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SUMMARY
Human gut bacterial strains can co-exist with their hosts for decades, but little is known about how these mi-
crobes persist and disperse, and evolve thereby. Here, we examined these processes in 5,278 adult and
infant fecal metagenomes, longitudinally sampled in individuals and families. Our analyses revealed that a
subset of gut species is extremely persistent in individuals, families, and geographic regions, represented
often by locally successful strains of the phylum Bacteroidota. These ‘‘tenacious’’ bacteria show high levels
of genetic adaptation to the human host but a high probability of loss upon antibiotic interventions. By
contrast, heredipersistent bacteria, notably Firmicutes, often rely on dispersal strategies with weak phylo-
geographic patterns but strong family transmissions, likely related to sporulation. These analyses describe
how different dispersal strategies can lead to the long-term persistence of human gut microbes with impli-
cations for gut flora modulations.
INTRODUCTION

Bacterial persistence is the continued occurrence of a bacterial

strain and its clonal offspring. In the human gut, bacterial strains

can persist for many years (Faith et al., 2013; Nielsen et al., 2014;

Schloissnig et al., 2013). This relationship is likely the result of a

co-evolved symbiosis between microbes and their host,

providing (predictable) benefits to both partners over longer

times (Dethlefsen et al., 2007; Moran et al., 2019). Therefore, un-

derstanding persistence is important for comprehending human

health and wellbeing. However, the scales and mechanisms of

persistence remain largely unexplored: strains could persist

either because of their own traits or enabled by the host (Foster

et al., 2017). Gut bacteria may predominantly colonize hosts

vertically, received early in life from a parent and persisting there-

after. Alternatively, bacteria could also persist due to frequent

recolonizations of a host, persistence enabled through frequent

reintroductions. Thus, dispersal strategy, bacterial transmission,

and colonization of new environments may all contribute to
Cell Host & Microbe 29, 1167–1176, July
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persistence. Disentangling these processes can help us under-

standwhich bacteria need protection, are restorable, or are likely

to be replaced over time.

Human gut strain colonization and replacement are likely

shaped by a combination of strain adaptation and survival in

the host as well as the influx of better-adapted strains, which is

particularly dynamic during early life (Ferretti et al., 2018; Vata-

nen et al., 2016; Yassour et al., 2016). Colonizing bacteria might

ingress from family members (Brito et al., 2019; Korpela et al.,

2018; Xie et al., 2016) as well as environmental sources (re-

viewed in [Browne et al., 2017]). Dispersal abilities and

geographic distribution range can vary between bacterial spe-

cies. For example, strains of the gastrointestinal symbiont Heli-

cobacter pylori are limited in their geographic dispersal with a

strong phylogeographic signal (Montano et al., 2015), and are

often transmitted in host families (Didelot et al., 2013). On a

reduced scale, limited geographic dispersal has been reported

for gut bacterial subspecies (Costea et al., 2017; Truong et al.,

2017). Thus, the scale of strain dispersal could differ vastly
14, 2021 Crown Copyright ª 2021 Published by Elsevier Inc. 1167
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Figure 1. Bioinformatic workflow leading to strain-resolved metagenomic species

(A) 5,278 longitudinal metagenomes were co-assembled per individual host (n = 2,089) (Figure S1). From these co-assemblies, a gene catalog with 23,137,742

genes was created and used to cluster 2,474 canopies. In parallel, metagenomic assembled genomes (MAGs) were calculated from the co-assemblies. MAGs

and canopy clusters were combined and dereplicated to 1,144 high quality (>80% completeness, <5% contamination) MGS.

(B) Phylogeny and taxonomic assignment of all 1,144 MGS. The outer circle indicates missing taxonomic assignment levels (species, genus, family, order, and

class), all MGS had at least phylum-level assignments, 83% were named at the genus level. Branches with >90 bootstrap support have gray circles.

(C) Intraspecific phylogeny exemplified for Prevotella copri. 859 sMGSwere reconstructed from 859metagenomic samples withR2X P. copri coverage, tree tips

are randomly colored by the host individual. Monophyletic sMGS within the same host or host family were used to identify strains persisting in individuals or

families.

(D) Identified strains were used to benchmark sMGS precision. The average nucleotide identity (ANI) was calculated between genetic sequences of strains found

recurrently in individuals or families, using core genes of a species (see STARMethods). 55%of these sequenceswere completely identical (100%ANI), with 95%

of strains having <99.9% ANI in their representative sequences. For brevity, MGS and sMGS will be referred to as species and strains, respectively, in the main

text. MAG, metagenomic assembled genome; compl., Cont, completeness and contamination of genomic bin; MGS, metagenomic species; sMGS, strain-

delineated MGS; ANI, average nucleotide identity.
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between our gut bacteria, ranging from strictly vertical (parent-

child) transmissions, to the global occurrence of strains and their

dispersal following a model of ‘‘everything is everywhere, but the

environment selects’’ (Baas-Becking, 1934). Yet, it remains

largely unclear how the dynamic and frequent host colonization

by gut bacterial strains is, and how it may depend on the host

environment.

Here, we investigated gut bacterial persistence in relation to

dispersal at the individual, family, and geographic levels. We hy-

pothesize that different bacterial phyla might have profoundly

different strategies to ensure their continued persistence and

evolution.

RESULTS

Metagenomic strategy and dataset
To encompass asmany individuals and nationalities as possible,

we compiled a dataset of 5,278 fecal metagenomes, mostly

longitudinally sampled. 290 samples were from an unpublished

family cohort and combined with samples from 20 published

studies (STARMethods). These samples represented 2,089 indi-

vidual hosts (average 2.6 samples/individual, maximum 41). The

average observation time was 131 days, and 242 individuals

were observed forR365 days, and 33 individuals were observed
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forR1,000 days (Figures S1A and S1C). In total, 417 individuals

were part of a total of 191 healthy families. The data covered

different age groups, including adults (>18 years of age, 56%)

and children (defined as %3 years of age, 41%). Fecal micro-

biota transfers related samples (n = 59), were excluded from all

analysis, except genome binning.

All metagenomic samples (n = 5,278) were co-assembled per

individual, genes predicted on these assemblies and a non-

redundant gene catalog were constructed from these genes.

