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The support of edge computing for vehicular technologies gained increasing momentum with 5G to
fulfill efficient offloading tasks from vehicles towards the edge nodes. Accordingly, vehicles demanding
powerful computation and large storage resources will be directed to communicate with the nearest edge
computing nodes hosted at a wireless 5G new generation nodes (gNBs) or a road side units (RSUs). To
efficiently utilize the edge nodes’ resources, network slicing and load-balancing features can greatly help
in that, therefore, this paper proposes an algorithm for Vehicular Edge Computing (VEC) with network
slicing and load-balancing based on resources utilization, denoted as VECSlic-LB, specifically dedicated
for offloading tasks from vehicles to edge nodes at gNBs or RSUs. The algorithm can holistically view
and manage the whole network, and use network function virtualization framework to manage the data
plane. VECSlic-LB can handle a mix of slicing configurations, capable of balancing the loads between
various slices per node, and can support multiple edge computing nodes. Several simulations were
conducted comparing the performance of the proposed algorithm to the optimal solution, resulting on
very close acceptance ratios as the optimal solution, and also was evaluated against a recent reference
algorithm, providing more efficient resource utilizations ratios, saving up to 48% of the resources better
than the state-of-art algorithm.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The support of 5G for edge computing and vehicle-to-every-
thing (V2X) communication, facilitated the creation of VEC as an 
emerging technology to support several vehicular applications such 
as vehicles platooning, advanced-driving and remote-driving appli-
cations, to enable automated driving, where longer inter-vehicle 
distance is assumed, in addition to allowing vehicles to share and 
coordinate their trajectories and intentions for safer traveling, col-
lision avoidance, and improved traffic efficiency [1]. Moreover, the 
3rd generation partnership project (3GPP) standardization activi-
ties opened new era to use VEC technologies for vehicles’ extended 
sensors applications such as exchanging large amounts of data 
from sensors for post processing and analysis at the edge nodes. 
For example, sensors in vehicle-to-vehicle (V2V), or vehicles-to-
infrastructure (V2I) can offload their data towards the VEC nodes 
residing at road side units (RSU), Internet-of-things (IoT) devices, 
or wireless base stations such as 5G’s Next Generation NodeBs, for 
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better precision, fast analysis, or to store the data for future access 
[2].

However, most existing works in literature about offloading in 
vehicular edge computing networks did not consider network slic-
ing to differentiate such sensitive vehicular applications from each 
other, nor considering balancing the loads between the edge nodes 
themselves or within the edge computing servers to benefit from 
any available excessive computation resources that can be utilized 
by the vehicles. Consequently, vehicular networks’ operators may 
face complications in designing their VEC networks, forcing them 
to apply solutions of higher costs and limited support to the new 
emerging vehicular services [3].

Network slicing was specified in [4] to support network ser-
vice differentiation and diversification based on the requirements 
from variety of industries, including V2X applications. Accordingly, 
3GPP highlighted in [5] the importance of abstracting the required 
network slice information to support V2X applications and multi-
ple public land mobile network operator (PLMN). Technically this 
means that, network slicing can be considered as a complete and 
separate logical network, to provide specific network capabilities 
and network characteristics, similar to any other physical network 

operation. Therefore, several V2X use cases and classes such as 
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vehicles’ cooperative maneuvering and safety, autonomous navi-
gation, and remote driving; which have diverse and conflicting 
computing, storage, latency, reliability, and throughput require-
ments, can leverage the use of network slicing to allow the service 
providers to design one or more network slices, and bundle them 
to support multiple V2X key performance indicators and quality of 
service requirements [6,7].

Regarding load-balancing, there are several strategies widely 
employed in cloud environments [8], such as random access load-
balancing technique, which assumes that the demanding users 
need to connect randomly to any available edge server from a list 
of available servers. Another technique is load-balancing based on 
number of users to determine the capability of edge servers, there-
fore, if the capacity of the first server is overloaded, a new server 
will be activated to meet the demand. Similarly, the load-balancing 
technique based on the utilization of the central processing unit 
(CPU) or memory of the cloud or edge servers, in this case if the 
requested CPU or memory load did not meet the total capabil-
ity of the target server, the load-balancer will instantiate a new 
server at that cloud or edge node [9]. Lastly, throughput based 
load-balancing techniques which usually relies on evaluating the 
network quality of service and performance metrics, such as the 
efficiency of throughput, bandwidth, and latency [10,11].

In light of that, the authors propose an algorithm for vehicular 
edge computing with network slicing and load-balancing, denoted 
as (VECSlic-LB), specifically designed to handle offloading tasks 
from vehicles towards wireless nodes (i.e. RSUs and gNBs), while 
balancing the loads between the sliced edge computing servers 
hosted at these nodes. VECSlic-LB follows the spirit of Software 
Defined Networking (SDN) in providing a centralized management 
of the VEC network usage. Moreover, based on the clarifications of 
[12], VECSlic-LB applies the network function virtualization (NFV) 
architecture on the data plane at the RSUs and gNBs, to decouple 
the virtualized network functions from the physical devices of the 
RSUs and gNBs, and to efficiently manage and utilize the physical 
resources at the edge computing servers. Moreover, VECSlic-LB in-
tegrated the network slicing feature to allow V2X service providers 
to have their own slices with separate computing, storage, and 
networking resources that can be assigned according to the V2X 
service type. Finally, the new addition in this paper is the load-
balancing feature, which allows VECSlic-LB to distribute the overall 
load between the different slices at an edge node, and to enhance 
the efficiency in utilizing the edge computing resources.

Results of VECSlic-LB will be evaluated against the optimal VEC 
solution, and to a recent cloud computing algorithm in literature, 
the power aware network function virtualization (PaNFV) devel-
oped for cloud and edge computing [13,14]. Notice that PaNFV 
does not support load-balancing, and only works for single slice 
configuration. Moreover, in all evaluations, VECSlic-LB will be com-
pared to VECSlic without load-balancing, to highlight the benefits 
of VECSlic-LB, specifically the impacts of adding the load-balancing.

The main contributions of this paper are as follows:

1. VECSlic-LB is designed to support vehicular offloading tasks to-
wards the edge computing servers hosted at wireless nodes,
which is differentiated from other algorithms by:
- Supporting sliced edge computing servers.
- Supporting load-balancing between the sliced edge comput-

ing nodes.
- Virtualizing the data plane of the sliced edge nodes based

on NFV framework.
- Decoupling the control plane from data plane emulating

SDN controllers.
2. Compared to the optimal solution, VECSlic-LB provided close

acceptance ratios to the optimal, and
2

3. When compared to state-of-art algorithm, VECSlic-LB resulted
on more efficient resource utilization by 48%.

Rest of the paper is organized as follows: Section 2 provides
related work, Section 3 discusses the overall framework defining 
the physical network, and the problem formulation. Then Section 4
details in depth the proposed algorithm, including its computa-
tional complexity and the evaluation metrics that will be used in 
the simulations. This is followed by Section 5 which covers the 
simulation settings and discusses the results of the conducted ex-
periments, and conclusions are presented in Section 6.

