each

cluster is visited at least once. Constraints (3) ensure that the number of routes in the solution is

smaller than the size of the fleet. Constraints (4) are the variable definitions.

Note that the definition of the GVRPTW requires that each cluster is visited exactly once,

while Constraints (2) require that each cluster is visited at least once. On the one hand, if the cost

structure satisfies the triangle inequality, it is never optimal to visit a cluster twice, i.e., all optimal

solutions are such that zr ≤ 1, ∀r ∈ Ω. On the other hand, in the LP relaxation of the set covering

model, the dual variables associated with Constraints (2) are non-negative, which typically leads to

a faster convergence of the column generation procedure.

4 A column generation based heuristic for the GVRPTW

In this section we present the matheuristic to tackle the GVRPTW which is based on the set covering

formulation presented in Section 3. This formulation relies on an exponential number of variables

that represent all the feasible routes Ω, however, generating all feasible routes is not tractable.

Therefore, we maintain a subset Ω1 of Ω that is iteratively populated along the algorithm, referred

as the route pool. A restricted version of the set covering model is solved considering the route

pool only. All the routes inserted into the pool are optimized by applying a procedure described

in Section 4.1. Given a set of clusters to be visited, the route optimization procedure seeks for the

best sequence of clusters, and the best location to visit in each cluster, to minimize the cost of the

route. The management of the route pool is detailed in Section 4.7.

The algorithm has two phases. Phase 1 aims: 1) to construct feasible solutions, and 2) to

initialize the pool with promising routes. Phase 1 relies on a construction heuristic (Section 4.3)

that embeds the route optimization procedure. If the construction heuristic finds a feasible solution,

the set covering model is solved in the hope of finding a good combination of the routes generated

so far and improving the current best solution. The solution obtained after solving the set covering

model is improved by applying local search moves (see Section 4.5). The above procedure is repeated

until the stopping criterion of Phase 1 is reached.

7

Phase 2 exploits dual information of the linear programming (LP) relaxation of the set covering

model to generate additional routes. In particular, the LP relaxation is solved on the current route

pool. Based on the dual variables, negative reduced cost routes are generated and added to the

pool. Then, the set covering model is solved and the local search method is applied, as in Phase

1, to improve the current best solution. This procedure is repeated until the stopping criterion of

Phase 2 is reached.

In the following, we introduce the main components of the proposed heuristic, i.e., the route

optimization procedure in Section 4.1, the construction heuristic in Section 4.3, the local search

procedure in Section 4.5, and the negative reduced cost route generation in Section 4.6.

4.1 The route optimization procedure

In the following, we explain how the route optimization procedure works to optimize a route visiting

a set of clusters. This procedure is adapted from the method proposed in Yuan et al. (2020) to

obtain an initial solution for the branch-and-cut algorithm that is proposed for the GTSPTW.

This procedure can also be viewed as an extension, by taking into account time windows, of the

refinement procedure RP2 proposed in Fischetti et al. (1997) for the GTSP.

The route optimization procedure works as follows. Let K̃ ⊂ K \ {0} be the set of n = |K̃|
different clusters to be visited. We are seeking for a feasible route with a minimum cost that

visits all these n clusters. A procedure to generate sequences of clusters is repeated Nseq times.

Starting from an empty sequence, the sequence of clusters is iteratively generated based on the

best insertion concept. Given a sequence (h1, · · · , hp) of p (p ≤ n) different clusters of K̃ to visit, a

labeling algorithm is applied to determine the optimal locations to be visited for each cluster of the

sequence (h1, · · · , hp). Note that Reyes et al. (2017) proposed an efficient dynamic programming

to optimize the route visiting a fixed sequence of clusters with non-overlapping TWs. Since in the

GVRPTW, the TWs overlap, the following labeling algorithm is developed.

Given a sequence (h1, · · · , hp) of p different clusters of K̃ to visit, a layered network (LN) is

constructed as depicted in Figure 2. This network has p+2 layers corresponding to clusters Ch0 = C0,

Ch1 , . . . , Chp , Chp+1 = C0, with their respective vertices. Clusters Ch0 and Chp+1 both represent the

depot. The LN contains all arcs (i, j) such that Ei + Tij ≤ Lj , i ∈ Chf , j ∈ Chf+1
, f = 0, · · · , p.

The objective is to find a path in the LN that starts at Ch0 and arrives at Chp+1 visiting exactly

one vertex in each layer, i.e., one vertex from each cluster. If a vertex is visited, the visit must take

place during its TW. The solution can be obtained by determining the shortest path with TWs

from Ch0 to Chp+1 .

To compute the shortest path with TWs on the LN, a labeling algorithm is applied. A label Li

associated with a vertex i consists of a pair (ci, ti) representing respectively the cost and service time

of a feasible partial path that starts at Ch0 and arrives at vertex i. Let L(i) be the set containing all

the labels associated with vertex i. Suppose that Ccur is the current cluster and Cpre is the previous

one. First, we calculate the label set L(i), for all i ∈ Ccur by extending labels in L(j), for all j ∈ Cpre.

Extending a label Lj ∈ L(j) towards a vertex i ∈ Ccur consists in creating another label Li ∈ L(i)

8

.

Ch0

Ch1 Chp

Chp+1

C0 C0

Figure 2: The layered network.

such that:

ci = cj + Cij , (5)

ti = max{Ei, tj + Tji}. (6)

If ti > Li, the partial path associated with the label is infeasible and this label is then discarded.

In order to make the algorithm efficient, we only keep non-dominated labels. We say that a label

L1
i dominates a label L2

i if and only if c1
i ≤ c2

i and t1i ≤ t2i . It is easy to see that extending L1
i

across the same arcs toward the last vertex of the LN would always produce a better solution than

extending L2
i in the same way.

Hence, given a fixed visiting sequence of clusters (h1, . . . , hp) of cluster set K̃, by applying the

labeling algorithm, we can get its corresponding optimal solution. Then, in order to generate good

visiting sequences of clusters, we develop a cluster sequence construction procedure based on the

best insertion concept. The initial sequence is empty, hence the corresponding LN contains two

layers: Ch0 = Ch1 = C0. Then, at each step, we randomly pick a cluster from K̃ that is not yet

inserted into the sequence. Suppose the current sequence is (h1, · · · , hp), p < n, and cluster Chi is

chosen to be inserted next. It is obvious that there are p+ 1 possible insertion positions for index

hi into the sequence. To determine the best insertion position, the labeling algorithm described

above is applied p + 1 times, one for each possible insertion. The sequence that is kept is the one

that provides the lowest cost, if such sequence exists. If not, the sequence construction procedure

is stopped. The cluster insertion procedure is repeated until p = n to obtain a feasible solution

visiting all the clusters in K̃. In this process, the labeling algorithm is applied at most n(n + 1)/2

times.

The sequence construction procedure is repeated Nseq times and the best solution is recorded.

Note that we always keep the current best solution during the process. During the labeling algo-

rithm, if a label Li has a cost greater than the cost of the current best solution, then label Li is

discarded. Moreover, note that if we provide an initial feasible sequence of clusters to the route

optimization procedure, the current best solution is then initialized with this sequence.

Preliminary experiments lead us to set parameter Nseq = 30. Note that our algorithm, in the

worst case, calls n(n + 1)Nseq/2 times the labeling algorithm. When n = |K̃| = 5, the number of

all possible cluster sequences is 120, which is less than 6(6 + 1)30/2 = 630. It is then more efficient

to enumerate all the sequences and to compute the shortest path with TWs on each of them. In

9

this case, the route optimization procedure provides an optimal route that visits the clusters in

K̃. When |K̃| = 6, the number of all possible sequences is 720, which is just a little greater than

6(6 + 1)30/2 = 630. Therefore, when |K̃| < 7, we choose to proceed with complete enumeration,

otherwise we apply the algorithm described above.

4.2 Speed-up the route optimization procedure

Since the route optimization procedure need to be called many times through the heuristic, we

use dedicated data structure to speed-up computation. In particular, in order to avoid to repeat

computations we maintain two pools of cluster sets:

• CSopt that contains all the cluster sets on which the route optimization procedure has already

found a feasible route;

• CSinfea that contains all the cluster sets on which the route optimization procedure has failed

to find a feasible solution.

Note that for every route r in the route pool Ω1, the corresponding cluster set Kr is in CSopt.
During the construction heuristic (see Section 4.3), every time before calling the route optimiza-

tion procedure for a cluster set Kr, we first detect if the computation has been already performed

in the previous iterations. Thus, we check if: 1) Kr is in CSopt, 2) Kr is in CSinfea, 3) one of the

cluster set in CSinfea is the subset of Kr. If condition 1) is true, the best route visiting the clusters

in Kr is already in Ω1, and we can retrieve the corresponding route. If condition 2) or 3) is true,

we know that the route optimization procedure did not find a feasible route that can visit this

cluster set. If none of the three conditions is true, then we apply the route optimization procedure

to determine the best route visiting the cluster set Kr. Note that in order to be efficient, we use

hashing techniques for this implementation.

For the calls to the route optimization procedure outside the construction heuristic, we just

detect if the cluster set is already in CSopt. If yes, we just get the corresponding route; otherwise,

the route optimization procedure is called.

4.3 The construction heuristic

The construction heuristic we developed falls into the category of the parallel insertion heuristics.

The number of available vehicles at the depot is denoted as M . The proposed heuristic iteratively

constructs a set of at most M feasible routes that serve all the customers. Let us denote by

R = {r1, r2, ..., rM} the potentially partial routes that we are iteratively constructing. Let Kr
be the index set of customers/clusters served by each route r ∈ R. Hence, at any step of the

construction heuristic, we have
⋃
r∈RKr ⊆ K, and Kr ∩Kr′ = ∅, for all r, r′ ∈ R. At the end of the

algorithm, if
⋃
r∈RKr = K, we found a feasible solution for the GVRPTW.

First, we choose at most M customers relatively difficult to serve. These customers are called

pivot customers and can be identified with different criteria. Three criteria to select pivot customers

10

are described in Appendix A. For each pivot customer k, the route optimization procedure (Sec-

tion 4.1) is called to determine the best route r that visits only customer k. This route r is added

to the set of partial routes R. If necessary, empty routes are added to R so that R contains M

partial routes.

Then, an unrouted customers (which is not yet assigned to a route) is selected, as explained

hereafter, to be inserted next. For each unrouted customer k ∈ K \ (
⋃
r∈RKr), we try to insert it

into all the partial routes of R. The insertion cost of customer k into a route r is evaluated using

the route optimization procedure. This means that the route may deeply change when inserting a

customer. Then we have a precise evaluation of the new cost of the route. The advantage of using

the route optimization procedure is detailed in Section 4.3.1. The choice of the unrouted customer

to insert is performed with a regret strategy. For an unrouted customer k, the regret is defined as

the difference between the best and the second best insertion. Note that if for a customer, there

exists only one feasible insertion in all the partial routes of R, its regret equals to infinity. Then,

the unrouted customer k∗ with the maximum regret is chosen to be inserted in the route r ∈ R
with the minimum insertion cost.

The procedure is repeated until all customers are inserted or insertions are not possible anymore

due to time and/or vehicle capacity constraints.

4.3.1 Interest in using the route optimization procedure

In the construction heuristic, each time we need to compute the insertion cost of a customer in

a route, we apply the route optimization procedure described in Section 4.1. In the following, we

illustrate the advantage of using this optimization procedure instead of a classical best insertion in

the context of the GVRPTW.

