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Abstract—In this paper, we analyze a new asynchronous rumor
spreading protocol to deliver a rumor to all the nodes of a large-
scale distributed network. This protocol relies on successive pull
operations involving k different nodes, with k = 2 or k = 3, and
called k-pull operations. Specifically during a k-pull operation,
an uninformed node a contacts k − 1 other nodes at random in
the network, and if at least one of them knows the rumor, then
node a learns it. We perform a detailed study in continuous-time
of Θk,n, the total time needed for all the n nodes to learn the
rumor.

We obtain, for k ∈ {2, 3}, the mean value, the variance and
the distribution of Θk,n together with their asymptotic behavior
when the number of nodes n tends to infinity.
Keywords : Rumor spreading time; k-pull protocol; Poisson
Process; Markov chain; Asymptotic analysis

I. INTRODUCTION

Randomized rumor spreading or gossiping is an important
communication schema that allows the dissemination of in-
formation in large-scale and open networks. A large-scale and
open network comprises a collection of sequential computing
entities (i.e., processes, processors, nodes, agents, peers) that
join and leave the system at any time, and communicate
with one another by exchanging messages. Randomized rumor
spreading was initially proposed by Deemers et al. [8] for
the update of a database replicated at different sites, and has
then been adopted in many applications due to its robustness
and simplicity. In contrast to reliable communication broadcast
schemas that must provide agreement on the broadcast value
with possibly additional ordering guarantees on the delivery of
updates from different sources, a randomized rumor spreading
schema guarantees that all recipients of the broadcast value
receive it only with some probability. A randomized spreading
rumor protocol describes the rules required for one or more
pieces of information known to an arbitrary node in the
network to be spread to all the nodes of the network. The
push and pull protocols are the basic operations nodes use to
propagate an information over the entire network [8], [11].
With the push operation, an informed node contacts some
randomly chosen node and sends it the rumor, while with
the pull operation, an uninformed node contacts some random
node and asks for the rumor. The same node can perform both
operations according to whether it knows or not the rumor,
which corresponds to the push-pull protocol, or performs only

one, either a pull or push operation, which corresponds to
the pull or push protocols respectively. One of the important
questions raised by these protocols is the spreading time, that
is the time it needs for the rumor to be known by all the nodes
of the network.

Several models have been considered to answer this ques-
tion. The most studied one is the synchronous model. This
model assumes that all the nodes of the network act in syn-
chrony, which allows the algorithms designed in this model to
divide time in synchronized rounds. During each synchronized
round, each node a of the network selects at random one of its
neighbor b and either sends to b the rumor if a knows it (push
operation) or tries to get the rumor from b if b knows the rumor
(pull operation). In the synchronous model, the spreading time
of a rumor is defined as the number of synchronous rounds
necessary for all the nodes to know the rumor. When the
underlying graph is complete, it has been shown by Frieze [15]
that the ratio of the number of rounds over log2(n) converges
in probability to 1 + ln(2) when the number n of nodes in the
graph tends to infinity. Further results have been established
(see for example [20], [26] and the references therein), the
most recent ones resulting from the observation that the rumor
spreading time is closely related to the conductance of the
graph of the network, see [16]. Investigations have also been
done in different topologies of the network as in [3], [7], [14],
[24], in the presence of link or nodes failures as in [13], in
dynamic graphs as in [4] and spreading with node expansion
as in [17]. Another alternative consists for the nodes to make
more than one call during the push or pull operations [25]. This
alternative is of particular interest since it does not require
any particular network structure. The synchronous case has
been tackled in [25] where the authors show that the push-
pull protocol takes O (log n/ log log n) rounds in expectation
assuming that nodes can connect to a random number neighbor
following a specific power law during each single round.