Both metagenomic assemblies and a gene catalog were used

to bin representative genomes of the dominant bacteria across

all gut samples, resulting in 1,144 high-quality genomes of meta-

genomic species (MGS). After controlling for frequently occurring

species, 440 of 1,144MGSwere retained for strain-resolved anal-

ysis using the here-developed concept of strain-resolved MGS

(sMGS, see Figure 1 for workflow and estimated strain resolution).

Tracking sMGS allowed us to calculate persistence in longitudinal

samples, family transmissions, phylogeographic patterns, and

evolutionary genome statistics (Table 1; STAR Methods).

Gut bacterial persistence is widespread but
heterogeneous between taxa
Gut bacterial persistence in a single human host was investi-

gated by tracking bacterial strains in longitudinal samples. A



Table 1. Terminology used throughout the manuscript to define

different forms of host-bacterial association at differing spatial

scales

Primary Secondary Measure

Tenacity

(bacterial

persistence

within a host,

family and

geographic

region)

persistence strain

persistence

percent of observed

time spanned by

longitudinal samples

with identical strain

strain

resilience

fraction of consecutive

longitudinal samples

harboring identical

strain

annual

persistence

annual strain

survival (Kaplan-

Meier analysis)

family

association

horizontal strain

transmission

(parent-parent)

fraction of identical

strains in host

families, where

species were present

in pairwise samples
vertical strain

transmission

(child-parent)

phylo

geography

country

association

within-country

compared with

between-country

strain phylo. dist.

(perMANOVA)

geographic

associations

correlation of strain

phylo. dist. to

geographic distance

of samples (Mantel)

Identical strains were defined as groups of monophyletic strains in intra-

specific phylogenies. PerMANOVA, permuted multivariate analysis test;

Mantel, Mantel test for comparing two distance matrices; phylo. dist,

phylogenetic distance based on intraspecific phylogeny.
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strong average persistence was observed, exemplified by 277 of

440 gut species having a survival chance of 100% after one year.

The mean strain persistence, resilience, and annual persistence

were 91%, 84%, and 95%, respectively (Table 1). This corre-

sponds well to similar analyses from literature, e.g., 60% of gut

strains persisted for R5 years based on culturing and 16S

rRNA amplicon sequencing (Faith et al., 2013) and an average

1-year retention of 90% of strains was found for 35 gut species

(Table S13 in [Schloissnig et al., 2013]).

Persistence differed between prokaryotic phyla. Bacteroidota

had a very high strain persistence (mean 99%) as did Euryarch-

aeota (99%, representing genus Methanobrevibacter), and Cya-

nobacteria (99%, representing the family Gastranaerophilaceae).

Strain persistence was low for Firmicutes_A (91%), followed by

Actinobacteriota (94%), and Proteobacteria (96%) (Figure S1S;

Table S1). When considering the average persistence for bacte-

rial genera, a similar pattern emerged: within Bacteroidota, the

genera such as Prevotella, Alistipes, and Parabacteroida had a

high strain persistence, in contrast to a generally low persistence

in the Firmicutes genera. The genera Veillonella, Escherichia,

Enterococcus, and Enterobacter had relatively lower persistence

rates (Figure S1), possibly indicating a relatively higher turnover

rate in the gut environment. As expected, strain persistence

strongly correlated to a species’ occurrence (p < 1e–30,
Spearman correlation test), but not to relative species abundance

(p = 0.4, accounting only for samples with a species’ presence).

Persistence differences between taxa likely depend on traits

encoded in the bacterial genomes. For example, (Browne

et al., 2017) found sporulation capacity and oxygen tolerance

were negatively correlated to persistence. In line with this, we

found a negative correlation of a species’ persistence with the

number of sporulation and oxygen tolerance genes in their ge-

nomes (p < 2e–7). Although the occurrence of these genes varied

systematically between bacterial phyla (e.g., Firmicutes were en-

riched in sporulation genes), this correlation remained significant

within most phyla separately (Figures S2A and S2B).

Bacterial persistence differs with host age, delivery
mode, and antibiotic usage
While our analyses have so far shown that taxonomy and gene

content play a crucial role in gut bacterial persistence, it is un-

clear whether other factors may also be involved. To address

this, we investigated several intrinsic host features as possible

determinants of bacterial persistence. When comparing host

ages, bacterial persistence was lower in children (mean 80%

strain persistence; 76% strain resilience, Table 1) than in adults

(mean 93% strain persistence; 85% strain resilience). This was

expected as in newborn infants, bacterial strains are often

exchanged in the first months of life (Ferretti et al., 2018; Korpela

et al., 2018). However, species able to persist in adults were also

more likely to persist in infants, as there was a correlation be-

tween adults’ and infants’ strain persistence (p = 3e–4, R =

0.25). Relating strain persistence and resilience to host age

showed that host association increased during host aging, being

lowest in infants and highest in adults (Figures 2A and S2D). This

was also true when separating persistence by phyla: Bacteroi-

dota were more persistent than other phyla, especially in infants.

Actinobacteriota (including Bifidobacterium) had low strain

persistence, particularly in infants, possibly related to weaning

(Kujawska et al., 2020). While taxonomic composition varied be-

tween infants and adults, the microbiome was gradually en-

riched for ‘‘persistent’’ species until the age of 10 years, a pattern

that was observed in different phyla (Figures S2E and S2F). Thus,

it seems that the aging microbiome is increasingly colonized by

species that persist, reaching a steady state after 10 years.

