
HAL Id: hal-03438958
https://hal.science/hal-03438958

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Network slicing with load-balancing for task offloading
in vehicular edge computing

Khaled Hejja, Sara Berri, Houda Labiod

To cite this version:
Khaled Hejja, Sara Berri, Houda Labiod. Network slicing with load-balancing for task
offloading in vehicular edge computing. Vehicular Communications, 2021, pp.100419.
�10.1016/j.vehcom.2021.100419�. �hal-03438958�

https://hal.science/hal-03438958
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.1 (1-16)

Vehicular Communications ••• (••••) ••••••

Contents lists available at ScienceDirect

Vehicular Communications

www.elsevier.com/locate/vehcom

Network slicing with load-balancing for task offloading in vehicular
edge computing

Khaled Hejja a, Sara Berri b,∗, Houda Labiod a

a INFRES, Telecom Paris, Institute Polytechnic of Paris, 91120 Palaiseau, France
b ETIS UMR 8051, CY Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 March 2021
Received in revised form 10 September
2021
Accepted 29 September 2021
Available online xxxx

Keywords:
Edge computing
Network slicing
Vehicular offloading
Load-balancing
Network function virtualization

The support of edge computing for vehicular technologies gained increasing momentum with 5G to
fulfill efficient offloading tasks from vehicles towards the edge nodes. Accordingly, vehicles demanding
powerful computation and large storage resources will be directed to communicate with the nearest edge
computing nodes hosted at a wireless 5G new generation nodes (gNBs) or a road side units (RSUs). To
efficiently utilize the edge nodes’ resources, network slicing and load-balancing features can greatly help
in that, therefore, this paper proposes an algorithm for Vehicular Edge Computing (VEC) with network
slicing and load-balancing based on resources utilization, denoted as VECSlic-LB, specifically dedicated
for offloading tasks from vehicles to edge nodes at gNBs or RSUs. The algorithm can holistically view
and manage the whole network, and use network function virtualization framework to manage the data
plane. VECSlic-LB can handle a mix of slicing configurations, capable of balancing the loads between
various slices per node, and can support multiple edge computing nodes. Several simulations were
conducted comparing the performance of the proposed algorithm to the optimal solution, resulting on
very close acceptance ratios as the optimal solution, and also was evaluated against a recent reference
algorithm, providing more efficient resource utilizations ratios, saving up to 48% of the resources better
than the state-of-art algorithm.

© 2021 Elsevier Inc. All rights reserved.

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214209621000887
Manuscript_274333de8919c00ca334e228873bc8e0
1. Introduction

The support of 5G for edge computing and vehicle-to-every-
thing (V2X) communication, facilitated the creation of VEC as an
emerging technology to support several vehicular applications such
as vehicles platooning, advanced-driving and remote-driving appli-
cations, to enable automated driving, where longer inter-vehicle
distance is assumed, in addition to allowing vehicles to share and
coordinate their trajectories and intentions for safer traveling, col-
lision avoidance, and improved traffic efficiency [1]. Moreover, the
3rd generation partnership project (3GPP) standardization activi-
ties opened new era to use VEC technologies for vehicles’ extended
sensors applications such as exchanging large amounts of data
from sensors for post processing and analysis at the edge nodes.
For example, sensors in vehicle-to-vehicle (V2V), or vehicles-to-
infrastructure (V2I) can offload their data towards the VEC nodes
residing at road side units (RSU), Internet-of-things (IoT) devices,
or wireless base stations such as 5G’s Next Generation NodeBs, for

* Corresponding author.
E-mail addresses: khalid.a.hijjeh@gmail.com (K. Hejja), sara.berri@ensea.fr
(S. Berri), houda.labiod@telecom-paris.fr (H. Labiod).

https://doi.org/10.1016/j.vehcom.2021.100419
2214-2096/© 2021 Elsevier Inc. All rights reserved.

© 2021 published by Elsevier. This manuscript is made available u
https://creativecommons.org/licenses/by-nc/4.0/
better precision, fast analysis, or to store the data for future access
[2].

However, most existing works in literature about offloading in
vehicular edge computing networks did not consider network slic-
ing to differentiate such sensitive vehicular applications from each
other, nor considering balancing the loads between the edge nodes
themselves or within the edge computing servers to benefit from
any available excessive computation resources that can be utilized
by the vehicles. Consequently, vehicular networks’ operators may
face complications in designing their VEC networks, forcing them
to apply solutions of higher costs and limited support to the new
emerging vehicular services [3].

Network slicing was specified in [4] to support network ser-
vice differentiation and diversification based on the requirements
from variety of industries, including V2X applications. Accordingly,
3GPP highlighted in [5] the importance of abstracting the required
network slice information to support V2X applications and multi-
ple public land mobile network operator (PLMN). Technically this
means that, network slicing can be considered as a complete and
separate logical network, to provide specific network capabilities
and network characteristics, similar to any other physical network

operation. Therefore, several V2X use cases and classes such as

nder the CC BY NC user license

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214209621000887
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2214209621000887

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.2 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
vehicles’ cooperative maneuvering and safety, autonomous navi-
gation, and remote driving; which have diverse and conflicting
computing, storage, latency, reliability, and throughput require-
ments, can leverage the use of network slicing to allow the service
providers to design one or more network slices, and bundle them
to support multiple V2X key performance indicators and quality of
service requirements [6,7].

Regarding load-balancing, there are several strategies widely
employed in cloud environments [8], such as random access load-
balancing technique, which assumes that the demanding users
need to connect randomly to any available edge server from a list
of available servers. Another technique is load-balancing based on
number of users to determine the capability of edge servers, there-
fore, if the capacity of the first server is overloaded, a new server
will be activated to meet the demand. Similarly, the load-balancing
technique based on the utilization of the central processing unit
(CPU) or memory of the cloud or edge servers, in this case if the
requested CPU or memory load did not meet the total capabil-
ity of the target server, the load-balancer will instantiate a new
server at that cloud or edge node [9]. Lastly, throughput based
load-balancing techniques which usually relies on evaluating the
network quality of service and performance metrics, such as the
efficiency of throughput, bandwidth, and latency [10,11].

In light of that, the authors propose an algorithm for vehicular
edge computing with network slicing and load-balancing, denoted
as (VECSlic-LB), specifically designed to handle offloading tasks
from vehicles towards wireless nodes (i.e. RSUs and gNBs), while
balancing the loads between the sliced edge computing servers
hosted at these nodes. VECSlic-LB follows the spirit of Software
Defined Networking (SDN) in providing a centralized management
of the VEC network usage. Moreover, based on the clarifications of
[12], VECSlic-LB applies the network function virtualization (NFV)
architecture on the data plane at the RSUs and gNBs, to decouple
the virtualized network functions from the physical devices of the
RSUs and gNBs, and to efficiently manage and utilize the physical
resources at the edge computing servers. Moreover, VECSlic-LB in-
tegrated the network slicing feature to allow V2X service providers
to have their own slices with separate computing, storage, and
networking resources that can be assigned according to the V2X
service type. Finally, the new addition in this paper is the load-
balancing feature, which allows VECSlic-LB to distribute the overall
load between the different slices at an edge node, and to enhance
the efficiency in utilizing the edge computing resources.

Results of VECSlic-LB will be evaluated against the optimal VEC
solution, and to a recent cloud computing algorithm in literature,
the power aware network function virtualization (PaNFV) devel-
oped for cloud and edge computing [13,14]. Notice that PaNFV
does not support load-balancing, and only works for single slice
configuration. Moreover, in all evaluations, VECSlic-LB will be com-
pared to VECSlic without load-balancing, to highlight the benefits
of VECSlic-LB, specifically the impacts of adding the load-balancing.

The main contributions of this paper are as follows:

1. VECSlic-LB is designed to support vehicular offloading tasks to-
wards the edge computing servers hosted at wireless nodes,
which is differentiated from other algorithms by:
- Supporting sliced edge computing servers.
- Supporting load-balancing between the sliced edge comput-

ing nodes.
- Virtualizing the data plane of the sliced edge nodes based

on NFV framework.
- Decoupling the control plane from data plane emulating

SDN controllers.
2. Compared to the optimal solution, VECSlic-LB provided close

acceptance ratios to the optimal, and
2

3. When compared to state-of-art algorithm, VECSlic-LB resulted
on more efficient resource utilization by 48%.

Rest of the paper is organized as follows: Section 2 provides
related work, Section 3 discusses the overall framework defining
the physical network, and the problem formulation. Then Section 4
details in depth the proposed algorithm, including its computa-
tional complexity and the evaluation metrics that will be used in
the simulations. This is followed by Section 5 which covers the
simulation settings and discusses the results of the conducted ex-
periments, and conclusions are presented in Section 6.