In large scale and open networks, assuming that all nodes
act synchronously is a very strong assumption. Several authors,
including [1], [10], [18], [22], [27]), suppose that nodes asyn-
chronously trigger operations with randomly chosen nodes.
In [27], the authors model a multiple call by tuning the
clock rate of each node with a given probability distribution.
Some authors have focused on the message complexity by
optimizing the network structure [9], [11], [18], [23]. For978-1-7281-8326-8/20/$31.00 ©2020 IEEE



instance, in [9], the authors show that the asynchronous push-
pull protocol spreading time in a preferential attachment graph
is in O

(√
log n

)
. Another way of limiting the number of

interactions is by finely tuning the push and pull operations
to take advantage of both of them as achieved for example
in [8], [12], or by relying on a central authority to coordinate
the work (e.g, [5]).
The asynchronous gossip protocol is usually modeled by
a time-continuous stochastic (Markovian) process [1], [10],
[18], [22], [27]. This type of stochastic processes belongs to
the death process category, which has many applications in
demography, queuing theory, performance engineering, epi-
demiology, biology and many other distributed applications.
For instance, in [6], an analysis of the SI (Susceptible-Infected)
model –corresponding to an asynchronous push-pull model–
allows us in some cases to explicit the state probabilities
by using the Laplace transform on the Kolmogorov forward
equation. However, these techniques prove ineffective when
the transition rate is non-linear (Laplace transform inversion
becomes a tricky exercise). Most of the results then focus
on studying the asymptotic behavior by using martingale
techniques to obtain a law of large numbers or a central
limit theorem [2]. However, one may study transient behaviour
using a coupling technique [21]. The principle is to look for
simpler linear processes that serve as bounds to the initial
processes.

The pull algorithm attracted very little attention because
this operation was long considered inefficient to spread a
rumor within a large scale network [29]. It is actually very
useful in systems fighting against message saturation (see
for instance [31]). The ineffectiveness of the pull protocol
stems from the fact that it takes some time before the rumour
reaches a phase of exponential growth. Conversely, the push
protocol initiates the rumor very quickly but then struggles
to reach the few uninformed nodes. In this paper, we seek
to counterbalance the slow initiation of rumour spreading by
increasing the chances of learning the rumour with each call.
We will analyze Θk,n, the total time needed for all the n nodes
of the system to learn the rumor initially known by a single
random node in the system. Our analysis will explicitly show
that calling the rumor from 2 nodes in parallel rather from a
single one performs better.

The remainder of this paper is organized as follows. In Sec-
tion II, we present both the discrete-time and the continuous-
time models of the k-pull asynchronous rumor spreading
protocol. We evaluate in Section III the first two moments
of the rumor spreading time. We show for instance that the
asymptotic expected rumor spreading time when uniformed
nodes call the rumor from 2 random nodes (i.e. when k = 3),
is equivalent to 3 ln(n)/(2λ), where λ is the rate of the expo-
nentially distributed local clock of each uniformed node, when
n tends to infinity. Note that when a uniformed node calls the
rumor from a single node (i.e. when k = 2), this asymptotic
expectation is equivalent to 2 ln(n)/λ. The variance of Θk,n

and its limiting value are analyzed in Section III-B. This
analysis shows that calling two random nodes instead of

a single one at each operation provides a smaller standard
deviation. We finally analyze in Section IV the probability
distribution of the rumor spreading time and provide its exact
limiting value when n tends to infinity. Section V concludes.

II. THE MODEL

We recall in the next subsection the discrete-time model
of the k-pull rumor spreading. This model which has been
analyzed in [28] is important because the continuous-time
model of the k-pull rumor spreading is based on the discrete-
time model, even if the analysis is, as we will see, much more
complicated and needs more refined results in continuous-time.

A. The discrete-time model

A complete network populated by n nodes is considered.
Nodes are anonymous (i.e. they do not carry any identifier).
Each node may be asked for a piece of information (rumor)
initiated by any other node of the system. The algorithm starts
with a single node informed of the rumor. At each discrete time
m ≥ 1, a single uninformed node s contacts k − 1 distinct
nodes, chosen at random uniformly among the n − 1 other
nodes. If at least one of these k − 1 contacted nodes knows
the rumor then, node s learns it. Otherwise nothing happens.
This is a k-pull operation.