In addition to age, we had information on birth mode and anti-

biotic usage in several studies included in this meta-analysis. In

children born via C-section (n = 27), average strain persistence

was 98% compared with 87% in those vaginally born (n =

295). This 8-fold increase in odds ratio (OR) affected the most

prevalent phyla (p < 1e–16, Fisher’s exact test). However, strain

resilience was not different for these children, fitting to initial

colonizing strains being retained longer in C-section born infants

(Podlesny and Fricke, 2021). Antibiotic exposure lowered mean

strain resilience from 85% to 80% (n = 143 individuals exposed

to antibiotics, n = 1,355 not exposed). This detrimental effect of

antibiotics was highly significant among the phyla Bacteroidota

and Firmicutes_A (p < 1e–16, OR 0.7) and observed at various

host ages (Figure S2E). However, strain persistence was

only reduced from a mean of 93% to 91% upon exposure to an-

tibiotics (p = 0.003, OR = 0.88, Fisher’s exact test). Indeed, a

significantly higher persistence for Desulfovibrionaceae, Lach-

nospiraceae, Lactobacialles, Bifidobacterium, Faecalibacterium,
Cell Host & Microbe 29, 1167–1176, July 14, 2021 1169
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Figure 2. Gut bacterial persistence extends beyond the individual host association

(A) Strain persistence consistently increased with host age. The black line is the average, colored lines the six most abundant phyla. Average persistence was

highest in Bacteroidota strains, especially in infants (green line). Dots are the average values in each age window, lines are smoothed splines of data points. Each

individual host is represented as their median age. See Figure S2 for delineation of antibiotic exposed hosts. The same taxa colors are used in all panels unless

otherwise noted.

(B) Species that are persistent in an individual have a higher probability of being transmitted within a family.

(C) The frequency of vertical transmission in families (parent-child, n = 203 pairs) was often higher than horizontal transmission (parent-parent, n = 13 pairs).

Species with <2 potential transmissions (total, vertically and horizontally, and arbitrary threshold) were excluded.

(D) For most of the 440microbial species, geographic associations were only significant at a local scale (<150 km, 142/440 species, orange bars). The strength of

geographic association decreased on average at higher distances (measured as the correlation coefficient between genetic and geographic distance, blue

boxplots). Boxplot centers represent the median; the edges represent first and third quartiles.

(E) Persistence and geographic association (across all distance classes, only significant values included) were highly correlated; Bacteroidota (green) and Ac-

tinobacteriota (ochre) were notable for their steep correlations. Only species with significant geographic associations were included.

(F) Correlogram of the most important population genetic parameters (synonymous nucleotide diversity [pS], excess of rare alleles [Tajima’s Ds at synonymous

sites], non-synonymous to synonymous substitutions [dN/dS]), and how they correlatewith different forms of bacterial persistence, family, and phylogeography as

well as species’ mean abundance. Stars denote multiple testing corrected Spearman correlation tests: *q < 0.05, **q < 0.01, **q < 0.001. Only species with

significant country or geographic associations were included in correlations involving these.
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and Enterobacteriaceae was observed, while Prevotella and

Bacteroides, among other genera, were reduced in their persis-

tence (Table S2A). These disjunct results between persistence

and resilience reflect the latter measuring strain replacements.

A resilient strain is unlikely to become even ‘‘less replaced’’

than the baseline resilience, while persistence, the time a strain

is observed, might be positively influenced by antibiotic

interventions.

Linked persistence and family transmissions of gut
bacteria
The family association score, representing transmission of

strains between family members, correlated with persistence

(p = 1e–10, R = 0.43, Figure 2B), resilience (p = 1e–15, R =

0.51), and annual persistence (p = 1e–4, R = 0.26, Table 1). Inves-

tigating family association at the genus level, Sutterella, Duode-

nibacillus (Proteobacteria), and Dialister (Firmicutes_C) had

strong family associations (Figure S1; Tables S2B and S2C).
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From our dataset, we determined six high-confidence, highly

transmitted species (having >20 paired observations between

hosts of the same family, and family associations >50%). These

included: Bacteroides stercoris, Bacteroides massiliensis, Hol-

demanella biformis, Sutterella wadsworthensis, andBifidobacte-

rium bifidum (with the overall highest family transmission rate at

72%). Only detected in seven host pairs at sufficient abundance,

but still noteworthy was Methanobrevibacter smithii: this ar-

chaeon had a 100% family transmission rate but was only

observable at single time points in children (it might not have per-

sisted for longer or was undetectable).

To investigate whether gut bacteria are predominantly colo-

nizing their host between generations, we distinguished verti-

cally (parent-infant pairs, n = 203) and horizontally (parent-parent

pairs, n = 13, excluding siblings) shared strains, differentiating

colonization resistance of conspecific strains in established

(horizontal) and new (vertical) microbiomes. Overall, vertical

and horizontal transmission of bacteria were correlated
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(p = 2e–4, R = 0.36, Figure 2C), suggesting that successful com-

mensals can colonize a new host at any age. However, infant

colonization could be the predominant dispersal mode, as the

horizontal was usually half of the vertical transmission rate

(mean OR was 0.5, exceptions were Proteobacteria and Desul-

fobacterota). Bacteroidales was the bacterial class with the high-

est vertical transmission rate, having on average a 2.5 higher

chance of being vertically shared in proximal hosts (OR = 0.4,

p = 3e–4, Fisher’s exact test, Table S2B).

Persistent bacteria are dispersed at a local scale by
blooming strains
At least for some gut bacteria, geographic dispersion is limited

(Costea et al., 2017; Truong et al., 2017), as reflected in a species’

phylogeographic pattern. In our data with a larger sample set, we

found that 22% of 440 species had significant geographic asso-

ciations (p < 0.05, Q < 0.1, Mantel test of geographic to genetic

distance, Table 1). Yet, this is likely an underestimate as these

p values were negatively correlated to strains observed per spe-

cies (R = �0.45). Indeed, 49% of gut species had a significant

phylogeographic pattern, using the complimentary ‘‘country as-

sociation’’ (p < 0.05, Q < 0.1, permuted multivariate analysis of

variance [perMANOVA] test of within to between-country genetic

distance), explaining on average 7% of intraspecific genetic vari-

ation. The results from these approaches agreed mostly as 81%

of significant phylogeographic associations overlapped.