An example is provided in Figure 3. Let us suppose that during the construction heuristic there

is a partial route r = (0, 2, 4, 7, 0) depicted in Figure 3(a), visiting a set of clusters Kr = {1, 2, 3}.
When trying to insert an unrouted cluster C4, the route optimization method can obtain a best

route visiting all the clusters in the new set Kr′ = Kr ∪ {4} = {1, 2, 3, 4} as r′ = (0, 4, 1, 9, 6, 0),

depicted in Figure 3(b). By comparing Figure 3(a) and Figure 3(b), we can see that the visiting

sequence of clusters changes from (1, 2, 3) to (2, 1, 4, 3), meanwhile the vertex of each cluster visited

in the route r′ may be different from the vertices visited in the previous route r, e.g., the vertices

visited in clusters C1, C3 change from vertices 2, 7 (in green) to 1, 6 (in red) respectively.

11

C1 C2 C3

0 0
1

2

3

4

5

6

7

8

(a)

C2 C1 C4

0 0

C3

4

5

1

2

3

6

7

8

9
10

11
12

(b)

Figure 3: Example of route optimization during the construction heuristic.

In general, in the process of the construction heuristic, when trying to insert an unrouted cluster

Ck into an incumbent route r, the route optimization is used to identify the new best route r′ visiting

clusters in Kr ∪ {k}. Then, the cost change when inserting Ck into r is 4C = Wr′ −Wr, where Wr′

and Wr are the costs of route r′ and r respectively.

4.4 Recovering infeasibility

When the set covering model is solved on the set of routes Ω1, the solution obtained may visit some

clusters more than once. This may occur since if a route r visiting a set of clusters Kr is added to

the route pool Ω1, there is no guarantee that all the routes visiting subsets of Kr are also in Ω1.

However, a solution where a cluster is visited more than once is not a feasible solution according to

the definition of the GVRPTW.

When this occurs, we eliminate the repeated visits of clusters. Let us note ΩSC the set of routes

in the solution of the set covering model solved with the route set Ω1. Let K′ be the set of clusters

served in more than one route in set ΩSC . Let us note ΩSP a set of routes generated from the

routes in ΩSC as follows. First, ΩSP is initialized with all the routes in ΩSC . For each route r in

ΩSC , let Kr be the set of clusters visited in r, and K̃r = Kr ∩ K′ the set containing the repeated

clusters. Then, for each subset of clusters S ⊆ K̃r, we consider the cluster set Kr \ S. The route

optimization procedure is applied to this cluster set Kr \S, and the resulting route is stored in ΩSP .

Note that, by only keeping vertices in r belonging to clusters in Kr \ S, we may obtain a feasible

route r̃ visiting cluster set Kr \ S. This route r̃ can be used as an initial solution for the route

optimization procedure.

To obtain a feasible solution for the GVRPTW, we solve the set covering model where we

replace Constraints (2) by
∑

r∈ΩAkrzr = 1, ∀k ∈ K \ {0}. This makes the set covering model a set

partitioning model. The new model is then solved on ΩSP . By construction of ΩSP , we have the

12

guarantee to obtain a feasible solution for the GVRPTW.

4.5 Local search

A local search method is applied to improve the current best solution obtained after solving the

set partitioning model and recovering infeasibility if necessary (Section 4.4). The GVRPTW differs

from classical vehicle routing problems since one customer has multiple locations that can be chosen

to be visited. In order to improve the flexibility of the local search moves for the GVRPTW, we

adopt the so-called enhanced insertion and deletion concept proposed by Reyes et al. (2017), and

extend it to the swap move.

Figure 4 gives an example of the enhanced insertion. A part of an original route is depicted in

Figure 4(a). The vertices visited on the route are colored in green. When we try to insert a new

cluster Cu between two consecutive clusters Chk and Chk+1
, a new route can be obtained using the

enhanced insertion, as depicted in Figure 4(b). The dotted line in Figure 4(b) indicates the new

route if the classical insertion is used. By comparison, we can see that the enhanced insertion allows

to change the visited vertices in the predecessor cluster Chk and in the successor cluster Chk+1
(from

green vertices to red vertices).

Chk Chk+1

ik ik+1

ik−1 ik+2

(a)

Chk Cu Chk+1

ik−1

ik

i′k iu

ik+1

i′k+1 ik+2

(b)

Figure 4: An example of enhanced insertion.

The enhanced moves are based on the concept of effective time window. Assume that we

have a feasible fixed sequence of clusters (h1, · · · , hp) and a corresponding incumbent feasible route

r = (i0, i1, · · · , ip, ip+1), where i0 = 0, ik ∈ Chk , ∀k ∈ {1, · · · , p}, and ip+1 = 0 is a duplication

of the depot. For each ik in r, we compute its effective TW, [ξrik , ζ
r
ik

], specifying the earliest and

latest times that the vertex ik can be visited on this route. Given a route r, these effective TWs

are computed using the following recursion rules:

ξri0 = Ei0 , ξ
r
ik

= max{Eik , ξ
r
ik−1

+ Tik−1ik} ∀k ∈ {1, · · · , p+ 1}, (7)

ζrip+1
= Lip+1 , ζ

r
ik

= min{Lik , ζ
r
ik+1
− Tikik+1

} ∀k ∈ {0, · · · , p}. (8)

13

In addition, for each cluster we also keep similar TWs for every vertex i ∈ Chk \ {ik}:

ξri = max{Ei, ξrik−1
+ Tik−1i}, (9)

ζri = min{Li, ζrik+1
− Tiik+1

}. (10)

Assuming ξri ≤ ζri , this TW represents the earliest and latest times to visit Chk if the visit happens

at the alternate vertex i instead of ik, with the other vertices of the route unchanged.

With these effective TWs available, we can check whether a new customer u can be inserted on

route r at location iu ∈ Cu between customers hk and hk+1 while simultaneously switching customer

hk to delivery location i ∈ Chk and customer hk+1 to delivery location j ∈ Chk+1
if

max{Eiu , ξri + Tiiu} ≤ min{Liu , ζrj − Tiuj}. (11)

Accordingly, the cost increase of the enhanced insertion 4C(hk, iu, hk+1) are computed as follows.

Given the incumbent route r = (0, i1, · · · , ik, ik+1, · · · , ip, 0), suppose i′k ∈ Chk \ {ik}, i′k+1 ∈ Chk+1
\

{ik+1}. The reader can refer to Figure 4 for an easier understanding of the computation. When a

feasible insertion is obtained without changing the predecessor or successor,

4C(hk, iu, hk+1) = Cikiu + Ciuik+1
− Cikik+1

. (12)

When a feasible insertion is obtained by only changing the predecessor ik to i′k,

4C(hk, iu, hk+1) = Cik−1i
′
k

+ Ci′kiu + Ciuik+1
− Cik−1ik − Cikik+1

. (13)

When a feasible insertion is obtained by only changing the successor ik+1 to i′k+1,

4C(hk, iu, hk+1) = Cikiu + Ciui′k+1
+ Ci′k+1ik+2

− Cikik+1
− Cik+1ik+2

. (14)

When a feasible insertion is obtained by changing both the predecessor ik to i′k and the successor

ik+1 to i′k+1,

4C(hk, iu, hk+1) = Cik−1i
′
k

+ Ci′kiu + Ciui′k+1
+ Ci′k+1ik+2

− Cik−1ik − Cikik+1
− Cik+1ik+2

. (15)

The enhanced deletion is illustrated in Figure 5. It consists in removing a cluster from the

current route allowing to change the vertices visited in the predecessor and successor clusters. The

cost variation is computed as previously.

14

Chk−1
Chk Chk+1

(a)

Chk−1
Chk+1

(b)

Figure 5: An example of enhanced deletion.

An enhanced relocation is obtained by combining the enhanced insertion and deletion. Moreover,

when the relocations of 1) cluster Cu in the current position of cluster Cv and 2) cluster Cv in the

current position of cluster Cu are simultaneously considered, the enhanced swap move is obtained.

In our local search we consider two types of moves: inter-route relocations and swaps. They

are sequentially applied to the current best solution. The neighborhoods are fully explored and the

best improvement strategy is applied.

Let us indicate by r1 and r2 the routes involved in the move, and r′1 and r′2 the routes obtained

once the move has been applied. Moreover, let us indicate by Kr1 , Kr2 , Kr′1 , Kr′2 the cluster sets

associated with routes r1, r2, r′1 and r′2 respectively.

Before computing the cost increase due to the implementation of a move, we first check if Kr′1
or Kr′2 are present in CSopt. If so, we already know the best route that can be obtained from the

corresponding cluster set. Then, we just consider the cost of this best route. If the cluster sets

Kr′1 or Kr′2 are not present in CSopt, the enhanced local search move is conducted, and the cost

increase is calculated accordingly. If the total cost increase is negative (the move improves the

current solution), then each new route, r′1 and r′2, is improved by applying the route optimization

procedure if the corresponding cluster set was not present in CSopt.

4.6 Negative reduced cost route generation

Let us first introduce some definitions and notations that will be used in this section. The linear

relaxation of the set covering model defined by (1)∼(4) is called the master problem (MP). As the

size of the set Ω grows exponentially with the number of customers K, the set covering model is

usually solved on a subset Ω1 of Ω and the linear relaxation of the resulting model is called the

restricted master problem and denoted as RMP (Ω1).

Let λk be the nonnegative dual variable associated with the visit of cluster Ck (Constraints (2)),

and let λ0 be the nonpositive dual variable associated with the fleet size constraint (Constraint (3)).

15

The dual program D(Ω) of MP is as follows:

maximize
∑

k∈K\{0}

λk +Mλ0 (16)

s.t.
∑

k∈K\{0}

Akrλk + λ0 ≤Wr ∀r ∈ Ω, (17)

λk ≥ 0 ∀k ∈ K \ {0}, (18)

λ0 ≤ 0. (19)

The reduced cost of a route r ∈ Ω as a value

Wr −
∑

k∈K\{0}

Akrλk − λ0. (20)

A route associated with a negative reduced cost may reduce the value of the objective function

of the RMP (Ω1). It is then potentially beneficial to introduce such a route in Ω1. To generate

routes with negative reduced costs, we proceed as follows.

Step 1. For all routes in the route pool Ω1, we compute their corresponding reduced costs. The

routes with reduced costs equal to 0 are collected in a set Ωrc0
1 .

Step 2. We apply the deletion, insertion and relocation moves on every route in Ωrc0
1 . These

moves are based on the enhanced insertion and deletion presented in Section 4.5. The routes

obtained by applying a move that decreases the reduced cost are stored in a set Γneg. Let us

consider a route r ∈ Ωrc0
1 and its corresponding cluster set Kr.

• Deletion. For each cluster k visited in r, we check if the cluster set Kr \ {k} is in CSopt. If

not, we apply the enhanced deletion of cluster k from Kr. If we obtain a new route r′, which

decreases the reduced cost of r, we add r′ to set Γneg.

• Insertion. For each cluster k not visited by route r, that is, k ∈ K \ {Kr ∪ {0}}, we first

check if Kr ∪ {k} is in CSopt. If not, we apply the enhanced insertion of cluster k into all the

possible positions in r. If a new route r′ decreases the reduced cost of r, we put r′ in Γneg,

and we stop trying to insert cluster k in the remaining positions of route r.

