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ABSTRACT: Induction time, a measure of how long one will wait for nucleation to occur, is an important parameter in quantifying 

nucleation kinetics and its underlying mechanisms. Due to the stochastic nature of nucleation, efficient methods for measuring large 

number of independent induction times are needed to ensure statistical reproducibility. In this work, we present a novel approach for 

measuring and analyzing induction times in sessile arrays of microdroplets via deliquescence/recrystallization cycling. With the help 

of a recently developed image analysis protocol, we show that the interfering diffusion-mediated interactions between microdroplets 

can be eliminated by controlling the relative humidity, thereby ensuring independent nucleation events. Moreover, possible influence 

of heterogeneities, impurities, and memory effect appear negligible as suggested by our 2-cycle experiment. Further statistical anal-

ysis (k-sample Anderson-Darling test) reveals that upon identifying possible outliers, the dimensionless induction times obtained 

from different datasets (microdroplet lines) obey the same distribution and thus can be pooled together to form a much larger dataset. 

The pooled dataset showed an excellent fit with the Weibull function, giving a mean supersaturation at nucleation of 1.61 and 1.85 

for the 60pL and 4pL microdroplet respectively. This confirms the effect of confinement where smaller systems require higher su-

persaturations to nucleate. Both the experimental method and the data-treatment procedure presented herein offer promising routes 

in the study of fundamental aspects of nucleation kinetics, particularly confinement effects, and are adaptable to other salts, pharma-

ceuticals, or biological crystals of interest.

Introduction 
Nucleation in solutions has been a subject of numerous investiga-
tions due to its significance in material synthesis1, pharmaceutical 
purification2, and biomineralization3. In general, nucleation is the 
step that determines how long we must wait before the appearance 
of a stable crystal cluster in a supersaturated solution.4 This “waiting 
time”, referred to as induction time, is a function of the nucleation 
rate and the system size. Most induction time measurements are 
carried out at constant supersaturation for the sake of “simplicity” 
of data interpretation and modeling4. However, in reality, most nu-
cleation processes occur at varying supersaturation, either by cool-
ing, antisolvent, or evaporative crystallization5. Thus, a thorough 
understanding of the nucleation kinetics of such systems is im-
portant. 
In this context, due to the stochastic nature of nucleation, droplet-
based microfluidic systems have been widely used as experimental 
tool as they permit numerous independent experiments using very 
small quantities of material. Moreover, their small sizes promote 
homogeneity in temperature and composition. Despite these ad-
vantages, there remain some drawbacks in the use of droplet-based 

microfluidics in the context of nucleation studies. First, since induc-
tion time scales inversely with the system size due to kinetic con-
finement effect, high supersaturation level must be achieved in or-
der to observe nucleation events in small volumes within reasona-
ble time scales. Consequently, in constant supersaturation experi-
ments, not all of the microdroplets (denoted as µDs) will nucleate, 
thereby reducing the statistical quality of the data (data is cen-
sored). Another issue is that the time for a critical cluster to grow to 
detectable size depends on the instrument sensitivity, which can 
also affect the robustness of the measurements6. Regarding these 
limitations, evolving supersaturation experiments where the sol-
vent is allowed to evaporate seem promising7: µDs rapidly reach 
high supersaturations where growth time to detectable size is neg-
ligible, and every µD will give rise to a nucleation event (uncensored 
data). Thus, in our previous work, we have developed an experi-
mental setup allowing facile generation of monodisperse arrays of 
nanoliter to femtoliter droplets immersed in an oil film, which can 
serve as evaporative microcrystallizers8, 9. We have also shown that 
a simple and efficient digital-image processing method based on the 
standard deviation of the grey-level pixels of a single µD and its im-
mediate vicinity (σ) is useful in probing the microdroplet dynamics, 
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particularly the onset of nucleation.9, 10 Interestingly, we have ob-
served that in these experiments, microdroplets can interact with 
each other via water diffusion dynamics, i.e. when one µD nucle-
ates, water can diffuse to its closest neighbors. Unfortunately, these 
interactions would complicate the analysis of induction times ob-
tained from µD arrays.  
 In this contribution, we develop a new approach to measure induc-
tion time in sessile arrays of microdroplets using deliquescence-re-
crystallization cycles. With the help of our in-house developed mi-
crodroplet generation system with humidity control module, we 
show that by controlling the relative humidity, the interfering diffu-
sion-mediated interactions between microdroplets can be elimi-
nated. Then, by using appropriate statistical tests, we show that our 
measurement method is robust and reproducible. Finally, our evap-
orative nucleation experiments on 60pL and 4pL microdroplets (at 
equilibrium) confirm the confinement effect11 where smaller sys-
tems reach higher supersaturations.  
 