Analysis of this k-pull model is achieved by introducing the
discrete-time stochastic process Y = {Ym, m ≥ 0} where Ym
represents the number of informed nodes at time m. Stochastic
process Y is a discrete-time homogeneous Markov chain with
n states where states 1, . . . , n − 1 are transient and state n
is absorbing. From the description of the protocol, when the
Markov chain Y is in state i at time m, then at time m + 1,
either it remains in state i if none of the k − 1 chosen nodes
were informed of the rumor or it transits to state i+1 if at least
one of the k − 1 chosen nodes were informed of the rumor.
Let P denote the transition probability matrix of Markov chain
Y . The non zero entries of matrix P are thus Pi,i and Pi,i+1,
for any i = 1, . . . , n − 1. Obviously, we get, for any i =
1, . . . , n− 1, Pi,i = 1− Pi,i+1, which is given by

Pi,i =



(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

0 otherwise.

Indeed, given that Yt = i, i.e. when i nodes are informed of
the rumor at time t, we have Yt+1 = i if and only if, at time
t+ 1, the set of k− 1 chosen nodes (i.e. k− 1 among n− 1)
must be chosen among the n− 1− i non informed nodes.

Let Tk,n be the random variable defined by

Tk,n = inf{t ≥ 0 | Ym = n},

which represents the spreading time, that is the total number
of k-pull operations needed for all the nodes in the network
to know the rumor.



The spreading time distribution can thus be expressed as a
sum of independent random variables Sk,n(i), where Sk,n(i)
is the sojourn time of Markov chain Y in state i. For all i =
1, . . . , n − k, Sk,n(i) follows a geometric distribution with
parameter pk,n(i), where

pk,n(i) = 1− Pi,i = 1−
k−1∏
h=1

(
1− i

n− h

)
, (1)

and Sk,n(i) = 1, for i = n − k + 1, . . . , n − 1. Observe that
for i = n− k+ 1, . . . , n− 1, we have pk,n(i) = 1. Thus Tk,n
verifies

Tk,n =

n−1∑
i=1

Sk,n(i) = k − 1 +

n−k∑
i=1

Sk,n(i).

B. The continuous-time model

Based on this discrete-time model, a local clock following
an exponential distribution with rate λ is associated with each
uniformed node of the system. Each time the clock of an
uniformed node s rings, this node contacts k− 1, with k ≥ 2,
distinct nodes, chosen at random uniformly among the n− 1
other nodes. If at least one of these contacted nodes knows
the rumor, node s learns it and clears its clock (i.e., s remains
contactable but does not contact any other node). As in the
discrete-time case, we suppose that the k-pull operation is
instantaneous, that is, the time for a node to contact k−1 other
nodes and to receive their response takes no time. Since the
clock of an uninformed node rings after a time exponentially
distributed with rate λ, we naturally introduce the continuous-
time Markov chain Z = {Zt, t ≥ 0}, where Zt represents
the number of informed nodes at continuous-time t ≥ 0.
Specifically the transitions of Z occur at successive instants
τ0 = 0, τ1, . . ., where the τi − τi−1, i ≥ 1, are independent
and exponentially distributed with rate (n− i)λpk,n(i), where
the pk,n(i) are given by (1). Hence the global clock of the
process rings according to an exponential distribution whose
rate is proportional to the amount of uniformed nodes. Note
that a jump of process Z corresponds to a state change of
process Y .

Observe also that the continuous-time model of the rumor
spreading corresponds to a physical time, that is the total
amount of time needed for all the n nodes to learn the rumor,
while the discrete-time model stands for the total number of
k-pull operations needed for all the n nodes to learn the rumor.

We denote by Θk,n the random variable defined by

Θk,n = inf{t ≥ 0 | Zt = n},

which represents the total amount of time needed for all
the nodes to know the rumor. The spreading time Θk,n can
thus be expressed as a sum of independent and exponentially
distributed random variables. Specifically, introducing the no-
tation Uk,n(i) = τi − τi−1, for i ≥ 1 with τ0 = 0, we have

Θk,n =

n−1∑
i=1

Uk,n(i), (2)

where Uk,n(1), . . . , Uk,n(n− 1) are independent and Uk,n(i)
is exponentially distributed with rate (n− i)λpk,n(i).

The authors of [28] used two technical lemmas to analyze
the moments and the distribution of the rumor spreading time
in the discrete-time case. These lemmas allowed them to
provide lower and upper bounds of the probabilities pk,n(i).
These bounds are sufficiently precise to deal with the sum
of geometric random variables with parameters pk,n(i) but
they are too wide to deal with the sum of exponential random
variables with rates (n − i)pk,n(i), in the continuous-time
case. We thus consider here a different method to analyze
the problem when k ∈ {2, 3}.