2. Related work

Task offloading techniques in vehicular edge computing are at-
tracting the attention of a large number of applications in vehicular
networks as a means to satisfy their increasing resource demands
in terms of data storage and processing. A detailed survey about
the recent advances in the task offloading techniques through ve-
hicular ad-hoc networks is provided in [15], focusing on the com-
munication patterns among vehicles and infrastructure, classify-
ing them into task offloading through vehicle-to-vehicle commu-
nications, vehicle-to-infrastructure communications, and vehicle-
to-everything communications. Another recent survey paper was
conducted by [16], discussed the VEC architecture, smart vehicle
services, communication, and applications, and concluded by some
open research issues and challenges. In addition, [17] reviewed
the state-of-art literature focusing on fog computing, mobile edge
computing, cloud computing, Internet of things, autonomous auto-
mobiles, cloud-lets, and micro data centers for smart cities. They
identified their key requirements, and listed and discussed some
of the related open challenges, for instance privacy and mobility.

On vehicular task offloading, [18] proposed data offloading from
cellular network’s base station (BS) to IEEE 802.11p RSU or WiFi
Access Points (AP) using the multiple hop vehicular to vehicular
(V2V) path to increase the possibility of vehicular ad-hoc net-
works (VANET) data offloading. They proposed the mobile edge
computing (MEC)-based method to perform the offloading, giving
that each vehicle reports its context to the MEC server period-
ically, accordingly the MEC server uses a specific path selection
method to find suitable offloading path for vehicle v before or af-
ter it enters into (has left) the signal coverage of the ahead or
rear RSU or AP. Another research was conducted by [19] to in-
vestigate the scheduling problem in a vehicular edge computing
scenario to minimize the offloading cost in terms of a trade-off
between task latency and energy consumption. They provided an
optimal solution to the offloading scheduling problem, modeling
it as a Markov decision process using deep reinforcement learn-
ing to deal with the dynamic mobile state space. In the study of
[20], the authors proposed a collaborative edge computing scheme
for vehicular Internet-of-things. The proposed scheme enabled a
networking and computing architecture by forming vehicular clus-
ters based on the edge architecture, and concluded by providing an
optimized offloading algorithm based on greener intelligent trans-
portation system architecture. Similarly, [21] investigated the task
offloading in vehicular edge computing environment, and provided
an optimal solution for static and dynamic offloading tasks for
time-varying fading channels of uncertain allocated bandwidths.

Another comprehensive study about 5G network slicing in [22],
focused on the principles and models of resource allocation algo-
rithms for network slicing. They introduced the basic ideas of the
software defined networks and network function virtualization for
network slicing. In addition they studied the fundamental frame-
work of resource allocation algorithms for network slicing, and
analyzed the resource types for slicing the radio access and core
networks. Furthermore, the authors categorized the mathematical

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.3 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Table 1
Notations.

Notations Description. Notations Description.

T Simulation total time. P Weighted directed graph representing physical network.
N Set of nodes in the physical network. L Set of links in the physical network.
PathP All paths in the physical network. Psd Physical path between nodes s and d.
R Set of all Road Side Units. G Set of all gNB node sites.
S Set of all Slices representing PLMNs. s Slice s from the set of slice in S
P LMN Set of PLMNs. plmn The plmn from the set P LMN .
V Set of all vehicles. v Index of vehicle v ∈ V .
lvr Link between vehicle v and RSU r. S F C v Weighted directed graph representing S F C v .
F Set of all VNF types. vC P U VNF representing virtual CPUs.
v N IC VNF representing virtual Router. v H D VNF representing virtual storage.
v plmn vehicle’s v PLMN number. numv Number of demands.
vcur Current location of vehicle v . vdes Destination location of vehicle v .
J v Total number of data chunks to be offloaded from vehicle v . dcv Size of one data chunk in Bytes from vehicle v .
cs

v Demanded CPU by vehicle’s v VNFs on slice s crs Available CPU by RSU r in Slice s
cgs Available CPU by gNB g in Slice s ms

v Demanded storage by vehicle’s v VNFs on slice s
mrs Available storage by RSU r in Slice s mgs Available storage by gNB g in Slice s
bv Demanded data rate by vehicle v bvr Available data rate by RSU r for vehicle v
bvg Available data rate by gNB g for vehicle v dv Maximum acceptable delay for vehicle v
dvr Current delay in the link between v and r dvg Current delay in the link between v and g
AR v Accumulated sum of the accepted offloading tasks
models of slicing resource allocation algorithms, and concluded by
discussing some of the open research issues and their potential
solutions. Moreover, [23] provided a comprehensive review and
solutions related to 5G network slicing, started by presenting 5G
service quality and business requirements followed by a descrip-
tion of 5G network softwarization and slicing paradigms including
essential concepts, history and different use cases. Then the au-
thors provided network slicing technology enablers including 5G
technologies such as software define networking, network function
virtualization, mobile edge computing, cloud and fog computing,
network hypervisor, virtual machines and containers. Afterwards
the authors compared the various 5G architectural approaches in
terms of practical implementations, technology adoptions and de-
ployment strategies to support network slicing. Moreover, they
investigated the standardization efforts in 5G networks regarding
network slicing and softwarization.

On load-balancing at edge computing nodes, the authors in [24]
provided a detailed survey of current load-balancing techniques,
and discussed and analyzed the utilized methodology for load-
balancing, implementation tools, and evaluation metrics at edge
environments. They reviewed the optimization technique, traffic
load distribution and dynamic load based techniques, and con-
cluded by identifying the current research gaps and future direc-
tions. The authors in [25] addressed the offloading problem for ve-
hicular edge computing networks, by introducing a load-balancing
scheme to minimize the processing delay of the vehicles’ compu-
tation tasks. The authors proposed a software defined networking
technology to centralize network and vehicle information man-
agement, and to achieve the load balancing of the computation
resources at the edge servers, they assumed that all edge servers
are candidates for offloading the tasks from a certain vehicle.

Moreover, the authors in [26] proposed integrating load-
balancing with offloading for a multi user and multi server ve-
hicular edge computing system. They formulated the joint load
balancing and offloading problem as a mixed integer nonlinear
programming problem to maximize system utility. Then, they de-
veloped an algorithm to jointly make vehicular edge computing
server selection, and optimize offloading ratio and computation re-
sources together. [27] proposed an approach for optimal placement
of road side units based on load balanced routing, to improve the
stability and battery lifetime for the individual nodes in vehicular
ad-hoc networks. The authors assumed energy levels of transmis-
sion in each vehicle as a variable, accordingly, they balanced the
loads on road side units by imposing some upper bounds on their
received energy levels based on the separation distance from the
3

vehicles, then they selected the node that utilizes the least power
to handle the traffic from vehicles.

As a conclusion from the literature section, it was challenging
to find a study integrating network slicing and load-balancing into
edge computing environments, let alone applying centralized con-
trol plane (as in SDN) and virtualized data plane (as in NFV) for
vehicular offloading tasks. Based on that, the recent publications
by [13,14] will be used as the main references for the developed
algorithm in this paper, since they support offloading on cloud
and edge computing environments for single slice, emulate the
SDN and NFV technologies, but do not support load-balancing. Im-
portant to point out that the works from [13,14] were originally
evaluated against the state-of-art algorithms from [28–30] and im-
provements were shown.

3. Framework

In this section, we first develop the physical network model of
vehicular network with a set of RSUs and 5G gNBs equipped with a
physical edge server, and a set of vehicles which might request for
task offloading. Then, we formulate the problem of task offloading
as an optimization problem.

In order to evaluate the proposed algorithm for offloading tasks,
this section presents a framework including a detailed description
for the physical network composed of wireless base stations (RSUs
and gNBs) hosting edge computing resources and their connecting
links. In addition, the characteristics of virtual network function
demands from the vehicles are descried focusing on the demands
for specific edge computing resources such as processing power,
storage, and bandwidth between the vehicles and the edge nodes.
The parameters used in defining the proposed model are summa-
rized in Table 1.

3.1. Physical network model

The physical network is modeled as a weighted directed graph
P = (N, L), where N and L are the sets of physical nodes and
links respectively. The graph will be formulated as a set of network
paths PathP connecting the nodes and links, giving that P sd is a
path between the source node s and the destination node d, and
can be formulated of one or more nodes and links. N is composed
of a set of RSUs denoted as R , and another set of 5G gNBs de-
noted as G , while the set of links L are used to connect the RSUs
and gNBs together. Each gNB g ∈ G can be connected to nearby
gNBs and RSUs, but RSUs are only allowed to be connected to their

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.4 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 1. Sample Network Model.
nearby gNBs as shown in the sample network in Fig. 1. Moreover,
each RSU r ∈ R can be connected to one or more vehicle denoted
as v , and each vehicle will have a delay denoted by dvr and data
rate bvr towards the RSU. For each gNB g ∈ G it also can be di-
rectly connected to multiple vehicles, while each vehicle will have
a delay dvg and data rate bvg towards the gNB, and the gNB can
be linked to one or multiple RSUs with delay drg and data rate brg .

