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Résumé :  

La naissance d’un défaut dans un système mécanique se traduit le plus souvent par un changement de 

comportement vibratoire dans le domaine temporel et spectral. La détection de défaut par l’analyse 

vibratoire se base sur la surveillance  continue du comportement d’un composant en examinant l’évolution 

des indicateurs de défaut.  

Cependant, le diagnostic du roulement en fonction des indicateurs de défaut traditionnels seulement  n'est 

pas suffisant pour assurer une évaluation fiable de l'état du composant. C'est pourquoi, nous proposons dans 

cet article une méthode de diagnostic et de suivi des roulements basée sur une combinaison de plusieurs 

indicateurs temporels et fréquentiels couplée avec une méthode de classification dynamique. 

Ce papier a pour objectif d’introduire la classification dynamique comme outil de détection et de suivi d’état 

d’endommagement. Cette méthode de classification regroupe plusieurs indicateurs, en  temps réel, en des 

classes dynamiques représentant chacune un état d’endommagement du roulement.  

Mots clés : Suivi de roulements, classification dynamique, CEEMDAN, KPCA, les ondelettes. 

Abstract: 

The emergence of a bearing fault is always associated with a change in vibration behavior in the spectral 

and temporal domains. Traditional techniques based on vibration analysis extract features of the raw signal 

and examine their temporal evolution to detect any changes. However, mere traditional bearing diagnosis is 

not sufficient to ensure effective and reliable assessment of the component’s health condition.  

This paper proposes a multi-features dynamic classification as a new method for fault detection and health 

condition monitoring for bearings. This technique uses multiple features, namely traditional features 

extracted from the raw signal, in addition to singular values of the decomposed signal by Complete 

Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), two new features extracted by 

wavelets analysis, nonlinear principal component, and a dynamic classification to capitalize on the hidden 

information in the temporal evolution of the features.   

Index Terms: Bearing monitoring, dynamic classification, CEEMDAN, KPCA, wavelets. 

1. Introduction 

Rolling element bearings are essential components in rolling machines. Bearings, however, are generally 

seen as critical mechanical components, and the responsible for the majority of machines failure.  Therefore, 

a correct and continuous monitoring of bearing health condition is vital for maintaining a smooth functioning 

of the machine.  

Traditional diagnostic techniques based on vibration analysis extract statistical features from the raw signal 

in its temporal and spectral forms [1,2]. However, due to all the nonlinear factors that affect the rotating 

machine and add to the complexity of the system [3], effective diagnostic or monitoring techniques cannot 

depend only on traditional fault indicators [4,5]. Hence, there is great interest in finding alternative and 
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complementary tools, the majority of which are originated from two domains: new signal processing 

techniques, and data mining methods.  

Among all the time–frequency analysis methods, wavelets have been established as the most widespread tool 

in many areas of signal processing, due to their flexibility, and efficiency of detecting transients [6]. Aside 

from the original purpose of the wavelets as a non-stationary analysis method, recently  it became a fault 

feature extraction technique. 

Empirical Mode Decomposition (EMD) was first used for bearing fault detection by Peng et al [7], and has 

received increasing attention ever since, EMD can allow a good visibility of the fault, however EMD suffers 

from the  mode mixing problem. Wang [4] and Zhang [5] suggested replacing the EMD by Ensemble 

Empirical Mode Decomposition (EEMD), which is an alternative decomposition method that solves the 

mode mixing problem, but it initiates other issues. We suggest using Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise CEEMDAN, an EEMD variation that provides an exact reconstruction 

of the original signal and a better spectral separation of the modes, with a lower computational cost [8]. The 

singular values of the vector matrix composed of intrinsic mode functions IMFs obtained by applying the 

Singular Value Decomposition (SVD) can be used as special fault indicators employed to describe signal 

characteristics in each frequency band [3,5]. Once the final fault indicators’ vectors matrix is formed, Kernel 

Principal Component Analysis KPCA will be performed to eliminate any correlation or redundancy, which 

will increase the accuracy of the diagnosis. 

 Once the right fault indicators are extracted and processed, the fault detection and performance assessment 

of the machine becomes a pattern recognition problem. For this purpose, various classification methods have 

been used, namely artificial neural network [3], decision tree [9], Support Vector Machine (SVM) [4-5], 

among others. These methods showed more or less satisfactory results, but they all neglected one aspect of 

the fault indicators extracted from vibratory signals, i.e. the fact that these features are just like any data 

issued from any evolving system; they are constantly changing over time. Therefore, using a static 

classification method deprives us of the information conveyed in the temporal evolution of the indicators. 