• Relocation. For each cluster k that is not visited by route r, i.e., k ∈ K \ {Kr ∪ {0}}, and

for each cluster k′ visited by route r, i.e., k′ ∈ Kr we first check if Kr ∪ {k} \ {k′} is in CSopt.
If not, we apply the enhanced relocation of cluster Ck′ in the current position of cluster Ck. If

a new route r′ decreases the reduced cost of r, we add r′ to Γneg.

Step 3. First, we rank all the routes in set Γneg in ascendant order with respect to their

reduced costs. Moreover, all routes in Γneg are optimized using the route optimization procedure

with the original routes as initial solutions. All these optimized routes are added to Ω1. Then,

in order to generate other routes with lower reduced costs, we update Ωrc0
1 and repeat the above

procedure. Ωrc0
1 is firstly emptied and then filled up with the first N best

neg routes in Γneg. Γneg is

emptied afterwards.

Step 4. We repeat Step 2 and Step 3 for IterRC iterations.

16

4.7 Management of the route pool Ω1

The route pool Ω1 is a subset of the whole route set Ω. It is populated in the course of the

procedure. More specifically, each time the route optimization procedure (explained in Section 4.1)

finds a feasible route, it is inserted in Ω1. This means that, in the construction heuristic, routes

obtained during the evaluation of potential cluster insertions are added to Ω1 (after a call to the

route optimization procedure), even if the insertion is not implemented. Similarly, in the local search

method and in the generation of negative reduced cost routes, whenever a move has a negative cost

increase, the new routes are added in Ω1 (after a call to the route optimization procedure), even if

the move is not implemented on the current solution.

4.8 Overall procedure

Here, we explain the overall procedure of the algorithm and provide some details about the stopping

criteria for each phase. In Phase 1, we use the construction heuristic (Section 4.3) to build a feasible

solution. If a feasible solution is obtained, based on the route pool Ω1 built so far, we solve the set

covering model to improve the current best solution. A time limit of 30 seconds is set to solve the

set covering problem. If the solution visits some clusters more than once, we eliminate the repeated

visits to the same cluster (Section 4.4). Then, we apply local search moves (Section 4.5) to improve

the current best solution. If the stopping criteria are not reached, the above procedure is repeated.

The stopping criterion of Phase 1 depends on two parameters Iter1 and nbFeaS. Phase 1 stops

after Iter1 iterations, or when nbFeaS feasible solutions have been obtained from the construction

heuristic.

In Phase 2, the LP relaxation of the set covering model based on the route pool Ω1 (the restricted

master problem RMP (Ω1)) is solved. Based on the dual information, routes with negative reduced

cost are generated (Section 4.6). Then, the set covering model and the local search moves are applied

as described in Phase 1 trying to improve the current best solution. If the stopping criterion of

Phase 2 is not reached, the above procedure is repeated. Phase 2 stops after Iter2 iterations, or if

the current best solution has not changed in the last nbNonImprS iterations, or if no route with

negative reduced cost has been found.

17

Set Covering + Local search

Construction heuristic

Data

Negative reduced cost

route generation

Stop criterion 2

Best solution

Phase 1

Phase 2

Solve RMP()

Stop criterion 1

A feasible solution?

Set Covering + Local search

Yes

Yes

Yes

No

No

No

Ω1

Figure 6: Algorithm scheme

5 Computational experiments

In this section, we report the results we obtained with the column generation based heuristic pre-

sented in Section 4. The algorithm is implemented in C++ and CPLEX 12.6.3 is used to solve

linear programs through Concert Technology. All experiments are performed on a machine with

Intel(R) Core(TM) i5-6200U CPU, 2.30GHz, 8G RAM.

5.1 Instances

In our computational experiments, we consider different types of instances for different purposes.

• Three sets of instances used by Ozbaygin et al. (2017), with 100 instances in total. The first

set includes 40 VRPRDL instances. For these instances, the number of customers ranges

from 15 to 120 and the number of vertices from 50 to 471. Note that due to the presence of

TW some vertices cannot be reached. Thus, the number of vertices in the instances can be

reduced, ranging from 28 to 293. Each customer has at most 5 delivery locations, with the first

and last being home location. The TWs associated with these locations are non-overlapping,

and the time between windows of two roaming locations of one customer is at least the travel

time between them. The second set of instances consists of 40 VRPHRDL (VRP with home

and roaming delivery locations) instances. Each VRPHRDL instance is generated from a

18

VRPRDL instance by keeping one home location for each customer and replacing its TW

with the overall time horizon [0, T]. The third set of instances contains two groups of 10

medium-size VRPRDL instances with 40 customers. The number of vertices ranges from 142

to 174, and it can be reduced due to the presence of TW ranging from 90 to 117.

• To better account the influence of the pick-up points (e.g., lockers, stores), we modify the

VRPRDL and VRPHRDL instances as follows. In a VRPRDL/VRPHRDL instance, when a

cluster contains more than one location, we randomly choose one of its roaming locations and

treat it as a pick-up point. Let us suppose that the TW of this location is [E,L], then in the

modified instance it is enlarged to [0, L] due to the nature of the pick-up point.

• We recall that the VRPRDL is characterized by non-overlapping TWs for the locations in the

same cluster. Moreover, the time between windows of two locations in the same cluster is at

least equal to the travel time between them. In order to analyze the impact of the TWs on the

solution cost, we modify the VRPRDL instances as follows. Note that the locations in each

cluster are ordered with respect to the increasing values of the opening time of their TWs.

Following this order, the TW of the first location in each cluster is not modified. The TWs of

the other locations are changed from [E,L] to [max{0, E − δ}, L]. Since the planning horizon

in the VRPRDL instances is 720 minutes, we set δ = 30, 60, 90, 120, 150, 180, 240, 300, 360.

For each VRPRDL instance, we create one instance for each value of δ, thus 9 new instances

are obtained from one VRPRDL instance. We refer to these new instances as VRPRDL(δ) in-

stances. Table 1 shows the percentage ranges of overlapping TWs in the 10 large VRPRDL(δ)

instances with 120 customers according to different values of δ. For example, as shown in the

table, when δ = 90, between 40% and 50% of the TWs are overlapping.

By making this TW change, we add more flexibility on the delivery planning. From a problem-

oriented perspective, a high value of δ means that the customer is flexible about when and

where to pick up the package. A low value of δ increases the likelihood that the customer is

actually available at a given location at that time.

Table 1: Percentage ranges of overlapping TWs in 10 large VRPRDL(δ) instances.

δ Overlapping TWs/%

0 0

30 10-20

60 20-40

90 40-50

120 50-70

150 70-80

180 80-90

240 90-100

300 90-100

360 100

19

• To test the influence of the route length on the solution, i.e., the number of customers that

a vehicle can deliver, on the performance of the proposed algorithm, we create instances

VRPRDL-variant and VRPHRDL-variant. For an instance of VRPRDL, we first reduce the

size of the fleet, the demand of every customer, and the traveling time between every two

locations by 2, respectively. Whenever the value is not integer, we round it to the smallest

integer. Then we modify the TWs of the locations for each customer. The TW of the first

location does not change, as well as the upper bounds of the TWs of all the other locations. The

lower bound of a location is set to the upper bound of the previous location in the customer’s

itinerary plus the traveling time to it. The VRPHRDL-variant is generated similarly to the

VRPRDL-variant. For these two sets of instances, the number of vertices ranges from 50 to

471, and it can be reduced due to the presence of TWs ranging from 39 to 392.

• Besides the above instances, in order to test the genericity and flexibility of the algorithm, we

perform computational experiments on GVRPTW instances proposed by Moccia et al. (2012)

(see Section 5.5) and on benchmark GVRP instances proposed by Bektaş et al. (2011) (see

Section 5.6).

5.2 Parameters

From the description of the algorithm in Section 4, there are six parameters to set.

For the stop criterion of Phase 1, there are: Iter1 the maximal number of iterations, and nbFeaS

the minimal number of feasible solutions to obtain from the construction heuristic. In Phase 1, we

set nbFeaS = 10 since this usually provides a sufficient large pool of routes of good quality. The

resolution of the set covering model may then provide good solutions. On the other hand we set

Iter1 = 100 to avoid consuming too much time when the construction heuristic struggles to find

nbFeaS feasible solutions.

For the stop criterion of Phase 2, there are: Iter2 the maximal number of iterations, and

nbNonImprS the maximal number of consecutively non-improved solutions. Preliminary experi-

ments showed that Phase 1 of the algorithm could already give good quality solutions. Phase 2

exploits the dual information to try to further improve solutions. To this end we set Iter2 = 10.

Preliminary tests showed that this is a good compromise between solution improvement and com-

putational efficiency. We set nbNonImprS = 5 to avoid to repeatedly try to improve a solution

that is not likely to be ameliorated. In the negative reduced cost routes generation, there are:

N best
neg the number of negative reduced cost routes used to iterate the procedure, and IterRC the

number of iterations of the procedure. In this phase we look for negative reduced cost routes by

applying simple local search operators to routes that are already associated with negative reduced

cost. Preliminary tests showed that after few iterations it becomes difficult to find new routes with

negative reduced cost and it is then beneficial to start Phase 2 again. Thus, we limit N best
neg = 50

and IterRC = 3 to iterate the procedure.

In conclusion, we conducted the experiments using Iter1 = 100, nbFeaS = 10, Iter2 = 10,

20

nbNonImprS = 5, N best
neg = 50, IterRC = 3. Note that we use this parameter setting for all types

of instances tested below.

5.3 Preprocessing

The TW width can be reduced by taking into account the earliest and the latest arrival and departure

times at each vertex of the graph from or to another vertex. In particular, we consider the following

conditions proposed by Desrochers et al. (1992):

• earliest arrival time from predecessors: Ei = max{Ei,min{Li,min(j,i)∈A(Ej + Tji)}};

• earliest departure time to successors: Ei = max{Ei,min{Li,min(i,j)∈A(Ej − Tij)}};

• latest arrival time from predecessors: Li = min{Li,max{Ei,max(j,i)∈A(Li + Tji)}};

• latest departure time to successors: Li = min{Li,max{Ei,max(i,j)∈A(Lj − Tij)}}.

These conditions are applied iteratively to all vertices until no TW can be reduced.

Moreover, we eliminate from graph G vertices and arcs that cannot be part of any feasible

solution. To this end, we:

• eliminate a vertex i ∈ V if a round trip from the depot to the vertex, i.e., route 0− i− 0 leads

to a time window violation: E0 + T0i > Li, or max {E0 + T0i, Ei}+ Ti0 > L0;

• eliminate an arc (i, j) ∈ A if it is not possible to go from i to j: Ei + Tij > Lj , or if the

route that starts from the depot, visits location i, then location j then goes back to the

depot (i.e., route 0 − i − j − 0) violates at least one TW: max {E0 + T0i, Ei} + Tij > Lj , or

max {max {E0 + T0i, Ei}+ Tij , Ej}+ Tj0 > L0.

5.4 Computational results on VRPRDL, VRPHRDL instances (Ozbaygin et al.

(2017)) and on the modified instances

The results on VRPRDL and VRPHRDL instances are reported in Tables 2 and 3 respectively. We

compare the results of the branch-and-price (BP) algorithm presented in Ozbaygin et al. (2017)

and the column generation based heuristic (CGBH) proposed in this paper. Instances with 15 to

20 customers are called small instances, instances with 30 to 60 customers are called medium-size

instances, while instances with 120 customers are large instances.

