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Résumé:  

Nous considérons un matériau dont la relation contraintes-déformations est linéaire mais pas symétrique. La 

recherche d’un potentiel étant vaine, nous tentons de représenter la loi de comportement par un bipotentiel. 

La méthode de Fitzpatrick conduit à construire une suite croissante appropriée de bipotentiels. La technique 

est illustrée sur l’exemple des lois coaxiales.   

Abstract: 

We consider a material whose stress-strain relation is linear but not symmetrical. As the research of a 

potential is futile, we attempt to represent the constitutive law by a bipotential. Fitzpatrick method leads to 

construct a suitable increasing sequence of bipotentials. The technique is exemplified on coaxial constitutive 

laws.  

Keywords: Non associated constitutive law, Non standard materials, Implicit Standard Materials, 

n-monotonicity, Bipotential. 

1. Introduction 

Let us consider a material whose constitutive law connecting the stress tensor y  to the strain tensor x  is 

linear: y Ax . If the tensor A (of order 4) is symmetric and positive definite, we say that the material is 

elastic, and that A  is its stiffness tensor. Therefore the material belongs to the class of Generalized Standard 

Materials (GSM) [5, 6, 7]. It can be characterized [3, 8] by the convex potential 1
2

( ) [ ( )]x tr x Ax , where 

tr denotes the trace. The inverse constitutive law is characterized by the convex conjugate potential 
11

2
( ) [ ( )]y tr y A y . We can remark that the behaviour of this material is described either by one of the 

three following laws [7, 8]:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i y x ii x y iii x y tr x y .  

wherein the symbol  denotes the subdifferential. In a configuration where the tensor A  is not symmetric, 

we can not determine a potential neither a conjugate. To overcome such a handicap, Géry de Saxcé [2, 10, 

11] proposed to replace the sum ( ) ( )x y  of the two potentials by a biconvex function ( , )b x y  called 

bipotential. The behaviour is then described indifferently by one of three equivalent implicit laws: 

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )x yi y b x y ii x b x y iii b x y tr x y  

wherein the symbol x  (respectively y ) denotes the partial subdifferential at x  (respectively y ). Materials 

whose constitutive law can be represented by a bipotential are called Implicit Standard Materials (ISM). 

The aim of this work is to build a bipotential capable of representing non-symmetric linear laws. In cases 

where the monotonicity of a law is ensured, convex analysis proposes the construction of a sequence called 

Fitzpatrick functions [1]. Each of these functions reveals to be a bipotential within the meaning of Géry de 
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Saxcé. We plan to apply this result in the special case of linear coaxial constitutive laws for which the stress 

and strain tensors have the same eigenvectors.  

2. Fitzpatrick’s sequence of a linear law 

The construction of the Fiztpatrick’s sequence for the law y Ax  is possible if the single valued operator A  

is monotone. In this linear case, the monotonicity condition reduces [1, 12, 13] to the positive definiteness of 

the symmetric part S  of A . Agreeing that i iy A x  for 1i  to 1n , ,nx x ,ny y  1 1,nx x and 1 1ny y ; 

the
thn Fitzpatrick function is defined [1] as: 

1 2 1

, 1
( , ,..., ) 1

( , ) ( ) sup [( ) ]
n

n

A n i i i
x x x i

F x y tr x y tr x x y  

Estimation [13] of the above supremum leads to:  

11
, 4

( , ) , [( ) ( )]A n nF x y x y tr y Ax H y Ax                                                (1) 

where the positive definite symmetric tensor nH  is obtained from the tensor 2H S  by iterating the 

recursive formula: 

11
1 4

T

k kH S A H A                                                                        (2) 

from 2k  to 1k n . Actually, the monotonicity of A  allows solely the construction of the function 

, 2 ( , )AF x y  originally proposed by Fitzpatrick [4]. The construction of the n
th
 Fitzpatrick function is only 

ensured if the operator A satisfies [1] the inequality:  