III. MOMENTS OF THE RUMOR SPREADING TIME

In this section, we analyze the two first moments of the
rumor spreading time Θk,n, for k ∈ {2, 3}, when n goes to
infinity.

A. Expected rumor spreading time

Observing that pk,n(i) = 1 for i = n − k + 1, . . . , n − 1,
the expected value of the spreading time Θk,n is given, using
Relation (2), by

E(Θk,n) =
1

λ

n−1∑
i=1

1

(n− i)pk,n(i)
(3)

=
1

λ

n−k∑
i=1

1

(n− i)pk,n(i)
+

1

λ

k−1∑
i=1

1

i
.

For k = 2, we have p2,n(i) = i/(n − 1) and using (3) we
obtain

E(Θ2,n) =
n− 1

λ

n−1∑
i=1

1

i(n− i)
. (4)

For k = 3, we have

p3,n(i) =
i

n− 1
+

i

n− 2
− i2

(n− 1)(n− 2)
=

i(2n− 3− i)
(n− 1)(n− 2)

,

which leads, using (3), to

E(Θ3,n) =
(n− 1)(n− 2)

λ

n−1∑
i=1

1

i(n− i)(2n− 3− i)
. (5)

The asymptotic expected rumor spreading time is obtained
in the following theorem. We denote by Hn the Harmonic
series defined, for every n ≥ 1, by Hn =

∑n
i=1 1/i and

we recall that the Euler-Mascheroni constant γ is given by
γ = lim

n−→∞
(Hn − ln(n)), which is approximately equal to

0.5772156649.

Theorem 1. We have

E(Θ2,n) ∼
n−→∞

2 ln(n)

λ

with lim
n−→∞

(
E(Θ2,n)− 2 ln(n)

λ

)
=

2γ

λ



and

E(Θ3,n) ∼
n−→∞

3 ln(n)

2λ

with lim
n−→∞

(
E(Θ3,n)− 3 ln(n)

2λ

)
=

3γ − ln(2)

2λ
.

Proof. For k = 2, using a partial fraction expansion in
Relation (4), we easily get

E(Θ2,n) =
n− 1

λn

(
n−1∑
i=1

1

i
+

n−1∑
i=1

1

n− i

)

=
2(n− 1)Hn−1

λn
∼

n−→∞

2 ln(n)

λ
.

By definition of the Euler-Mascheroni constant γ we easily
get the second result.

For k = 3, in the same way, using a partial fraction
expansion in Relation (5), we obtain

(n− 1)(n− 2)

i(n− i)(2n− 3− i)
=
An
i

+
Bn
n− i

+
Cn

2n− 3− i
, (6)

where

An =
(n− 1)(n− 2)

n(2n− 3)
, Bn =

(n− 1)(n− 2)

n(n− 3)
and

Cn =
−(n− 1)(n− 2)

(n− 3)(2n− 3)
.

It follows that

E(Θ3,n) =
1

λ

[
An

n−1∑
i=1

1

i
+Bn

n−1∑
i=1

1

n− i

+Cn

n−1∑
i=1

1

2n− 3− i

]
=

1

λ
[AnHn−1 +BnHn−1 + Cn (H2n−4 −Hn−3)] .

Since lim
n−→∞

An = 1/2, lim
n−→∞

Bn = 1, lim
n−→∞

Cn = −1/2

and lim
n−→∞

(H2n−4 −Hn−3) = ln(2), we easily get

E(Θ3,n) ∼
n−→∞

3 ln(n)

2λ
.

Again, by definition of the Euler-Mascheroni constant γ, we
get the last result.

Figure 1 illustrates Relations 4 and 5. It shows the benefit of
calling two random and anonymous nodes at each pull opera-
tion instead of a single one. For instance, when n = 100, 000
nodes, it takes in average 17.79 time units for all the nodes to
know the rumor with the 3-pull protocol while it takes 24.18
time units with the 2-pull protocol. Moreover, from Theorem 1,
we deduce that the difference E(Θ2,n) − E(Θ3,n) tends to
infinity when n tends to infinity. Indeed, it is easily checked
that

E(Θ2,n)−E(Θ3,n) ∼
n−→∞

ln(n)

2λ
and that

lim
n−→∞

(
E(Θ2,n)−E(Θ3,n)− ln(n)

2λ

)
=
γ + ln(2)

2λ
.