In Tables 2 and 3, column Instance represents the name of the instance, column K is the

number of customers, and column M is the number of available vehicles at the depot. The next two

columns labeled BP present the results obtained by the branch-and-price algorithm of Ozbaygin

et al. (2017). Column best-known is the value of the best solution obtained from different parameter

settings of the BP. Column time/s is the computation time in seconds to obtain the best solution.

Note that it does not include the time for the heuristic of Reyes et al. (2017) to find an initial

solution. The time limit has been set to 2 hours for small and medium-size instances and 6 hours

21

Table 2: Results on VRPRDL instances.

Instance K M

BP CGBH

best-known time/s Obj time/s GAP/% nbRoute minL maxL averL

0

15

5 901 0.26 901 0.18 0 4 2 6 3.8

1 6 1286 0.04 1286 0.13 0 5 2 4 3.0

2 5 991 0.07 991 0.16 0 4 3 4 3.8

3 6 1062 0.04 1062 0.11 0 5 1 4 3.0

4 7 1832 0.02 1832 0.14 0 6 1 6 2.5

5

20

6 1294 1.08 1294 0.42 0 5 2 6 4.0

6 5 1155 2.87 1155 1.04 0 4 3 9 5.0

7 7 1455 0.07 1455 0.20 0 6 2 5 3.3

8 6 1260 0.52 1260 0.32 0 5 1 7 4.0

9 8 1684 0.03 1684 0.18 0 7 1 5 2.9

10

30

8 1922 1.13 1922 1.03 0 7 3 7 4.3

11 9 2324 14.61 2324 0.86 0 8 2 6 3.8

12 8 1747 0.68 1747 0.95 0 6 2 10 5.0

13 7 1273 0.64 1273 1.28 0 6 2 6 5.0

14 7 1694 0.50 1694 0.78 0 6 3 7 5.0

15 8 1938 0.75 1938 0.69 0 7 1 7 4.3

16 9 1965 0.73 1965 1.86 0 8 1 11 3.8

17 8 1827 0.23 1827 0.43 0 7 2 6 4.3

18 9 2083 11.13 2083 0.83 0 7 2 7 4.3

19 8 1822 1.53 1822 1.09 0 6 1 8 5.0

20

60

14 3761 4.13 3761 3.87 0 13 2 7 4.6

21 11 2828 10.74 2828 5.82 0 10 3 8 6.0

22 17 4440 1.10 4440 1.78 0 16 2 5 3.8

23 13 3378 11.62 3378 4.81 0 11 2 8 5.5

24 13 3161 643.79 3161 7.46 0 11 2 9 5.5

25 17 4536 1.87 4536 3.03 0 16 1 8 3.8

26 11 2865 7.08 2865 6.05 0 10 2 8 6.0

27 15 4173 43.90 4173 6.19 0 14 1 8 4.3

28 16 3964 38.25 3964 3.42 0 14 2 7 4.3

29 15 4107 1.80 4107 2.11 0 14 2 7 4.3

30

120

19 4935 1629.82 4935 53.79 0 17 2 13 7.1

31 21 5278 21600.00 5267 130.64 -0.21 18 3 13 6.7

32 19 5083 21600.00 5061 69.09 -0.43 18 1 11 6.7

33 20 5218 8547.16 5218 43.43 0 17 5 11 7.1

34 22 5519 21600.00 5500 62.62 -0.34 20 1 14 6.0

35 25 6498 168.13 6498 36.31 0 22 1 9 5.5

36 20 4845 21600.00 4830 38.94 -0.31 17 2 11 7.1

37 21 5608 21600.00 5605 51.76 -0.05 21 1 12 5.7

38 24 5849 21600.00 5848 61.27 -0.02 20 2 9 6.0

39 21 5048 21600.00 5006 73.31 -0.83 18 2 11 6.7

Average 5388.10 16154.51 5376.80 62.11 -0.22 18.8 2.0 11.4 6.4

22

Table 3: Results on VRPHRDL instances.

Instance K M

BP CGBH

best-known time/s Obj time/s GAP/% nbRoute minL maxL averL

0

15

5 773 0.62 773 0.34 0 3 2 7 5.0

1 6 1065 0.08 1065 0.15 0 4 2 6 3.8

2 5 988 0.11 988 0.33 0 3 3 8 5.0

3 6 914 0.17 914 0.33 0 3 4 6 5.0

4 7 1710 0.04 1710 0.09 0 6 1 5 2.5

5

20

6 1099 2.84 1099 0.95 0 4 2 7 5.0

6 5 996 11.02 996 1.47 0 3 4 12 6.7

7 7 1346 0.33 1346 0.29 0 5 1 6 4.0

8 6 997 0.56 997 0.65 0 4 1 7 5.0

9 8 1166 0.18 1166 0.30 0 4 2 8 5.0

10

30

8 1587 8.54 1587 1.76 0 5 5 9 6.0

11 9 1808 4.7 1808 1.35 0 6 3 9 5.0

12 8 1563 3.38 1563 1.92 0 6 1 10 5.0

13 7 1058 3.26 1058 2.21 0 4 6 9 7.5

14 7 1347 155.93 1347 3.49 0 5 3 8 6.0

15 8 1517 7200.00 1517 2.43 0 5 1 9 6.0

16 9 1445 2.14 1445 2.06 0 5 4 10 6.0

17 8 1627 26.67 1627 2.15 0 5 5 7 6.0

18 9 1461 1.59 1461 1.27 0 5 1 11 6.0

19 8 1715 2.09 1715 1.78 0 6 1 8 5.0

20

60

14 2580 396.47 2580 12.48 0 8 4 9 7.5

21 11 2213 7200.00 2207 35.37 -0.27 7 5 14 8.6

22 17 3363 194.98 3363 5.16 0 10 3 8 6.0

23 13 2569 7200.00 2569 17.72 0 8 4 14 7.5

24 13 2400 7200.00 2378 22.45 -0.92 8 1 13 7.5

25 17 2845 7200.00 2845 10.91 0 9 3 10 6.7

26 11 2518 33.85 2518 10.33 0 8 4 11 7.5

27 15 2758 3392.94 2758 26.33 0 8 3 15 7.5

28 16 2892 7200.00 2892 15.53 0 9 4 10 6.7

29 15 2691 41.77 2691 6.91 0 8 5 11 7.5

30

120

19 3984 21600.00 3666 123.60 -7.98 12 1 16 10.0

31 21 3958 21600.00 3897 308.24 -1.54 14 1 15 8.6

32 19 3630 21600.00 3554 319.05 -2.09 12 1 15 10.0

33 20 3891 21600.00 3701 194.26 -4.88 12 1 18 10.0

34 22 3255 21600.00 3174 277.10 -2.49 10 3 16 12.0

35 25 4525 21600.00 4251 267.24 -6.06 13 1 14 9.2

36 20 3395 21600.00 3218 153.57 -5.21 10 10 16 12.0

37 21 3976 21600.00 3935 241.12 -1.03 14 1 13 8.6

38 24 4316 21600.00 4313 132.94 -0.07 17 1 15 7.1

39 21 3680 21600.00 3586 392.87 -2.55 11 5 17 10.9

Average 3861.00 21600.00 3729.50 241.00 -3.39 12.5 2.5 15.5 9.8

23

for large instances. If the computation time for one instance is less than the time limit, then it

means that the instance was solved to optimality by the BP algorithm. The next columns labeled

CGBH show the results obtained using the CGBH proposed in this work. Column obj represents

the objective value obtained, and time/s is the computation time in seconds. In the column GAP/%

we provide the relative gap in percentage between the results obtained from the CGBH and the

best-known results provided by the BP algorithm of Ozbaygin et al. (2017). It is calculated as

GAP/% = 100% × (obj − best-known)/best-known. Column nbRoute represents the number of

routes in the best solution obtained by the CGBH. Columns minL and maxL represent the length

of the shortest and longest route in the best solution respectively. Column averL is the average

length of all the routes in the best solution. Here, the length of a route corresponds to the number

of vertices visited on the route. Note that in the last rows of Tables 2 and 3 denoted as Average,

we show the average results restricted to the 10 large instances.

Table 2 shows that the proposed CGBH is able to obtain the optimal values for all the small

and medium-size instances in less than 10 seconds. For the large instances that were solved to

optimality by the BP algorithm (instance 30, 33 and 35), the CGBH gets the optimal values in

less than 1 minute. For the large instances that were not solved to optimality, the CGBH always

improve the best-known values. For the ten large instances, the CGBH is able to improve by 0.22%

the solutions found by the BP algorithm, using around one minute of computation time.

Table 3 shows that the CGBH can get the optimal values or even improve the best-known

results for all the instances. For instances 30, 35, and 36, the CGBH improves the best-known

values by 7.98%, 6.06% and 5.21% respectively. For the ten large instances, the CGBH improves

the best-known results by 3.39% on average using less than 5 minutes of computation time.

In conclusion, the proposed CGBH is very efficient. It is able to obtain very high-quality

solutions within short computation times.

Furthermore, from Tables 2 and 3, we can see that the average costs of the 10 large VRPRDL

and VRPHRDL instances with 120 customers are 5376.80 and 3729.50 respectively. This shows

that the combination of home delivery and in-car delivery is cost-effective.

The results on the variants of the 10 large VRPRDL and VRPHRDL instances with 120 cus-

tomers considering pick-up points are reported in Table 4 (see Section 5.1 for the generation of

these instances). From results presented in Tables 2, 3 and 4, we can see that the solutions of the

VRPRDL instances are more costly than those for the VRPRDL + pick up points instances. The

average delivery cost decreases when home delivery is available (VRPHRDL) while the cheapest

solutions are obtained when all delivery options are available (VRPHRDL + pick up points). As

expected, adding flexibility reduces the average delivery costs. Our results show the benefits for

delivery companies to propose multiple delivery options to their customers.

Next, we study the impact of the TWs by analyzing the solutions of the 10 large VRPRDL(δ)

instances (see Section 5.1 for the generation of these instances). Figure 7 shows the evolution of

the average solution cost for the 10 large VRPRDL(δ) instances with different δ values. As can be

observed in the figure, the average cost gradually decreases when δ increases. Specifically, when

24

Table 4: Results on variants of the VRPRDL and VRPHRDL considering pick-up points.

Instance

VRPRDL + pick-up points VRPHRDL + pick-up points

Obj time/s Obj time/s

30 4594 101.90 3533 210.29

31 4633 222.86 3792 274.56

32 4538 83.43 3508 316.12

33 4791 67.12 3596 239.20

34 4457 146.88 3036 267.19

35 6301 37.00 4094 118.12

36 4432 60.13 3063 264.26

37 4704 56.62 3565 283.81

38 4622 304.62 3722 163.94

39 4260 290.94 3259 413.78

Average 4733.20 137.15 3516.80 255.13

δ = 90, the average cost is 4173.3, a 22.4% reduction from the average cost of the original VRPRDL

instances with δ = 0. When δ = 360, the average cost is 3360.0 which is a 37.5% reduction.

0 30 60 90 120 150 180 210 240 270 300 330 360 390

0

1000

2000

3000

4000

5000

6000

Figure 7: Evolution of the average solution cost for the 10 large VRPRDL(δ) instances.

In addition, we analyze the locations selected to visit the customers in the best known solutions.