To better understand gut bacterial phylogeography, we

investigated cases of strong geographic associations. For

example, 13/14 Italian individuals were colonized by monophy-

letic strains of Rothia mucilaginosa, while in Muribaculaceae

sp., US and Israeli strains were different to Finish, Russian,

Estonian, and Kazakhstan strains. Odoribacter laneus was

almost exclusively represented by a single, monophyletic clade

in US samples (several independent studies), and one Prevo-

tella sp. was represented by a monophyletic group found only

in Kazakhstan (Figures S3A and S3B). These examples indicate

that we often observed the expansion of an especially success-

ful monophyletic clade on a local scale. Indeed, phylogeo-

graphic patterns were usually only significant in the lowest

tested distance class (<150 km, Figure 2D). But if local strain

expansions are driving phylogeographic patterns, we would

expect imbalanced phylogenetic trees. Indeed, we found

geographic association correlating negatively to median phylo-

genetic tree distance (p = 6e–6, R = �0.47), but correlating

positively to the normalized Sackin’s index, measuring imbal-

ances in phylogenetic trees (p = 7e–6, R = 0.47, Figures S3C

and S3D). Thus, species with stronger phylogeographic

patterns had imbalanced phylogenies and expansions of select

lineages, typically observed in species undergoing local expan-

sions (Dearlove and Frost, 2015).

Both geographic and country associations were positively

correlated to persistence, resilience, and annual persistence

(p < 1e–10, R R 0.59, Figures S3E and S3F), independently of

age and antibiotic exposure. Also, family association correlated

with bothmeasures of phylogeography (p < 0.01, R > 0.4, Figures

S3G and S3H). This relation was stronger for Bacteroidota and

Actinobacteriota species, although persistence in all phyla

correlated positively to phylogeography (Figure 2E). Genus Pre-

votella was noteworthy for its overall extreme host associations,
having strong family associations, persistence, and geographic

associations (mean 0.65, 0.99, and 0.4, respectively). This

makes sense in a model where Prevotella strains are long-term

associated and prevalent in an individual or family, enabling

the observed regionally successful strains.

Comparing persistence, family association, and
phylogeography reveal bacterial dispersal strategies
Imperfect correlations between persistence, family associations,

and phylogeography imply that there could be an underlying

structure in dispersal strategies. To test this, we clustered asso-

ciation measures for the 50 most abundant genera (Figure 3A),

revealing several dispersal patterns: (1) tenacious bacteria with

high phylogeography, family associations, and persistence, (2)

spatiopersistent bacteria with strong phylogeography and

persistence but no family associations, and (3) heredipersistent

bacteria with strong family associations and persistence but

lacking notable phylogeographic signals, as well as (4) average

persistent and (5) non-persistent bacteria.

Heredipersistence implies the ability to spread beyond a single

host, for instance due to sporulation capacity or oxygen toler-

ance (Browne et al., 2017); indeed, heredipersistent species

were enriched for sporulation genes (Figures 3A and 3B). While

most heredipersistent species belonged to the phylum Firmi-

cutes, species from other phyla were also represented such as

Proteobacteria (Duodenibacillus, Sutterella), Verrucomicrobiota

(Akkermansia), Archaea (Methanobrevibacter), Desulfobactero-

ta_A (Desulfovibrio), and Actinobacteriota (Bifidobacterium).

For this dispersal pattern, strain resilience was noticeably

reduced, indicating higher strain turnover rates (Figure S4C).

This fits with the lack of phylogeographic signals in this group,

implying a wide geographic distribution range for its members.

The most distinct group were tenacious species that excelled

in all forms of associations. Tenacity was often observed in the

phylum Bacteroidota (e.g., Prevotella, Bacteroides, and Prevo-

tellamassilia) but also Dialister, CAG495, and CAG117 (phyla

Firmicutes and Proteobacteria). The already outstanding persis-

tence and resilience of tenacious bacteria were even further

increased in infants, compared with other bacteria (Figure S4).

In combination with a significantly increased vertical transmis-

sion (Figure 3C), these microbes could disperse preferentially

by inheritance between host generations. However, tenacious

bacteria’s persistence and resilience were also most impacted

by antibiotic exposure (Figure 3C).

Dispersal strategies relate to bacterial evolution
We hypothesized that species that are widespread without

geographic association, such as heredipersistent bacteria,

should show a genomic signature of frequent re-colonization of

novel environments. Mechanisms facilitating such frequent gut

colonizations should lead to intra-species competition and, if se-

lection is a major mechanism underlying colonization, to signa-

tures of selective sweeps (Smith and Haigh, 1974). This might

pose additional challenges to gut commensals, as bacterial life

in the gut could be already dominated by population bottlenecks

and selective sweeps: several times a day, new food sources

can be colonized by competing bacterial strains, only to be

expelled upon host defecation, a classical ‘‘boom-and-bust’’

demography. In line with this, the genetic signatures of strong
Cell Host & Microbe 29, 1167–1176, July 14, 2021 1171
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Figure 3. Dispersal patterns of gut bacteria and their link to bacterial evolution

(A) Dispersal patterns of bacteria were reflected in their associations: strong geographic and host association (spatiopersistent); strong family and host asso-

ciation (heredipersistent); no associations (non-persistent); all associations (tenacious); and average geographic or family and host associations (average

persistent). The analysis was restricted to 50 high abundant genera.

(B) Tenacious taxa could be genetically well-adapted (high purifying selection [dN/dS], fewer selective sweeps [Tajima’s Ds], high population sizes [pS]), while non-

persistent taxa show opposing population genetics. p values are calculated with a non-parametric Kruskal-Wallis test, comparing all six groups.

(C) Tenacious bacteria are significantly more often transmitted vertically than horizontally in families, having a higher likelihood to be inherited between gener-

ations. Antibiotic usage usually reduces strain persistence, especially in adult hosts and tenacious bacteria. The color reflects the log10 OR (odds ratio), the value

in the squares is the rounded, multiple testing corrected q value of Fisher’s exact test conducted separately for each square, qR 0.1 are shown as white squares.

Children are hosts < 3 years old. dN/dS, non-synonymous to synonymous nucleotide substitutions.; pS, synonymous nucleotide diversity; OR, odds ratio in

Fisher’s exact test. Boxplot centers represent the median; the edges represent first and third quartiles.
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selective sweeps can be found in gut bacteria (Garud et al., 2019;

Ramiro et al., 2020; Zhao et al., 2019). Population genetics the-

ory predicts that in populations that are recovering from selective

sweeps or population bottlenecks, an excess of rare polymor-

phisms caused by recent mutations can be observed, resulting

in negative Tajima’s D values (Tajima, 1989).
1172 Cell Host & Microbe 29, 1167–1176, July 14, 2021
We calculated Tajima’s Ds on metagenomic strain genotypes,

using synonymous sites to reduce the effects of selection.