Fig. 1. Expected values E(Θ2,n) and E(Θ3,n) as a function of the number
of nodes n.

B. Variance of the rumor spreading time

We consider now the variance of Θk,n and its limiting value
when n goes to infinity. Using Relation (2), the variance of
Θk,n is given by

Var(Θk,n) =
1

λ2

n−1∑
i=1

1

(n− i)2 (pk,n(i))
2 (7)

=
1

λ2

[
k−1∑
i=1

1

i2
+

n−k∑
i=1

1

(n− i)2 (pk,n(i))
2

]
For k = 2, since p2,n(i) = i/(n− 1), we obtain using (7)

Var(Θ2,n) =
(n− 1)2

λ2

n−1∑
i=1

1

i2(n− i)2
. (8)

For k = 3, since

p3,n(i) =
i

n− 1
+

i

n− 2
− i2

(n− 1)(n− 2)
=

i(2n− 3− i)
(n− 1)(n− 2)

,

we obtain using (7)

Var(Θ3,n) =
(n− 1)2(n− 2)2

λ2

n−1∑
i=1

1

i2(n− i)2(2n− 3− i)2
.

(9)
The limiting variance of the rumor spreading time is given

in the following result.

Theorem 2. We have

lim
n−→∞

Var(Θ2,n) =
π2

3λ2
and lim

n−→∞
Var(Θ3,n) =

5π2

24λ2
.

Proof. For k = 2, we have from Relation (8)

Var(Θ2,n) =
(n− 1)2

λ2n2

(
n−1∑
i=1

1

i2
+

n−1∑
i=1

1

(n− i)2

+ 2

n−1∑
i=1

1

i(n− i)

)

=
(n− 1)2

λ2n2

(
2

n−1∑
i=1

1

i2
+

2Hn−1

n

)
.



By taking the limit when n tends to infinity, we get the first
result.

For k = 3, we have from Relation (6) and (9),

Var(Θ3,n) =
1

λ2

n−1∑
i=1

(
An
i

+
Bn
n− i

+
Cn

2n− 3− i

)2

,

where the An, Bn and Cn and their limits are given in the
proof of Theorem 1. This leads to

Var(Θ3,n) =
1

λ2

(
A2
n

n−1∑
i=1

1

i2
+B2

n

n−1∑
i=1

1

i2
+ C2

n

2n−4∑
i=n−2

1

i2

+ 2AnBn

n−1∑
i=1

1

i(n− i)
+ 2AnCn

n−1∑
i=1

1

i(2n− 3− i)

+ 2BnCn

n−1∑
i=1

1

(n− i)(2n− 3− i)

)
.

Observing that

lim
n−→∞

2n−4∑
i=n−2

1

i2
= 0,

n−1∑
i=1

1

i(n− i)
=

2Hn−1

n
,

n−1∑
i=1

1

i(2n− 3− i)
≤ Hn−1

n− 2
, and

n−1∑
i=1

1

(n− i)(2n− 3− i)
≤ Hn−1

n− 2
,

we obtain lim
n−→∞

Var(Θ3,n) =
1

λ2

(
π2

24
+
π2

6

)
=

5π2

24λ2
,

which completes the proof.

Figure 2 illustrates the standard deviations of respectively
Θ2,n (square root of Relation 8) and Θ3,n (square root of
Relation 9). It is worth observing that in both cases the
standard deviation converges very quickly to its limit and that
the standard deviation of Θ3,n is smaller than the standard
deviation of Θ2,n.

Fig. 2. Standard deviations σ(Θ2,n) and σ(Θ3,n) as a function of the number
of nodes n.

IV. DISTRIBUTION OF THE RUMOR SPREADING TIME

This section provides the explicit limiting distribution of
Θk,n − E(Θk,n) for k ∈ {2, 3}. Note that the hypothesis of
the principle of accompanying laws of Theorem 3.1.14 of [30],
which is used in [28], is no more valid in the continuous-time
case. That is why we need to use the following different proofs.