The combination of multi-fault indicators and dynamic classification has two direct results: first, the use of 

multi features enhance the accuracy of the diagnostic process resulting in early and accurate detection of the 

fault, and second, the dynamic classification add more visibility of the bearing behavior once defected; 

resulting in a close monitoring of the behavior of the defected bearing. 

2. Feature extraction 

2.1. Traditional Features 

There are two types of fault indicators used traditionally to diagnose rotating machines: temporal 

and spectral features. The traditional time domain analysis computes characteristics’ features from 

time waveform signals as descriptive statistics - such as mean, peak, standard deviation, and crest 

factor, etc. and high order statistics, such as Root Mean Square (RMS), skewness, and kurtosis 

among others. As for frequency domain, the analysis is based on the transformed signal in 

frequency domain. Its main advantage over time domain analysis is its ability to isolate certain 

frequency components of interest that enable the localization of bearing faults. The same 

descriptive statistics can be extracted from the transformed signal [1-2]. 

2.2. Wavelets analysis  

Wavelets are well known signal processing technique used to examine the frequency composition of the 

signal [6]; therefore technical descriptions will be omitted. Instead the two new features extracted will be 

introduced: WRMS is the Root Mean Square frequency of the signal’s wavelets spectrum and PCWT represents 

the sum of all the spectrum lines. 

      
            

   

     
     

          (1)                                         
         

   

   
                               (2)                                                                

Where       corresponds to the spectral density of the coefficients maximum of the continuous wavelet 

transform for j=1,2,…,K,  K is the number of spectrum lines, fj is the frequency value of the j
th
 spectrum line. 

WRMS’ unit is Hz. 

2.3. EMD, EEMD and CEEMDAN 
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 EMD is a modern time-frequency analysis method developed by Huang et al [10], and it originated from the 

simple assumption that any signal consists of different simple intrinsic modes of oscillations. Therefore, the 

main principle of EMD is decomposing any signal into a number of Intrinsic Mode Functions (IMF),  

However, the major inconvenient of EMD is the mode mixing problem, which is defined as either a single 

IMF containing widely disparate frequency scales, or a component of a similar frequency  scale residing in 

different IMFs. The existence of the mode mixing can not only cause serious aliasing in the time–frequency 

distribution, but also make physical meaning of individual IMF unclear. When the mode mixing problem 

occurs, an IMF can cease to have physical meaning by itself, suggesting falsely that there may be different 

physical processes represented in a mode [4,6,11]. EEMD is an improved algorithm of EMD. It was 

developed to reduce the mode mixing problem by introducing an independent white noise into the signal in 

many trials, then applying the EMD decomposition, and finally averaging all the IMFs computed in each trial. 

The noise chosen in EEMD is not adaptive though, which makes the EEMD lose some of the EMD 

advantages [8].  CEEMDAN is another variation of the EMD, and has the advantage of needing a smaller 

ensemble size compared to the EEMD, resulting in a substantial computational cost saving. In that sense, 

CEEMDAN recovers some of the EMD properties lost by EEMD, such as completeness, and the fully data-

driven number of modes. 

The algorithm of CEEMDAN is similar to that of EEMD, with one difference, i.e. the noise added to the 

signal is different for every trial and for every IMF.  

2.3. Singular Value Decomposition 

Singular Value Decomposition extracts dominant shapes from a series of raw input vectors by using 

orthogonal components. It allows better visibility of the dispersion around the origin through its 

decomposition of the signal into principal components, and it is also known for its good stability [5]. 

2.4. Kernel Principal Component Analysis  

In view of the high correlation and redundancy exhibited by the matrix formed of all the signal extracted 

features, methods need to be applied to correct this problem and increase the accuracy of the diagnosis. 

Principal Component Analysis (PCA) is a well-known linear method for feature extraction and 

dimensionality reduction. However, if the data has more complicated structures that cannot be simplified in a 

linear sub-space, traditional PCA will become invalid. To overcome the linearity of the PCA, several 

variations have been introduced. One such method that is directly related to PCA is called Kernel PCA 

(KPCA) [12]. The basic idea of KPCA is to first map input data into some new feature space F, typically via 

a non-linear function Φ (polynomial of degree p), and then perform a linear PCA in the mapped space whose 

dimension is assumed to be larger than the number of training samples. 

