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packets in the Kirchhoff formalism
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a. Arts et Métiers ParisTech, DynFluid – 151 Boulevard de l’Hôpital, 75013 Paris, France

Abstract :

The present work aims at linking the shape of a wave packet to its acoustic efficiency through numerical
integration of the homogeneous Helmholtz equation in the Kirchhoff formalism. We shall consider the
case of a bidimensional, rectangular domain where one side is affected by a spatially evolving wave
packet as a boundary condition with subsonic convection velocity. In the first place, the numerical tool
is validated by comparison with analytical developments available in literature. Then, an extension
to more advanced forms of wave packet is approached. The appearance of a criterion for acoustic
efficiency is discussed, as well as the need for a proper definition regarding the acoustic energy of a
wave packet and its radiated energy output.

Résumé :

Le présent travail étudie l’impact de la forme de l’enveloppe spatiale d’un paquet d’ondes sur son
efficacité acoustique par le recours à l’outil numérique pour l’estimation de la solution intégrale de
l’équation homogène de Helmholtz dans le formalisme de Kirchhoff. Un domaine bidimensionnel et
rectangulaire est considéré dont l’un des côtés se voit imposer un paquet d’ondes comme condition
limite, convecté à vitesse subsonique. Dans un premier temps, l’outil numérique ainsi élaboré est
validé par comparaison avec les résultats analytiques disponibles. Ensuite, une généralisation à d’autres
formes d’enveloppes de paquets d’ondes est abordée. L’émergence d’un critère d’efficacité acoustique
en fonction du type d’enveloppe est argumentée, tout comme la nécessité d’une définition de l’énergie
d’un paquet d’onde et de la puissance acoustique rayonnée.

Keywords : aeroacoustics ; wave packet ; Kirchhoff’s integral

1 Introduction

Efforts have been numerous to understand how a wave packet affects the sound field through experi-
mental ([4]), analytical ([1], [3]) and numerical ([1], [2], [5]) research. Laufer & Yen [4] first started to
point out experimentally the superdirective character of some acoustic sources in a round jet. Crighton
& Huerre [3] stated this feature analytically for some particular forms of the wave packet envelope.
Avital & Sandham [1] extended these previous studies to the mixing layer flow. The question has
been raised how the envelope of a wave packet influences its acoustic response. In order to reduce
mathematical restrictions from analytical developments of Crighton & Huerre [3] and to acquire a
more general view on the phenomenon, the problem is approached here in the Kirchhoff formalism. It
will give access to the acoustic pressure field depending on the pressure distribution input, namely, the
wave packet as boundary condition. This study investigates the effects of wave packets characteristics
on their acoustic response. Several envelope forms will be considered. The directivity of the resulting
acoustic field is studied as well as an efficiency criterion. The present paper is organised as follow :
the theoretical background of the acoustics of a wave packet is presented ; then the Kirchhoff method
is introduced ; the main results are shown for several wave packet envelopes in section 4 ; a conclusion
is drawn.
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2 Theoretical analysis of a wave packet

Analytical developments
The present work is based on a numerical resolution of the model first suggested by Crighton &
Huerre [3]. On the lower side of the investigated domain, a wave packet models the aeroacoustic
excitation. Under the assumption of a static propagation medium, the monochromatic, bidimensional
wave equation drives the pressure fluctuations p(x1, x2) of one particular mode

∂2p

∂x2
1

+
∂2p

∂x2
2

+M2
c p = 0 x1 ∈ R and x2 ∈ R+ (1)

where Mc is the convection Mach number defined as Mc = kac/kh with kac and kh being respectively
the acoustic and the hydrodynamic wave numbers ; The associated boundary condition is expressed
as

p(x1, 0) = A(εx1)exp(ikhx1) (2)

where A is the envelope function and i is the imaginary unit. The parameter ε is taken as ε = 1/Lwp
as defined by Crighton & Huerre [3], Lwp being the wave packet length. Following equation (1) kh is
the reference length ; it will be ignored throughout. Crighton & Huerre [3] showed that a solution of
(1) that radiates (2) to infinity can be expressed as

ps(x1, x2) =
1

ε

∫ +∞

−∞
Â

(
k − 1

ε

)
exp(ikx1 − γx2)dk (3)

with {
γ = +

√
k2 −M2

c if |k| > Mc

γ = −i
√
M2
c − k2 if |k| < Mc

(4)

where Â is the Fourier transform of A. From the use of the stationary phase method, which is a far
field approximation, one can express equation (3) as

pan(r, θ) ' 1

ε

√
2πMc

r
sin θexp(iMcr −

1

4
iπ)Â

(
Mc cos θ − 1

ε

)
(5)

This simplified model is based on the conditions of a slow spatial variation of the wave packet 
namely ε = o(1)  and a known form of the envelope. Whereas Crighton & Huerre [3] investigated
three different envelopes, only the case of the gaussian wave packet is hereby considered for validation
purposes for it is found to be the most directive case. Moreover, faster spatial variation of the envelope
can be tested with a numerical tool. The properties of the envelope are reminded below :