Theorem 3. If Z1 and Z2 are two independent random
variables exponentially distributed with rate 1 then we have

Θ2,n −
2 ln(n)

λ

L−−→ − 1

λ
(ln(Z1) + ln(Z2)) as n −→∞

and

Θ3,n −
3 ln(n)

2λ

L−−→ − 1

λ

(
ln(Z1)

2
+ ln(Z2) +

ln(2)

2

)
as n −→∞.

Proof. We introduce the notation µk,n(i) = λ(n − i)pk,n(i).
Since Uk,n(i) is exponentially distributed with rate µk,n(i), it
follows that for every x ≥ 0, we have

P{µk,n(i)Uk,n(i) > x} = P{Uk,n(i) > x/µk,n(i)} = e−x.

This means that if Zi is a random variable exponentially
distributed with rate 1, then we have

µk,n(i)Uk,n(i)
L
= Zi.

Moreover since the (Uk,n(i))i=1,...,n−1 are independent, the
(Zi)i≥1 are also independent.

We thus have for k = 2, since µ2,n(i) = λi(n− i)/(n−1),

Θ2,n−
2 ln(n)

λ

=

n−1∑
i=1

U2,n(i)− 2 ln(n)

λ

L
=

n−1∑
i=1

Zi
µ2,n(i)

− 2 ln(n)

λ

=
1

λ

[
(n− 1)

n−1∑
i=1

Zi
i(n− i)

− 2 ln(n)

]

=
1

λ

[
(n− 1)

n

(
n−1∑
i=1

Zi
i

+

n−1∑
i=1

Zi
n− i

)
− 2 ln(n)

]

=
1

λ

[
(n− 1)

n

(
n−1∑
i=1

Zi − 1

i
+

n−1∑
i=1

Zn−i − 1

i

)

+ 2

(
(n− 1)Hn−1

n
− ln(n)

)]
.

Because, as shown by L. Gordon in [19],
∑∞
i=1(Zi−1)/i <∞

P-a.s., we have
n−1∑
i=1

Zi − 1

i
=

n/2∑
i=1

Zi − 1

i
+

n−1∑
i=n/2+1

Zi − 1

i

=

n/2∑
i=1

Zi − 1

i
+ o(1).



In the same way, we have

n−1∑
i=1

Zn−i − 1

i
=

n/2−1∑
i=1

Zn−i − 1

i
+

n−1∑
i=n/2

Zn−i − 1

i

L
=

n/2−1∑
i=1

Z̃i − 1

i
+

n−1∑
i=n/2

Z̃i − 1

i

=

n/2−1∑
i=1

Z̃i − 1

i
+ o(1),

where Z̃i = Zn−i is exponentially distributed with rate 1. We
thus obtain

Θ2,n −
2 ln(n)

λ

L
=

1

λ

[
α2,n + 2

(
(n− 1)Hn−1

n
− ln(n)

)
+ o(1)

]
, (10)

where

α2,n =
n− 1

n

n/2∑
i=1

Zi − 1

i
+

n/2−1∑
i=1

Z̃i − 1

i

 .

Observe that the Zi and the Z̃i involved in αk,n are all
independent and exponentially distributed with rate 1. Using
the result of L. Gordon in [19] which states that

∑∞
i=1(Zi −

1)/i
L
= −γ − ln(Z1), we get

α2,n
L−−→ − ln(Z1)− ln(Z2)− 2γ as n −→∞,

where γ is the Euler-Mascheroni constant. It follows from (10)
that

lim
n−→∞

P

{
Θ2,n −

2 ln(n)

λ
> x

}
=

P

{
− 1

λ
(ln(Z1) + ln(Z2)) > x

}
.

For k = 3 we have µ3,n(i) = λi(n − i)(2n − 3 − i)/((n −
1)(n− 2)), which gives

Θ3,n −
3 ln(n)

2λ
=

n−1∑
i=1

U3,n(i)− 3 ln(n)

2λ

L
=

n−1∑
i=1

Zi
µ3,n(i)

− 3 ln(n)

2λ

=
1

λ

[
(n− 1)(n− 2)

n−1∑
i=1

Zi
i(n− i)(2n− 3− i)

− 3 ln(n)

2

]
.