3. The pattern recognition 

The main objective of pattern recognition is the study of how machines can observe the environment, learn 

to distinguish the interesting patterns of their background, ignore the non-informing ones, and make sound 

and reasonable decisions about the categories of patterns [13-14]. 

The performance of statistical pattern recognition methods depend on prior knowledge about the process 

operating’ states. This knowledge is often imperfect and incomplete. Knowledge imperfection is due to the 

use of sensors, the existence of noise, and expert evaluations. Prior knowledge is incomplete because it 

cannot contain information about all process operating states. The problem of imperfect knowledge can be 

solved by using the fuzzy sets theory. The problem of incomplete knowledge can be solved by a continuous 

learning in order to add the information carried by each new classified pattern to the database or prior 

knowledge. Hence the necessity of choosing a fuzzy pattern recognition method with a continuous and 

adaptive classifier [15]. 

Furthermore the classes of an evolving system are dynamic; their characteristics change over time, in a slow, 

progressive way or in abrupt way. The change in classes’ behavior is directly linked to the state of the 

functioning system. In the bearing monitoring case, abrupt change is always associated with the existence of 

a fault.  

The right classifier has to be capable of detecting all changes in the classes’ behavior, such as fusion, drift, 

creation and splitting, among others. The classifier has to be able to adjust its parameters over time. 
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There are three types of classifiers, i.e. supervised, unsupervised and semi-supervised; and the adequate one 

depends on prior knowledge of the system and on the classes [16]. Semi-supervised classifiers are well-

suited for evolving systems and then for bearing monitoring. 

For all these reasons, the semi-supervised version of Dynamic Fuzzy K-Nearest Neighbors (DFKNN) is more 

suitable for monitoring the health condition of the bearings. 

3.1 Semi-supervised Dynamic Fuzzy K-Nearest Neighbors 

The semi-supervised DFKNN is a dynamic pattern recognition method specially developed for evolving 

systems. It can detect any classes’ evolution and adapt them according to the dynamic of their evolutions. 

The particularity of this method is its ability to create new classes if needed, and taking into account the 

pattern usefulness [16]. DFKNN is a four stages method: learning and classification by Fuzzy K-Nearest 

Neighbors (FKNN), evolution detection, adaption of the classifier, and finally validation to keep useful 

classes and delete useless ones.  

 

 

 

 

 

 

 

 

 

 
 

Figure 1: The general algorithm of DFKKN 

The learning and classification phase in the DFKNN are very similar to FKNN. The only difference is the 

initialization of two parameters CGAcurr - the center of gravity of each class C to each attribute-, and StdAinit -

initial standard deviation of each class C to each attribute. 

In the detection phase, the characteristics of the class C (CGAcurr, StdAcurr) are computed to detect the class’ 

evolution; they are updated as follows (Eq.3 and Eq.4): 

          
    

  
             

               

               (3) 
        

         

    
 

  

    
                   (4)                                                                                                                

Based on the computed values of CGAcurr and StdAcurr, two new parameters are introduced (iA2 and iA1) to 

monitor the temporal changes of the class; iA1 represents the compactness of the class, and iA2 represents the 

distance between xA the attribute A of the signal x and CGAcurr. 

    
            

       
                                                   ( 5)              

                

        
                      (6)                                                                                                                                                                                                                                                                                       

A third parameter called NbMin is defined by the user to regulate the minimum number of patterns for class 

creation so a class with a single pattern will not be created. DFKNN integrates a mechanism to adjust the 

evolved class parameters in the adaptation phase. When a class evolution is confirmed, a new class is created 

based only on useful patterns.  

The adaption phase permits online follow up of the classes’ evolution. It takes into account splitting and 

drifting and deletion of useless classes as well. 

DFKNN uses extra parameters to consider the case of the fusion of two similar classes into one; Thfusion a 

threshold user specified to be respect in case of merging two classes, and δiZ another parameter used to 

measure the overlapping or the closeness of two classes. 