Spatial envelope (X = x1/Lwp) Spectral envelope (K = Lwp(k − 1))

A(X) = exp[− (X)2] Â(K) = 1
2
√
π

exp(−1
4K

2)

Numerical integration
In a low–subsonic flow, one can show from equations (3) and (4) that the main contribution to the
sound is given by the wave numbers close to zero. Equation (3) then reduces to

ps(x1, x2) ' 1

ε

∫ +Mc

−Mc

Â (K) exp(ikx1 + ix2

√
M2
c − k2)dk (6)

The integrand in equation (6) is therefore depicted in figure 1a where one can see that the main
contribution range is between −Mc and +Mc. Additionally, the effect of the spectral integration range
on the acoustic pressure is studied with comparison of equation (5). When the spectral integration
range goes beneath the range [−Mc;Mc], the error increases dramatically (figure 1b). Some errors still
occuring beyond [−Mc;Mc] can be observed in the near field for R = 5λac (figure 1b). Consequently,
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in the following, the spectral domain is reduced to the range [kmin; kmax] = [−Mc;Mc]. For future
applications, equation (6) is considered relevant. To find a suitable discretisation step in the spectral
domain (namely ∆k), a convergence study is carried out. Results are shown in figure 1c for four
distance of the directivity arc. When the radius R of the latter exceeds 20λac, the error falls below a
few percents for ∆k 6 10−4. For smaller R, the far field approximation made in equation (5) leads to
an error when decreasing ∆k. Figure 1c shows that equation (5) is not accurate in the near field, as
expected.

(a) Integrand of ps. (b)
‖ps − pan‖2
‖pan‖2

with kmax. (c)
‖ps − pan‖2
‖pan‖2

with ∆k.

Figure 1: Main contribution in wave numbers range (left) ; Validation of spectral integration range (centre) ;

validation of spectral integration (right). The 2–norm of a vector x defined as ‖x‖2 = (
n∑

i=1

|xi|2)
1
2 with xi = x(θi)

at a specified radius and θi ∈ [0°; 180°]. Mc = 0.05, Lwp = 1/
√
Mc.

3 Kirchhoff modeling

Theoretical background
The problem is now modeled by wave extrapolation method in the spectral form of Kirchhoff’s formal-
ism. In the observer region of coordinates x = (x1, x2), the pressure fluctuations pK(x) are expressed
as

pK (x) =

∫
Σ

{
G(x|y)

∂p(y)

∂n
− p(y)

∂G(x|y)

∂n

}
dΣ (y) (7)

regarding the pressure fluctuations p(y) as the boundary condition. Here Σ (y) is the control surface
surrounding the initial pressure distribution of coordinates y = (y1, 0) and n its outward pointing
normal. The bidimensional Green’s function is considered

G(x|y) =
i

4
H

(2)
0 (Mcr) '

r 7→ +∞
−exp(−iMcr − iπ/4)√

8πMcr
with r = |x− y| (8)

For computation cost concerns, the far field approximation is used for no difference has been observed
from the exact Green’s function. Deriving Green’s function and assuming the pressure derivative term
to be null on the control surface, equation (7) becomes

pK (x) =

∫
y2=0

A(y1/Lwp)

(
iMc +

1

2r

)
(x2 − y2)

r
√

8πMcr
exp(iy1 − iMcr + iπ/4)dy1 (9)

Numerical implementation
This method is applied on the same directivity arcs as before. The numerical step (namely ∆y1) of the
wave packet spatial discretisation and the integration length Ly1 have been investigated for Mc = 0.05
and Lwp = 1/

√
Mc ; these parameters are found to be of minor influence in the observer region though

4 points per hydrodynamic wavelength and a pressure distribution length of 4λh are the minimum
required (figures 2a and 2b). Thus, in the following, a numerical step of ∆y1 = λh/40 and pressure
distribution length of Ly1 = 40λh are applied. In figure 2c is presented the good agreement between
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the results from equation (6) and the Kirchhoff method through two directivity arcs in the relatively
near field. It is thus demonstrated that the system of equations (1) and (2) can be solved with the
Kirchhoff formalism.

(a)
‖pK − ps‖2
‖ps‖2

with ∆y1. Ly1 = 40λh. (b)
‖pK − ps‖2
‖ps‖2

with Ly1. ∆y1 = λh
40 . (c) Pressure directivity at 5λac

and 10λac. Comparison be-
tween ps and pK .

Figure 2: Validation of spatial discretisation (left) ; validation of pressure distribution length (centre) ; valida-
tion of the Kirchhoff modeling (right). Mc = 0.05, Lwp = 1/

√
Mc.

4 Results and discussion

With a validated numerical tool, one can emancipate himself from the reference case situation. The
pressure directivity and the acoustic efficiency are presented as a criterion. Through these quantities,
effects of spatial deformation are investigated (e.g. length or stiffness of the wave packet) and compared
with the Mach number effects. Results are thereafter depicted at a radius of R = 20λac for it is far
enough to be considered in the far field, thus avoiding the near field uncertainties highlighted in the
preceding section. The directivity arc of distance R is located at the centre of symmetrical wave
packets.