Using Relation (6), we obtain

Θ3,n −
3 ln(n)

2λ

L
=

1

λ

[
An

n−1∑
i=1

Zi
i

+Bn

n−1∑
i=1

Zi
n− i

+ Cn

n−1∑
i=1

Zi
2n− 3− i

− 3 ln(n)

2

]
=

1

λ

[
An

n−1∑
i=1

Zi − 1

i
+AnHn−1 +Bn

n−1∑
i=1

Zn−i − 1

i

+ BnHn−1 + Cn

2n−4∑
i=n−2

Z2n−3−i − 1

i

+ Cn

2n−4∑
i=n−2

1

i
− 3 ln(n)

2

]
where the An, Bn and Cn and their limits are given in the
proof of Theorem 1. As we did for the case k = 2, we can
write

Θ3,n −
3 ln(n)

2λ

L
=

1

λ

An n/2∑
i=1

Zi − 1

i
+Bn

n/2∑
i=1

Z̃i − 1

i

+ Cn

2n−4∑
i=n−2

Z2n−3−i − 1

i
+ o(1) +AnHn−1

+ BnHn−1 + Cn (H2n−4 −Hn−3)− 3 ln(n)

2

]
,

where Z̃i = Zn−i is exponentially distributed with rate 1.
Observe that

2n−4∑
i=n−2

Z2n−3−i − 1

i

L
=

2n−4∑
i=n−2

Ẑi − 1

i
,

where Ẑi = Z2n−3−i is exponentially distributed with
rate 1. Since

∑∞
i=1(Zi − 1)/i < ∞ P-a.s., we have∑2n−4

i=n−2(Ẑi − 1)/i = o(1). Moreover, since the limit of
Cn (H2n−4 −Hn−3) when n tends to infinity is equal to
− ln(2)/2 and since

An

n/2∑
i=1

Zi − 1

i
+Bn

n/2∑
i=1

Z̃i − 1

i

L−−→

− ln(Z1)

2
− ln(Z2)− 3γ

2
as n −→∞,

we finally get

Θ3,n −
3 ln(n)

2λ

L−−→ − 1

λ

(
ln(Z1)

2
+ ln(Z2) +

ln(2)

2

)
,

or equivalently

lim
n−→∞

P

{
Θ3,n −

3 ln(n)

2λ
> x

}
=

P

{
− 1

λ

(
ln(Z1)

2
+ ln(Z2) +

ln(2)

2

)
> x

}
,



which completes the proof

The following corollary gives the explicit limiting distribu-
tion of the random variables Θ2,n − 2 ln(n)/λ and Θ3,n −
3 ln(n)/(2λ) when n tends to infinity.

Corollary 1. For all x ∈ R, we have

lim
n−→∞

P

{
Θ2,n −

2 ln(n)

λ
≤ x

}
=∫ ∞

0

exp
(
−t− t−1e−λx

)
dt = 2e−λx/2K1(2e−λx/2),

where K1 is the modified Bessel function of the second kind
of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt

and

lim
n−→∞

P

{
Θ3,n −

3 ln(n)

2λ
≤ x

}
=∫ ∞

0

exp
(
−t− t−2e−2λx/2

)
dt.

Proof. For k = 2, using Theorem 3, we have, for all x ∈ R,

lim
n−→∞

P

{
Θ2,n −

2 ln(n)

λ
≤ x

}
=

P

{
− 1

λ
(ln(Z1) + ln(Z2)) ≤ x

}
.

The variables Z1 and Z2 being independent and exponentially
distributed with rate 1, we obtain

P

{
− 1

λ
(ln(Z1) + ln(Z2)) ≤ x

}
= P

{
Z1Z2 ≥ e−λx

}
=

∫ ∞
0

P
{
Z1 ≥ t−1e−λx

}
e−tdt

=

∫ ∞
0

exp
(
−t− t−1e−λx

)
dt,

which can be written as 2e−λx/2K1(2e−λx/2). In the same
way, using Theorem 3, we have, for all x ∈ R,

lim
n−→∞

P

{
Θ3,n −

3 ln(n)

2λ
≤ x

}
=

P

{
− 1

λ

(
ln(Z1)

2
+ ln(Z2) +

ln(2)

2

)
≤ x

}
.