Tajima’s Ds was negative for all 440 species (mean �1.7). In

particular, Firmicutes_A species had low Tajima’s Ds values

(mean�1.8), including important taxa such as Faecalibacterium.

This might be related to sporulation, as Tajima’s Ds negatively
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correlated to the number of sporulation genes found in a

genome, but not to oxygen resistance genes (Figure 2F). Taji-

ma’s Ds was higher for Bacteroidota, Proteobacteria, Firmicu-

tes_I (mean �1.35), exemplified in the genera Bacteroides,

Akkermansia, Lactobacillus, and Enterobacter (mean Tajima’s

Ds �0.9, Figure S4). In accordance with the highly persistent or

even tenacious characteristics of the latter taxa, Tajima’s Ds

significantly correlated with strain persistence as well as family,

geographic, and country associations (p = 8e�6, 8e�6, 0.02,

and 4e�5, respectively, all R R 0.22, Figure 2F).

These data imply that taxa strongly associated with host, fam-

ily or geographic region undergo fewer bottlenecks and show

signatures of selection as a consequence of adaptation to

individual hosts or families. Indeed, tenacious bacteria had the

highest levels of purifying selection among dispersal patterns,

estimated through the ratio of non-synonymous to synonymous

nucleotide substitutions, dN/dS (Figure 3B). Further, selection

might be more effective in tenacious taxa. This is because the

effectiveness of selection increases with effective population

size (Ne). Ne correlates to synonymous nucleotide diversity,

pS, if mutation rates are equal among species (Charlesworth,

2009). pS, and implied Ne, was highest in tenacious bacteria,

so was the consensus population size (Nc), estimated by mean

relative abundance observed in metagenomes (Figure 3B).

These population genetic estimates, therefore, indicate that

tenacious bacteria are highly adapted to the human host.

DISCUSSION

By analyzing gut bacterial strain biogeography at three levels

(human host, household, and region), our study provides a

view into bacterial dispersal strategies and how they shape the

persistence of the gutmicrobiome. The large cohort size enabled

us to describe strong correlations among bacterial persistence,

family association, and phylogeography. These connections

seem intuitive—persistent bacteria in an individual have more

chances to colonize proximal host family members—but to the

best of our knowledge, this had not been previously demon-

strated. Clustering these variables allowed us to identify gut

bacterial dispersal strategies, enabling us to describe tenacious,

heredipersistent, and spatiopersistent bacteria associated with

individuals, families, and regions to different degrees.

It is possible that only a few bacterial species are host-adapt-

ed and have the metabolic flexibility, to persist within the human

gut during drastic ecosystem changes such as weaning and the

development of the immune system. Tenacious bacteria best fit

these requirements, having relatively high vertical-to-horizontal

dispersal rates with the highest strain persistence in infants (Fig-

ures 3 and S4). This finding is not unexpected, as typical tena-

cious taxa such as Bacteroides spp. are enriched in vertical

transmissions in infants (Nayfach et al., 2016; Yassour et al.,

2018), their absence is even linked to the abnormal development

of the infant microbiome (Shao et al., 2019). The broad carbohy-

drate metabolism observed in Bacteroidota (Kaoutari et al.,

2013) can reflect metabolic flexibility to changing the host diet.

Lacking sporulation genes is likely a key to this dispersal pattern,

ensuring persistence and phylogeography by avoiding exces-

sive intraspecific competition. Tenacious commensals have

high effective and consensus population sizes (Ne and Nc),
evolving under purifying (negative) selection (dN/dS) and rela-

tively fewer population bottlenecks (Tajima’s Ds, Figure 3C).

Such a genetic pattern might emerge due to early, long-term

host colonizations with extreme selection for well-adapted com-

mensals and successful association with an individual. We

would therefore expect that tenacious bacteria could develop

(1) local adaptations to individuals, families, geographic regions,

and (2) have a narrower host spectrum than heredipersis-

tent taxa.

Spatiopersistent species had similar characteristics to tena-

cious bacteria but the crucial difference was their reduced strain

persistence in infants (Figure S4). Similarly, persistence of hered-

ipersistent taxa was low in infants, suggesting active ingression

and selection of conspecific strains during the first decade of

life. The presence of sporulation genes, absence of phylogeo-

graphic patterns, and strong genetic bottlenecks observed for

these commensals support such a dispersal, reminiscent of the

hypothesis ‘‘everything is everywhere, but the environment se-

lects’’ (Baas-Becking, 1934). Accordingly, we observed higher

strain replacement rates and a broader occurrence of microbes

with the heredipersistent dispersal strategy. It seems likely that

most of the replaced strains also colonize close family members,

given the strong family associations of heredipersistent gut mi-

crobes. And although heredipersistent dispersal of gut bacteria

among family members was characteristic to Firmicutes strains,

the highest family associations were observed for other taxa (e.g.

Methanobrevibacter, Bifidobacterium, and Sutterella and its

relative Duodenibacillus).

We conclude that heredipersistent microbes could owe their

persistence partly to reinfections of their host from external sour-

ces. Therefore, these strains might get slowly replaced when the

host is living in a different environment or through constant expo-

sure via probiotics. However, their replacement through singular

medical interventions (such as fecal microbiota transplants)

might be a futile effort—in contrast to tenacious and spatioper-

sistent bacteria that are more likely permanently replaceable. It

is therefore not surprising that tenacious bacteria and their ability

to persist are the most negatively affected by antibiotic expo-

sure. But it is also alarming to us because these strains could

potentially stem from our childhood and parents, and be likewise

important for the next generation. We propose that the mainte-

nance and manipulation of the human gut microbiome must be

re-evaluated based on bacterial dispersal strategies because

these will affect the persistence and resilience of both existing

and newly introduced gut microbes.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Falk Hil-

debrand (Falk.Hildebrand@quadram.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data availability

Metagenomics sequences from 290 samples are deposited in the European Bioinformatics Institute-Sequence Read Archive (SRA)

database under accession SRA: PRJEB41102. A list of all public metagenomic studies used and their accession numbers is provided

at http://vm-lux.embl.de/�hildebra/Drama_GC. The gene catalogue nucleotide and amino acid sequences, aggregate metadata,

and study lists have been deposited at http://vm-lux.embl.de/�hildebra/Drama_GC.