In this paper, the gNBs and the sliced edge core are assumed
working based on standalone scenario, which is based on pure
5G core and access components only, and following 3GPP Rel.16
NR-V2X (new radio vehicle-to-everything) standards [31]. In the
proposed physical network, a virtualized and sliced edge server
at RSU r or gNB g are modeled to represent a physical hardware
platform and a host operating system. The hardware platform will
be managed by the NFV infrastructure manager (VIM) to provide
the physical resources such as, processing power, network inter-
face cards (NIC), and storage [31].

The maximum resources of RSU r and gNB g for processing
power are denoted as Cr and C g , which will be divided into slices
denoted as s ∈ S , representing the public land mobile operators
(PLMNs), each has available capacity denoted as crs and cgs . NICs
are represented by their data rates denoted as Br and B g for max-
imum data rate capacities, where br and bg denoting the available
capacities, and storage is denoted as Mr and Mg for maximum ca-
pacities, and similar to the processing power capacities, the storage
resources are also divided between the different slices which will
be denoted as mrs and mgs for available capacities.

The proposed algorithm in this paper, VECSlic-LB, is assumed
residing at the gNBs, since in 5G [31], gNBs can be allocated with
a standardized 5G user plane function (UPF), a V2X application
server, and allows applying network function virtualization frame-
works on the gNBs data plane. Accordingly, the proposed algorithm
emulates the services of an SDN controller in coordinating network
4

Fig. 2. SFC.

resources for edge-based applications and the lifecycle manage-
ment of virtual network functions (VNFs) and network services.
Therefore, it could be considered as a host operating system. In
this way, VECSlic-LB, will represent the management and orches-
tration (MANO) center running the network’s control plane, and
will have an overall knowledge of the used and free resources at
the edge computing servers to carryout the offloading and virtu-
alization processes, and to activate or terminate the physical re-
sources.

3.2. Service function chain request model

Demands of each vehicle v will be constructed as a service
function chain requests, denoted as SFCv shown in Fig. 2. Each
SFCv will be modeled as a weighted and directed graph S F C v =
(N v , Lv), where N v and Lv are the sets of logical VNF nodes and
their connecting logical links respectively. V N Fn ∈ N v is a VNF
node n in the vehicle’s v SFC, and lv

no is a virtual logical link in
Lv connecting VNFs n and o in SFCv .

Each SFCv will be represented by the total end-to-end delay
threshold dv , required public land mobile operator number v P LMN

(representing slice s in the RSUs or gNBs), demanded virtual pro-
cessing power cs

v (vCPU), demanded virtual storage ms
v (vHD), de-

manded virtual data rate bv (vNIC), and current vehicle location

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.5 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 3. Example.
vcur , and destination location vdes as in Fig. 2 representing the ve-
hicle’s trajectory.

3.3. Demonstration example

An example to demonstrate the main activities that will be car-
ried out by the proposed vehicular edge computing algorithm in
this paper is shown in Fig. 3. Four vehicles are demanding vir-
tual resources from the network, giving that their demands are
constructed as shown in SFCA , SFCB , SFCC , and SFCD . For exam-
ple vehicle A demands virtual 2 CPUs, 3 NIC, and 2 HD units to
be allocated at PLMN-1 slices on RSU or gNB that has an end-to-
end delay less than 5 ms. As shown in the figure, vehicle-A will
be best served by RSU-3 since it is the nearest and will fit the
5 ms constraint. Therefore, Container-1 in the rMEC (multi-access
edge computing at RSU ‘r’) of RSU-3 will translate the demands of
vehicle-A and virtualize them on network slice-1 of PLMN-1. Same
procedure for vehicle-B will be virtualized by Container-2 in the
rMEC of RSU-3 on network slice-1 of PLMN-1. However, the de-
mands of vehicle-C supposed to be served by RSU-0 giving that its
the nearest to the vehicle, but since RSU-0 does not have rMEC ser-
vice, the demands of vehicle-C will be hosted at Container-3 on the
gMEC of gNB-0 on the network slice-2 of PLMN-2. Finally, vehicle-
D arriving the network and the closest node to it happens to be
RSU-1, which will host the demands of vehicle-D on Container-1
on the physical resources of slice-2 reserved for PLMN-2.
5

3.4. Problem formulation

In this paper the offloading problem from the vehicles towards
other destinations in the context of vehicular edge computing
environment is modeled as an integer linear programming (ILP)
problem, of optimization objective function maximizing the total
accepted offloading requests from the demanding vehicles.

3.4.1. Objective function and formulation
The objective function will target maximizing the number of ac-

cepted offloading tasks. Each task demands resources for offloading
from vehicle v ∈ V to RSU r ∈ R , or to gNB g ∈ G , located on spe-
cific path P sd ∈ PathP . Consequently, maximizing the acceptance
ratio for each demand requires selecting either a slice s in specific
RSU through activating binary variable xs

vr = 1 to guarantee a slice
was reserved in the RSU, or selecting a slice s in a gNB through ac-
tivating binary variable xs

vg = 1 to guarantee a slice was reserved
in the gNB. Note that xs

vr requires that the binary variable xlvr = 1
to ensure that the link between v and r is active, and xs

vg requires
that binary variable xlvg = 1 to ensure that the link between v and
g is active too. For load-balancing feature the decision variables
xs′

vr and xs′
vg must be activated and have a value equal to binary

value one, to ensure that the next slice (s′) in RSU r or gNB g is
ready to handle the demands from the vehicles if the current slice
s does not have free resources to host the vehicle’s demand, giv-
ing that s′ ∈ S ′ represents the index of next slice to s. Note that

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.6 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
S ′ is a set that includes all the remaining slices than slice s in the
selected node, i.e. s /∈ S ′

The mathematical formulation of the objective function is rep-
resented as follows:

∀v ∈ V max
∑

r∈R,g∈G

(xs
vr + xs

vg) (1)

3.4.2. Constraints formulation
The solution of the objective function will be controlled by de-

lay and data rate constraints for the links, processing and storage
capacity constraints for the nodes, and domain constraints as pre-
sented below. Note that the constraints are designed to be generic
and can support various V2X scenario:

1. Constraints on the physical links
Checking delay between a vehicle and an RSU or a gNB: to
ensure that end-to-end delay in the link connecting vehicle v
in the selected path P sd , dvr for a vehicle towards an RSU, or
dvg for a vehicle towards a gNB is less than or equal to the
demanded delay dv by the vehicle, the following constraint
must be fulfilled:

for v ∈ V , for r ∈ R, g ∈ G

(dvr xlvr + dvg xlvg) ≤ dv (2)

Reserving data rate capacity for a vehicle at an RSU or a gNB
in the selected path P sd: To ensure that the data rate to be
reserved for a vehicle v through the network nodes formulat-
ing the selected P sd , bvr for data rate available for the vehicle
v from an RSU, or bvg from a gNB is at least equal or greater
than the demanded data rate by vehicle v , bv , the following
constraint must be fulfilled:

for v ∈ V , for r ∈ R, g ∈ G

(bvr xlvr + bvg xlvg) ≥ bv (3)

2. Constraints on the physical nodes
To ensure that the demanded processing power for vehicle v
is available at the hosting destination (an RSU or a gNB in the
selected path P sd), the following set of equations are formu-
lated as follows:

Reserving CPU capacity at an RSU: check if the demanded pro-
cessing power by vehicle v , denoted as cs

v , from the PLMN
represented by the slice number s is less than or equal to the
available processing power, denoted by crs , at the desired RSU
r slice s

∀s ∈ S, ∀r ∈ R

cs
v xs

vr ≤ crs (4)

If load-balancing is activated (i.e. xs′
vr = 1, where s′ ∈ S ′ rep-

resents another slice at the same RSU r reserved for another
P LMN ′), check if the demanded processing power by vehicle
v , denoted by cs

v , from the PLMN represented by the slice
number s is less than or equal to the available processing
power, denoted by crs′ , at the same RSU r on slice s′ repre-
senting P LMN ′ .