The computational results for the 10 large VRPRDL instances with 120 customers are considered

as a reference. First of all, we compute the following three values for each instance:

dmin =
1

K

K∑
k=1

min
i∈Ck
{D0i}, davg =

1

K

K∑
k=1

(
1

|Ck|
∑
i∈Ck

D0i), dsol(y) =
1

K

K∑
k=1

∑
j∈Ck

D0jyj . (21)

dmin is the mean of the shortest distances from the depot to every cluster and davg is the mean of the

average distances from the depot to every cluster. Let y be a vector such that yj that equals 1 if and

only if the location j is visited in the current solution j ∈ V \{0}. Thus, dsol is the mean of distances

from the depot to the selected locations in the solution. dmin and davg are measures that depend on

the instance itself, while dsol is a measure that depends on a solution of the instance. In addition, we

calculate the percentages of customers served at the first, second, and third closest location from the

25

depot, respectively denoted as p(1st), p(2nd), p(3rd). p(other) is the percentage of visited locations

that are not among the three closest to the depot, i.e., p(other) = 100%−p(1st)−p(2nd)−p(3rd). The

results are presented in Table 5. It can be seen that for all the instances, we have dmin < dsol < davg

and p(1st) > p(2nd) > p(3rd). On average, 65% of the customers are visited in their closest location

to the depot and 19% of the customers are visited in their second closest location to the depot.

Table 5: Results related to the locations selected to visit in the solution.

Instance dmin davg dsol p(1st)/% p(2nd)/% p(3rd)/% p(other)/%

30 63.3 81.2 73.4 66.7 22.5 4.2 6.7

31 70.6 88.3 79.9 65.8 15.0 11.7 7.5

32 59.6 77.1 71.7 55.0 28.3 10.8 5.8

33 68.4 86.2 76.8 74.2 14.2 3.3 8.3

34 62.3 82.5 75.3 61.7 17.5 10.0 10.8

35 77.8 94.7 89.6 63.3 17.5 12.5 6.7

36 67.4 89.3 80.7 60.0 21.7 11.7 6.7

37 74.0 91.6 81.0 67.5 20.0 6.7 5.8

38 73.4 92.2 84.2 65.8 18.3 9.2 6.7

39 67.1 86.9 75.4 70.0 15.0 9.2 5.8

Average 68.4 87.0 78.8 65.0 19.0 8.9 7.1

In the following, we analyze the influence of the route length on the solution. The last four

columns of Tables 2 and 3, i.e., columns nbR, minL, maxL, averL, report average statistics on the

lengths of the routes in the best solutions. From column maxL in Table 2 and 3, it can be seen

that the maximum number of customers that a vehicle serves are 14 and 18 for the VRPRDL and

VRPHRDL instances respectively. By comparing the average results for the large instances, it

can be seen that the average length of routes in the best solution is 6.4 and 9.8 for VRPRDL and

VRPHRDL instances respectively. In general, the number of customers that one vehicle serves is not

large enough compared with real-life cases. In real life, one courier could make around 30 deliveries

per day. In order to be more consistent with real-life cases and enable one vehicle to deliver more

customers, we test the CGBH algorithm on the VRPRDL-variant and VRPHRDL-variant instances

generated in Section 5.1, and the results are reported in Table 6.

In Table 6, from the average results, for the VRPRDL-variant and VRPHRDL-variant instances

with 30 customers, the CGBH procedure takes less than half a minute and 1 minute respectively

to terminate. For instances with 60 customers, it takes around 3 minutes and 6 minutes. It can

be concluded that the CGBH is still very efficient for solving medium-size VRPRDL-variant and

VRPHRDL-variant instances. But for large instances with 120 customers, the computation time for

CGBH reaches 20 minutes and 40 minutes respectively. However, the length of the routes in the best

solution increases compared with the VRPRDL and VRPHRDL instances. For the medium-size

instances, the maximum number of customers that a vehicle delivers is 24 and 26 for the VRPRDL-

variant and VRPHRDL-variant. For the large instances, the maximum number of customers served

by a vehicle is 30 and 32 for the VRPRDL-variant and VRPHRDL-variant respectively, while the

26

Table 6: Results on variants of VRPRDL and VRPHRDL instances.

Instance K M

CGBH VRPRDL-variant CGBH VRPHRDL-variant

Obj time/s nbRoute minL maxL averL Obj time/s nbRoute minL maxL averL

0

15

3 736 2.90 2 7 8 7.5 675 4.21 2 1 14 7.5

1 3 798 1.98 3 1 10 5.0 745 3.06 2 5 10 7.5

2 3 802 1.94 2 7 8 7.5 796 1.46 2 7 8 7.5

3 3 726 1.20 2 4 11 7.5 708 3.75 2 1 14 7.5

4 4 1125 0.90 2 6 9 7.5 1083 1.70 2 6 9 7.5

5

20

3 951 3.45 3 6 8 6.7 869 6.31 2 6 14 10.0

6 3 831 9.40 2 6 14 10.0 792 11.96 2 7 13 10.0

7 4 869 5.97 2 4 16 10.0 858 9.21 2 6 14 10.0

8 3 893 5.82 2 7 13 10.0 839 8.62 2 8 12 10.0

9 4 929 2.95 2 9 11 10.0 863 5.58 3 1 11 6.7

10

30

4 1129 18.58 2 15 15 15.0 1035 41.96 2 15 15 15.0

11 5 1175 22.17 3 4 13 10.0 1129 30.15 3 4 15 10.0

12 4 1176 17.30 3 7 13 10.0 1121 33.48 3 9 11 10.0

13 4 975 28.45 3 9 12 10.0 953 37.43 3 7 14 10.0

14 4 1079 25.27 2 15 15 15.0 989 45.22 2 14 16 15.0

15 4 1144 23.70 2 13 17 15.0 1023 47.70 2 13 17 15.0

16 5 1224 17.39 3 7 15 10.0 1138 41.21 3 2 18 10.0

17 4 1315 16.26 3 6 12 10.0 1182 44.17 2 12 18 15.0

18 5 1178 21.27 3 8 13 10.0 1021 26.81 2 9 21 15.0

19 4 1181 30.83 2 9 21 15.0 1181 34.68 2 9 21 15.0

20

60

7 1874 173.74 4 11 18 15.0 1747 371.10 3 15 23 20.0

21 6 1724 152.21 5 2 20 12.0 1471 343.70 4 1 23 15.0

22 9 1892 106.60 4 14 18 15.0 1717 234.85 4 6 24 15.0

23 7 1976 132.04 5 9 14 12.0 1674 311.15 3 16 22 20.0

24 7 1720 190.23 4 12 18 15.0 1587 457.07 4 2 23 15.0

25 9 1852 192.28 4 13 19 15.0 1632 547.83 3 13 26 20.0

26 6 1749 156.16 4 5 24 15.0 1604 247.60 3 16 24 20.0

27 8 1779 275.09 4 9 22 15.0 1504 437.36 3 18 22 20.0

28 8 1913 121.34 5 1 18 12.0 1742 365.97 4 2 24 15.0

29 8 2017 111.38 4 12 20 15.0 1806 305.60 3 14 25 20.0

30

120

10 2471 1243.55 8 1 27 15.0 2244 3016.68 7 1 31 17.1

31 11 2554 1280.57 8 1 23 15.0 2352 2077.37 5 22 29 24.0

32 10 2362 1624.80 7 1 27 17.1 2150 2715.41 6 1 29 20.0

33 10 2702 1340.18 6 14 27 20.0 2468 2798.17 5 16 28 24.0

34 11 2364 1125.76 7 8 24 17.1 2073 2753.88 6 4 29 20.0

35 13 2772 1166.24 7 1 29 17.1 2518 2615.98 6 1 29 20.0

36 10 2535 1123.38 7 6 27 17.1 2250 2739.07 5 14 30 24.0

37 11 2644 1304.54 8 1 24 15.0 2271 2190.87 7 1 31 17.1

38 12 2649 1071.00 12 1 22 10.0 2336 1778.69 9 1 28 13.3

39 11 2529 1305.95 8 1 30 15.0 2255 3085.74 6 1 32 20.0

Average 2558.20 1258.60 7.8 3.5 26.0 15.9 2291.70 2577.19 6.2 6.2 29.6 20.0

27

average number becomes 15.9 and 20.0.

We can conclude that if the number of customers that a vehicle serves becomes large on av-

erage, the problem becomes, as expected, more difficult to solve. This is mainly due to the route

optimization method, which is frequently invoked in the course of the algorithm and becomes time

consuming when the routes are longer.

5.5 Computational results on GVRPTW instances (Moccia et al. (2012))

In this section, we further test the proposed CGBH on 20 instances proposed by Moccia et al.

(2012). The number of clusters in these instances ranges from 30 to 120 and the number of vertices

ranges from 188 to 1198. We solve them using the CGBH. Detailed results are reported in Table 7.

Table 7: Results on GVRPTW instances proposed by Moccia et al. (2012)

Instance Number of vertices

Tabu search CGBH

GAP/%
UB time/s UB time/s

i-030-04-08 188 3498 87.00 3498 8.47 0.00

i-030-08-12 307 2866 142.00 2797 15.37 -2.41

i-040-04-08 250 3811 111.00 3811 6.46 0.00

i-040-08-12 391 3759 171.00 3768 7.80 0.24

i-050-04-08 296 5447 127.00 5439 10.08 -0.15

i-050-08-12 513 4034 249.00 4054 12.35 0.50

i-060-04-08 376 5919 196.00 5908 49.10 -0.19

i-060-08-12 614 4303 383.00 4303 26.26 0.00

i-070-04-08 413 6205 206.00 6228 24.78 0.37

i-070-08-12 690 4645 433.00 4694 45.27 1.05

i-080-04-08 486 7425 266.00 7420 179.33 -0.07

i-080-08-12 795 5734 521.00 5613 43.65 -2.11

i-090-04-08 560 7110 362.00 7108 328.34 -0.03

i-090-08-12 928 5810 711.00 5893 307.66 1.43

i-100-04-08 607 7455 380.00 7339 85.78 -1.56

i-100-08-12 1011 6703 884.00 6788 419.38 1.27

i-110-04-08 672 8719 443.00 8618 128.12 -1.16

i-110-08-12 1115 6281 842.00 6343 120.46 0.99

i-120-04-08 708 8512 525.00 8455 190.67 -0.67

i-120-08-12 1198 6833 1066.00 6772 151.67 -0.89

Average 5753.45 405.25 5742.45 108.05 -0.17

Column Instance represents the name of the instance, defined as follows: i − p − vmin − vmax,

where p, vmin and vmax represent the number of clusters, the minimal number of vertices per

cluster and the maximal number of vertices per cluster respectively. The second column lists the

number of vertices. The next two columns report the results obtained by the tabu search heuristic

proposed by Moccia et al. (2012) running on an Intel Core Duo computer (1.83GHz). UB and

time/s represent the upper bound and the computation time in seconds respectively. The next

two columns show the results obtained from the proposed CGBH. Column GAP/% provides the

relative gap between upper bounds obtained by these two heuristics. It is calculated as GAP/% =

28

100%× (UBCGBH −UBts)/UBts, where UBCGBH and UBts represent the upper bounds obtained

by the CGBH and the tabu search respectively.

From Table 7, it can be seen that compared with the tabu search heuristic, using the proposed

CGBH, the upper bound obtained can be improved by 0.17% on average.