The variables Z1 and Z2 being independent and exponentially
distributed with rate 1, we obtain

P

{
− 1

λ

(
ln(Z1)

2
+ ln(Z2) +

ln(2)

2

)
≤ x

}
= P

{
21/2Z

1/2
1 Z2 ≥ e−λx

}
=

∫ ∞
0

P
{
Z1 ≥ t−2e−2λx/2

}
e−tdt

=

∫ ∞
0

exp
(
−t− t−2e−2λx/2

)
dt,

which completes the proof.

Introducing the functions F2 and F3 defined, for x ≥ 0, by

F2(x) = lim
n−→∞

P

{∣∣∣∣Θ2,n −
2 ln(n)

λ

∣∣∣∣ ≤ x}
and

F3(x) = lim
n−→∞

P

{∣∣∣∣Θ3,n −
3 ln(n)

2λ

∣∣∣∣ ≤ x} .
While the Bienaym-Tchebychev (BT) inequality only gives a
bound of these functions, our result gives their exact values.
Indeed, this inequality gives, for x > 0 and large values of
n, F2(x) ≥ 1 − π2/(3λx2). For instance, for λ = 1 and
x = π2/3, the BT inequality only gives F2(x) ≥ 0 while our
result gives F2(x) = 0.8798042582, that is

lim
n−→∞

P

{
2 ln(n)− π2

3
≤ Θ2,n ≤ 2 ln(n) +

π2

3

}
= 0.8798.

The same observation is clearly also valid for function F3 and
for the functions G2 and G3 defined, for x ≥ 0, by

G2(x) = lim
n−→∞

P {|Θ2,n −E(Θ2,n| ≤ x}

and
G3(x) = lim

n−→∞
P {|Θ3,n −E(Θ3,n)| ≤ x} .

The values of these four functions are illustrated in Figure 3.
The following corollary gives the explicit limiting distri-

bution of the random variables Θ2,n − E(Θ2,n) and Θ3,n −
E(Θ3,n) when n tends to infinity.

Corollary 2. For all x ∈ R, we have

lim
n−→∞

P {Θ2,n −E(Θ2,n) ≤ x} = 2e−λx/2−γK1(2e−λx/2−γ)

and

lim
n−→∞

P {Θ3,n −E(Θ3,n) ≤ x} =∫ ∞
0

exp
(
−t− t−2e−2λx−3γ

)
dt.

Proof. For k = 2, we have

P {Θ2,n −E(Θ2,n) ≤ x} =

P

{
Θ2,n −

2 ln(n)

λ
≤ x+E(Θ2,n)− 2 ln(n)

λ

}
.

From Theorem 1 and Corollary 1, by taking the limit when n
tends to infinity, we obtain

lim
n−→∞

P {Θ2,n −E(Θ2,n) ≤ x} = 2e−λx/2−γK1(2e−λx/2−γ).

In the same way, for k = 3, we have

P {Θ3,n −E(Θ3,n) ≤ x} =

P

{
Θ3,n −

3 ln(n)

2λ
≤ x+E(Θ3,n)− 3 ln(n)

2λ

}
.



From Theorem 1 and Corollary 1, by taking the limit when n
tends to infinity, we obtain

lim
n−→∞

P {Θ3,n −E(Θ3,n) ≤ x} =∫ ∞
0

exp
(
−t− t−2e−2λx−3γ

)
dt,

which completes the proof.

Fig. 3. Limiting distribution of |Θ2,n −E(Θ2,n)|, |Θ2,n − 2 ln(n)/λ|,
|Θ3,n −E(Θ3,n)| and |Θ3,n − 3 ln(n)/2λ| when n tends to infinity, with
λ = 1.

V. CONCLUSION

In this paper, we have analysed a new rumor spreading
protocol that allows each node to asynchronously interact with
2 other random nodes during each pull operation. We have
shown that this protocol generalizes the standard pull protocol,
in which 2 nodes interact, and improves it. Further research
consists in considering the more general case where each node
interacts with k − 1 other nodes during each operation, with
k > 3.
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