Experimental Section 
I.Production of microdroplets with microinjectors (Fig. 1a). We em-
ployed a mechanically controlled micropipette to generate arrays of 
monodisperse aqueous NaCl sessile microdroplets (1.7 M) on the 
surface of a poly(methyl methacrylate) (PMMA)-coated glass slide 
immersed in a 0.4mm-thick layer of polydimethylsiloxane (PDMS) 
oil (10 cSt). A detailed description of this procedure has been pre-
sented previously8 while the details of the chemical products and 
equipment used are shown in the Supplementary Information (SI) 1 
and 2.  
 
II. %RH control system. A home-made, 3D printed (Formlabs 
printer, PMMA resin) %RH controller module (Fig. 1b), allows us to 
control the %RH of an air flow on the oil surface, while still having 
physical access to µDs (not a closed box, but an open-to-air design). 
Humid air is obtained through consecutive bubbling of a dry air-
flow: first in hot-water, then in room-temperature water. A liquid 
trap ends the process to remove undesired water droplets gener-
ated by the bubbling process and conveyed in tubing. Mixing humid-
air with dry-air allows fine control of %RH, from a maximum humid-
ity condition (95% RH) to a dry condition (10% RH). The flow is then 
distributed uniformly above the oil layer. Calibration and stability of 
%RH were conducted with a %RH sensor (Sensirion SHT85) plugged 
onto a RaspberryPi3, and a home-made Python3 script to record 
%RH measurements (see SI3). 
 
III. (𝜎,t) measurements. The dynamics of each individual µD is fol-
lowed through an already developed image-processing technique. 
In a Region-Of-Interest (ROI), centered on each µD and its immedi-
ate vicinity as shown in Fig 2, we extract, for each time step (image), 
a single scalar value: the standard-deviation 𝜎 of ROI-pixels’ grey-
levels. This is a post-processing technique: images of the whole µDs-
array are acquired at a desired frequency until the end of the exper-
iment, then we process the image-stack with ImageJ (FIJI). First, we 
extract each µDs edges on first images, and plot a ROI around each 
one. We then propagate 𝜎 measurement in each ROI through the 
whole image-stack to obtain the (𝜎,t)-curves which reflects the spa-
tial and temporal dynamics of each µD. (𝜎,t)-curves are then pro-
cessed with home-made Python3 scripts (available on request). 

 

Figure 1. (a) Schematic diagram of the microdroplet generation system 
with humidity control module (b) picture of the confined microdroplet 
generation chamber that contains PMMA-coated glass plate immersed in 
PDMS oil (c) sessile microdroplets printed on the surface of the PMMA 

using a motorized microinjector. 