2. Related work

Task offloading techniques in vehicular edge computing are at-
tracting the attention of a large number of applications in vehicular 
networks as a means to satisfy their increasing resource demands 
in terms of data storage and processing. A detailed survey about 
the recent advances in the task offloading techniques through ve-
hicular ad-hoc networks is provided in [15], focusing on the com-
munication patterns among vehicles and infrastructure, classify-
ing them into task offloading through vehicle-to-vehicle commu-
nications, vehicle-to-infrastructure communications, and vehicle-
to-everything communications. Another recent survey paper was 
conducted by [16], discussed the VEC architecture, smart vehicle 
services, communication, and applications, and concluded by some 
open research issues and challenges. In addition, [17] reviewed 
the state-of-art literature focusing on fog computing, mobile edge 
computing, cloud computing, Internet of things, autonomous auto-
mobiles, cloud-lets, and micro data centers for smart cities. They 
identified their key requirements, and listed and discussed some 
of the related open challenges, for instance privacy and mobility.

On vehicular task offloading, [18] proposed data offloading from 
cellular network’s base station (BS) to IEEE 802.11p RSU or WiFi 
Access Points (AP) using the multiple hop vehicular to vehicular 
(V2V) path to increase the possibility of vehicular ad-hoc net-
works (VANET) data offloading. They proposed the mobile edge 
computing (MEC)-based method to perform the offloading, giving 
that each vehicle reports its context to the MEC server period-
ically, accordingly the MEC server uses a specific path selection 
method to find suitable offloading path for vehicle v before or af-
ter it enters into (has left) the signal coverage of the ahead or 
rear RSU or AP. Another research was conducted by [19] to in-
vestigate the scheduling problem in a vehicular edge computing 
scenario to minimize the offloading cost in terms of a trade-off 
between task latency and energy consumption. They provided an 
optimal solution to the offloading scheduling problem, modeling 
it as a Markov decision process using deep reinforcement learn-
ing to deal with the dynamic mobile state space. In the study of 
[20], the authors proposed a collaborative edge computing scheme 
for vehicular Internet-of-things. The proposed scheme enabled a 
networking and computing architecture by forming vehicular clus-
ters based on the edge architecture, and concluded by providing an 
optimized offloading algorithm based on greener intelligent trans-
portation system architecture. Similarly, [21] investigated the task 
offloading in vehicular edge computing environment, and provided 
an optimal solution for static and dynamic offloading tasks for 
time-varying fading channels of uncertain allocated bandwidths.

Another comprehensive study about 5G network slicing in [22], 
focused on the principles and models of resource allocation algo-
rithms for network slicing. They introduced the basic ideas of the 
software defined networks and network function virtualization for 
network slicing. In addition they studied the fundamental frame-
work of resource allocation algorithms for network slicing, and 
analyzed the resource types for slicing the radio access and core 
networks. Furthermore, the authors categorized the mathematical 
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Table 1
Notations.

Notations Description. Notations Description.

T Simulation total time. P Weighted directed graph representing physical network.
N Set of nodes in the physical network. L Set of links in the physical network.
PathP All paths in the physical network. Psd Physical path between nodes s and d.
R Set of all Road Side Units. G Set of all gNB node sites.
S Set of all Slices representing PLMNs. s Slice s from the set of slice in S
P LMN Set of PLMNs. plmn The plmn from the set P LMN .
V Set of all vehicles. v Index of vehicle v ∈ V .
lvr Link between vehicle v and RSU r. S F C v Weighted directed graph representing S F C v .
F Set of all VNF types. vC P U VNF representing virtual CPUs.
v N IC VNF representing virtual Router. v H D VNF representing virtual storage.
v plmn vehicle’s v PLMN number. numv Number of demands.
vcur Current location of vehicle v . vdes Destination location of vehicle v .
J v Total number of data chunks to be offloaded from vehicle v . dcv Size of one data chunk in Bytes from vehicle v .
cs

v Demanded CPU by vehicle’s v VNFs on slice s crs Available CPU by RSU r in Slice s
cgs Available CPU by gNB g in Slice s ms

v Demanded storage by vehicle’s v VNFs on slice s
mrs Available storage by RSU r in Slice s mgs Available storage by gNB g in Slice s
bv Demanded data rate by vehicle v bvr Available data rate by RSU r for vehicle v
bvg Available data rate by gNB g for vehicle v dv Maximum acceptable delay for vehicle v
dvr Current delay in the link between v and r dvg Current delay in the link between v and g
AR v Accumulated sum of the accepted offloading tasks
models of slicing resource allocation algorithms, and concluded by 
discussing some of the open research issues and their potential 
solutions. Moreover, [23] provided a comprehensive review and 
solutions related to 5G network slicing, started by presenting 5G 
service quality and business requirements followed by a descrip-
tion of 5G network softwarization and slicing paradigms including 
essential concepts, history and different use cases. Then the au-
thors provided network slicing technology enablers including 5G 
technologies such as software define networking, network function 
virtualization, mobile edge computing, cloud and fog computing, 
network hypervisor, virtual machines and containers. Afterwards 
the authors compared the various 5G architectural approaches in 
terms of practical implementations, technology adoptions and de-
ployment strategies to support network slicing. Moreover, they 
investigated the standardization efforts in 5G networks regarding 
network slicing and softwarization.

On load-balancing at edge computing nodes, the authors in [24]
provided a detailed survey of current load-balancing techniques, 
and discussed and analyzed the utilized methodology for load-
balancing, implementation tools, and evaluation metrics at edge 
environments. They reviewed the optimization technique, traffic 
load distribution and dynamic load based techniques, and con-
cluded by identifying the current research gaps and future direc-
tions. The authors in [25] addressed the offloading problem for ve-
hicular edge computing networks, by introducing a load-balancing 
scheme to minimize the processing delay of the vehicles’ compu-
tation tasks. The authors proposed a software defined networking 
technology to centralize network and vehicle information man-
agement, and to achieve the load balancing of the computation 
resources at the edge servers, they assumed that all edge servers 
are candidates for offloading the tasks from a certain vehicle.

Moreover, the authors in [26] proposed integrating load-
balancing with offloading for a multi user and multi server ve-
hicular edge computing system. They formulated the joint load 
balancing and offloading problem as a mixed integer nonlinear 
programming problem to maximize system utility. Then, they de-
veloped an algorithm to jointly make vehicular edge computing 
server selection, and optimize offloading ratio and computation re-
sources together. [27] proposed an approach for optimal placement 
of road side units based on load balanced routing, to improve the 
stability and battery lifetime for the individual nodes in vehicular 
ad-hoc networks. The authors assumed energy levels of transmis-
sion in each vehicle as a variable, accordingly, they balanced the 
loads on road side units by imposing some upper bounds on their 
received energy levels based on the separation distance from the 
3

vehicles, then they selected the node that utilizes the least power 
to handle the traffic from vehicles.

As a conclusion from the literature section, it was challenging 
to find a study integrating network slicing and load-balancing into 
edge computing environments, let alone applying centralized con-
trol plane (as in SDN) and virtualized data plane (as in NFV) for 
vehicular offloading tasks. Based on that, the recent publications 
by [13,14] will be used as the main references for the developed 
algorithm in this paper, since they support offloading on cloud 
and edge computing environments for single slice, emulate the 
SDN and NFV technologies, but do not support load-balancing. Im-
portant to point out that the works from [13,14] were originally 
evaluated against the state-of-art algorithms from [28–30] and im-
provements were shown.

3. Framework

In this section, we first develop the physical network model of
vehicular network with a set of RSUs and 5G gNBs equipped with a 
physical edge server, and a set of vehicles which might request for 
task offloading. Then, we formulate the problem of task offloading 
as an optimization problem.