∀s ∈ S, ∀s′ ∈ S ′, ∀r ∈ R

cs
v xs′

vr ≤ crs′ (5)

Reserving CPU capacity at a gNB: If no RSU can satisfy the
processing power demands, then check if the demanded pro-
cessing power by vehicle v , denoted as cs

v , from the PLMN
6

represented by the slice number s is less than or equal to the
available processing power, denoted by cgs , at the desired gNB
g

∀s ∈ S, ∀g ∈ G

cs
v xs

vg ≤ cgs (6)

If load-balancing is activated (i.e. xs′
vg = 1, where s′ ∈ S ′ rep-

resents another slice at the same gNB g reserved for another
P LMN ′), check if the demanded processing power by vehicle
v , denoted by cs

v , from the PLMN represented by the slice
number s is less than or equal to the available processing
power, denoted by cgs′ , at the same gNB g on slice s′ rep-
resenting P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀g ∈ G

cs
v xs′

vg ≤ cgs′ (7)

Reserving storage capacity at an RSU: check if the demanded
storage capacity by vehicle v , denoted as ms

v , from the PLMN
represented by the slice number s is less than or equal to the
available storage capacity, denoted by mrs , at the desired RSU
r slice s

∀s ∈ S, ∀r ∈ R

ms
v xs

vr ≤ mrs (8)

If load-balancing is activated (i.e. xs′
vr = 1, where s′ ∈ S ′ rep-

resents another slice at the same RSU r reserved for another
P LMN ′), check if the demanded storage capacity by vehicle v ,
denoted by ms

v , from the PLMN represented by the slice num-
ber s is less than or equal to the available storage capacity,
denoted by mrs′ , at the same RSU r on slice s′ representing
P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀r ∈ R

ms
v xs′

vr ≤ mrs′ (9)

Reserving storage capacity at a gNB: If no RSU can satisfy the
storage capacity demands, then check if the demanded storage
capacity by vehicle v , denoted as ms

v , from the PLMN rep-
resented by the slice number s is less than or equal to the
available storage capacity, denoted by mgs , at the desired gNB
g

∀s ∈ S, ∀g ∈ G

ms
v xs

vg ≤ mgs (10)

If load-balancing is activated (i.e. xs′
vg = 1, where s′ ∈ S ′ rep-

resents another slice at the same gNB g reserved for another
P LMN ′), check if the demanded storage capacity by vehicle v ,
denoted by ms

v , from the PLMN represented by the slice num-
ber s is less than or equal to the available storage capacity,
denoted by mgs′ , at the same gNB g on slice s′ representing
P LMN ′

∀s ∈ S, ∀s′ ∈ S ′, ∀g ∈ G

ms
v xs′

vg ≤ mgs′ (11)

3. Domain constraints
To ensure that the demands of a vehicle v are offloaded on
only one RSU r or on one gNB g in P sd the following con-
straint must be fulfilled:

∀v ∈ V
∑

xs
vr +

∑
xs

vg ≤ 1 (12)

r∈R g∈G

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.7 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
To ensure that only one single link is activated between the
vehicle v and one RSU r or one gNB g in P sd the following
constraint must be fulfilled:

∀v ∈ V
∑

r∈R

xlvr +
∑

g∈G

xlvg ≤ 1 (13)

4. VECSlic-LB for offloading with network slicing and
load-balancing

Optimal solution to solve the objective function in Eq. (1) sub-
ject to the constraints in Eq. (2)-Eq. (13) will be presented in the
simulation in section 5.3, which implies allocating resources on
the physical nodes (gNBs and RSUs) and links (connecting them
to each other and to the vehicles) that are capable of meeting
the demands of the vehicles. Theoretically, the optimal solution
follows the strategy of introducing binary constraints to offload
the demands of the SFCv on one physical node, similar to the
multi-dimensional Bin Packing problem [32]. Moreover, the opti-
mal solution for Eq. (1) implies also connecting one link only for
each node, and this is usually treated as a commodity between
pairs of nodes, which is similar to finding an optimal flow for the
commodity in any network model, and that was proved to be an
NP-hard problem and not solvable in polynomial times even for
small scale networks [32] as will be discussed in section 5.3.

Consequently, the majority of vehicular edge computing ap-
proaches followed heuristic or meta-heuristic algorithms to solve
the optimization problem in a reasonable polynomial time. The fol-
lowing subsections will explain the proposed algorithm in this pa-
per for vehicular edge computing supporting network slicing and
load-balancing features, VECSlic-LB, which will be used to solve the
problem of offloading tasks from vehicles towards edge computing
servers hosted at the wireless gNBs or RSUs.

4.1. VECSlic-LB algorithm explained

VECSlic-LB heuristic is shown in Algorithm 1 and the flowchart
in Fig. 4, which includes four major parts, initialization, ranking,
offloading, and updating and evaluation.

4.1.1. Initialization
The physical network is constructed of an interconnected gNBs

generated using Waxman generator [33], which produces random
graphs using a probability function to interconnect any two gNBs
based on the distance that separates them. Each gNB is allowed
to connect to 3 RSUs max, and each RSU is connected to one gNB
only. Each gNB and RSU will be constructed according to the NFV
framework as shown in the example in Fig. 3.

Once the network of gNBs and RSUs are generated, VECSlic-LB
will slice their processing power and memory capacities based on
the PLMNs’ required utilizations, then applies the path construc-
tion strategy developed by [13], and starts constructing and listing
all the physical paths connecting the gNBs and RSUs as a source-
to-destination path P sd ∈ PathsP . It is assumed that the locations
of the physical network nodes (i.e. the gNBs and RSUs) are fixed.
Therefore, the main elements formulating any path, such as num-
ber and connectivity of the nodes and links are also fixed and do
not change, but only their capacities vary due to the consumption.

The initialization phase is performed in advance and ahead of
handling any SFC. Consequently, VECSlic-LB algorithm will always
have a full list of all the paths in the network, as well as a detailed
information about the nodes and links of these paths, such as,
number of nodes and links in the path, types of the nodes (gNBs
or RSUs), maximum and consumed capacities of the resources of
these nodes or their links, and end-to-end delay and data rate per
each link in each physical path.
7

Fig. 4. VECSlic-LB Flowchart.

4.1.2. Ranking
In this phase VECSlic-LB algorithm lists all gNBs and RSUs, then

lists all their PLMNs (i.e. all slices in the gNB or RSU), and iden-
tify the slice that was assigned to the required PLMN specified by
the SFCv . Next, VECSlic-LB calculates the delay using Eq. (18) be-
tween the vehicle and every gNB and RSU, which has the required
PLMN among their listed PLMNs. Afterwards, VECSlic-LB will rank
the gNBs and RSUs in descending order based on the shortest in
delay to the vehicle v .

Accordingly, for each SFCv representing the demands of v ∈ V ,
VECSlic-LB adopted (Bubble Sort) algorithm to sort and rank all
physical network gNBs and RSUs in descending order [32] based on
the least on delay towards the vehicle v , in addition to ranking the
slices per each of these gNBs and RSUs based on their utilizations,
which means that VECSlic-LB algorithm will have a quadratic com-
putational time complexity in the order of O (V ∗ (N ∗ S)2), where
N ∈ P is the number of potential physical nodes for offloading the

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.8 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
SFCs, and S is number of slices per each node. Then once the gNBs
and RSUs are sorted, the algorithm lists all the paths P sd ∈ PathP

which start by the top node (least in delay), and checks if a node in
that path has a slice with enough resources to offload the traffic of
SFCv . This is done in computational time complexity in the order
of O (V ∗ (O (|N Psd | + |L Psd |))) representing the order of complex-
ity for ranking the paths (nodes and links) per each vehicle v ∈ V .
Consequently, the total computational complexity of the VECSlic-
LB to offload the traffic from all vehicles V is estimated to be in
the order of O (V ∗ ((N ∗ S)2 + (O (|N Psd | + |L Psd |)))) representing
order of complexity for ranking the slices per nodes and paths per
vehicles.

Algorithm 1 VECSlic-LB Pseudo-Code.
1. Input: P and V .
2. For the set of physical nodes g ∈ G and r ∈ R in P

-Construct and list all physical paths PathsP .
3. List all SFCs
4. For each SFCv

4.1- Select each gN B and R SU that has a slice for the demanded P LMN
by SFCv .
4.2- Calculate the delay between vehicle v and each gN B and R SU from
(4.1) according to Eq. (18).

5. Rank the gN Bs and R SU s from (4.2) based on the shortest in delay to v .
6. For the top ranked node in (5)

6.1- List all physical paths Psd ∈ PathsP which start by that node.
7. For the top listed path in (6.1), Psd

7.0- Start by the first node from the path.
7.1– If delay and data rate constraints from Eq. (2) and Eq. (3), are satisfied,
go to (7.2).
– Else go to next path from (6.1) and continue to (7.0).
7.2- Select the slice of the demanded PLMN
– If CPU and storage constraints from
Eq. (4), Eq. (6), Eq. (8), and Eq. (10) are satisfied, go to (8).
– Else go to the next slice in (7.3).
7.3- Rank all remaining slices in the selected node from (7.0) based on their
utilizations.
7.4- Select a slice starting by the top ranked one
– If CPU and storage constraints from Eq. (5), Eq. (7), Eq. (9), and Eq. (11)
are satisfied, go to (8).
– Else go to next slice from (7.4).
7.5– If no node in the selected path can satisfy the constraints, go to next
path from (6.1)
– Else go to the next node in (5).