Code availability

The C++ program to rarefy matrices is available under https://github.com/hildebra/Rarefaction. The pipeline to process shotgun

metagenomic samples is available under https://github.com/hildebra/MATAFILER. The C++ program to calculate read depth win-

dows is available under https://github.com/hildebra/rdCover. The C++ program to fix frameshifts in MSAs is available under

https://github.com/hildebra/MSAfix.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort
To create a comprehensive cohort, we reviewed literature for metagenomic studies that sampled participants longitudinally. We

downloaded metagenomic DNA sequencing data from 20 studies focused on longitudinal sampling for at least part of the study (As-

nicar et al., 2017; B€ackhed et al., 2015; Bengtsson-Palme et al., 2015; Chu et al., 2017; Ferretti et al., 2018; Heintz-Buschart et al.,

2016; Human Microbiome Project Consortium, 2012; Kostic et al., 2015; Kushugulova et al., 2018; Lee et al., 2017; Li et al., 2016;

Mehta et al., 2018; Palleja et al., 2018; Raymond et al., 2016; Scholz et al., 2016; Vatanen et al., 2016; Ward et al., 2016; Willmann

et al., 2015; Yassour et al., 2016, 2018; Zeevi et al., 2015). Metadata were obtained from the supplementary information attached to

each publication, or from the authors upon email request. Since in (B€ackhed et al., 2015) the age of mothers could not be shared, we

simulated it based on median (31) and quantiles (28-35) assuming a Gaussian distribution.

This was supplemented by 290 samples from our laboratory, N=132 samples were published previously in (Costea et al., 2017;

Hildebrand et al., 2019), as noted in Table S3B. This Heidelberg centered cohort was created within the my.microbes project (my.

microbes.eu/) (Voigt et al., 2015). The study adheres to the WMA Declaration of Helsinki and was approved by EMBL Bioethics
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Internal Advisory Board. In total, 36 individuals were included, their average age was 25.5 years old, 32% of samples and 52% of

individuals were female. Including family cohorts, 13 individuals we <20 years old, one individual was a newborn baby (Table S3C).

The cohort, sample numbers, mean age and female % per cohort are described in Table S3A. All aggregated metadata from this

project is available in Table S3B, totalling to 5,278 metagenomic samples with 2,089 individuals.

METHOD DETAILS

Sequencing of fecal samples
Fecal samples were collected and conserved under anearobic conditions, short term stored at -20�C and subsequently kept for long

term storage at -80�C. Genomic DNA was extracted from frozen fecal samples using the GNOMEª DNA Isolation Kit (MP Biomed-

icals). For newly sequenced samples (Table S3B), the Illumina HiSeq 4000 (Illumina, San Diego, CA, USA) platform was used for Li-

brary generation and random shotgun sequencing of the fecal samples. All samples were paired-end sequenced with 150 bp read

lengths at theGenomics Core Facility, EuropeanMolecular Biology Laboratory, Heidelberg, to an approximated sequencing depth of

10 Gbp per sample (Table S3B).

A framework for strain-resolved metagenomics without the need for reference genomes
Metagenomic data processing was implemented in the MATAFILER pipeline, previously used to bin and track the genome of a

candidate species in a time series (Hildebrand et al., 2019). For each unique host individual, metagenomic samples were co-

assembled. Genes predicted on these assemblies were clustered into a new gene catalogue with 23,137,742 genes (95% simi-

larity cut-off). Two complementary approaches were used to bin bacterial genomes: metaBat2 (Kang et al., 2019) and canopy

clustering (Nielsen et al., 2014). A central gene catalogue was used to link MAGs to co-occurring genes, remove genes inconsis-

tently linked to a MGS and to track genes within each species across the thousands of samples. This integrated approach offers

several advantages compared with relying solely on MAGs: MGS delineate inherently species at 95% nucleotide identity and al-

lowed us to improve binning statistics for MGS (average completeness/contamination for MAGs was 91.9%/1.1%, and for MGS

was 93.2%/0.7%, respectively, for bins with >80% completeness, <5% contamination). MGS also provide a set of tractable core

genes that are MGS specific (see below for details; Figure 1C; STAR Methods). 1,144 species-level MGS (metagenomic species)

were derived, predicted to be R80% complete and %5% contaminated (Figures 1A and 1B), for brevity referred to as ‘‘species’’ in

the main text. In this framework, MGS are represented by groups of genes that are frequently observed in the same genome bin,

thereby a bias to only retain the species’ core genome is inherent to our method. The retrieved core genome allowed us to track

species consistently across thousands of samples.

To resolve strains, we introduce strain-resolved metagenomic species (sMGS) to delineate MGS into highly resolved geno-

types of a MGS, found in the different metagenomes. sMGS were reconstructed for each MGS, based on SNV (single nucleotide

variants) in single-copy core genes (average 66±28 genes/MGS) for each metagenomic sample with sufficient read coverage

(>2x). The genetic differences between sMGS core genes were then used to calculate an intra-MGS phylogeny, each sMGS

representing the MGS’ genotype in our metagenomic samples (examples in Figure 1C). Conspecific strains in the same meta-

genome cannot be resolved using this method, but we excluded samples that seemed to harbour conspecific sMGS’ (see Sup-

plemental information). Because the aim of the project was to describe strain persistence, the analysis is restricted to sMGS

present in R 30 samples (arbitrarily chosen cut-off, Figure S1B). These MGS represents the majority of all sMGS

(N=130,862) and 11 of 18 detected phyla.

sMGS enable high resolution metagenomics to track strains within hosts
To understand the precision of our sMGS method and the limits of reliably detecting persistent sMGS, we quantified the expected

errors in our metagenomic reconstructed genomes. This was done on a real metagenomic test set, taking advantage of the thou-

sands of longitudinally sampled gut metagenomes. We treated samples from the same host as biological replicates, as persistent

strains are expected to remain genetically almost identical over the time frames sampled here (Duchêne et al., 2016). Longitudinal

(and host family) samples harbouring the same strain of a given MGS were identified using monophyletic groups within the

sMGS’ phylogeny (Figure 1C). This approach enabled us to classify sMGS into strains based on monophyly, which circumvents

the necessity to find a clustering cut-off, such as average nucleotide identity (ANI). However, in practice this approach performs simi-

larly to using stringent cut-offs (see STAR Methods). In our data, we identified 89,523 monophyletic sMGS groups, 26,047 occurring

in 2 or more metagenomes. The genetic similarity among strains occurring in multiple samples was used to calculate an ANI of the

same strains in different time points or family members.