1

1

[( ) ] 0
n

i i i

i

tr x x y  

once i iy A x  for 1i  to n , 1 1,nx x  and 1 1ny y . Under this condition, we say that the constitutive law 

y A x  is n-monotone [1] and also that the material is n-monotone [13]. The 2-monotonicity coincides with 

the classical monotonicity. The n-monotonicity involves all k-monotonicity for k  lower than n . The 

Fitzpatrick sequence is increasing and bounded from below by the pairing ( )tr xy . The minimum value 

( )tr xy  is achieved when the constitutive law y A x  is satisfied. Each function of the Fitzpatrick sequence 

is therefore a bipotential. When the tensor A  is symmetric and positive definite (as in linear elasticity), all 

the n-monotonicity conditions are satisfied ( A  is referred to as cyclically monotone [1, 8]) and the 

Fitzpatrick sequence admits [1] a pointwise limit:  

, ( , ) ( ) ( )AF x y x y  

which s the sum of potential and conjugate.  

3. Bidimensional coaxial linear laws   

The coaxial linear laws for which the stress tensor and the strain tensor have the same principal directions 

reads: 
( ) 2y tr q x e x  

where q is a symmetrical tensor (of order 2) and  is a scalar (e denotes the identity tensor as in what 

follows). We split the tensor q in spherical and deviatoric parts:  

q e h  

where 1
2
tr q  and h  is a deviatoric tensor ( 0tr h ). With this decomposition, the coaxial law becomes:  

( ) 2 ( )y tr x e x tr h x e . 

If the tensor q is spherical ( 0h ), this law reduces to the classical isotropic Hooke's law. Note that ( )tr h x  
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involves only the deviatoric part dx  of x : 

( ) 2 ( )d dy tr x e x tr h x e                                                       (3) 

As well-known, the strict monotonicity of the 2D Hooke law is ensured by the two inequality conditions: 

0 0and . 

The monotonicity of the coaxial law demands (see section 4.2 below) the additional condition: 

2( ) 8( )tr h . 

The isotropic Hooke law is described by the classical potential: 

2 21
2

( ) ( ) ( )x trx tr x . 

The coaxial law does not admit a potential. The obstruction is the term ( )dtr h x e  in (3) which introduces a 

lack of symmetry of the tensor A .  

4. Fitzpatrick’s sequence of a coaxial law. 

4.1. Choice of a basis in the deformations area. 

The 2D strain tensors can be regarded as elements of the 3D linear space E of 2 2  symmetrical matrices. In 

this space, we choose an orthonormal basis ( , , )
2

h e
d

h
 constituted of a unitary deviatoric tensor d  

orthogonal to h  ( ( ) 0tr h d  and 2( ) 1tr d ), the deviator h  normalized to 1 (dividing by 
1

22[ ( )]h tr h ), 

and the identity tensor e also normalized to 1 (dividing by 2 ). By duality, we also identify the space of 

stress tensors to E. In the above chosen basis, the tensor A is identified to the 3x3 matrix:  

2 0 0

0 2 0

0 2 2( )

A

h

 

where the lack of symmetry, due to the non nullity of h, appears clearly. In the appropriate basis, the matrix 

A  takes the shape of a block matrix (two null blocks, a scalar block, and a lower triangular block): 

2 0

0
A

a
                                                                       (4) 

The lower triangular block:  

2 0

2 2( )
a

h
 

is not symmetrical. Its symmetric part is: 

2
2

2

2
2( )

2

h

s

h

. 

4.2. Monotonicity of a coaxial law 

According to the previous notations, the symmetrical part S of A  is the block matrix: 

2 0

0
S

s
                                                                               (5) 
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This 3 3 matrix is positive if the scalar  and the 2x2 matrix S are positive. The latter condition requires 

both positivity of the scalar  (as for Hooke Law) and of the determinant of s:  

21
2

4 ( )det s h  

as announced before (paragraph 3).  