In order to evaluate the proposed algorithm for offloading tasks, 
this section presents a framework including a detailed description 
for the physical network composed of wireless base stations (RSUs 
and gNBs) hosting edge computing resources and their connecting 
links. In addition, the characteristics of virtual network function 
demands from the vehicles are descried focusing on the demands 
for specific edge computing resources such as processing power, 
storage, and bandwidth between the vehicles and the edge nodes. 
The parameters used in defining the proposed model are summa-
rized in Table 1.

3.1. Physical network model

The physical network is modeled as a weighted directed graph 
P = (N, L), where N and L are the sets of physical nodes and 
links respectively. The graph will be formulated as a set of network 
paths PathP connecting the nodes and links, giving that P sd is a 
path between the source node s and the destination node d, and 
can be formulated of one or more nodes and links. N is composed 
of a set of RSUs denoted as R , and another set of 5G gNBs de-
noted as G , while the set of links L are used to connect the RSUs 
and gNBs together. Each gNB g ∈ G can be connected to nearby 
gNBs and RSUs, but RSUs are only allowed to be connected to their 
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Fig. 1. Sample Network Model.
nearby gNBs as shown in the sample network in Fig. 1. Moreover, 
each RSU r ∈ R can be connected to one or more vehicle denoted 
as v , and each vehicle will have a delay denoted by dvr and data 
rate bvr towards the RSU. For each gNB g ∈ G it also can be di-
rectly connected to multiple vehicles, while each vehicle will have 
a delay dvg and data rate bvg towards the gNB, and the gNB can 
be linked to one or multiple RSUs with delay drg and data rate brg .

In this paper, the gNBs and the sliced edge core are assumed 
working based on standalone scenario, which is based on pure 
5G core and access components only, and following 3GPP Rel.16 
NR-V2X (new radio vehicle-to-everything) standards [31]. In the 
proposed physical network, a virtualized and sliced edge server 
at RSU r or gNB g are modeled to represent a physical hardware 
platform and a host operating system. The hardware platform will 
be managed by the NFV infrastructure manager (VIM) to provide 
the physical resources such as, processing power, network inter-
face cards (NIC), and storage [31].

The maximum resources of RSU r and gNB g for processing 
power are denoted as Cr and C g , which will be divided into slices 
denoted as s ∈ S , representing the public land mobile operators 
(PLMNs), each has available capacity denoted as crs and cgs . NICs 
are represented by their data rates denoted as Br and B g for max-
imum data rate capacities, where br and bg denoting the available 
capacities, and storage is denoted as Mr and Mg for maximum ca-
pacities, and similar to the processing power capacities, the storage 
resources are also divided between the different slices which will 
be denoted as mrs and mgs for available capacities.

The proposed algorithm in this paper, VECSlic-LB, is assumed 
residing at the gNBs, since in 5G [31], gNBs can be allocated with 
a standardized 5G user plane function (UPF), a V2X application 
server, and allows applying network function virtualization frame-
works on the gNBs data plane. Accordingly, the proposed algorithm 
emulates the services of an SDN controller in coordinating network 
4

Fig. 2. SFC.

resources for edge-based applications and the lifecycle manage-
ment of virtual network functions (VNFs) and network services. 
Therefore, it could be considered as a host operating system. In 
this way, VECSlic-LB, will represent the management and orches-
tration (MANO) center running the network’s control plane, and 
will have an overall knowledge of the used and free resources at 
the edge computing servers to carryout the offloading and virtu-
alization processes, and to activate or terminate the physical re-
sources.

3.2. Service function chain request model

Demands of each vehicle v will be constructed as a service 
function chain requests, denoted as SFCv shown in Fig. 2. Each 
SFCv will be modeled as a weighted and directed graph S F C v =
(N v , Lv), where N v and Lv are the sets of logical VNF nodes and 
their connecting logical links respectively. V N Fn ∈ N v is a VNF 
node n in the vehicle’s v SFC, and lv

no is a virtual logical link in 
Lv connecting VNFs n and o in SFCv .

Each SFCv will be represented by the total end-to-end delay 
threshold dv , required public land mobile operator number v P LMN

(representing slice s in the RSUs or gNBs), demanded virtual pro-
cessing power cs

v (vCPU), demanded virtual storage ms
v (vHD), de-

manded virtual data rate bv (vNIC), and current vehicle location 
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Fig. 3. Example.
vcur , and destination location vdes as in Fig. 2 representing the ve-
hicle’s trajectory.

3.3. Demonstration example

An example to demonstrate the main activities that will be car-
ried out by the proposed vehicular edge computing algorithm in 
this paper is shown in Fig. 3. Four vehicles are demanding vir-
tual resources from the network, giving that their demands are 
constructed as shown in SFCA , SFCB , SFCC , and SFCD . For exam-
ple vehicle A demands virtual 2 CPUs, 3 NIC, and 2 HD units to 
be allocated at PLMN-1 slices on RSU or gNB that has an end-to-
end delay less than 5 ms. As shown in the figure, vehicle-A will 
be best served by RSU-3 since it is the nearest and will fit the 
5 ms constraint. Therefore, Container-1 in the rMEC (multi-access 
edge computing at RSU ‘r’) of RSU-3 will translate the demands of 
vehicle-A and virtualize them on network slice-1 of PLMN-1. Same 
procedure for vehicle-B will be virtualized by Container-2 in the 
rMEC of RSU-3 on network slice-1 of PLMN-1. However, the de-
mands of vehicle-C supposed to be served by RSU-0 giving that its 
the nearest to the vehicle, but since RSU-0 does not have rMEC ser-
vice, the demands of vehicle-C will be hosted at Container-3 on the 
gMEC of gNB-0 on the network slice-2 of PLMN-2. Finally, vehicle-
D arriving the network and the closest node to it happens to be 
RSU-1, which will host the demands of vehicle-D on Container-1 
on the physical resources of slice-2 reserved for PLMN-2.
5

3.4. Problem formulation

In this paper the offloading problem from the vehicles towards 
other destinations in the context of vehicular edge computing 
environment is modeled as an integer linear programming (ILP) 
problem, of optimization objective function maximizing the total 
accepted offloading requests from the demanding vehicles.

3.4.1. Objective function and formulation
The objective function will target maximizing the number of ac-

cepted offloading tasks. Each task demands resources for offloading 
from vehicle v ∈ V to RSU r ∈ R , or to gNB g ∈ G , located on spe-
cific path P sd ∈ PathP . Consequently, maximizing the acceptance 
ratio for each demand requires selecting either a slice s in specific 
RSU through activating binary variable xs

vr = 1 to guarantee a slice 
was reserved in the RSU, or selecting a slice s in a gNB through ac-
tivating binary variable xs

vg = 1 to guarantee a slice was reserved 
in the gNB. Note that xs

vr requires that the binary variable xlvr = 1
to ensure that the link between v and r is active, and xs

vg requires 
that binary variable xlvg = 1 to ensure that the link between v and 
g is active too. For load-balancing feature the decision variables 
xs′

vr and xs′
vg must be activated and have a value equal to binary

value one, to ensure that the next slice (s′) in RSU r or gNB g is 
ready to handle the demands from the vehicles if the current slice 
s does not have free resources to host the vehicle’s demand, giv-
ing that s′ ∈ S ′ represents the index of next slice to s. Note that 
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S ′ is a set that includes all the remaining slices than slice s in the 
selected node, i.e. s /∈ S ′

The mathematical formulation of the objective function is rep-
resented as follows:

∀v ∈ V max
∑

r∈R,g∈G

(xs
vr + xs

vg) (1)