Regarding the computation time, for a fair comparison, we use some benchmarks (https:

//hwbot.org/compare/processors#672_1,523_1,4452_1-6,3,7,15,14) to compare the average

running times of the two processors. The results show that our processor is usually 2∼3 times faster.

Then, from the average results reported in Table 7, we can conclude that the CGBH consumes less

computation time on average. As a rule, the CGBH is competitive with the tabu search heuristic.

Note that in the problem studied by Moccia et al. (2012), there are constraints that restrict

the maximum duration of each route to a given upper bound D, whereas in our problem definition,

there is no such restriction. To handle this difference, since there is no time window for the depot

in the GVRPTW instances (Moccia et al. (2012)), we simply attach a time window [0, D] to the

depot. The CGBH is then run as described in Section 4. Handling route duration constraints as

we proposed may cut off some feasible solutions. However, the obtained results are comparable and

sometimes better with respect to those proposed in Moccia et al. (2012).

5.6 Computational results on GVRP instances (Bektaş et al. (2011))

We test the CGBH on the benchmark instances of the GVRP proposed by Bektaş et al. (2011).

By assigning a non-binding time window to every vertex, we can solve GVRP instances by the

CGBH. The GVRP instances are generated using the A,B, P instances from CVRP library, with

the number of vertices ranging from 16 to 101. For a CVRP instance with N vertices, a GVRP

instance is constructed with K = [N/θ] clusters, where θ = 2, 3. We test on 139 instances that were

solved to optimality using the branch-and-cut algorithm proposed by Bektaş et al. (2011).

Preliminary computations showed that in Phase 1 of the CGBH, the construction heuristic could

not find any feasible solution for 2 out of 139 instances of this set. Therefore, we develop a simple

procedure to produce feasible solutions for the GVRP before calling the CGBH.

We first solve a bin packing problem to obtain a feasible solution with respect to vehicle capacity

constraints. Let F be the vehicle index set. Binary variables χkf are introduced and equal 1 if and

only if cluster k ∈ K \ {0} is visited by vehicle f , 0 otherwise.

minimize 0 (22)

s.t.
∑
f∈F

χkf = 1 ∀k ∈ K \ {0}, (23)

∑
k∈K

Qkχkf ≤ Q, ∀f ∈ F , (24)

χkf ∈ {0, 1} ∀k ∈ K \ {0}, f ∈ F . (25)

Since the goal of this model is to find a feasible assignment of clusters to vehicles, we minimize

29

https://hwbot.org/compare/processors#672_1,523_1,4452_1-6,3,7,15,14
https://hwbot.org/compare/processors#672_1,523_1,4452_1-6,3,7,15,14

a constant function. Constraints (23) make sure that each cluster is served by one vehicle. Con-

straints (24) impose to respect the vehicle capacity. Constraints (25) are variable definitions.

By using the Populate method with its default settings in CPLEX 12.6.3, we can obtain multiple

feasible solutions for the bin packing problem. Note that if CPLEX populates more than 20 feasible

solutions, we randomly choose 20 in the solution pool. Then for each solution, the route optimization

procedure is applied to optimize the routes of vehicles visiting their corresponding sets of clusters.

Therefrom, feasible solutions for the GVRP are obtained.

The results are presented in Table 8 (see Appendix B for detailed results). Column Instance set

indicates the instance set. Columns labeled as θ = 2 and θ = 3 provide results for GVRP instances

with θ = 2 and θ = 3 respectively. Column #Opt has the format a/b, where a reports the number

of instances for which the optimal solutions have been obtained by the CGBH and b reports the

number of instances that were solved to optimality by Bektaş et al. (2011) in the corresponding set.

Column GAP/% reports the average optimality gap on all the instances.

Table 8: Results on GVRP instances proposed by Bektaş et al. (2011)

Instance set

θ = 2 θ = 3

#Opt GAP/% #Opt GAP/%

A 11/25 1.08 21/25 0.48

B 14/23 0.53 21/23 0.04

P 19/20 0.05 21/23 0.04

Average 44/68 0.59 63/71 0.20

For instances with θ = 2, the optimal solutions are obtained by the CGBH for 44 instances out

of 68 in total. The average optimality gap for 68 instances in three sets is 0.59%. For instances

with θ = 3, optimal solutions can be obtained for most of the instances using the CGBH, i.e., 63

instances out of 71 in total. The average optimality gap for 71 instances is 0.2%. Even though the

CGBH is not designed for solving the GVRP, it can be seen from Table 8 that it still produces good

quality solutions for GVRP instances.

6 Conclusions

E-commerce is used daily and allows customers to purchase their products online. New last mile

delivery services do not require customers to be at a specific location to receive the products they

bought online. Goods can be delivered at home, but as well into lockers, pick-up points or in

the trunk of the cars. As a result, and unlike classical vehicle routing problems, several delivery

locations are associated with a customer. This new family of delivery problems can be modeled as

generalized vehicle routing problems.

In this paper, we have presented the Generalized Vehicle Routing Problem with Time Windows

(GVRPTW), and we propose a set covering formulation. Based on this set covering formulation,

30

we have developed a column generation based heuristic for the GVRPTW. It combines several com-

ponents including a construction heuristic, a route optimization procedure, a local search method,

and a procedure to generate negative reduced cost routes. Computational results on benchmark in-

stances show that the proposed algorithm is very efficient and high-quality solutions can be obtained

within very short computation times for VRPRDL instances with up to 120 clusters.

One perspective of this work is to investigate the dynamic version of routing problems for the

last mile delivery services. When some locations or time windows change, a new solution has to be

computed again. We believe that the proposed column generation based heuristic could be adapted

to such cases since it includes several components to build or optimize solutions, and computation

times are short. Another perspective is to combine the GVRPTW with split delivery. One constraint

of the GVRPTW is that each customer is served once by a single vehicle. In practice, customers

may purchase different commodities from different platforms and the vehicles available for delivery

at the distribution center may have small capacities (e.g., a cargo bike). In this case, instead of

delivering multiple packages for one customer with a single vehicle, there may be more cost-effective

distribution plans if some deliveries are split, i.e., some customers are served by more than one

vehicle (Archetti et al. (2008); Gu et al. (2019)).

Acknowledgments

The funding body will be acknowledged following peer review.

References

Afsar, H. M., Prins, C., and Santos, A. C. (2014). Exact and heuristic algorithms for solving

the generalized vehicle routing problem with flexible fleet size. International Transactions in

Operational Research, 21(1):153–175.

Archetti, C., Savelsbergh, M. W., and Speranza, M. G. (2008). To split or not to split: That is the

question. Transportation Research Part E: Logistics and Transportation Review, 44(1):114–123.

Baldacci, R., Bartolini, E., and Laporte, G. (2010). Some applications of the generalized vehicle

routing problem. Journal of the operational research society, 61(7):1072–1077.

Bautista, J., Fernández, E., and Pereira, J. (2008). Solving an urban waste collection problem using

ants heuristics. Computers & Operations Research, 35(9):3020–3033.

Beheshti, A. K. and Hejazi, S. R. (2015). A novel hybrid column generation-metaheuristic approach

for the vehicle routing problem with general soft time window. Information Sciences, 316:598–615.

Bektaş, T., Erdoğan, G., and Røpke, S. (2011). Formulations and branch-and-cut algorithms for

the generalized vehicle routing problem. Transportation Science, 45(3):299–316.

31

Carrabs, F., Cerrone, C., Cerulli, R., and Gaudioso, M. (2017). A novel discretization scheme for

the close enough traveling salesman problem. Computers & Operations Research, 78:163–171.

Carrabs, F., Cerrone, C., Cerulli, R., and Golden, B. (2020). An adaptive heuristic approach to

compute upper and lower bounds for the close-enough traveling salesman problem. INFORMS

Journal on Computing, 32(4):1030–1048.

Carraghan, R. and Pardalos, P. M. (1990). An exact algorithm for the maximum clique problem.

Operations Research Letters, 9(6):375 – 382.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the

vehicle routing problem with time windows. Operations research, 40(2):342–354.

Fischetti, M., Salazar González, J. J., and Toth, P. (1997). A branch-and-cut algorithm for the

symmetric generalized traveling salesman problem. Operations Research, 45(3):378–394.

Furini, F., Malaguti, E., Durán, R. M., Persiani, A., and Toth, P. (2012). A column generation

heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock

size. European Journal of Operational Research, 218(1):251–260.

Ghiani, G. and Improta, G. (2000). An efficient transformation of the generalized vehicle routing

problem. European Journal of Operational Research, 122(1):11–17.

Gu, W., Cattaruzza, D., Ogier, M., and Semet, F. (2019). Adaptive large neighborhood search for

the commodity constrained split delivery vrp. Computers & Operations Research, 112:104761.

Gutin, G. and Karapetyan, D. (2010). A memetic algorithm for the generalized traveling salesman

problem. Natural Computing, 9(1):47–60.

Ha, M. H., Bostel, N., Langevin, A., and Rousseau, L.-M. (2014). An exact algorithm and a

metaheuristic for the generalized vehicle routing problem with flexible fleet size. Computers &

Operations Research, 43:9–19.

Hauge, K., Larsen, J., Lusby, R. M., and Krapper, E. (2014). A hybrid column generation approach

for an industrial waste collection routing problem. Computers & Industrial Engineering, 71:10–20.

Hawkins, A. J. (2019). Amazon expands in-car delivery service to ford and lincoln vehicles. https://

www.theverge.com/2018/4/24/17261744/amazon-package-delivery-car-trunk-gm-volvo.

Online, accessed September 2019.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman heuristic.

European Journal of Operational Research, 126(1):106–130.

Helsgaun, K. (2015). Solving the equality generalized traveling salesman problem using the Lin–

Kernighan–Helsgaun algorithm. Mathematical Programming Computation, 7(3):269–287.

32

https://www.theverge.com/2018/4/24/17261744/amazon-package-delivery-car-trunk-gm-volvo
https://www.theverge.com/2018/4/24/17261744/amazon-package-delivery-car-trunk-gm-volvo

Janjevic, M., Winkenbach, M., and Merchán, D. (2019). Integrating collection-and-delivery points in

the strategic design of urban last-mile e-commerce distribution networks. Transportation Research

Part E: Logistics and Transportation Review, 131:37–67.

Kara, I. and Bektas, T. (2003). Integer linear programming formulation of the generalized vehicle

routing problem. In EURO/INFORMS Joint International Meeting, Istanbul, July, pages 06–10.

Kirsten, K. (2016). Volvo’s solution for the package theft epidemic: Your car’s trunk. http:

//fortune.com/2016/05/10/volvo-urb-it-delivery/. Online, accessed March 2019.

Laporte, G. and Semet, F. (1999). Computational evaluation of a transformation procedure for the

symmetric generalized traveling salesman problem. INFOR: Information Systems and Operational

Research, 37(2):114–120.

Lin, Y. H., Wang, Y., He, D., and Lee, L. H. (2020). Last-mile delivery: Optimal locker location un-

der multinomial logit choice model. Transportation Research Part E: Logistics and Transportation

Review, 142:102059.

Mahvash, B., Awasthi, A., and Chauhan, S. (2017). A column generation based heuristic for the

capacitated vehicle routing problem with three-dimensional loading constraints. International

Journal of Production Research, 55(6):1730–1747.

Moccia, L., Cordeau, J. F., and Laporte, G. (2012). An incremental tabu search heuristic for the

generalized vehicle routing problem with time windows. Journal of the Operational Research

Society, 63(2):232–244.