IV. Experimentation timeline. The experiments can be divided into 
3 consecutive steps. Step 0 - this step is dedicated to obtaining an 
array of sessile crystals. A µD array is generated (Fig. 1c), following 
a previously developed method. %RH is here not controlled, and 
just need to be lower than %RHeq, so that µDs will contract (water 
diffuses to the oil and above-oil atmosphere) until nucleation and 
growth of a unique crystal in each µD. This step ends when an array 
of fully-dried crystals is obtained. Step 1 - the %RH above the oil 
layer is increased so that %RH > %RHeq (the %RH corresponding to 
the equilibrium water partial vapor pressure above a saturated so-
lution). Crystals will then, until complete dissolution, absorb water 
through the oil-layer. Step 1 ends after every crystal has been com-
pletely dissolved and the size of the resulting µDs seems constant. 
Step 2 - the %RH above the oil layer is decreased so that %RH < 
%RHeq. Water then selectively diffuses from µDs, through the oil to 
the above-oil atmosphere; this contraction ultimately leads to nu-
cleation and growth of a single crystal in each µD. Step 2 ends when 
we recover the initial conditions of step 1: an array of fully dried 
sessile crystals. Cycling - The sequence Step 1 and Step 2 can then 
be repeated at will. 

Results and Discussion 
The dynamical behavior of the generated µDs depends on the rela-
tive humidity %RH above the oil in comparison with the equilibrium 
%RHeq above the saturated solution (for NaCl in water, %RHeq=75% 
at 25°C). Generally, if %RH > %RHeq, the crystal would absorb mois-
ture leading to deliquescence, dissolution, and dilution. If %RH < 
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%RHeq, water would evaporate from the µD leading to an increase 
in salt concentration until nucleation. By controlling the prevailing 
%RH, we demonstrate the use of our image analysis protocol to 
track the dissolution and nucleation of µDs through (𝜎,t)-curves. 
I. Analysis of (𝜎,t)-curves. Figure 2 presents the typical time evolu-
tion during a nucleation experiment of 𝜎 measured for each ROI, 
i.e., for each µD. The analysis of (𝜎,t)-curves show characteristic 
points which are useful datapoints giving information on the dy-
namics of each µD, on both dissolution (deliquescence of the crys-
tal), contraction and nucleation (See the video in SI for the whole 
process). Their sequence and characteristics are discussed hereaf-
ter: 
t0 - tDISS. Dissolution time (tDISS) is the first encountered characteris-
tic point, appearing as a local minimum on the curve. From t0 (at 
time t=0) to tDISS, the crystal is dissolving through water absorption, 
and tDISS is the ultimate point of this process, when the crystal was 
last seen before total dissolution. It is noted that, on the path to 
tDISS, the signal can present large and erratic oscillations, due to 
small movements of the crystal (jiggling) along the process leading 
to its total dissolution. 
tDISS - tSHIFT. This is the µD dilution step, where, after the crystal com-
pletely dissolves, we allow µDs to continue to absorb water, thereby 
decreasing their NaCl concentration: µDs are undersaturated. At 
some time (tSHIFT), when µDs do not visually evolve anymore, we 
shift %RH above the oil-layer, from above %RHeq to a lower value, 
here from 95% to 10%RH. 
tSHIFT - tMATCH. From the time we shift %RH, each µD will contract by 
selective diffusion of water through the oil-layer to the controlled 
atmosphere. Initially, the µDs have a refractive index lower than the 
oil one, but as contraction occurs, their refractive will increase, and 
will at some time (tMATCH) match the oil refractive index: at this point 
µDs optically disappear. 
tMATCH - tNUC. The refractive index increases, linked to the increase in 
NaCl concentration, until crystal nucleation. Therefore, sigma will 
gradually re-increase after tMATCH and crystal nucleation will appear 
as a large instantaneous (<1s) jump in sigma values at tNUC. The 
growth of the single nucleated crystal will continue to occur as long 
as the contraction of the µD continues, until no more water is avail-
able: we recover the initial state, a dry sessile crystal.  

 
Figure 2. Typical (𝜎,t)-curve, during a full %RH cycle 
(deliquescence/recrystallization), associated to each Region-Of-Interest 
(ROI). An illustrative ROI is provided in the lower part of the graph to show 
typical evolution of µDs. Characteristic time points are reported on both 
%RH curve and (𝜎,t)-curve. %RH cycle (dotted orange) goes from step 1 
(crystal deliquescence up to tDISS followed by µD dilution) to step 2 (µD 
contraction) at time tSHIFT. During contraction, µD is at saturation at time 
tSAT, optically disappear at time tMATCH, and crystals nucleate at time tNUC. 