8. A suitable path and hosting node are found
- Allocate SFCv on Psd and
- OFFLOADING is ACCEPTED.
- Update CPU and storage in Psd nodes.
- Calculate the concerned evaluation metrics.
- Go to (9).

9. If demands’ list in (3) is not empty,
Go to next SFC in (3).

10. End

4.1.3. Offloading
VECSlic-LB will start by selecting the top ranked node, then lists

all the physical paths that start by that node without any specific
ranking for the paths. Afterwards, VECSlic-LB will select the first
path in the list, and starting by the first node in that path, it will
check if it can satisfy the delay and data rate constraints in Eq. (2)
and Eq. (3). Next, VECSlic-LB will check the slice belonging to the
demanded PLMN in that node. If the node and the slice of the
PLMN satisfy all the CPU and storage constraints in Eq. (4)-Eq. (11),
VECSlic-LB will allocate the VNFs of SFCv on the PLMN slice in that
node, and the offloading is accepted.

Otherwise, if the PLMN slice has no resources to host SFCv ,
VECSlic-LB will rank the remaining slices in the node based on
their utilizations, and checks which one of them may have the
demanded resources. If no slice can fulfill the demands of SFCv ,
VECSlic-LB will jump to the next node in the path P sd , do the same
8

again until a slice is found. If no slice has resources and no other
slice from the other nodes in the path can satisfy the demands,
VECSlic-LB will jump to the next ranked path, and redo the checks
again.

Important to clarify that VECSlic-LB will check if the path P sd
has multiple nodes between the vehicle and the hosting node (for
CPU and storage), and will always ensure that the links connecting
them satisfy the delay and data rate constraints.

However, in case no path can satisfy the demands of SFCv , the
algorithm jumps to the next ranked physical node and lists its
paths, and the process keeps on going until no more SFCv to be
handled.

4.1.4. Updating and evaluation
Once a successful allocation occurs, the algorithm updates all

changed resources on the hosting nodes and paths, calculates the
evaluation criterion for acceptance ratio, utilization and processing
times, then moves to the next SFCv .

4.2. VECSlic-LB computational time complexity

Based on the size of the physical network P , VECSlic-LB con-
structs all types of paths in O (|N| +|L|) processing time, consider-
ing the total number of nodes N ∈ P and links L ∈ P formulating
the physical network [32]. This step is performed and saved only
once before the arrival of any SFC, and it has no impact on the real
computational time complexity of the Offloading process. How-
ever, to evaluate the computational time complexity of VECSlic-LB,
the focal computational component of the heuristic is determined
based on the time consumed while sorting all the listed gNBs and
RSUs that belong to the demanded PLMN in the physical network.

4.3. VECSlic-LB algorithm running

The proposed VECSlic-LB algorithm is run offline in practice
given the information on the vehicles’ demands, which are as-
sumed to be known or estimated using some historical demands.
Moreover, VECSlic-LB algorithm allocates resources for an undeter-
mined duration, and stops once the total capacities of the nodes
(RSUs and gNBs) are achieved.

4.4. Evaluation metrics

4.4.1. Average acceptance ratio
Acceptance ratio (AR) represents how VECSlic-LB algorithm is

performing and how successfully it managed to offload the de-
manded tasks from the vehicles. It is calculated by averaging and
dividing the number of successfully offloaded vehicular demands
(SFCs) by the total number of SFCs V .

AR = 1

V

∑

∀v∈V

Accepted S F C v (14)

4.4.2. Processing power utilization
Represents the utilization trend of the gNBs and RSUs after

each offloading attempt, denoted as C P Uutil . It is defined as a ratio
between consumed processing power given by (Cn − cn) and max-
imum processing power Cn of the physical node n, summed and
averaged for all nodes in the physical network. cn is the available
processing resources in node n ∈ N .

C P Uutil = 1

N

∑ (Cn − cn)

Cn
(15)
∀n∈N

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.9 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
Table 2
Settings.

Parameter Values and Description.

R 3 RSUs per gNB.
G 15 gNB node sites.
S 1,2,4,6,8 Slices representing PLMNs.
P LMN 1,2,4,6,8 PLMNs, set of PLMNs.
V 1500 Set of all vehicles.
v P LMN 1 − 8 Randomly selected for v PLMN.
vcur , vdes 0 − 1Km.
cs

v 15 Demanded CPU by vehicle v
Cr 100 Maximum CPU at each RSU r
C g 300 Maximum CPU at each gNB g
ms

v 15 Demanded storage by vehicle v
Mr 100 Maximum storage at each RSU r
Mg 300 Maximum storage at each gNB g.
bv 10 Demanded data rate for vehicle v .
bvr By Eq. (16) data rate by RSU r.
bvg By Eq. (16) data rate by gNB g.
dv 10 Demanded delay for vehicle v in ms.
dvr By Eq. (18) delay between v and r.
dvg By Eq. (18) delay between v and g.
W 20M H z bandwidth of the wireless channel.
P v 23dBm transmission power of the vehicle.
No 7dB variance of Gaussian noise.
h 10m Antenna height of the gNB/RSU.
hv 1.5m Antenna height of the vehicle.
f c 2G H z carrier frequency in GHz.
α 0.7.
β 0.6.
pwax 0.5.

5. Evaluation

In this section, we evaluate the performance of the proposed
algorithm VECSlic-LB, by comparing it against the optimal solution,
and the algorithm PaNFV proposed in [13] which does not consider
network slicing feature.

5.1. Simulation settings

The simulation settings in this section are used for optimal so-
lution, VECSlic-LB, and VECSlic without load-balancing algorithms.
Accordingly, the physical network of gNBs topology was randomly
generated using Waxman algorithm [33], setting α = 0.7, β = 0.6,
and mean probability of a pair of two gNBs being connected set
equal to 0.5. The network includes 10 gNB nodes, each connected
to 3 RSUs, giving that RSUs are connected to the gNBs only, and
distributed on an urban area of 1 Km x 1 Km. The simulation han-
dles 1500 vehicles that are distributed on the same area, and the
distance between any vehicle v and RSU or gNB is less than 1 Km.

On network slicing, this paper generated the 1 slice simulations
of PaNFV from [13], assigning the whole capacity of the C P U s and
M E M 100% as one slice for the gNB or RSU, supporting only one
PLMN. For multiple slices, optimal, VECSlic-LB, and VECSlic with-
out load-balancing supported 2 slices serving 2 PLMNs, dividing
the resources of gNBs or RSUs as (60% for first slice assigned to
the 1st PLMN, and 40% for the second PLMN), 4 slices for 4 PLMNs
(35%, 25%, 20%, 20%), 6 slices for 6 PLMNs (30%, 25%, 20%, 10%,
10%, 5%), and 8 slices for 8 PLMNs (30%, 20%, 15%, 10%, 8%, 7%, 5%,
5%). For example, the 4th PLMN in the 8 slices configuration will
be assigned 10% of the maximum capacity of the C P U and M E M
in the hosting gNB or RSU. Table 2 summarizes all simulation pa-
rameters.

Maximum C P U and M E M for storage resources are given as
real numbers, 300 for gNBs and 100 for RSUs, which are shared
between the set of slices representing the PLMNs. For vehicles, the
demanded C P U and M E M are set to 15 per each. The current data
rate and delay between any gNB or RSU and a vehicle, will be cal-
culated using the formulas in Eq. (16) and Eq. (18), which relay on
9

multiple parameters including the Euclidean distance d between
the vehicle and the gNB or RSU, carrier frequency f c, channel gain
hV 2N , transmitted power by the vehicles P v , channel bandwidth
W , vehicle’s antenna height hv , and gNB or RSU antenna height h.
Finally, the demanded data rate and delay by the vehicles are set
to 10.

To prove the case of vehicular edge computing and network
slicing under controlled environment, and to show the strength of
the proposed algorithm, this paper follows the offline scenario set-
tings, where all demands from the vehicles are assumed known
or estimated in advance. In addition to that, offline scenario will
allow testing VECSlic-LB algorithm for variety of settings, and reli-
ably calculate acceptance ratio, CPU utilizations, and the offloading
times.