3.4.2. Constraints formulation
The solution of the objective function will be controlled by de-

lay and data rate constraints for the links, processing and storage 
capacity constraints for the nodes, and domain constraints as pre-
sented below. Note that the constraints are designed to be generic 
and can support various V2X scenario:

1. Constraints on the physical links
Checking delay between a vehicle and an RSU or a gNB: to
ensure that end-to-end delay in the link connecting vehicle v
in the selected path P sd , dvr for a vehicle towards an RSU, or
dvg for a vehicle towards a gNB is less than or equal to the
demanded delay dv by the vehicle, the following constraint
must be fulfilled:

for v ∈ V , for r ∈ R, g ∈ G

(dvr xlvr + dvg xlvg ) ≤ dv (2)

Reserving data rate capacity for a vehicle at an RSU or a gNB
in the selected path P sd: To ensure that the data rate to be
reserved for a vehicle v through the network nodes formulat-
ing the selected P sd , bvr for data rate available for the vehicle
v from an RSU, or bvg from a gNB is at least equal or greater
than the demanded data rate by vehicle v , bv , the following
constraint must be fulfilled:

for v ∈ V , for r ∈ R, g ∈ G

(bvr xlvr + bvg xlvg ) ≥ bv (3)

2. Constraints on the physical nodes
To ensure that the demanded processing power for vehicle v
is available at the hosting destination (an RSU or a gNB in the
selected path P sd), the following set of equations are formu-
lated as follows:

Reserving CPU capacity at an RSU: check if the demanded pro-
cessing power by vehicle v , denoted as cs

v , from the PLMN
represented by the slice number s is less than or equal to the
available processing power, denoted by crs , at the desired RSU
r slice s

∀s ∈ S, ∀r ∈ R

cs
v xs

vr ≤ crs (4)

If load-balancing is activated (i.e. xs′
vr = 1, where s′ ∈ S ′ rep-

resents another slice at the same RSU r reserved for another
P LMN ′), check if the demanded processing power by vehicle
v , denoted by cs

v , from the PLMN represented by the slice
number s is less than or equal to the available processing
power, denoted by crs′ , at the same RSU r on slice s′ repre-
senting P LMN ′ .

∀s ∈ S, ∀s′ ∈ S ′, ∀r ∈ R

cs
v xs′

vr ≤ crs′ (5)

Reserving CPU capacity at a gNB: If no RSU can satisfy the
processing power demands, then check if the demanded pro-
cessing power by vehicle v , denoted as cs

v , from the PLMN
6

represented by the slice number s is less than or equal to the 
available processing power, denoted by cgs , at the desired gNB 
g

∀s ∈ S, ∀g ∈ G

cs
v xs

vg ≤ cgs (6)

If load-balancing is activated (i.e. xs′
vg = 1, where s′ ∈ S ′ rep-

resents another slice at the same gNB g reserved for another 
P LMN ′), check if the demanded processing power by vehicle 
v , denoted by cs

v , from the PLMN represented by the slice 
number s is less than or equal to the available processing 
power, denoted by cgs′ , at the same gNB g on slice s′ rep-
resenting P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀g ∈ G

cs
v xs′

vg ≤ cgs′ (7)

Reserving storage capacity at an RSU: check if the demanded 
storage capacity by vehicle v , denoted as ms

v , from the PLMN 
represented by the slice number s is less than or equal to the 
available storage capacity, denoted by mrs , at the desired RSU 
r slice s

∀s ∈ S, ∀r ∈ R

ms
v xs

vr ≤ mrs (8)

If load-balancing is activated (i.e. xs′
vr = 1, where s′ ∈ S ′ rep-

resents another slice at the same RSU r reserved for another 
P LMN ′), check if the demanded storage capacity by vehicle v , 
denoted by ms

v , from the PLMN represented by the slice num-
ber s is less than or equal to the available storage capacity, 
denoted by mrs′ , at the same RSU r on slice s′ representing 
P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀r ∈ R

ms
v xs′

vr ≤ mrs′ (9)

Reserving storage capacity at a gNB: If no RSU can satisfy the 
storage capacity demands, then check if the demanded storage 
capacity by vehicle v , denoted as ms

v , from the PLMN rep-
resented by the slice number s is less than or equal to the 
available storage capacity, denoted by mgs , at the desired gNB 
g

∀s ∈ S, ∀g ∈ G

ms
v xs

vg ≤ mgs (10)

If load-balancing is activated (i.e. xs′
vg = 1, where s′ ∈ S ′ rep-

resents another slice at the same gNB g reserved for another 
P LMN ′), check if the demanded storage capacity by vehicle v , 
denoted by ms

v , from the PLMN represented by the slice num-
ber s is less than or equal to the available storage capacity, 
denoted by mgs′ , at the same gNB g on slice s′ representing 
P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀g ∈ G

ms
v xs′

vg ≤ mgs′ (11)

3. Domain constraints
To ensure that the demands of a vehicle v are offloaded on
only one RSU r or on one gNB g in P sd the following con-
straint must be fulfilled:

∀v ∈ V
∑

xs
vr +

∑
xs

vg ≤ 1 (12)

r∈R g∈G
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To ensure that only one single link is activated between the 
vehicle v and one RSU r or one gNB g in P sd the following 
constraint must be fulfilled:

∀v ∈ V
∑

r∈R

xlvr +
∑

g∈G

xlvg ≤ 1 (13)

4. VECSlic-LB for offloading with network slicing and
load-balancing

Optimal solution to solve the objective function in Eq. (1) sub-
ject to the constraints in Eq. (2)-Eq. (13) will be presented in the 
simulation in section 5.3, which implies allocating resources on 
the physical nodes (gNBs and RSUs) and links (connecting them 
to each other and to the vehicles) that are capable of meeting 
the demands of the vehicles. Theoretically, the optimal solution 
follows the strategy of introducing binary constraints to offload 
the demands of the SFCv on one physical node, similar to the 
multi-dimensional Bin Packing problem [32]. Moreover, the opti-
mal solution for Eq. (1) implies also connecting one link only for 
each node, and this is usually treated as a commodity between 
pairs of nodes, which is similar to finding an optimal flow for the 
commodity in any network model, and that was proved to be an 
NP-hard problem and not solvable in polynomial times even for 
small scale networks [32] as will be discussed in section 5.3.

Consequently, the majority of vehicular edge computing ap-
proaches followed heuristic or meta-heuristic algorithms to solve 
the optimization problem in a reasonable polynomial time. The fol-
lowing subsections will explain the proposed algorithm in this pa-
per for vehicular edge computing supporting network slicing and 
load-balancing features, VECSlic-LB, which will be used to solve the 
problem of offloading tasks from vehicles towards edge computing 
servers hosted at the wireless gNBs or RSUs.

4.1. VECSlic-LB algorithm explained

VECSlic-LB heuristic is shown in Algorithm 1 and the flowchart 
in Fig. 4, which includes four major parts, initialization, ranking, 
offloading, and updating and evaluation.

4.1.1. Initialization
The physical network is constructed of an interconnected gNBs 

generated using Waxman generator [33], which produces random 
graphs using a probability function to interconnect any two gNBs 
based on the distance that separates them. Each gNB is allowed 
to connect to 3 RSUs max, and each RSU is connected to one gNB 
only. Each gNB and RSU will be constructed according to the NFV 
framework as shown in the example in Fig. 3.