Morganti, E., Seidel, S., Blanquart, C., Dablanc, L., and Lenz, B. (2014). The impact of e-commerce

on final deliveries: alternative parcel delivery services in france and germany. Transportation

Research Procedia, 4:178–190.

Mourgaya, M. and Vanderbeck, F. (2007). Column generation based heuristic for tactical planning

in multi-period vehicle routing. European Journal of Operational Research, 183(3):1028–1041.

Noon, C. E. and Bean, J. C. (1993). An efficient transformation of the generalized traveling salesman

problem. INFOR: Information Systems and Operational Research, 31(1):39–44.

Ozbaygin, G., Karasan, O. E., Savelsbergh, M., and Yaman, H. (2017). A branch-and-price algo-

rithm for the vehicle routing problem with roaming delivery locations. Transportation Research

Part B: Methodological, 100:115–137.

Parragh, S. N. and Schmid, V. (2013). Hybrid column generation and large neighborhood search

for the dial-a-ride problem. Computers & Operations Research, 40(1):490–497.

Prescott-Gagnon, E., Desaulniers, G., and Rousseau, L.-M. (2009). A branch-and-price-based large

neighborhood search algorithm for the vehicle routing problem with time windows. Networks:

An International Journal, 54(4):190–204.

33

http://fortune.com/2016/05/10/volvo-urb-it-delivery/
http://fortune.com/2016/05/10/volvo-urb-it-delivery/

Reihaneh, M. and Ghoniem, A. (2018). A branch-cut-and-price algorithm for the generalized vehicle

routing problem. Journal of the Operational Research Society, 69(2):307–318.

Reyes, D., Savelsbergh, M., and Toriello, A. (2017). Vehicle routing with roaming delivery locations.

Transportation Research Part C: Emerging Technologies, 80:71–91.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation science, 40(4):455–472.

Salhi, S., Wassan, N., and Hajarat, M. (2013). The fleet size and mix vehicle routing problem with

backhauls: Formulation and set partitioning-based heuristics. Transportation Research Part E:

Logistics and Transportation Review, 56:22–35.

Saskena, J. (1970). Mathematical model of scheduling clients through welfare agencies. Journal of

the Canadian Operational Research Society, 8:185–200.

Smith, S. L. and Imeson, F. (2017). Glns: An effective large neighborhood search heuristic for the

generalized traveling salesman problem. Computers & Operations Research, 87:1–19.

Srivastava, S., Kumar, S., Garg, R., and Sen, P. (1969). Generalized traveling salesman problem

through n sets of nodes. CORS journal, 7(2):97.

Taillard, É. D. (1999). A heuristic column generation method for the heterogeneous fleet vrp.

RAIRO-Operations Research, 33(1):1–14.

Yuan, Y., Cattaruzza, D., Ogier, M., and Semet, F. (2020). A branch-and-cut algorithm for the

generalized traveling salesman problem with time windows. European Journal of Operational

Research, 286(3):849–866.

Zhou, L., Baldacci, R., Vigo, D., and Wang, X. (2018). A multi-depot two-echelon vehicle routing

problem with delivery options arising in the last mile distribution. European Journal of Opera-

tional Research, 265(2):765–778.

A Choice of pivot customers

The construction heuristic starts with the choice of pivot customers. These customers may be

identified with different criteria. Here we present the three criteria we use in this work. The

construction heuristic is called several times during Phase 1. In the first call, Criterion 1 is chosen,

while Criterion 2 or Criterion 3 are chosen for the next calls of the construction heuristic. At each

call, the choice between Criterion 2 and Criterion 3 is done randomly.

Criterion 1. Due to TWs, some customers cannot be visited on the same route. If customers

h and k cannot be served on the same route, we call this pair of customers 〈h, k〉 an incompatible

pair. Formally, h and k are incompatible if Ei + Tij > Lj and Ej + Tji > Li, for all i ∈ Ch, j ∈ Ck.

34

Based on all the incompatible pairs, we build a graph Ḡ = (V̄, Ē), where the vertex set V̄ contains

K vertices, one per customer and (h, k) ∈ Ē if and only if 〈h, k〉 is an incompatible pair. We then look

for a maximum clique in Ḡ = (V̄, Ē). By construction of Ḡ, a clique represents a set of customers

such that none of them be visited in the same route since they are all incompatible. Hence, all

the customers represented by a clique in Ḡ have to be served in different routes. Therefore, we

can choose the customers belonging to a maximum clique in Ḡ as pivots. Here we use a recursive

backtracking algorithm (Carraghan and Pardalos, 1990) that searches for all maximal cliques in

graph Ḡ. It is an enumeration algorithm that backtracks when the size of the current clique plus

the size of the set of potential nodes to add is lower than the size of the current maximum clique.

Since the algorithm returns all maximal cliques, one of them is randomly chosen to initialize the

pivots customers.

Note that the size of a maximum clique in Ḡ can be smaller than M , the number of available

vehicles at the depot. In this case, the remaining routes of R are initialized with empty routes.

Criterion 2. For each vertex i ∈ V, we determine a vertex set Bi = {j1, j2} which includes two

vertices compatible with i, and such that j1 and j2 do not belong to the same cluster. j1 is the

nearest vertex from which i can be reached (i.e., it satisfies Ej1 + Tj1i ≤ Li) and j2 is the nearest

vertex that can be reached from i (i.e., it satisfies Ei + Tij2 ≤ Lj2). Then, we calculate the average

cost Ci between vertex i and the vertices in Bi, Ci =
1

2

∑
j∈Bi Cij .

We then define a score wk for each customer k ∈ K \ {0} as follows:

wk =
1

|Ck|
∑
i∈Ck

(C0i + Ci). (26)

By using this score, we select the customers with the highest value of wk, i.e., customers that are

either far away from the depot and/or far away from other customers. However, using only this score

has the disadvantage of selecting as pivots some nearby customers which are relatively far from the

depot, but that could be served on the same route. Therefore, it is appropriate to spread the pivots so

that they belong to different spatial regions. To this end, we define Ahk = {(i, j) ∈ A|i ∈ Ch, j ∈ Ck}
as the set of arcs from Ch to Ck, and Chk as the average traveling cost from cluster Ch to cluster Ck.
Chk is calculated as:

Chk =
1

|Ahk|
∑

(i,j)∈Ahk

Cij ∀h, k ∈ K \ {0}. (27)

Let us denote by P the set of selected pivots. At the beginning, this set P is empty, and pivots are

added one by one. To this end, we define a score w′k for each customer k ∈ K\{P ∪{0}} as follows:

w′k = wk + min
h∈P
{min{Chk, Ckh}}. (28)

The selection of the pivots customers is performed as follows. At first, set P is empty and we

sort all the customers in k ∈ K \ {P ∪ {0}} by descending values of w′k and store them in a list I.

Then, we random select a number θ in the interval [0, 1) and calculate θρ. The customer in position

θρ|I| is chosen as a pivot, and added to P. Then, the scores w′k of the other customers are updated,

35

and the procedure is repeated until M pivots are selected. Here, we choose ρ = 6 as in Ropke and

Pisinger (2006). Note that when ρ = 1, the selection becomes purely random. When ρ = ∞, the

customer associated with the best score w′k is selected.

Criterion 3. As with Criterion 2, this criterion computes the scores for each cluster in order

to iteratively select the clusters with the highest scores. This criterion is based on a score related

to the compactness of the clusters. Suppose that vertex i ∈ V has coordinates (ai, bi). Here, we

consider the barycenter (ack, b
c
k) of a cluster k ∈ K \ {0}:

ack =
1

|Ck|
∑
i∈Ck

ai, (29)

bck =
1

|Ck|
∑
i∈Ck

bi. (30)

Then, for each cluster k ∈ K \ {0} we define CinCk as the average traveling distance of the vertices

in Ck to its barycenter (ack, b
c
k):

CinCk =
1

|Ck|
∑
i∈Ck

√
(ai − ack)2 + (bi − bck)2. (31)

The score wk of cluster k ∈ K \ {0} is then defined as:

wk =
√

(ack − a0)2 + (bck − b0)2 − CinCk . (32)

By using this score, we favor compact clusters far from the depot.

Similarly with Criterion 2, we try to spread the pivots. We denote by P the set of pivots already

selected, and we use an updated score w′k for each cluster k ∈ K \ {P ∪ {0}}:

w
′
k = wk + min

h∈P
{min{Chk, Ckh}}. (33)

Based on w′k, the selection of pivot customers is performed as described for Criterion 2.

B Supplementary results

B.1 Results on VRPRDL instances with 40 customers

Table 9 shows that the CGBH gets the best-known values for all the instances.

B.2 Detailed results on the GVRP instances

Tables 10 and 11 report the results on GVRP instances for θ = 2 and θ = 3 respectively. Column

Instance represents the name of the instance, which has the format X − nY − kZ − CΩ − V Φ,

where X specifies the set, Y the number of vertices, Z the number of vehicles in the original CVRP

instance, Ω the number of clusters, and Φ the number of vehicles in the GVRP instance. The next

two columns show the results obtained by the branch-and-cut algorithm proposed by Bektaş et al.

36

Table 9: Results on VRPRDL instances with 40 customers.

Instance K M

BP CGBH

best-known time/s Obj time/s GAP/% nbRoute minL maxL averL

41 v1

40

11 3203 1249.35 3203 2.34 0 10 2 9 4.0

42 v1 10 2799 3.00 2799 1.35 0 9 1 8 4.4

43 v1 9 2607 7200.00 2607 3.86 0 8 2 12 5.0

44 v1 8 2261 98.52 2261 2.39 0 7 3 7 5.7

45 v1 11 3217 1.63 3217 1.44 0 10 2 7 4.0

46 v1 10 2805 3.81 2805 1.48 0 9 3 7 4.4

47 v1 12 3339 3710.35 3339 2.36 0 10 2 7 4.0

48 v1 11 3325 1.15 3325 1.39 0 10 1 8 4.0

49 v1 12 3534 104.26 3534 1.21 0 11 2 5 3.6

50 v1 10 2752 8.74 2752 4.24 0 10 1 9 4.0

41 v2 8 2133 854.47 2133 7.07 0 7 3 8 5.7

42 v2 8 1946 1005.36 1946 4.11 0 7 1 8 5.7

43 v2 9 1966 270.72 1966 5.29 0 8 2 9 5.0

44 v2 7 1610 41.59 1610 4.91 0 6 1 9 6.7

45 v2 9 2478 9.76 2478 5.83 0 8 2 10 5.0

46 v2 10 2469 27.37 2469 2.39 0 8 3 7 5.0

47 v2 9 1946 68.96 1946 4.55 0 7 2 8 5.7

48 v2 9 2380 477.83 2380 3.01 0 8 3 7 5.0

49 v2 10 2492 13.62 2492 2.41 0 8 2 7 5.0

50 v2 10 2443 164.37 2443 3.69 0 8 3 10 5.0

Average 2585.25 765.74 2585.25 3.27 0 8.5 2.1 8.1 4.9

(2011) running on an AMD Opteron 250 computer (2.4 GHz). Column Opt presents the objective

value of the optimal solution. Column time/s is the computation time in seconds. The next two

columns show the results obtained using the proposed CGBH. Column Obj is the objective value

of the best solution obtained by the CGBH. Column GAP/% provides the optimality gap which is

calculated as GAP/% = 100%× (Obj −Opt)/Opt.