II. Estimating tSAT.  For experiments with evolving supersaturation, 
the time at which the microdroplet becomes saturated (tSAT) must 
be subtracted from the nucleation time tNUC to calculate the induc-
tion time.12 Otherwise, the measured induction time would depend 
on the arbitrary initial concentration. In principle, tSAT can be esti-
mated by computing the evaporation rate as a function of %RH and 
system geometry13 but this could introduce another layer of uncer-
tainty. Alternatively, we can extract tSAT from (𝜎,t)-curves by making 
two assumptions. First, we consider that during the dissolution step 
of the crystal (t0 to tDISS), the solution is in equilibrium with the crys-
tal14, i.e at saturation concentration. Second, we consider that along 
the expansion stages (tDISS to tSHIFT) and contraction stages (tSHIFT to 
tMATCH), the µD shape have the same symmetric evolution, i.e. its 
shape follows the same smooth reversible path. Given that 𝜎 is a 
function of only shape and refractive index (so NaCl concentration), 
we can use the value of σ at tDISS (where µD is saturated) as refer-
ence to find tSAT during the contraction stages (Figure 2). Thus, the 
µDs are assumed to be at saturation when their σ is equal to that of 
tDISS. This is a direct consequence of our symmetric shape path hy-
pothesis.  
 
III. Eliminating interactions via %RH control. When the droplet con-
traction is done at %RH close to the %RHeq, the µDs can interact with 
each other via water diffusion dynamics. This was previously re-
ported and explained in a previous paper.10 To summarize, when a 
microdroplet nucleates, it suddenly increases the chemical poten-
tial of water inside the microdroplet. As a result, water diffuses from 
the nucleated microdroplet to its closest neighbors and thereby de-
creases their solute concentration. This is shown in Figure 3, where 
selected (𝜎,t)-curves show clear oscillations, typical of nucleation 
induced µD-to-µD interactions. This data was obtained in contract-
ing µDs at 55% RH (room conditions, without using the %RH mod-
ule). Unfortunately, these interactions would make it impossible to 
consider each µD as an independent micro-crystallizer. To perform 
experiments in conditions where one can rule-out any possibility of 
µD-to-µD interactions, the %RH must be lowered such that the driv-
ing force for diffusion towards the atmosphere is high enough to 
prevent diffusion to neighboring µDs.  
For this purpose, we developed two versions of an air-flow dis-
patcher module (v1 and v2, see SI3). If the interactions are fully 
eliminated, there should be no oscillations in the σ-curve prior to 
nucleation in contrast to Figure 3. Although both designs were able 
to eliminate such oscillations, the v2 module design provides a 
much better spatial homogeneity of hygrometric conditions as re-
vealed by the statistical-momentums analysis of tDISS distributions 
(see SI3). This led us to choose the v2 design for the experiments 
conducted and analyzed here. 
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Figure 3. (𝜎,t) curves for 4 neighboring µDs, under conditions (room 
conditions at 55%RH, without using %RH module) which promote µD-to-
µD interactions, which appear as oscillations in the 𝜎 signal. While a µD 
nucleates a crystal at time ‘h’, water is released to other neighboring µDs, 
thus diluting them. Their associated 𝜎 temporarily decreases before µD 
contraction re-occurs, thereby re-increasing their associated 𝜎. Amplitude 
and time shift of the interactions are driven by both µD and nucleating-µD 
parameters such as size, supersaturation, and also by their separation 
distance. The spatial arrangement of µDs, named by their nucleation time, 
are the following: i, k, j, h. It is notable that these interactions are 
unobservable on images while looking at µD diameter changes under 
optical resolution. 