Once the network of gNBs and RSUs are generated, VECSlic-LB 
will slice their processing power and memory capacities based on 
the PLMNs’ required utilizations, then applies the path construc-
tion strategy developed by [13], and starts constructing and listing 
all the physical paths connecting the gNBs and RSUs as a source-
to-destination path P sd ∈ PathsP . It is assumed that the locations 
of the physical network nodes (i.e. the gNBs and RSUs) are fixed. 
Therefore, the main elements formulating any path, such as num-
ber and connectivity of the nodes and links are also fixed and do 
not change, but only their capacities vary due to the consumption.

The initialization phase is performed in advance and ahead of 
handling any SFC. Consequently, VECSlic-LB algorithm will always 
have a full list of all the paths in the network, as well as a detailed 
information about the nodes and links of these paths, such as, 
number of nodes and links in the path, types of the nodes (gNBs 
or RSUs), maximum and consumed capacities of the resources of 
these nodes or their links, and end-to-end delay and data rate per 
each link in each physical path.
7

Fig. 4. VECSlic-LB Flowchart.

4.1.2. Ranking
In this phase VECSlic-LB algorithm lists all gNBs and RSUs, then 

lists all their PLMNs (i.e. all slices in the gNB or RSU), and iden-
tify the slice that was assigned to the required PLMN specified by 
the SFCv . Next, VECSlic-LB calculates the delay using Eq. (18) be-
tween the vehicle and every gNB and RSU, which has the required 
PLMN among their listed PLMNs. Afterwards, VECSlic-LB will rank 
the gNBs and RSUs in descending order based on the shortest in 
delay to the vehicle v .

Accordingly, for each SFCv representing the demands of v ∈ V , 
VECSlic-LB adopted (Bubble Sort) algorithm to sort and rank all 
physical network gNBs and RSUs in descending order [32] based on 
the least on delay towards the vehicle v , in addition to ranking the 
slices per each of these gNBs and RSUs based on their utilizations, 
which means that VECSlic-LB algorithm will have a quadratic com-
putational time complexity in the order of O (V ∗ (N ∗ S)2), where 
N ∈ P is the number of potential physical nodes for offloading the 
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SFCs, and S is number of slices per each node. Then once the gNBs 
and RSUs are sorted, the algorithm lists all the paths P sd ∈ PathP

which start by the top node (least in delay), and checks if a node in 
that path has a slice with enough resources to offload the traffic of 
SFCv . This is done in computational time complexity in the order 
of O (V ∗ (O (|N Psd | + |L Psd |))) representing the order of complex-
ity for ranking the paths (nodes and links) per each vehicle v ∈ V . 
Consequently, the total computational complexity of the VECSlic-
LB to offload the traffic from all vehicles V is estimated to be in 
the order of O (V ∗ ((N ∗ S)2 + (O (|N Psd | + |L Psd |)))) representing 
order of complexity for ranking the slices per nodes and paths per 
vehicles.

Algorithm 1 VECSlic-LB Pseudo-Code.
1. Input: P and V .
2. For the set of physical nodes g ∈ G and r ∈ R in P

-Construct and list all physical paths PathsP .
3. List all SFCs
4. For each SFCv

4.1- Select each gN B and R SU that has a slice for the demanded P LMN
by SFCv .
4.2- Calculate the delay between vehicle v and each gN B and R SU from
(4.1) according to Eq. (18).

5. Rank the gN Bs and R SU s from (4.2) based on the shortest in delay to v .
6. For the top ranked node in (5)

6.1- List all physical paths Psd ∈ PathsP which start by that node.
7. For the top listed path in (6.1), Psd

7.0- Start by the first node from the path.
7.1– If delay and data rate constraints from Eq. (2) and Eq. (3), are satisfied,
go to (7.2).
– Else go to next path from (6.1) and continue to (7.0).
7.2- Select the slice of the demanded PLMN
– If CPU and storage constraints from
Eq. (4), Eq. (6), Eq. (8), and Eq. (10) are satisfied, go to (8).
– Else go to the next slice in (7.3).
7.3- Rank all remaining slices in the selected node from (7.0) based on their
utilizations.
7.4- Select a slice starting by the top ranked one
– If CPU and storage constraints from Eq. (5), Eq. (7), Eq. (9), and Eq. (11)
are satisfied, go to (8).
– Else go to next slice from (7.4).
7.5– If no node in the selected path can satisfy the constraints, go to next
path from (6.1)
– Else go to the next node in (5).

8. A suitable path and hosting node are found
- Allocate SFCv on Psd and
- OFFLOADING is ACCEPTED.
- Update CPU and storage in Psd nodes.
- Calculate the concerned evaluation metrics.
- Go to (9).

9. If demands’ list in (3) is not empty,
Go to next SFC in (3).

10. End

4.1.3. Offloading
VECSlic-LB will start by selecting the top ranked node, then lists 

all the physical paths that start by that node without any specific 
ranking for the paths. Afterwards, VECSlic-LB will select the first 
path in the list, and starting by the first node in that path, it will 
check if it can satisfy the delay and data rate constraints in Eq. (2)
and Eq. (3). Next, VECSlic-LB will check the slice belonging to the 
demanded PLMN in that node. If the node and the slice of the 
PLMN satisfy all the CPU and storage constraints in Eq. (4)-Eq. (11), 
VECSlic-LB will allocate the VNFs of SFCv on the PLMN slice in that 
node, and the offloading is accepted.

Otherwise, if the PLMN slice has no resources to host SFCv , 
VECSlic-LB will rank the remaining slices in the node based on 
their utilizations, and checks which one of them may have the 
demanded resources. If no slice can fulfill the demands of SFCv , 
VECSlic-LB will jump to the next node in the path P sd , do the same 
8

again until a slice is found. If no slice has resources and no other 
slice from the other nodes in the path can satisfy the demands, 
VECSlic-LB will jump to the next ranked path, and redo the checks 
again.

Important to clarify that VECSlic-LB will check if the path P sd
has multiple nodes between the vehicle and the hosting node (for 
CPU and storage), and will always ensure that the links connecting 
them satisfy the delay and data rate constraints.

However, in case no path can satisfy the demands of SFCv , the 
algorithm jumps to the next ranked physical node and lists its 
paths, and the process keeps on going until no more SFCv to be 
handled.

4.1.4. Updating and evaluation
Once a successful allocation occurs, the algorithm updates all 

changed resources on the hosting nodes and paths, calculates the 
evaluation criterion for acceptance ratio, utilization and processing 
times, then moves to the next SFCv .

4.2. VECSlic-LB computational time complexity

Based on the size of the physical network P , VECSlic-LB con-
structs all types of paths in O (|N| +|L|) processing time, consider-
ing the total number of nodes N ∈ P and links L ∈ P formulating 
the physical network [32]. This step is performed and saved only 
once before the arrival of any SFC, and it has no impact on the real 
computational time complexity of the Offloading process. How-
ever, to evaluate the computational time complexity of VECSlic-LB, 
the focal computational component of the heuristic is determined 
based on the time consumed while sorting all the listed gNBs and 
RSUs that belong to the demanded PLMN in the physical network.

4.3. VECSlic-LB algorithm running

The proposed VECSlic-LB algorithm is run offline in practice 
given the information on the vehicles’ demands, which are as-
sumed to be known or estimated using some historical demands. 
Moreover, VECSlic-LB algorithm allocates resources for an undeter-
mined duration, and stops once the total capacities of the nodes 
(RSUs and gNBs) are achieved.

4.4. Evaluation metrics

4.4.1. Average acceptance ratio
Acceptance ratio (AR) represents how VECSlic-LB algorithm is 

performing and how successfully it managed to offload the de-
manded tasks from the vehicles. It is calculated by averaging and 
dividing the number of successfully offloaded vehicular demands 
(SFCs) by the total number of SFCs V .