4.3. Strict n-monotonicity of a coaxial law 

The skew symmetric part of a 2x2 matrix is necessarily proportional to the matrix: 

                                                                         
0 1

1 0
J .  

Thus, the matrix a  splits up into 
2

2
a s h J  and its transpose into 

2

2

Ta s h J . Note that the 

symmetrical matrix 1Ta s a  is proportional to s :  

                                     

2

1 (1 )
2

T
h

a s a s
det s

                                                                 (6) 

The strict 2-monotonicity being prior to all others, necessarily the diagonal of A has to be non-negative: 

0  and 0 . 

The block structure already noticed (4) of the matrix A reduces the study of its n-monotonicity to that of the 

matrix a . In the case of a 2x2 matrix as a, the n-monotony is governed by the ratio between the 

multiplicative factor of J  in the skew symmetric part and the square root of the determinant (necessarily non 

negative) of the symmetric part s (necessarily positive definite). More precisely, we define an angle  

included between 0 and 
2

 by the equality: 

2
tan

2
h det s                                                                (7) 

and then the n-monotonicity condition is [13]:  

n . 

With the notation (7), property (6) can be rewritten: 

1 2

2

1
(1 tan )

cos

Ta s a s s                                                         (8) 

4.4. Determination of the matrix sequence Hk 

The matrix 2S H  having the block structure (5), the relation (8) being satisfied; we solve the recurrence 

relation (2) by conjecturing the following block structure for the matrices kH :  

1
2

2 0

0

k

k

k

H
s

 

The two introduced numerical sequences k and k  have initial value 2 1 and 2 2 . Relation (2) splits 

into 2 homographic recurrences: 

1

1
1

4
k

k

 and 1 2

1 1
2

cos
k

k

 

The solutions are [13]: 1

2
1

k

k

k
 and 

sin( ) 1

sin(( 1) ) cos
k

k

k
. Introducing the variable cosX  and the 
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Chebyshev polynomials of second kind 
sin( 1)

( )
sin

k

k
U X , we can express k  as a function of X :  

1

2

( )1

( )

k
k

k

U X

X U X
. 

4.5. n
th

 Fitzpatrick function of a coaxial law. 

The general expression (1) of the 
thn Fitzpatrick function of a linear law specializes in: 

0
1

sin ( )
0

2cos sin (( 1) )

n

n

n
H

n
s

n

 

whose inverse is: 

1

1 1
0

sin(( 1) ) 1
0

2cos sin( ) ( )

n

n

n
H

n
JsJ

n

 

5. Bipotential of monotonic coaxial law 

From 2k  to k n , any functions , ( , )A kF x y  of the finite Fitzpatrick sequence represent the n-monotone 

coaxial law. Guided by the cyclically monotone case (end of paragraph 2), we propose to select as best 

bipotential the largest one: ,( , ) ( , )A nb x y F x y .  

6. Discussion 

Coaxial laws are non associated constitutive laws [9, 11, 12, 13, 14, 15]. They respect all the principles 

originally enacted by Robert Hooke to model the behaviour of materials called “elastic”: linearity, 

monotoniciy and coaxiality (neither isotropy, nor existence of a potential are required). We propose to revisit 

the Hooke modelling by taking into account the four characteristic parameters: ,  and 2 independent 

coefficients of the deviator h . Displacement and stress fields will be obtained as extrema of a bifunctional 

[10] generated by the bipotential defined in paragraph 5. The numerical implementation will be based on 

Uzawa type algorithms. 

7. Conclusion 

In 2-dimension, after developing the matrix of a linear n-monotone coaxial law in a suitable orthonormal 

basis (involving a deviator entering in the constitutive law), we were able to exhibit a bipotential by applying 

the Fitzpatrick method issued from convex analysis. The analysis of the relationship between the bipotential 

of Géry de Saxcé representing the non-associated constitutive laws and the Fitzpatrick functions representing 

maximal monotone operators, proved to be relevant. Therefore, we recommend the application of this 

method to find the best bipotential representing the behaviour of a given Implicit Standard Material. 
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