IV. Small and Big-Droplets (SD and BD) experiments. To study the 
effect of confinement on nucleation, we performed experiments in-
volving small droplets SD (4 pL) and big droplets BD (60 pL). First, 
we generated lines of monodisperse aqueous NaCl sessile micro-
droplets (1.7 M). Big µDs (total number of imaged µDs: 191, in 5 
lines: 38, 36, 39, 39 and 39 µDs) were generated first. µDs are left 
free to contract (Step 0), at room conditions (55% RH), until we ob-
tain lines of totally dried sessile crystals. Then, as the %RH above 
the oil is increased to 95%RH (Step 1), we start image acquisitions 
at a 1Hz rate for BD and 4Hz rate for SD. Following this experiment, 
we generated smaller µDs (total number of imaged µDs: 170, in 3 
lines: 56,56 and 58 µDs), and conducted the same experiment, ex-
cept that for these small µDs we cycle them twice through Step 1 / 
Step 2. Images of representative lines of small and large µDs are 
provided on Figure 4. 

 
Figure 4. Representative lines of small µDs and large µDs. 

 
Datasets. S(t) is the cumulative probability that nucleation has not 
occurred as a function of time t, and is called the survival function. 
In experiments presented here, the time evolution of the fraction 
of droplets in which nucleation has not occurred is considered a 
good estimator of the underlying S(t). Each µDs line is treated as an 
ensemble (with associated S(t)), and constitute a dataset. We con-
sider datasets relative to the µDs sizes they are associated to: BD 

datasets (Big µDs) and SD datasets (Small µDs). These datasets are 
in fact different uncensored (every generated µD give rise to a de-
tected crystal) samplings of the nucleation times survival function, 
if existing. 
Costs and benefits of increasing supersaturation. For experimenta-
tions conducted at constant supersaturation, there are two major 
drawbacks, sources of uncertainties in interpreting obtained nucle-
ation data: tGROWTH and data censoring. tGROWTH is the time to grow 
from the critical size (the nucleation event in itself) to a detectable 
size, and needs additional hypothesis to be modeled. Data censor-
ing is the fact that not every experiment (supersaturated µDs in our 
case) will lead to a nucleation event, because nucleation rates may 
span over a large bandwidth, so that there’s missing information. 
Here, conducted experiments provide access to uncensored data: 
every single µD leads to a detectable nucleation event, due to con-
stantly increasing supersaturation. For tGROWTH, we also benefit from 
the supersaturation constantly increasing, combined with a kinetic 
confinement effect15, as the probability to nucleate scales with the 
inverse of the volume, µDs reach high supersaturations before nu-
cleation occurs. As a consequence of these high supersaturations, 
growth from critical cluster to detectable size is fast enough to be 
ignored: in less than a second, where experiment span over hun-
dreds to thousands, a large crystal is detected. These benefits in ex-
perimentations translate in a cost relative to the increased complex-
ity to model nucleation in this evolving supersaturation framework. 
 
Checking for heterogeneities and memory effect. A common 
source of uncertainties in nucleation experiments are heterogenei-
ties, impurities, and their impact on measured nucleation rates (see 
the discussion on thermal and quenched disorder in reference 4). 
The cycling can be viewed as an interesting approach16  to detect a 
subset (some µDs in the experiments) where nucleation is mainly 
due to heterogeneities, which translates in a population of µDs that 
“statistically always” nucleates first. For SD datasets, that’s what 
Figure 5 is about: with two cycles, we can compare the nucleation 
ranks of every µD from a cycle to the following. If a population of 
µDs present heterogeneities leading to faster nucleation rates exist, 
it could appear as a pattern, for first ranks: they would statistically 
nucleate faster than other µDs, so in lower rank positions in both 
cycles. Figure 5 does not show any kind of patterning, the distribu-
tion of ranks spread homogeneously in the whole available space. 
Moreover, it also indicates lack of historical contamination or 
memory effect from a cycle to the following, that is, nucleation is 
independent of previous cycle behavior. Nevertheless, further anal-
yses and larger a number of cycles would be needed to confirm this 
and will be the subject of another study. 
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Figure 5. µDs nucleation rank comparison in the two consecutive cycles 
for SD datasets. “Rank Cycle 1” is µD nucleation rank position in cyle 1 SD 
datasets, while “Rank Cycle 2” is the µD corressponding rank position it 
nucleates in cycle 2 SD datasets. 