AR = 1

V

∑

∀v∈V

Accepted S F C v (14)

4.4.2. Processing power utilization
Represents the utilization trend of the gNBs and RSUs after 

each offloading attempt, denoted as C P Uutil . It is defined as a ratio 
between consumed processing power given by (Cn − cn) and max-
imum processing power Cn of the physical node n, summed and 
averaged for all nodes in the physical network. cn is the available 
processing resources in node n ∈ N .

C P Uutil = 1

N

∑ (Cn − cn)

Cn
(15)
∀n∈N
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Table 2
Settings.

Parameter Values and Description.

R 3 RSUs per gNB.
G 15 gNB node sites.
S 1,2,4,6,8 Slices representing PLMNs.
P LMN 1,2,4,6,8 PLMNs, set of PLMNs.
V 1500 Set of all vehicles.
v P LMN 1 − 8 Randomly selected for v PLMN.
vcur , vdes 0 − 1Km.
cs

v 15 Demanded CPU by vehicle v
Cr 100 Maximum CPU at each RSU r
C g 300 Maximum CPU at each gNB g
ms

v 15 Demanded storage by vehicle v
Mr 100 Maximum storage at each RSU r
Mg 300 Maximum storage at each gNB g.
bv 10 Demanded data rate for vehicle v .
bvr By Eq. (16) data rate by RSU r.
bvg By Eq. (16) data rate by gNB g.
dv 10 Demanded delay for vehicle v in ms.
dvr By Eq. (18) delay between v and r.
dvg By Eq. (18) delay between v and g.
W 20M H z bandwidth of the wireless channel.
P v 23dBm transmission power of the vehicle.
No 7dB variance of Gaussian noise.
h 10m Antenna height of the gNB/RSU.
hv 1.5m Antenna height of the vehicle.
f c 2G H z carrier frequency in GHz.
α 0.7.
β 0.6.
pwax 0.5.

5. Evaluation

In this section, we evaluate the performance of the proposed
algorithm VECSlic-LB, by comparing it against the optimal solution, 
and the algorithm PaNFV proposed in [13] which does not consider 
network slicing feature.

5.1. Simulation settings

The simulation settings in this section are used for optimal so-
lution, VECSlic-LB, and VECSlic without load-balancing algorithms. 
Accordingly, the physical network of gNBs topology was randomly 
generated using Waxman algorithm [33], setting α = 0.7, β = 0.6, 
and mean probability of a pair of two gNBs being connected set 
equal to 0.5. The network includes 10 gNB nodes, each connected 
to 3 RSUs, giving that RSUs are connected to the gNBs only, and 
distributed on an urban area of 1 Km x 1 Km. The simulation han-
dles 1500 vehicles that are distributed on the same area, and the 
distance between any vehicle v and RSU or gNB is less than 1 Km.

On network slicing, this paper generated the 1 slice simulations 
of PaNFV from [13], assigning the whole capacity of the C P U s and 
M E M 100% as one slice for the gNB or RSU, supporting only one 
PLMN. For multiple slices, optimal, VECSlic-LB, and VECSlic with-
out load-balancing supported 2 slices serving 2 PLMNs, dividing 
the resources of gNBs or RSUs as (60% for first slice assigned to 
the 1st PLMN, and 40% for the second PLMN), 4 slices for 4 PLMNs 
(35%, 25%, 20%, 20%), 6 slices for 6 PLMNs (30%, 25%, 20%, 10%, 
10%, 5%), and 8 slices for 8 PLMNs (30%, 20%, 15%, 10%, 8%, 7%, 5%, 
5%). For example, the 4th PLMN in the 8 slices configuration will 
be assigned 10% of the maximum capacity of the C P U and M E M
in the hosting gNB or RSU. Table 2 summarizes all simulation pa-
rameters.

Maximum C P U and M E M for storage resources are given as 
real numbers, 300 for gNBs and 100 for RSUs, which are shared 
between the set of slices representing the PLMNs. For vehicles, the 
demanded C P U and M E M are set to 15 per each. The current data 
rate and delay between any gNB or RSU and a vehicle, will be cal-
culated using the formulas in Eq. (16) and Eq. (18), which relay on 
9

multiple parameters including the Euclidean distance d between 
the vehicle and the gNB or RSU, carrier frequency f c, channel gain 
hV 2N , transmitted power by the vehicles P v , channel bandwidth 
W , vehicle’s antenna height hv , and gNB or RSU antenna height h. 
Finally, the demanded data rate and delay by the vehicles are set 
to 10.

To prove the case of vehicular edge computing and network 
slicing under controlled environment, and to show the strength of 
the proposed algorithm, this paper follows the offline scenario set-
tings, where all demands from the vehicles are assumed known 
or estimated in advance. In addition to that, offline scenario will 
allow testing VECSlic-LB algorithm for variety of settings, and reli-
ably calculate acceptance ratio, CPU utilizations, and the offloading 
times.

The performance of the offline algorithms in this paper was 
evaluated for consistency of results by running the simulations for 
3 times. All parameters were fixed as shown in 2 to overcome 
any randomness. The target was to evaluate how efficient the algo-
rithms were when repeating the offloading tasks for several times. 
For example, we focused on the results of the acceptance ratio for 
the offloading demands, and checked how the algorithm is cal-
culating the paths and capacities each time, and in all cases, the 
algorithm resulted on the same results (or very close results) in 
terms of acceptance ratios. The only difference was on the time 
required by the algorithm when selecting the paths and the edge 
nodes capacities that can accommodate the requirements for each 
demand. Accordingly, the results shown represent the average of 
the 3 runs. The standard deviation between the acceptance ratio 
results were zero or near to zero for the 3 runs. Moreover, dur-
ing the testing phase of the algorithms, we repeated the results 
for more than 10 times, and the results were as those of the 3 
runs. Therefore, we reported the average results for the 3 runs to 
represent how stable the algorithm.

In all simulations, the two versions of VECSlic and the ref-
erence algorithm PaNFV, were developed using Eclipse IDE for 
Java Developers, version: Mars.2 Release (4.5.2). The used machine 
was Lenovo laptop, system model 20CLS2RG00, processor Intel(R) 
Core(TM) i7-5600U CPU, 2.60 GHz, 2 Cores, 4 logical processors, 
RAM 8 GB, and the operating system was Microsoft Windows 10 
Enterprise.