The performance of the offline algorithms in this paper was
evaluated for consistency of results by running the simulations for
3 times. All parameters were fixed as shown in 2 to overcome
any randomness. The target was to evaluate how efficient the algo-
rithms were when repeating the offloading tasks for several times.
For example, we focused on the results of the acceptance ratio for
the offloading demands, and checked how the algorithm is cal-
culating the paths and capacities each time, and in all cases, the
algorithm resulted on the same results (or very close results) in
terms of acceptance ratios. The only difference was on the time
required by the algorithm when selecting the paths and the edge
nodes capacities that can accommodate the requirements for each
demand. Accordingly, the results shown represent the average of
the 3 runs. The standard deviation between the acceptance ratio
results were zero or near to zero for the 3 runs. Moreover, dur-
ing the testing phase of the algorithms, we repeated the results
for more than 10 times, and the results were as those of the 3
runs. Therefore, we reported the average results for the 3 runs to
represent how stable the algorithm.

In all simulations, the two versions of VECSlic and the ref-
erence algorithm PaNFV, were developed using Eclipse IDE for
Java Developers, version: Mars.2 Release (4.5.2). The used machine
was Lenovo laptop, system model 20CLS2RG00, processor Intel(R)
Core(TM) i7-5600U CPU, 2.60 GHz, 2 Cores, 4 logical processors,
RAM 8 GB, and the operating system was Microsoft Windows 10
Enterprise.

5.2. Data rate and delay calculation

Available data rate by gNB or RSU for vehicle v is calculated by
Eq. (16) which is the direct Shannon formula [34] as follows:

R = W . log(1 + (P v.hV 2N)/No); (16)

The channel gain hV 2N between the vehicle v towards gNB or
RSU in the urban micro-cell wireless channel environment is cal-
culated using Eq. (17) [35], where d in meters, is the distance
between vehicle v and gNB or RSU:

hV 2N =
40log(d)+ 9.45 − 17.3log(h)− 17.3log(hv)+ 2.7log(f c/5) (17)

Current delay in the link between v and gNB or RSU is calcu-
lated by Eq. (18):

d = (bv/R); (18)

5.3. Testing general behavior of VECSlic-LB

To evaluate VECSlic-LB with load-balancing feature activated, 5
tests were conducted and the results are shown in Fig. 5. The first
test evaluated VECSlic-LB when the number of gNBs was changed

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.10 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 5. Testing VECSlic-LB for multiple settings. (A) shows the results when number of gNBs and RSUs was fixed while changing their capacities, (B) shows impacts of changing
gNBs and RSUs capacities, (C,D,E) show results due to changing slicing ratios.
between 5-30, while number of RSUs per each gNB was fixed to
3 only, and RSUs and gNBs CPU and storage capacities were fixed
to 100 and 300 units per each respectively. 1500 demands were
listed to be offloaded, each demanding a fixed 10 CPUs and 10
storage units. The acceptance ratio results in Fig. 5A shows that
when number of gNBs was 5, VECSlic-LB provided least ratio scor-
ing 18.2% after the last offloading demand was received. However,
when the number of gNBs was increased to 10, acceptance ratio
was 37.3%, for 20 gNBs it was much better scoring 74.8%, and
when the number of gNBs was increased to 30, the acceptance
ratio was 100%, indicating how VECSlic-LB can efficiently handle
large number of nodes to reach an outstanding performance.
10
The second test fixed the number of gNBs to 5 and number
of RSUs to 3 per each gNB, and evaluated the impacts of increas-
ing the RSUs’ CPU and storage capacities between 100-600 units,
and for gNBs between 300-1800 units. The acceptance ratios of
VECSlic-LB are shown in Fig. 5B, indicating that the higher the
capacities the better the acceptance ratios. For example when com-
paring between the RSUs capacities of 600 units, VECSlic-LB scored
93%, while for 100 units VECSlic-LB provided 18% acceptance ra-
tio.

For Test-3, Test-4, and Test-5, the aim was to evaluate the im-
pacts of changing the slicing ratios on VECSlic-LB’s acceptance
ratio. Consequently, in Fig. 5C RSUs capacities were set to 100
units, while fixing the number of gNBs to 5, each is serving 3 RSUs.

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.11 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Table 3
Comparing VECSlic-LB to PaNFV.

Item VECSlic-LB PaNFV

Scenario Offline Offline and Migration (optional)
Resource allocation Offloading Offloading, Caching (optional)
Edge Computing Support Yes Yes, plus cloud computing (optional)
Network Slicing Support Multiple Slices Single slice
Load-Balancing Support Yes No
Path Construction As in [13] Uses special technique called segmentation.
Ranking Rank nodes on their distance from v Rank nodes on their distance from v .
Offloading All VNFs on one single node All VNFs on one single node
End-to-end delay Yes Yes
Regardless of the different slicing ratios, the acceptance ratios were
near to each other providing poor results for all of them. On the
other hand, Fig. 5D provided much better results for the same slic-
ing ratios, mainly due to increasing the capacities of the RSUs to
300 units, which allowed for more demands to be offloaded.

The best results were obtained from Test-5, when the number
of gNBs was increased to 20, while fixing the capacities of the RSUs
to 300, gNBs to 900, and connecting 3 RSUs to each gNB. Accord-
ingly Fig. 5E shows VECSlic-LB managed to score 100% acceptance
ratios regardless of the various slicing ratio.

Overall, these tests explored the various behaviors of VECSlic-
LB when some of its main parameters were changed, highlighting
its general capabilities, and how it can treat multiple scenarios and
environments. The main outcome from these tests is that in terms
of implementation costs, changing the capacities of the gNBs and
RSUs are much efficient than adding more gNBs or RSUs, or chang-
ing the slicing ratios as well.

5.4. Optimal performance results

In order to validate the ultimate performance of the proposed
algorithm with network slicing and load-balancing features, the
following paragraphs will compare VECSlic-LB performance to the
optimal solution of Eq. (1) subject to the constraints in Eq. (2)-
Eq. (13), and to VECSlic without including the load-balancing fea-
ture. The simulations were conducted for 2, 4, 6, and 8 slicing
configurations.

The optimal solution was solved by calling IBM ILOG CPLEX op-
timizer version 12.10.0.0, which is a mathematical programming
solver for optimization problems, such as linear programming. It
provides the best solution of the objective function in Eq. (1),
which corresponds to a suitable RSU or gNB that can host the de-
mands of a vehicle.

5.4.1. Acceptance ratio
The final accumulated acceptance ratios for optimal, VECSlic-LB,

and VECSlic without load-balancing are shown in Fig. 6. For 2 slices
configuration, the ratios for the optimal and VECSlic-LB were very
close to each other, scoring around 48% after handling all demands,
while VECSlic without load-balancing slightly differed from them
around the demands 568 − 860, but resulted on acceptance ratio
around 48% as well. Notice that, both the optimal and VECSlic-LB
started to degrade in their acceptance ratios after demands 701
and 714 respectively.

Similar trends were reported for 4 slices configurations, not-
ing that the acceptance ratios for optimal solution, VECSlic-LB,
and VECSlic without load-balancing resulted on 44.8%, 44.46%, and
44.4% respectively. They deferred on the starting point to degrade
the acceptance ratio, where the optimal and VECSlic-LB started
degrading around demands 627 and 615, and VECSlic started de-
grading around demand 535.

For the 6 slices configurations, the optimal solution scored ac-
ceptance ratio around 42.5% and started degrading around demand
11
583, VECSlic-LB acceptance ratio was around 42.1% but started de-
grading around demand 553, and VECSlic scored 41.3% acceptance
ratio and started degrading so early around demand 152. Finally,
the behavior of optimal, VECSlic-LB, and VECSlic for 8 slices config-
urations reported acceptance ratios around 40%, 39.2%, and 37.4%,
giving that they started degrading around demands 488, 451, and
92 for the three of them respectively.

Overall, the simulation results of VECSlic-LB were much closer
to the optimal solution than VECSlic without load-balancing, this is
most likely due to the systematic behavior of VECSlic-LB on select-
ing the best nodes and identifying the slice among each node that
has availability to host more demands. Results of VECSlic without
load-balancing for 6 and 8 slices were much lower than VECSlic-
LB, mainly due to limited capacities assigned to multiple smaller
slices. Therefore, while attempting to offload the demands request-
ing specific PLMN, VECSlic without load-balancing may deny some
offloading attempt due to congested slices, accordingly, its accep-
tance ratios will be less than VECSlic-LB.

5.4.2. CPU utilizations
Behavior of optimal solution and VECSlic-LB was generally near

to each other when utilizing the different slices as shown in
Fig. 6E-H. More specifically, the final utilization rates for 2 slices
configuration resulted on 100% for each of optimal, VECSlic-LB, and
VECSlic without load-balancing. For 4 slices the final utilizations
were around 93%, in 6 slices configuration it was around 70%, but
for 8 slices, optimal and VECSlic-LB scored 56, while VECSlic with-
out load-balancing had C P U utilizations around 54%.