4. APPLICATION 

The multi-features dynamic classification has been implemented on an experimental bench, and vibration 

signals were extracted by piezoelectric accelerometers fixed on the bearing referenced 6206. The defect was 

artificially made. 15 signals were chosen to test the multi-features diagnosis process. Each signal 

characterizes a bearing condition; the first signal is of a healthy bearing, the second is of the same bearing 

DFKNN
N 

FKNN 
Learning phase 

Classification phase 

Detection phase 

Adaptation phase 

Validation phase 
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but with a fault surface of 2mm² located on the outer race, and the last signal is of a  the same faulty bearing 

in an advanced stage (20 mm²). 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: A flowchart of the bearing diagnosis by a multi-features dynamic classification for an incoming 

signal. 

The first step of the diagnosis procedure was the feature extraction. Firstly, 11 traditional features in both 

time and frequency domains were calculated (RMS, kurtosis, crest factor, standard deviation, peak, skewness, 

impulse factor, frequency RMS, frequency standard deviation, and central frequency). Concurrently, the first 

six IMFs of every signal by CEEMDAN were computed, the two wavelets features (WRMS, PCWT) were 

extracted as well, and then the singular values of each IMF and of each signal were conserved as features as 

well. All the features’ vectors were normalized. 

 

Figure 3: The first three principal components of six signals (00mm² to 10mm²), with the PCA on the right 

and the KPCA on the left. 

The second step was extraction by principal components; the KPCA was applied on the features’ vectors, and 

the first three principal components were enough to represent the data (the first three components account for 

98% of the variance).The chosen kernel for the KPCA is the Gaussian kernel. A comparison between the 

performance of FKNN by feeding it data extracted by PCA and KPCA showed that FKNN was able to 

recognize the classes formed by the different signals with 83,33% rate of success, compared to a success rate 

of 66,00% in case of PCA. The figure 3 shows clearly the superiority of KPCA’s performances applied to the 

first six signals extracted from the bearing compared to PCA’s. 

The vectors’ features formed by KPCA are fed to the dynamic classification DFKNN. The parameters of the 

DFKNN were set according to DFKNN recommendations and test; th1= 5, NbMin =8, k=4, thfusion=0.5, n1=6, 

n2=20. 

5. RESULTS AND DISCUSSION 

During the process of bearing monitoring, 15 signals were extracted from a bearing exhibiting an artificial 

outer race defect; each signal corresponds to a different fault surface (0mm², 02mm², 04mm², 06mm², 08mm², 

10mm², 12mm², 13mm², 14mm², 15mm,² 16mm² ,17 mm², 18mm², 19mm², and finally 20mm²).  Each signal 

went through the feature extraction process, and then fed to the dynamic classification method DFKNN.  The 

parameter responsible for classes’ deletion (n2) was initialized in a way that it will never be reached, since 

the information that a class holds (even a non- active one) can be used for prognostic or in calculating the 

speed with which the damage is spreading in the bearing. 
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     The results of the classification showed that DFKNN creates a new class whenever the surface of the fault 

increases, this new class gathered all the features describing the same state of the bearing health. The rate of 

recognition of classes can reach the 98,6 % with the right initialization of DFKNN’ parameters.  

     In the light of DFKNN tests, conclusion arise; DFKNN provides tools that can be integrated in a system 

expert to automate bearing monitoring, since a class creation is directly linked to a change in health 

condition. However, like many dynamic classification methods, DFKNN is very sensible to its parameters’ 

definition, which depends on the prior knowledge of the system. 

6. CONCLUSION 

A new diagnostic and monitoring method is proposed in this paper, a method that ensures diagnosis accuracy 

by using both traditional and original features combined with a dynamic semi-supervised fuzzy pattern 

recognition method; the fuzzy aspect of the method covers the imperfection of the prior knowledge, and the 

continuous learning of the method covers the incompleteness of the prior knowledge. Therefore, the semi-

supervised DFKNN was chosen for bearing monitoring. The new monitoring process showed effectiveness in 

detecting changes in bearing behavior. However, the usefulness of DFKNN is limited by a few drawbacks, 

such as the learning of the classifier which is not dynamic, and the great dependence of classification 

performances on the initial values of many parameters of DFKNN. 

     We are currently developing a new classification method that corrects all the limitations of the existing 

methods in bearing monitoring and diagnosis, and associates the classes’ dynamic with physical changes in 

the bearing condition.  
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