5.2. Data rate and delay calculation

Available data rate by gNB or RSU for vehicle v is calculated by 
Eq. (16) which is the direct Shannon formula [34] as follows:

R = W . log(1 + (P v.hV 2N)/No); (16)

The channel gain hV 2N between the vehicle v towards gNB or 
RSU in the urban micro-cell wireless channel environment is cal-
culated using Eq. (17) [35], where d in meters, is the distance 
between vehicle v and gNB or RSU:

hV 2N =
40log(d)+ 9.45 − 17.3log(h)− 17.3log(hv)+ 2.7log( f c/5) (17)

Current delay in the link between v and gNB or RSU is calcu-
lated by Eq. (18):

d = (bv/R); (18)

5.3. Testing general behavior of VECSlic-LB

To evaluate VECSlic-LB with load-balancing feature activated, 5 
tests were conducted and the results are shown in Fig. 5. The first 
test evaluated VECSlic-LB when the number of gNBs was changed 
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Fig. 5. Testing VECSlic-LB for multiple settings. (A) shows the results when number of gNBs and RSUs was fixed while changing their capacities, (B) shows impacts of changing
gNBs and RSUs capacities, (C,D,E) show results due to changing slicing ratios.
between 5-30, while number of RSUs per each gNB was fixed to 
3 only, and RSUs and gNBs CPU and storage capacities were fixed 
to 100 and 300 units per each respectively. 1500 demands were 
listed to be offloaded, each demanding a fixed 10 CPUs and 10 
storage units. The acceptance ratio results in Fig. 5A shows that 
when number of gNBs was 5, VECSlic-LB provided least ratio scor-
ing 18.2% after the last offloading demand was received. However, 
when the number of gNBs was increased to 10, acceptance ratio 
was 37.3%, for 20 gNBs it was much better scoring 74.8%, and 
when the number of gNBs was increased to 30, the acceptance 
ratio was 100%, indicating how VECSlic-LB can efficiently handle 
large number of nodes to reach an outstanding performance.
10
The second test fixed the number of gNBs to 5 and number 
of RSUs to 3 per each gNB, and evaluated the impacts of increas-
ing the RSUs’ CPU and storage capacities between 100-600 units, 
and for gNBs between 300-1800 units. The acceptance ratios of 
VECSlic-LB are shown in Fig. 5B, indicating that the higher the 
capacities the better the acceptance ratios. For example when com-
paring between the RSUs capacities of 600 units, VECSlic-LB scored 
93%, while for 100 units VECSlic-LB provided 18% acceptance ra-
tio.

For Test-3, Test-4, and Test-5, the aim was to evaluate the im-
pacts of changing the slicing ratios on VECSlic-LB’s acceptance 
ratio. Consequently, in Fig. 5C RSUs capacities were set to 100 
units, while fixing the number of gNBs to 5, each is serving 3 RSUs. 



JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.11 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Table 3
Comparing VECSlic-LB to PaNFV.

Item VECSlic-LB PaNFV

Scenario Offline Offline and Migration (optional)
Resource allocation Offloading Offloading, Caching (optional)
Edge Computing Support Yes Yes, plus cloud computing (optional)
Network Slicing Support Multiple Slices Single slice
Load-Balancing Support Yes No
Path Construction As in [13] Uses special technique called segmentation.
Ranking Rank nodes on their distance from v Rank nodes on their distance from v .
Offloading All VNFs on one single node All VNFs on one single node
End-to-end delay Yes Yes
Regardless of the different slicing ratios, the acceptance ratios were 
near to each other providing poor results for all of them. On the 
other hand, Fig. 5D provided much better results for the same slic-
ing ratios, mainly due to increasing the capacities of the RSUs to 
300 units, which allowed for more demands to be offloaded.

The best results were obtained from Test-5, when the number 
of gNBs was increased to 20, while fixing the capacities of the RSUs 
to 300, gNBs to 900, and connecting 3 RSUs to each gNB. Accord-
ingly Fig. 5E shows VECSlic-LB managed to score 100% acceptance 
ratios regardless of the various slicing ratio.

Overall, these tests explored the various behaviors of VECSlic-
LB when some of its main parameters were changed, highlighting 
its general capabilities, and how it can treat multiple scenarios and 
environments. The main outcome from these tests is that in terms 
of implementation costs, changing the capacities of the gNBs and 
RSUs are much efficient than adding more gNBs or RSUs, or chang-
ing the slicing ratios as well.

5.4. Optimal performance results

In order to validate the ultimate performance of the proposed 
algorithm with network slicing and load-balancing features, the 
following paragraphs will compare VECSlic-LB performance to the 
optimal solution of Eq. (1) subject to the constraints in Eq. (2)-
Eq. (13), and to VECSlic without including the load-balancing fea-
ture. The simulations were conducted for 2, 4, 6, and 8 slicing 
configurations.

The optimal solution was solved by calling IBM ILOG CPLEX op-
timizer version 12.10.0.0, which is a mathematical programming 
solver for optimization problems, such as linear programming. It 
provides the best solution of the objective function in Eq. (1), 
which corresponds to a suitable RSU or gNB that can host the de-
mands of a vehicle.

5.4.1. Acceptance ratio
The final accumulated acceptance ratios for optimal, VECSlic-LB, 

and VECSlic without load-balancing are shown in Fig. 6. For 2 slices 
configuration, the ratios for the optimal and VECSlic-LB were very 
close to each other, scoring around 48% after handling all demands, 
while VECSlic without load-balancing slightly differed from them 
around the demands 568 − 860, but resulted on acceptance ratio 
around 48% as well. Notice that, both the optimal and VECSlic-LB 
started to degrade in their acceptance ratios after demands 701
and 714 respectively.

Similar trends were reported for 4 slices configurations, not-
ing that the acceptance ratios for optimal solution, VECSlic-LB, 
and VECSlic without load-balancing resulted on 44.8%, 44.46%, and 
44.4% respectively. They deferred on the starting point to degrade 
the acceptance ratio, where the optimal and VECSlic-LB started 
degrading around demands 627 and 615, and VECSlic started de-
grading around demand 535.

For the 6 slices configurations, the optimal solution scored ac-
ceptance ratio around 42.5% and started degrading around demand 
11
583, VECSlic-LB acceptance ratio was around 42.1% but started de-
grading around demand 553, and VECSlic scored 41.3% acceptance 
ratio and started degrading so early around demand 152. Finally, 
the behavior of optimal, VECSlic-LB, and VECSlic for 8 slices config-
urations reported acceptance ratios around 40%, 39.2%, and 37.4%, 
giving that they started degrading around demands 488, 451, and 
92 for the three of them respectively.

Overall, the simulation results of VECSlic-LB were much closer 
to the optimal solution than VECSlic without load-balancing, this is 
most likely due to the systematic behavior of VECSlic-LB on select-
ing the best nodes and identifying the slice among each node that 
has availability to host more demands. Results of VECSlic without 
load-balancing for 6 and 8 slices were much lower than VECSlic-
LB, mainly due to limited capacities assigned to multiple smaller 
slices. Therefore, while attempting to offload the demands request-
ing specific PLMN, VECSlic without load-balancing may deny some 
offloading attempt due to congested slices, accordingly, its accep-
tance ratios will be less than VECSlic-LB.

5.4.2. CPU utilizations
Behavior of optimal solution and VECSlic-LB was generally near 

to each other when utilizing the different slices as shown in 
Fig. 6E-H. More specifically, the final utilization rates for 2 slices 
configuration resulted on 100% for each of optimal, VECSlic-LB, and 
VECSlic without load-balancing. For 4 slices the final utilizations 
were around 93%, in 6 slices configuration it was around 70%, but 
for 8 slices, optimal and VECSlic-LB scored 56, while VECSlic with-
out load-balancing had C P U utilizations around 54%.

These results clearly show that, in terms of utilizations ratio the 
proposed algorithm VECSlic-LB performed on very similar trends 
near the optimal solution results, reflecting its solid and stable per-
formance when handling large number of slices for multiple nodes.

5.5. VECSlic-LB comparison to the reference PaNFV

In this subsection, the overall performance of the proposed al-
gorithm VECSlic-LB with load-balancing, and VECSlic without load-
balancing feature will be compared to the reference algorithm 
PaNFV. The presented results are for 2, 4, 6, and 8 slices config-
urations, while PaNFV results are for 1 slice. Table 3 provides a 
high-level comparison between VECSlic-LB and PaNFV algorithms.