These results clearly show that, in terms of utilizations ratio the
proposed algorithm VECSlic-LB performed on very similar trends
near the optimal solution results, reflecting its solid and stable per-
formance when handling large number of slices for multiple nodes.

5.5. VECSlic-LB comparison to the reference PaNFV

In this subsection, the overall performance of the proposed al-
gorithm VECSlic-LB with load-balancing, and VECSlic without load-
balancing feature will be compared to the reference algorithm
PaNFV. The presented results are for 2, 4, 6, and 8 slices config-
urations, while PaNFV results are for 1 slice. Table 3 provides a
high-level comparison between VECSlic-LB and PaNFV algorithms.

5.5.1. Acceptance ratio
The final accumulated acceptance ratios for VECSlic without

load-balancing compared to PaNFV are shown in Fig. 7A. For 2
slices VECSlic resulted on the same typical ratios as those of PaNFV
scoring 48%, but provided less ratios for 4 slices by 3.6%, for 6
slices by 7.6%, and 10.6% for 8 slices. However, Fig. 7B shows the
results for VECSlic-LB which provided better results than VECSlic
without load-balancing compared to the reference PaNFV, giving
that for 2 slices configuration both had 48% acceptance ratio, but
for 4 slices VECSlic-LB was less than PaNFV by 3.2%, for 6 slices
was less by 6.2%, and 9.3% for 8 slices.

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.12 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 6. Results of the optimal solution compared to the proposed algorithm VECSlic-LB, and VECSlic without load-balancing. A-D show the acceptance ratios for 2, 4, 6, and 8
slicing configurations, and E-H present the CPU utilization for the same slicing configurations.
12

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.13 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 7. Comparing VECSlic with and without load balancing feature against the reference algorithm PaNFV.
Compared to PaNFV, the results of VECSlic-LB and VECSlic with-
out load-balancing were mostly near those of PaNFV, but with
slight difference regarding the point when the acceptance ratio
started to decay. However, as a general observation from the sim-
ulations, the results of VECSlic-LB which has slicing and load-
balancing features showed great reliability in balancing the loads
between the various slices in the edge nodes, and that should be
reflected positively on managing the edge node’s processing and
memory resources for real edge computing applications.

5.5.2. CPU utilizations
The great advantage of VECSlic-LB over the reference algo-

rithm PaNFV is demonstrated in Fig. 7D, showing how efficient is
VECSlic-LB in utilizing the CPU resources. For example, compared
to PaNFV which supports single slice configuration only and had
100% CPU utilization, VECSlic-LB for 8 slice configuration utilized
around 52% of the nodes’ CPU resources, leaving space for free re-
sources around 48% to handle more demands.

This means that if more vehicular demands than the 1500, re-
quest offloading service, PaNFV will immediately reject them, since
the CPU resources under PaNFV were full, but VECSlic-LB will have
much better chances to accept the offloading request since it has
more free resources. The same analysis applies to 6 and 4 slice
configurations, and to VECSlic without load-balancing in Fig. 7C.

The rational for why VECSlic-LB had such great lead over the
reference algorithm in utilizing the CPU resources (the same for
VECSlic without load-balancing), is because of the network slicing
feature mainly. Referring to acceptance ratio results, it was obvi-
ous that PaNFV managed to accept more demands than VECSlic-LB
for 8 slices configuration by around 10%, but when evaluating the
13
future capabilities of both algorithms based on the efficiency of re-
sources utilizations, VECSlic-LB support for network slicing clearly
leads, due to its superior advantage in handling more demands
than PaNFV, which will be translated into better acceptance ratio
as well.

5.6. Offloading distributions per gNBs and RSUs

The rational of this experiment is to gather some statistical
analysis about the performance of VECSlic-LB when it offloads var-
ious tasks on the gNBs and RSUs. VECSlic-LB algorithm strategy in
selecting candidate gNB or RSU to host the offloaded traffic from
the vehicles, relies on selecting the node that has the shortest de-
lay towards the vehicle, and has free resources within its slices,
otherwise it moves to the next shortest node in terms of delay if
any.

Fig. 8A,C show the results of VECSlic without load-balancing for
2 and 8 slices configuration, clarifying the distribution of the suc-
cessful offloading attempts on gNBs or RSUs that have free hosting
resources. The figures indicate that in the initial attempts, VECSlic
mostly leaned towards RSUs, then if some of the RSUs became con-
gested, it also started to offload on the gNBs since they have more
capacities. Notice that once the network becomes more loaded,
VECSlic spread the offloading attempts towards the remaining RSUs
and gNBs that still have free capacities, even if they were lower
ranked in terms of delay, but still comply with the delay and data
rate constraints.

VECSlic-LB results on the other hand highlight that the of-
floading distributions are more condensed than VECSlic without
load-balancing as shown in Fig. 8B,D. Overall, the figures show

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.14 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 8. Distribution of successful offloading attempts on gNBs and RSUs. In (A,C) the results of VECSlic without load-balancing for 2 and 8 slices configurations, and in (B,D)
are the results for VECSlic-LB for 2 and 8 slices configurations.
that from the beginning VECSlic-LB offloading attempts leaned a
bit more towards the gNBs than RSUs for the 2 and 8 slices con-
figurations, giving the activated load-balancing feature from the
start.

The rational of these results offer direct explanation for the of-
floading phase of VECSlic-LB algorithm, which clarify that VECSlic-
LB will first keep selecting the nodes that have least delay towards
the vehicles and has free resources, therefore, most nodes will start
filling-in early on. Afterwards, VECSlic-LB will start offloading to
the other few remaining nodes, which could be further away from
the vehicle, yet may have free CPU capacities to offload vehicles’
traffic to them. Note that VECSlic-LB does not force any distance
thresholds, but only ranks these nodes based on their CPU uti-
lizations and delays from the vehicles, and checks if their delays
comply with the demanded delay. If no more nodes could fulfill
the demands, VECSlic-LB will drop the demand.

5.7. Average offloading times

The average offloading times For the 2 and 8 slicing configura-
tions are shown in Fig. 9. Overall, VECSlic without load-balancing
was much faster in performing the whole offloading attempts com-
pared to VECSlic-LB, mainly because with load-balancing, VECSlic-
LB needed to rank the slices per node based on their CPU utiliza-
tions, in addition to ranking the nodes themselves based on their
transmission delay from the vehicles, reflecting the impacts of ac-
tivating the load-balancing feature.

In summary, these results suggest that the benefits of load-
balancing in accepting more demands and saving more resources
14
could be comprised due to the longer offloading times required to
handle the demands from the vehicles.

Moreover, the proposed algorithm provides better results than
the optimal solution and this holds for both schemes, namely with
and without load balancing. Therefore, the optimality loss incurred
by the proposed algorithm, in terms of acceptance ratio, is well
compensated for by the offloading times.

6. Conclusions

This paper presented a vehicular edge computing algorithm
for offloading tasks from vehicles towards wireless nodes hosting
edge computing servers. The algorithm is denoted as VECSlic-LB,
supports network slicing and load-balancing features, and adopts
centralized control plane and virtualized data plane based on net-
work function virtualization architecture. The performance of the
proposed algorithm compared to the optimal solution, resulted
on close results, confirming VECSlic-LB reliable and stable perfor-
mance. The algorithm performed the offloading tasks in fraction
of a second for different slicing configurations, and compared to
state-of-art algorithm, VECSlic-LB provided more efficient results
in terms of resources utilization by 48%, thanks to the integration
of slicing and load-balancing features which allowed the proposed
algorithm to handle large number of slices and manage their re-
sources in a reliable manner.

In future work we will develop another version of the algorithm
for online scenarios including network slicing for offloading and
caching services at the same time, while adding comparison with
other VEC offloading algorithms with and without slicing. We will
also investigate other channel and mobility models.

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.15 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••

Fig. 9. VECSlic’s average offloading times for the demands from vehicles. Optimal solution and the proposed schemes with load-balancing and without load-balancing.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

This work is supported by the EU project InDiD (Infrastructure
Digitale de Demain) co-financed by the connecting Europe facility
of the European Union.

References

[1] R16-3GPP TS 23.285 V16.2.0 (2019-12), Architecture enhancements for V2X
services, R16 -3GPP TS 23 .285.

[2] 3GPP TS 22.186 V16.2.0 (2019-06), Enhancement of 3GPP support for V2X sce-
narios, Stage-1, R16, 3GPP TS 22 .186.
15
[3] 5G Automotive Association (2017-12), Toward fully connected vehicles: Edge
computing for advanced automotive communications, Version 1.0, 5GAA T-
170219 -White Paper Edge Computing.