Distribution of characteristic time points. Due to the stochastic na-
ture of nucleation, a distribution of times tNUC is expected. But we 
also see, in Figure 6, that contraction characteristic time points tSAT 
and tMATCH also distribute: despite optimization in hygrometric con-
ditions, µDs dynamics still show individual characteristics. Such dis-
crepancies can find their source in varying local conditions such as, 
without being an exhaustive list, surface roughness or chemistry on 
which µDs rely, local water concentration in oil, small differences or 
variations in imposed above-oil %RH. Also, small differences in ini-
tial diameter, lower than the resolution of our optical system, can-
not be ruled out. However, we see in Figure 6 the astonishing simi-
larity of the diverse characteristic time points distributions, in terms 
of both shape and scale. All µDs lines, whatever the cycle for SDs, 
shows such resemblance (see SI4). Ultimately, these distributions of 
tSAT and tMATCH will be reflected in nucleation time tNUC distributions. 
Also, for the case of SDs, which experienced two deliquescence/nu-
cleation cycles, Figure 6 shows a Cycle-to-Cycle times location shift 
in distributions of times tMATCH and tNUC, similar for every SD lines. It 
seems that, statistically, µDs are slower to reach tMATCH and tNUC dur-
ing cycle 2 as compared to cycle 1: µDs contract slower in cycle 2. 
 

Figure 6. Distributions (kernel density estimation of probability density 
function) of characteristic time points (tSAT, tMATCH and tNUC), for a typical 
dataset (here SD line 1 dataset), for both deliquesence/nucleation cycles 
(C1 for cycle 1, C2 for cycle 2). Plots are against a shifted time where the 
mean tSAT, respectively to the cycle, is taken as the origin of times. 

  

Dimensionless Induction Time  (DIT). To compare µDs and associ-
ated tNUC, we have to take into account differences that may only 
arise from their individual behavior (discrepancies in contracting dy-
namics), and also from their “cycle” behavior (the location shift 
shown from cycle 1 to cycle 2 for both tMATCH and tNUC distributions). 
For this purpose, we non-dimensionalized individual induction 
times tNUC relative to tSAT and tMATCH. The individual µDs times to nu-
cleation tNUC are converted to a dimensionless induction time, as 
specified by equation 1, here: 
 

τ =
tNUC − tSAT

tMATCH − tSAT
 

 
(1) 

 

Figure 7. Survival function (sf) semi logarithmic plot of Dimensionless 
Induction Times (DITs) of every µD line in the full dataset of big droplets 
(BD) and small droplets (SD). Among SD datasets we discriminate Cycle 1 
(SD Cycle1) from Cycle 2 (SD Cycle2). Best fits from a Weibull sf are here 
provided as guide to the eye, calculated for the full pooling of all BD 
datasets (BD fit.), and for a subset (all pooled but line 3 in cycle 1) of the 
full pooling of SD datasets (SD fit.). Associated respective Weibull shape 

parameters are reported as 𝑘𝐵𝐷
𝑊𝑒𝑖𝑏𝑢𝑙𝑙 and 𝑘𝑆𝐷

𝑊𝑒𝑖𝑏𝑢𝑙𝑙. 