37

Table 10: Results on GVRP instances with θ = 2

Instance

Branch-and-cut CGBH

GAP/%
Opt time/s Obj time/s

A-n32-k5-C16-V2 519 113.20 552 2.42 6.36

A-n33-k5-C17-V3 451 1.60 451 1.63 0.00

A-n33-k6-C17-V3 465 0.70 465 1.22 0.00

A-n34-k5-C17-V3 489 0.80 501 2.10 2.45

A-n36-k5-C18-V2 505 31.50 506 4.87 0.20

A-n37-k5-C19-V3 432 0.80 432 4.11 0.00

A-n37-k6-C19-V3 584 28.20 614 2.70 5.14

A-n38-k5-C19-V3 476 3.00 476 2.93 0.00

A-n39-k5-C20-V3 557 45.60 557 5.37 0.00

A-n39-k6-C20-V3 544 4.90 544 2.72 0.00

A-n44-k6-C22-V3 608 23.20 608 4.71 0.00

A-n45-k6-C23-V4 613 6.80 613 5.11 0.00

A-n45-k7-C23-V4 674 1465.20 681 4.86 1.04

A-n46-k7-C23-V4 593 10.20 593 4.46 0.00

A-n48-k7-C24-V4 667 299.80 668 6.44 0.15

A-n53-k7-C27-V4 603 15.90 606 10.52 0.50

A-n54-k7-C27-V4 690 68.30 690 7.04 0.00

A-n55-k9-C28-V5 699 82.60 711 4.78 1.72

A-n60-k9-C30-V5 769 75.60 780 7.62 1.43

A-n61-k9-C31-V5 638 43.70 640 8.44 0.31

A-n62-k8-C31-V4 740 122.70 751 16.05 1.49

A-n63-k10-C32-V5 801 4355.20 801 9.37 0.00

A-n64-k9-C32-V5 763 1204.30 775 16.38 1.57

A-n65-k9-C33-V5 682 29.00 704 11.42 3.23

A-n69-k9-C35-V5 680 817.90 689 16.85 1.32

B-n31-k5-C16-V3 441 0.10 441 5.07 0.00

B-n34-k5-C17-V3 472 0.10 472 3.59 0.00

B-n35-k5-C18-V3 626 0.10 626 3.14 0.00

B-n38-k6-C19-V3 451 0.70 451 1.76 0.00

B-n39-k5-C20-V3 357 0.20 357 4.25 0.00

B-n41-k6-C21-V3 481 2.60 481 2.68 0.00

B-n43-k6-C22-V3 483 9.20 485 4.96 0.41

B-n44-k7-C22-V4 540 3.30 543 3.98 0.56

B-n45-k5-C23-V3 497 0.60 497 6.28 0.00

B-n45-k6-C23-V4 478 53.70 478 4.55 0.00

B-n50-k7-C25-V4 449 0.60 449 4.57 0.00

B-n50-k8-C25-V5 916 3249.20 936 5.87 2.18

B-n51-k7-C26-V4 651 0.40 670 4.56 2.92

B-n52-k7-C26-V4 450 0.10 450 8.11 0.00

B-n56-k7-C28-V4 486 3.00 486 10.57 0.00

B-n57-k7-C29-V4 751 1.80 765 11.09 1.86

B-n57-k9-C29-V5 942 22.00 942 8.76 0.00

B-n63-k10-C32-V5 816 12.20 823 14.45 0.86

B-n64-k9-C32-V5 509 0.80 509 7.42 0.00

B-n66-k9-C33-V5 808 14.40 808 14.16 0.00

B-n67-k10-C34-V5 673 35.80 681 10.05 1.19

B-n68-k9-C34-V5 704 9.20 718 10.67 1.99

B-n78-k10-C39-V5 803 248.20 805 26.08 0.25

P-n16-k8-C8-V5 239 0.00 239 0.07 0.00

P-n19-k2-C10-V2 147 0.00 147 0.78 0.00

P-n20-k2-C10-V2 154 0.00 154 1.02 0.00

P-n21-k2-C11-V2 160 0.00 160 1.26 0.00

P-n22-k2-C11-V2 162 0.10 162 1.53 0.00

P-n22-k8-C11-V5 314 0.00 314 0.17 0.00

P-n23-k8-C12-V5 312 0.80 312 0.34 0.00

P-n40-k5-C20-V3 294 2.10 294 5.97 0.00

P-n45-k5-C23-V3 337 2.20 337 8.19 0.00

P-n50-k10-C25-V5 353 1162.90 353 7.48 0.00

P-n50-k8-C25-V4 410 7200.10 410 4.22 0.00

P-n51-k10-C26-V6 427 38.80 427 1.80 0.00

P-n55-k10-C28-V5 361 1536.70 361 12.10 0.00

P-n55-k15-C28-V8 361 7200.10 361 10.20 0.00

P-n55-k7-C28-V4 415 125.20 415 3.21 0.00

P-n65-k10-C33-V5 487 1805.50 487 10.67 0.00

P-n70-k10-C35-V5 485 175.80 485 13.81 0.00

P-n76-k4-C38-V2 383 25.80 387 262.38 1.04

P-n76-k5-C38-V3 405 16.20 405 91.71 0.00

P-n101-k4-C51-V2 455 169.20 455 948.89 0.00

38

Table 11: Results on GVRP instances with θ = 3

Instance

Branch-and-cut CGBH

GAP/%
Opt time/s Obj time/s

A-n32-k5-C11-V2 386 0.10 386 1.31 0.00

A-n33-k5-C11-V2 315 0.50 315 0.74 0.00

A-n33-k6-C11-V2 370 1.20 370 0.58 0.00

A-n34-k5-C12-V2 419 1.70 419 1.45 0.00

A-n36-k5-C12-V2 396 1.30 396 2.39 0.00

A-n37-k5-C13-V2 347 0.70 347 2.08 0.00

A-n37-k6-C13-V2 431 19.40 431 1.05 0.00

A-n38-k5-C13-V2 367 0.70 367 1.12 0.00

A-n39-k5-C13-V2 364 4.60 364 2.93 0.00

A-n39-k6-C13-V2 403 1.20 403 1.10 0.00

A-n44-k6-C15-V2 503 323.70 548 2.23 8.95

A-n45-k6-C15-V3 474 2.90 474 3.03 0.00

A-n45-k7-C15-V3 475 7.40 475 2.66 0.00

A-n46-k7-C16-V3 462 22.70 462 2.78 0.00

A-n48-k7-C16-V3 451 19.00 459 2.99 1.77

A-n53-k7-C18-V3 440 5.90 440 7.68 0.00

A-n54-k7-C18-V3 482 57.40 482 3.86 0.00

A-n55-k9-C19-V3 473 14.10 473 2.33 0.00

A-n60-k9-C20-V3 595 885.20 596 3.34 0.17

A-n61-k9-C21-V4 473 14.50 473 3.13 0.00

A-n62-k8-C21-V3 596 859.60 596 7.60 0.00

A-n63-k9-C21-V3 593 7200.10 600 3.60 1.18

A-n64-k9-C22-V3 536 22.40 536 12.44 0.00

A-n65-k9-C22-V3 500 21.90 500 5.41 0.00

A-n69-k9-C23-V3 520 4752.40 520 11.70 0.00

B-n31-k5-C11-V2 356 0.20 356 1.71 0.00

B-n34-k5-C12-V2 369 0.00 369 2.10 0.00

B-n35-k5-C12-V2 501 0.20 501 1.68 0.00

B-n38-k6-C13-V2 370 1.30 370 1.17 0.00

B-n39-k5-C13-V2 280 0.00 280 1.68 0.00

B-n41-k6-C14-V2 407 1.00 407 1.82 0.00

B-n43-k6-C15-V2 343 0.60 343 3.79 0.00

B-n44-k7-C15-V3 395 1.50 395 2.03 0.00

B-n45-k5-C15-V2 410 0.90 410 3.01 0.00

B-n45-k6-C15-V2 336 4.80 336 1.92 0.00

B-n50-k7-C17-V3 393 0.20 393 2.43 0.00

B-n50-k8-C17-V3 598 29.40 598 2.08 0.00

B-n51-k7-C17-V3 511 0.40 511 2.22 0.00

B-n52-k7-C18-V3 359 0.00 359 3.59 0.00

B-n56-k7-C19-V3 356 23.50 356 5.25 0.00

B-n57-k7-C19-V3 558 0.90 562 5.01 0.72

B-n57-k9-C19-V3 681 471.60 681 3.76 0.00

B-n63-k10-C21-V3 599 11.30 599 6.29 0.00

B-n64-k9-C22-V4 452 2.40 452 3.10 0.00

B-n66-k9-C22-V3 609 103.50 609 6.97 0.00

B-n67-k10-C23-V4 558 7.20 558 4.62 0.00

B-n68-k9-C23-V3 523 110.00 524 6.68 0.19

B-n78-k10-C26-V4 606 8.50 606 6.90 0.00

P-n16-k8-C6-V4 170 0.00 170 0.24 0.00

P-n19-k2-C7-V1 111 0.00 111 0.10 0.00

P-n20-k2-C7-V1 117 0.20 117 0.11 0.00

P-n21-k2-C7-V1 117 0.20 117 0.11 0.00

P-n22-k2-C8-V1 111 0.10 111 0.19 0.00

P-n22-k8-C8-V4 249 0.10 249 0.18 0.00

P-n23-k8-C8-V3 174 0.10 174 0.15 0.00

P-n40-k5-C14-V2 213 1.10 213 3.33 0.00

P-n45-k5-C15-V2 238 11.10 238 2.32 0.00

P-n50-k10-C17-V4 261 5.00 261 2.75 0.00

P-n50-k7-C17-V3 262 6.40 262 1.52 0.00

P-n50-k8-C17-V3 292 7.40 292 0.79 0.00

P-n51-k10-C17-V4 309 117.60 310 0.86 0.32

P-n55-k10-C19-V4 271 18.10 271 5.93 0.00

P-n55-k15-C19-V6 274 36.00 274 5.19 0.00

P-n55-k7-C19-V3 301 78.20 301 2.30 0.00

P-n55-k8-C19-V3 378 53.60 378 0.44 0.00

P-n60-k10-C20-V4 325 282.70 325 2.40 0.00

P-n65-k10-C22-V4 372 1028.20 375 3.41 0.81

P-n70-k10-C24-V4 385 1468.30 385 4.74 0.00

P-n76-k4-C26-V2 309 122.50 309 98.30 0.00

P-n76-k5-C26-V2 309 90.10 309 54.68 0.00

P-n101-k4-C34-V2 370 6581.80 370 373.82 0.00

39

	Introduction
	Related literature
	Problem description and notation
	A column generation based heuristic for the GVRPTW
	The route optimization procedure
	Speed-up the route optimization procedure
	The construction heuristic
	Interest in using the route optimization procedure

	Recovering infeasibility
	Local search
	Negative reduced cost route generation
	Management of the route pool 1
	Overall procedure

	Computational experiments
	Instances
	Parameters
	Preprocessing
	Computational results on VRPRDL, VRPHRDL instances (Ozbaygin2017VRPRDL) and on the modified instances
	Computational results on GVRPTW instances (Moccia2012GVRPTW)
	Computational results on GVRP instances (Bektas2011GVRP)

	Conclusions
	Choice of pivot customers
	Supplementary results
	Results on VRPRDL instances with 40 customers
	Detailed results on the GVRP instances