[4] 3GPP TS 23.501 V16.3.0 (2019-12), 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; System architecture for
the 5G System (5GS); Stage 2 (Release 16), 3GPP TS 23 .501.

[5] R17-3GPP TR 23.764 V0.3.0 (2019-12), Study on enhancements to application
layer support for V2X services, 3GPP TR 23 .764.

[6] 5G Automotive Association (2019-06), White Paper, C-V2X Use Cases: Method-
ology, Examples, and Service Level Requirements, Version 1.0, White paper on
C -V2X Use Cases v.1.1.

[7] Fifth Generation Communication Automotive Research and innovation (2019-
03), Deliverable D4.2 Final Design and Evaluation of the 5G V2X System Level
Architecture and Security Framework, Version 1.0, 5GCAR.

[8] U. Bulkan, T. Dagiuklas, M. Iqbal, K.M.S. Huq, A. Al-Dulaimi, J. Rodriguez, On
the load balancing of edge computing resources for on-line video delivery, IEEE
Access 6 (2018) 73916–73927, https://doi .org /10 .1109 /ACCESS .2018 .2883319.

[9] S. Razzaghzadeh, A. Habibizad, A. Masoud, M. Hosseinzadeh, Probabilistic mod-
eling to achieve load balancing in Expert Clouds, Ad Hoc Netw. 59 (2017)
12–23, https://doi .org /10 .1016 /j .adhoc .2017.01.001, ISSN 1570-8705.

JID:VEHCOM AID:100419 /FLA [m5G; v1.310] P.16 (1-16)

K. Hejja, S. Berri and H. Labiod Vehicular Communications ••• (••••) ••••••
[10] D. Kesavaraja, A. Shenbagavalli, QoE enhancement in cloud virtual machine
allocation using Eagle strategy of hybrid krill herd optimization, J. Paral-
lel Distrib. Comput. 118 (Part 2) (2018) 267–279, ISSN 0743-7315, https://
doi .org /10 .1016 /j .jpdc .2017.08 .015.

[11] S. Kassir, G.d. Veciana, N. Wang, X. Wang, P. Palacharla, Service placement for
real-time applications: rate-adaptation and load-balancing at the network edge,
in: 2020 7th IEEE International Conference on Cyber Security and Cloud Com-
puting (CSCloud)/2020 6th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), New York, NY, USA, 2020, pp. 207–215.

[12] 3GPP TR 28.801 (V15.0.0), 2017, Study on management and orchestration of
network slicing for next generation network, 3GPP TR 28 .801.

[13] Khaled Hejja, Xavier Hesselbach, Offline and online power aware resource al-
location algorithms with migration and delay constraints, Comput. Netw. 158
(2019) 17–34, ISSN 1389-1286, https://doi .org /10 .1016 /j .comnet .2019 .04 .030.

[14] Khaled Hejja, Xavier Hesselbach, Evaluating impacts of traffic migration and
virtual network functions consolidation on power aware resource allocation
algorithms, Future Gener. Comput. Syst. 101 (2019) 83–98, ISSN 0167-739X,
https://doi .org /10 .1016 /j .future .2019 .06 .015.

[15] H. Zhou, H. Wang, X. Chen, X. Li, S. Xu, Data offloading techniques through ve-
hicular ad hoc networks: a survey, IEEE Access 6 (2018) 65250–65259, https://
doi .org /10 .1109 /ACCESS .2018 .2878552.

[16] Salman Raza, Shangguang Wang, Manzoor Ahmed, Muhammad Rizwan An-
war, A survey on vehicular edge computing: architecture, applications, tech-
nical issues, and future directions, Wirel. Commun. Mob. Comput. 2019 (2019)
3159762, https://doi .org /10 .1155 /2019 /3159762.

[17] L.U. Khan, I. Yaqoob, N.H. Tran, S.M.A. Kazmi, T.N. Dang, C.S. Hong, Edge com-
puting enabled smart cities: a comprehensive survey, IEEE Int. Things J. 7 (10)
(2020) 10200–10232, https://doi .org /10 .1109 /JIOT.2020 .2987070.

[18] Chung-Ming Huang, Shih-Yang Lin, Zhong-You Wu, The k-hop-limited V2V2I
VANET data offloading using the Mobile Edge Computing (MEC) mechanism,
Veh. Commun. 26 (2020), https://doi .org /10 .1016 /j .vehcom .2020 .100268.

[19] W. Zhan, et al., Deep reinforcement learning-based offloading scheduling for
vehicular edge computing, IEEE Int. Things J. 7 (6) (2020) 5449–5465, https://
doi .org /10 .1109 /JIOT.2020 .2978830.

[20] S. Buda, S. Guleng, C. Wu, J. Zhang, K.A. Yau, Y. Ji, Collaborative vehicular edge
computing towards greener ITS, IEEE Access 8 (2020) 63935–63944, https://
doi .org /10 .1109 /ACCESS .2020 .2985731.

[21] S. Li, S. Lin, L. Cai, W. Li, G. Zhu, Joint resource allocation and computation
offloading with time-varying fading channel in vehicular edge computing, IEEE
Trans. Veh. Technol. 69 (3) (March 2020) 3384–3398, https://doi .org /10 .1109 /
TVT.2020 .2967882.

[22] R. Su, et al., Resource allocation for network slicing in 5G telecommunica-
tion networks: a survey of principles and models, IEEE Netw. 33 (6) (Nov.-Dec.
2019) 172–179, https://doi .org /10 .1109 /MNET.2019 .1900024.

[23] Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, Andrew Hines, 5G network
slicing using SDN and NFV: a survey of taxonomy, architectures and future
challenges, Comput. Netw. 167 (2020), https://doi .org /10 .1016 /j .comnet .2019 .
106984.

[24] H. Pydi, G.N. Iyer, Analytical review and study on load balancing in edge
computing platform, in: 2020 Fourth International Conference on Computing
Methodologies and Communication, ICCMC, Erode, India, 2020, pp. 180–187.

[25] J. Zhang, H. Guo, J. Liu, Y. Zhang, Task offloading in vehicular edge comput-
ing networks: a load-balancing solution, IEEE Trans. Veh. Technol. 69 (2) (Feb.
2020) 2092–2104, https://doi .org /10 .1109 /TVT.2019 .2959410.

[26] Y. Dai, D. Xu, S. Maharjan, Y. Zhang, Joint load balancing and offloading in ve-
hicular edge computing and networks, IEEE Int. Things J. 6 (3) (June 2019)
4377–4387, https://doi .org /10 .1109 /JIOT.2018 .2876298.

[27] S. Agarwal, A. Das, N. Das, An efficient approach for load balancing in ve-
hicular ad-hoc networks, in: 2016 IEEE International Conference on Advanced
Networks and Telecommunications Systems, ANTS, Bangalore, 2016, pp. 1–6.

[28] V. Eramo, E. Miucci, M. Ammar, F.G. Lavacca, An approach for service func-
tion chain routing and virtual function network instance migration in net-
work function virtualization architectures, IEEE/ACM Trans. Netw. 25 (4) (2017)
2008–2025, https://doi .org /10 .1109 /TNET.2017.2668470.

[29] M. Chowdhury, M. Rahman, R. Boutaba, ViNEYard: virtual network embedding
algorithms with coordinated node and link mapping, IEEE/ACM Trans. Netw.
20 (1) (2012) 206–219, https://doi .org /10 .1109 /TNET.2011.2159308.

[30] Z. Zhang, S. Su, J. Zhang, K. Shuang, P. Xu, Energy aware virtual network em-
bedding with dynamic demands: online and offline, Comput. Netw. 93 (2015)
448–459, https://doi .org /10 .1016 /j .comnet .2015 .09 .036.

[31] R16-3GPP TS 23.287 V16.3.0 (2020-07), Architecture enhancements for 5G
System (5GS) to support Vehicle-to-Everything (V2X) services, R16 -3GPP TS
23 .287.

[32] J. Kleinberg, E. Tardos, Algorithms Design, Addison-Wesley, 2009.
[33] B.M. Waxman, Routing of multipoint connections, IEEE J. Sel. Areas Commun.

6 (9) (Dec. 1988) 1617–1622, https://doi .org /10 .1109 /49 .12889.
[34] W.C.Y. Lee, Estimate of channel capacity in Rayleigh fading environment, IEEE

Trans. Veh. Technol. 39 (3) (Aug. 1990) 187–189, https://doi .org /10 .1109 /25 .
130999.

[35] P. Kyosti, et al., IST-4-027756 WINNER II D1.1.2 v. 1.1: WINNER II Channel Mod-
els, Tech. Rep., 2007, IST-4-027756 WINNER II D1.1.2 v.1.1: WINNER II Channel
Models.
16