DITs seem similar. DITs semi logarithmic plots of their survival func-
tion are reported on Figure 7. At first sight, such nucleation dimen-
sionless time allows comparison of µDs with individual contraction 
dynamics, which first benefit, for the SDs case, is to make cycle-to-
cycle tNUC location shifts vanish: there is no evidence of a location 
shift (see SI5), from cycle 1 to cycle 2, so that nucleation times as 
reported through the use of DITs compare well. It seems, to the eye, 
that lines in BD datasets and SD datasets can, respectively, be fully 
pooled to be treated as representative of a unique experiment, 
thereby increasing the statistically representation. This will be ad-
dressed hereafter in the “Datasets pooling” section. Also evident 
on Figure 7, for both BD and SD datasets, the log(sf) of their respec-
tive DITs do not follow a purely exponential decay, which would ap-
pear as a straight line on the plot: lowest values of DITs draw a plat-
eau. This plateau is both typical of experimentation inaccuracies 
(tGROWTH, heterogeneities), and of compressed exponential decays. 
As a reason for this plateau, we can here eliminate inaccuracies that 
arise from a shift between nucleation and detection of the crystal 
as growth is almost instantaneous to a visible and consequent size: 
growth time does not pollute these measurements. Also, as shown 
on Figure 5, the lack of patterns (at least for SDs, the only µDs that 
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underwent two cycles) in their cycle-to-cycle ranks do not promote 
evidence of a µD population (which nucleates first) subject to a 
higher nucleation rate due to nucleation promoting heterogenei-
ties. In doing so, this plateau seems to have an existence inde-
pendently of experimentations inaccuracies, and will be treated as 
such, promoting datasets fittings (addressed hereafter in a specific 
part) with the help of a typical stretch/compressed distribution: the 
Weibull distribution, which shape parameter k discriminate be-
tween stretching (k<1) and compression (k>1) of an exponential de-
cay. Weibull survival function, in its standardized form, can be writ-
ten as follows (eq.2), with k being the shape parameter: 
 

𝑆(𝑡) = exp(−𝑡𝑘) 
 

(2) 

Datasets pooling. Up to now, we implicitly considered a µD line as 
the scale of the sampling of the nucleation times distribution, each 
line forming a dataset, and kept comparing line-to-line similarities. 
There is high temptation to pool all datasets toward a “super-
dataset” that could be treated as a whole, but the problem would 
be to justify such data pooling. Such authorization for datasets pool-
ing could rely on the use of a non-parametric statistical test: the “k-
sample Anderson-Darling test” (kADt).17 The kADt tests the null hy-
pothesis “H0: the k-samples are drawn from the same population” 
versus the alternative hypothesis “H1: the k-samples are drawn 
from different populations”. In other words, do here presented DITs 
associated to each µD lines could be considered as samples repre-
sentative of the same distribution, i.e., could we model these sam-
ples with the same distribution function, and pool datasets? For the 
5 BD datasets (see SI6), with a 5% significance level, kADt fails to 
reject the null hypothesis H0: the 5 µD lines and associated DITs dis-
tributions can be modeled with the same distribution function, and 
we pool datasets in BDSUP superdataset. Regarding (see SI6) the 6 
SD datasets (considering each cycle - 3 lines each - as independent 
sampling as lines could be), the kADt reject null hypothesis H0: the 
6 datasets cannot be considered to be drawn from the same distri-
bution. We then test every combination of 5 among 6 lines with 
kADt, and one SD dataset seems to be the source of the null hypoth-
esis rejection: line 3 in cycle 1. In removing this dataset, kADt cannot 
reject the null hypothesis H0 anymore, and we can then construct a 
SD superdataset SDSUP constituted of 5 pooled SD datasets: lines 1 
and 2 in cycle 1, and every 3 lines in cycle 2. 
Datasets Fittings. Complementary to the analysis of Survival func-
tion (sf) semi logarithmic plots of Dimensionless Induction Times 
(DITs) presented on Figure 7, the contracting process (where, as vol-
ume decreases, supersaturation increases, imposing also nucleation 
rate to do so upon nucleation of a crystal) encompassed by µDs also 
justify the modeling of DITs with a Weibull distribution function, 
which would correspond to a compressed exponential function of 
class III as suggested by Sear.4 A fitting procedure was applied to 
newly constructed SDSUP and BDSUP datasets, and results are pre-
sented on Figure 8. It is to note that sensitivity of fittings algorithm 
to both outliers and initial fitting guesses was addressed in two 
steps: we first fit “roughly”, with guessed outliers removed, then we 
re-incorporate 98% of the full dataset to refine fit. R2 and mean 
squared errors were calculated on the full dataset. Despite such 
precautions, as seen on Figure 8, there is departure of the fit from 
data at distribution tail (highest DITs). This is not an artefact, tail is 
not well fitted, but using semi logarithmic scale here does not ren-
der justice to quality of fittings, as measured with both R2 and mean 
squared errors (see SI7). Moreover, Figure 8 confirms confinement 

effects where the induction time shifts due to system (µD) size: the 
smaller the system, the longer the induction time. 