We find that 95%, 74%, 59% and 55% of our 26,047 strains would still be detected at 99.9%, 99.99%, 99.999% and 100% ANI

cut-offs. The median ANI of our detected strains was 100% (IQR 0.01), the average ANI 99.98% (± 0.12, Figure 1D). To put this into

context, a recent benchmark of state-of-the-art metagenomic strain tools showed that the rate of detecting shared strains between

fecal metagenomes of new-born twins, drops significantly below an ANI cut-off between 99.9% to 99.999% ANI, depending on tool

being used (Olm et al., 2021). Bacterial mutation rates are in the range of 1e-8 to 1e-5 /nucleotide/year (Duchêne et al., 2016) and

would fall within our achieved error tolerance.

For brevity, we will refer to MGS by species, and sMGS by strains in the main text.
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Measures of persistence, family association and phylogeography
Within the human gut, bacterial persistence is the association of a bacterial strain with the same host over longer times. Here we

define ‘strain persistence‘ as the longest time that a given strain was continuously observed across consecutive samples of the

same host, divided by the time between the first and last observation of this host. In addition, we implemented a ‘strain resilience‘

and ‘annual persistence‘ measure, corresponding respectively to i) the fraction of consecutive samples of the same host, within

which the same strain was detected, and ii) a survival probability of a strain surviving for a year, implemented via Kaplan-Meier sur-

vival statistics (Tables 1 and S1). Strain resiliencewas inversely related to the number of strains of a species detected in the same host

(R=-0.97), thus being an approximation for strain replacement rates.

We calculated the ‘family association‘ of gut bacteria on 291 family pairs of host individuals. It should be noted that typical adult and

infant microbiomes differ in abundance of bacteria (Ferretti et al., 2018; Korpela et al., 2018), which limited our ability to get R 2X

genome coverage for potentially shared strains. To address this potential bias, the family association score was calculated for

each species as the average proportion of shared strains among host pairs that carried the same species at sufficient abundance

(random timepoint). Note that the direction of strain transmission is not resolved in this analysis.

To calculate phylogeographic patters in the intraspecific strain phylogeny, two complementary approaches were used, by restrict-

ing analysis to one metagenome per family/host to avoid autocorrelations. ‘Geographic association‘ was calculated by correlating

phylogenetic and geographic distance using a Mantel test. ‘Country association‘ tested if intraspecific phylogenetic distance

were shorter within countries, than those between countries, using a perMANOVA test (detailed below).

Metagenomic assembly
All internal + external metagenomic samples (N=5,278) were assembled. All shotgun metagenomic reads were quality-filtered by

removing reads shorter than 70% of the maximum expected read length (100 bp, 250 bp for miSeq data), an estimated accumulated

error >2.5 with a probability ofR0.01(Puente-Sanchez et al., 2015) or with an observed accumulated error >2, or >1 ambiguous po-

sition to assist assembly. If base quality dropped below 20 in awindowof 15 bases at the 30 end, or if the accumulated error exceeded

2, reads were trimmed. All these filter steps are integrated in sdm (Hildebrand et al., 2014). Human reads were removed from the

metagenomic data, classifying raw reads with Kraken (Wood and Salzberg, 2014) against a custom database built on the human

reference genome. Unclassified reads were further used in downstream analysis. In total 2.17e11 reads were filtered to 2.04e11

reads, used in subsequent analysis. sdm filtered paired reads were assembled using MegaHit (Li et al., 2015) with the parameters

‘‘–k-list 25,43,67,87,101,127’’. The samples were assembled per individual (‘‘co-assembly’’) to find a balance between decreasing

chimeric contigs, and increasing the chance of assembling low abundant genomes. The assembled scaffolds had an average

N50 of 9,560 bp and a total size of 1e12 bp. Using Prodigal (Hyatt et al., 2010) in metagenomic mode, 1.4e9 genes were predicted

on the contigs, of which half (6e8) were complete.

Abundance estimates of contigs and genes
To estimate the abundance of contigs, and subsequently genes, in each sample, unfiltered reads from a sample were mapped

against the assembly of these reads (or co-assemblies of samples from the same host). Both low and good quality reads were map-

ped against the co-assemblies to estimate the abundances, since low quality filters will still accurately map to the assemblies in spite

of several base errors. Bowtie2 v 2.3.4.1 (Langmead and Salzberg, 2012) was used formapping, using the options ‘‘–no-unal –end-to-

end –score-min L,-0.6,-0.6’’. The resulting bam files were sorted, and duplicates removed and indexed using Samtools 1.3.1 (Li et al.,

2009). Further, reads mapping with a mapping quality < 20, <95% nucleotide identity or <75% overall alignment length were filtered

using custom Perl scripts. From these depth profiles were created using bedtools v2.21.0 (Quinlan and Hall, 2010) which were trans-

lated with a custom C++ program ‘‘rdCov’’ (https://github.com/hildebra/rdCover) into average coverage in a 50 bp window, per con-

tig or per gene predicted on each contig, that were used in the gene catalog.

Further, ‘‘jgi_summarize_bam_contig_depths’’ from the MetaBAT2 package was used to translate bam files to abundances (per

sample group), to be used in later steps for MetaBAT2 Binning (Kang et al., 2019).