Cases’ selection
In free shear layers, e.g. the mixing layer flow, pressure fluctuations can be seen as a wave packet
being convected towards downstream direction as shown by Moser et al. [5]. In the latter, one can
identifiy spatial characteristics that may impact the associated sound response, as for instance, a
different expansion on the upstream and a contraction on the downstream ; that is non symmetrical
wave packet. Thus, three main variations from the case of Crighton & Huerre [3] are tested here.
Associated equations are stated herebelow with the variable coefficient E and the fixed coefficient σ,
both representing the stiffness of the wave packet. Are shown : a Mach number variation from 0.025
to 0.5 (figure 3) ; an upstream expansion of the gaussian wave packet (figure 4) to fit the mixing
layer case feature ; a downstream contraction (figure 5) for symmetrical effects. In all cases, two fixed
stiffness parameters σ are used to draw attention on the feature being investigated. In the Mach
number study, the envelope is symmetrically defined as A(y1/Lwp) = exp(−(σy1/Lwp)

2).

Upstream expansion Downstream contraction

y1 < 0 : A(y1/Lwp) = exp(−( E
Lwp

y1)2) y1 < 0 : A(y1/Lwp) = exp(−( σ
Lwp

y1)2)

y1 > 0 : A(y1/Lwp) = exp(−( σ
Lwp

y1)2) y1 > 0 : A(y1/Lwp) = exp(−( E
Lwp

y1)2)

Acoustic pressure and directivity
Following results are organised to show from left to right, the wave packet envelope for two fixed
stiffness parameters (σ), the pressure directivity and the angle of maximum pressure in the directivity
range.
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(a) (b) (c)

Figure 3: Mach number variation. Crighton & Huerre [3] results recovered for Mc = 0.05. Lwp = 1/
√

0.05.

(a) (b) (c)

Figure 4: Upstream expansion of the envelope. Mc = 0.05. Lwp = 1/
√

0.05.

(a) (b) (c)

Figure 5: Downstream contraction of the envelope. Mc = 0.05. Lwp = 1/
√

0.05.

What first come in mind of one looking at the previous results, is the strong Mach number influence on
maximum pressure level and directivity regardless of the stiffness coefficient. But the latter has more
importance. Pressure level is 10 times higher when σ is doubled. With a higher stiffness coefficient,
the directivity has a lower magnitude (figures 3b and 3c). An upstream expansion or a downstream
contraction produce the same effect. The direction to which the wave packet is stretched has no
significant effect. Expansion or contraction both reduce softly the pressure level, although this feature
is emphasized when σ is increased. With the latter two configurations, the directivity oscillates around
a particular value with a high peak when E = 1. As opposed to what happens with the pressure level,
the peak is weakened when σ is increased.

Acoustic efficiency
Acoustic efficiency is defined as the ratio between the power provided as input from the wave packet
and the power radiated as output from the associated acoustic response of the latter. These quantities
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are expressed as

Wi =

∫
y2=0

Re {p(y1, 0)}2

ρ0c0Mc
dy1 ; Wo = R

∫ π

0

Re {pK(R, θ)}2

ρ0c0
dθ (10)

Wi and Wo respectively stand for the total acoustic power input and ouput ; The former being
integrated over the directivity arc of radius R. The acoustic efficiency is then defined as η = Wo/Wi

and plotted in figure 6 fot the three cases.

(a) (b) (c)

Figure 6: Acoustic efficiency η at 20λac. From left to right : Mach variation ; upstream expansion for
Mc = 0.05 ; downstream contraction for Mc = 0.05. Lwp = 1/

√
0.05.

The Mach number first appears to be the most efficient parameter. One may notice the efficiency is
amplified and almost reaches 110%. Consequently, equation (10) is an efficiency and not a performance.
Combined with the stiffness, efficiency is strongly amplified. But computations for either spatial
expansion or contraction of the envelope were carried out at a Mach number Mc = 0.05. According
to figure 6a, efficiency does not exceed 9.10−6% and 7.10−3% (σ = 1 and σ = 2 respectively) for
such a Mach number value while in both cases of spatial deformation, efficiency reaches 1.10−3% and
7.10−3%. Stretching a wave packet envelope with a low σ provide more efficient results than increasing
the Mach number. For higher σ, stretching is not found to be efficient enough compared to the Mach
number effect.

5 Conclusions
From the present results, one main conclusion is that the Mach number has significant impact on
pressure level and directivity but less on efficiency, except when combined with stiffness. This conclu-
sion is to be soften though, when put aside the spatial deformation study carried out in the present
paper. Wave packet envelope functions are clearly a major parameter driving the energetic response
and directivity of a wave packet. It has been highlighted what are the most predominant features.
Furthermore, the side whose the wave packet is extended, whether upstream or downstream is of no
major effects and shows a symmetrical behavior.
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