Figure 8 Survival function (sf) semi logarithmic plot of Dimensionless 
Induction Times (DITs) for both BDSUP and SDSUP datasets. Best fits with a 
Weibull function are shown as ‘SDSUP fit.’ and ‘BDSUP fit.’ With reported 

associated distribution shape parameters as 𝑘𝐵𝐷
𝑊𝑒𝑖𝑏𝑢𝑙𝑙 and 𝑘𝑆𝐷

𝑊𝑒𝑖𝑏𝑢𝑙𝑙. 

Supersaturations at nucleation times. To translate DITs in supersat-
urations, one need a contraction model: how µDs volume evolves 
with time. An exact and precise model is complex and out of the 
scope of this paper, and will be the object of specific studies later 
on. But from previous works, and for the sake of simplicity, we can 
choose a linear evolution of volume with time, which allow (see SI8) 

to calculate supersaturations NUC from DITs and supersaturation 

MATCH at matching time tMATCH, following equation here: 
 

𝛽𝑁𝑈𝐶 =
1

1 −   × (1 −
1

𝛽𝑀𝐴𝑇𝐶𝐻
)

 

 
 
In Figure 9, we report calculated supersaturation distributions for 
both BDsup and SDsup superdatasets, with corresponding Weibull 
function best fits for both. For BDSUP, nucleation occurs at a mean 
supersaturation of 1.61 and 95% spans from 1.58 to 1.65. For 
SDSUP, nucleation occurs at a mean supersaturation of 1.85 and 
95% spans from 1.74 to 2. There is high correspondence with su-
persaturation values already reported in literature, for compara-
ble system sizes18-20  
 

(3) 
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Figure 9. Supersaturation histograms and best fits with a Weibull 
probability density function (pdf), in using a linear decrease of droplets 
volume with time model. SD and BD are the pooled data as determined by 
Anderson-Darling k-sample tests. ‘SD fit.’ and ‘BD fit.’ are, respectively, SD 
and BD Weibull pdf best fits. Median and mean times of each fits are 
reported on graph for both SDs and BDs fits. 

Conclusions 
In this communication, we present a microdroplet generation sys-
tem with humidity control module and a novel approach for meas-
uring and analyzing induction times in lines of saline sessile micro-
droplets undergoing a deliquescence/recrystallization cycling pro-
cess. With the help of a recently developed image analysis protocol, 
we first assert microdroplets act independently: there is no micro-
droplet-to-microdroplet interactions. Second, using a dimension-
less time, dynamics of microdroplets along deliquescence/recrystal-
lization cycles are specified, allowing to obtain precise estimation of 
the nucleation induction times survival function S(t), for every mi-
crodroplet lines. Considered as samples of the underlying (un-
known) nucleation probability density function, line datasets that 
satisfies a k-sample Anderson-Darling test are pooled, and resultant 
superdatasets are fitted with a Weibull function. Moreover, evapo-
ration experiments on 60pL and 4pL microdroplets, at saturation 
confirm confinement effect that smaller systems reach higher su-
persaturations. Both the experimental method and the data-treat-
ment procedure seems promising for the study of fundamental as-
pects of nucleation kinetics, confinement effects in particular, and 
is adaptable to other salts, pharmaceuticals, or biological crystals of 
interest. 
The modeling of evaporation and the use of a modified Poisson dis-
tribution which considers the time-dependence of the nucleation 
driving force5 will be a subject of a future work.  
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