5.5.1. Acceptance ratio
The final accumulated acceptance ratios for VECSlic without 

load-balancing compared to PaNFV are shown in Fig. 7A. For 2 
slices VECSlic resulted on the same typical ratios as those of PaNFV 
scoring 48%, but provided less ratios for 4 slices by 3.6%, for 6 
slices by 7.6%, and 10.6% for 8 slices. However, Fig. 7B shows the 
results for VECSlic-LB which provided better results than VECSlic 
without load-balancing compared to the reference PaNFV, giving 
that for 2 slices configuration both had 48% acceptance ratio, but 
for 4 slices VECSlic-LB was less than PaNFV by 3.2%, for 6 slices 
was less by 6.2%, and 9.3% for 8 slices.
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Fig. 6. Results of the optimal solution compared to the proposed algorithm VECSlic-LB, and VECSlic without load-balancing. A-D show the acceptance ratios for 2, 4, 6, and 8
slicing configurations, and E-H present the CPU utilization for the same slicing configurations.
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Fig. 7. Comparing VECSlic with and without load balancing feature against the reference algorithm PaNFV.
Compared to PaNFV, the results of VECSlic-LB and VECSlic with-
out load-balancing were mostly near those of PaNFV, but with 
slight difference regarding the point when the acceptance ratio 
started to decay. However, as a general observation from the sim-
ulations, the results of VECSlic-LB which has slicing and load-
balancing features showed great reliability in balancing the loads 
between the various slices in the edge nodes, and that should be 
reflected positively on managing the edge node’s processing and 
memory resources for real edge computing applications.

5.5.2. CPU utilizations
The great advantage of VECSlic-LB over the reference algo-

rithm PaNFV is demonstrated in Fig. 7D, showing how efficient is 
VECSlic-LB in utilizing the CPU resources. For example, compared 
to PaNFV which supports single slice configuration only and had 
100% CPU utilization, VECSlic-LB for 8 slice configuration utilized 
around 52% of the nodes’ CPU resources, leaving space for free re-
sources around 48% to handle more demands.

This means that if more vehicular demands than the 1500, re-
quest offloading service, PaNFV will immediately reject them, since 
the CPU resources under PaNFV were full, but VECSlic-LB will have 
much better chances to accept the offloading request since it has 
more free resources. The same analysis applies to 6 and 4 slice 
configurations, and to VECSlic without load-balancing in Fig. 7C.

The rational for why VECSlic-LB had such great lead over the 
reference algorithm in utilizing the CPU resources (the same for 
VECSlic without load-balancing), is because of the network slicing 
feature mainly. Referring to acceptance ratio results, it was obvi-
ous that PaNFV managed to accept more demands than VECSlic-LB 
for 8 slices configuration by around 10%, but when evaluating the 
13
future capabilities of both algorithms based on the efficiency of re-
sources utilizations, VECSlic-LB support for network slicing clearly 
leads, due to its superior advantage in handling more demands 
than PaNFV, which will be translated into better acceptance ratio 
as well.

5.6. Offloading distributions per gNBs and RSUs

The rational of this experiment is to gather some statistical 
analysis about the performance of VECSlic-LB when it offloads var-
ious tasks on the gNBs and RSUs. VECSlic-LB algorithm strategy in 
selecting candidate gNB or RSU to host the offloaded traffic from 
the vehicles, relies on selecting the node that has the shortest de-
lay towards the vehicle, and has free resources within its slices, 
otherwise it moves to the next shortest node in terms of delay if 
any.

Fig. 8A,C show the results of VECSlic without load-balancing for 
2 and 8 slices configuration, clarifying the distribution of the suc-
cessful offloading attempts on gNBs or RSUs that have free hosting 
resources. The figures indicate that in the initial attempts, VECSlic 
mostly leaned towards RSUs, then if some of the RSUs became con-
gested, it also started to offload on the gNBs since they have more 
capacities. Notice that once the network becomes more loaded, 
VECSlic spread the offloading attempts towards the remaining RSUs 
and gNBs that still have free capacities, even if they were lower 
ranked in terms of delay, but still comply with the delay and data 
rate constraints.

VECSlic-LB results on the other hand highlight that the of-
floading distributions are more condensed than VECSlic without 
load-balancing as shown in Fig. 8B,D. Overall, the figures show 
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Fig. 8. Distribution of successful offloading attempts on gNBs and RSUs. In (A,C) the results of VECSlic without load-balancing for 2 and 8 slices configurations, and in (B,D)
are the results for VECSlic-LB for 2 and 8 slices configurations.
that from the beginning VECSlic-LB offloading attempts leaned a 
bit more towards the gNBs than RSUs for the 2 and 8 slices con-
figurations, giving the activated load-balancing feature from the 
start.

The rational of these results offer direct explanation for the of-
floading phase of VECSlic-LB algorithm, which clarify that VECSlic-
LB will first keep selecting the nodes that have least delay towards 
the vehicles and has free resources, therefore, most nodes will start 
filling-in early on. Afterwards, VECSlic-LB will start offloading to 
the other few remaining nodes, which could be further away from 
the vehicle, yet may have free CPU capacities to offload vehicles’ 
traffic to them. Note that VECSlic-LB does not force any distance 
thresholds, but only ranks these nodes based on their CPU uti-
lizations and delays from the vehicles, and checks if their delays 
comply with the demanded delay. If no more nodes could fulfill 
the demands, VECSlic-LB will drop the demand.

5.7. Average offloading times

The average offloading times For the 2 and 8 slicing configura-
tions are shown in Fig. 9. Overall, VECSlic without load-balancing 
was much faster in performing the whole offloading attempts com-
pared to VECSlic-LB, mainly because with load-balancing, VECSlic-
LB needed to rank the slices per node based on their CPU utiliza-
tions, in addition to ranking the nodes themselves based on their 
transmission delay from the vehicles, reflecting the impacts of ac-
tivating the load-balancing feature.

In summary, these results suggest that the benefits of load-
balancing in accepting more demands and saving more resources 
14
could be comprised due to the longer offloading times required to 
handle the demands from the vehicles.

Moreover, the proposed algorithm provides better results than 
the optimal solution and this holds for both schemes, namely with 
and without load balancing. Therefore, the optimality loss incurred 
by the proposed algorithm, in terms of acceptance ratio, is well 
compensated for by the offloading times.

6. Conclusions

This paper presented a vehicular edge computing algorithm 
for offloading tasks from vehicles towards wireless nodes hosting 
edge computing servers. The algorithm is denoted as VECSlic-LB, 
supports network slicing and load-balancing features, and adopts 
centralized control plane and virtualized data plane based on net-
work function virtualization architecture. The performance of the 
proposed algorithm compared to the optimal solution, resulted 
on close results, confirming VECSlic-LB reliable and stable perfor-
mance. The algorithm performed the offloading tasks in fraction 
of a second for different slicing configurations, and compared to 
state-of-art algorithm, VECSlic-LB provided more efficient results 
in terms of resources utilization by 48%, thanks to the integration 
of slicing and load-balancing features which allowed the proposed 
algorithm to handle large number of slices and manage their re-
sources in a reliable manner.

In future work we will develop another version of the algorithm 
for online scenarios including network slicing for offloading and 
caching services at the same time, while adding comparison with 
other VEC offloading algorithms with and without slicing. We will 
also investigate other channel and mobility models.
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Fig. 9. VECSlic’s average offloading times for the demands from vehicles. Optimal solution and the proposed schemes with load-balancing and without load-balancing.
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