Gene catalogue
Genes from assembled metagenomes were collated and separated into complete and incomplete genes, based on Prodigal v2.6.1

reporting (Hyatt et al., 2010). In a first step, the complete genes were clustered at 95% nucleotide identity, a commonly used cutoff in

constructing gene catalogues (Sunagawa et al., 2015). For sequence clustering CD-HIT v4.6.1 (Fu et al., 2012) was used in est mode,

employing parameters adapted to full-length genes: ‘‘-n 9 -G 1 -aS 0.95 -aL 0.6 -d 0 -c 0.95 -g 0’’. This resulted in 14,083,686 clus-

tered full-length genes, onto which the incomplete genes were mapped with Bowtie2 (Langmead and Salzberg, 2012). Incomplete

genesmapping with at least 95%nucleotide identity were directly integrated into the initial clustering of complete genes. The remain-

ing sequences were clustered as before with CD-HIT, but changing alignment length parameters to ‘‘-aL 0.3 -aS 0.8’’ to account for

incomplete genes. Additionally, genes belonging to the 40 conservedmarker genes were clustered separately, using clustering iden-

tity thresholds as described in (Mende et al., 2013). Merging marker gene clusters, incomplete, and complete clustered genes re-

sulted in the gene catalogue, with a total of 23,137,742 non-redundant genes at 95% nucleotide identity cut-off. A gene abundance

matrix was calculated using rtk (Saary et al., 2017).

The abundance of genes in each sample was calculated by backtracking clustered genes to their originating sample, and using the

already computed gene abundances (see ‘‘Abundance estimates of contigs and genes‘‘), thereby avoiding inflating the mapping
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space when mapping reads to a complete gene catalog. The gene abundance matrix was ‘‘decluttered’’ to remove redundant genes

that were possibly originating from the same orthologue, but incorrectly clustered at nucleotide level. For this we first collated a list of

‘‘similar’’ genes, clustering the gene catalog at 90%AA identity with MMseqs2 (Steinegger and Söding, 2017). All thus clustered pro-

teins were tested if they showed a co-excluding occurrence pattern (fisher’s exact test, p<1e-5), tested on gene pairs whose co-

occurrencewas in <10%of samples were either was observed. In total, 5.1e6 of 2.3e8 genes in the gene catalogweremerged, based

on their occurrence pattern. All genes in the gene catalog were functionally annotated to the eggNOG database (Powell et al., 2014)

using Diamond (Buchfink et al., 2015) in blastp mode using options ‘‘-k 5 -e 1e-5 –sensitive’’.

Binning
A combined binning approach was employed that uses single assembly binning (MAGs - metagenomic assembled genomes), gene

catalogue binnings (Canopy clusters) and hierarchical clustering of candidate genes (hcl-clusters). The final set of genomes derepli-

cated at species level was the representative ‘‘MGS’’ (metagenomic species), used in all analysis unless otherwise mentioned.

To binMAGs from single assemblies, MetaBAT2 v2.15 (Kang et al., 2019) was run on everymetagenomic co-assembly with default

parameters, except for the changed option ‘‘-min_contig_length 400’’, using pre-computed contig abundances. These were quality-

filtered using CheckM v1.0.11 (Parks et al., 2015). Based on MetaBAT2 bin predictions from each individual’s metagenome assem-

bly, we discovered 22,091 bins at >80% completeness and <5% contamination rate. To pre-cluster MAGs likely representing the

same species, the overlap in shared genes (gene catalogue genes) among MAGs was computed. MAGs were merged, if at least

30% or 300 of their genes overlapped. Merging was completed on MAGs of quality tiers to ensure that lower quality MAGs were

merged into higher qualityMAGs.We defined 4 quality tiers defined by completeness greater than 95, 90, 80, 60%and contamination

less than 5, 5, 5, 10% for each of the 4 tiers, based on checkM scores, resulting in 1,002 dereplicated MAGs.

In parallel, the gene catalogue was clustered based on the co-occurrence of genes between samples, were using the canopy clus-

tering approach (Nielsen et al., 2014). To avoid false positive clusters based on highly similar samples, such as would be expected in

longitudinal samples from the same host individual, the gene abundance matrix was prefiltered to remove samples that had >0.15

Spearman correlation. TheC++ programwas run on the filtered and scaled gene abundancematrix, with parameters ‘‘–profile_meas-

ure 75Q -b –stop_criteria 100000 –filter_max_top3_sample_contribution 0.7 –max_canopy_dist 0.1 –max_merge_dist 0.1’’. These

canopy clusters were merged to dereplicated MAGs at the previously used 30% gene overlap and a minimum of 300 overlapping

genes, but only creating an independent species cluster if >= 90% of its genes were independent (not occurring in derepli-

cated MAGs).

These dereplicated bins were further refined to ‘‘MGS’’: using gene correlations and hierarchical clustering (Hildebrand et al.,

2019). Briefly, for each dereplicated bin a set of core genes was extracted (occurring in >= 10% of all associated MAGs, or all genes

of a canopy cluster) that were used to ‘‘fish’’ additional co-occurring genes from the gene catalogue. Genes correlating to these core

genes at >0.75 Pearson correlation and >0.85 spearman rho were included in a set of putative genes, including now merged Meta-

BAT2 bins, canopy bins and genes correlating to their abundance at relaxed correlation values. These putative gene bins were clus-

tered in R using a hierarchical clustering approach. Since in cases of low occurrence rates Spearman correlations gave better results,

we implemented an automatic algorithm that used either Pearson or Spearman correlations for the hierarchical clustering step. From

the hierarchical clustering of genes a sub-cluster was extracted that contained asmany of 40 single-copymarker genes (Mende et al.,

2013) as possible, selecting preferentially sub-clusters that had no duplicate copies of these genes present. This algorithm is imple-

mented in the script ‘‘ClusterBinAbund.R’’, available inMATAFILER. This final refinement step of dereplicated bins resulted in the final

set of MGS (N=1,683), each bin representing a species as based on non-overlapping gene sets clustered at 95% identity (from the

gene catalogue). These MGSwere then again tested for completeness and contamination using checkM (Parks et al., 2015), filtering

for 1,144 high quality MGS with >80% completeness and <5% contamination.

This process significantly improved the quality of the initially binned and dereplicated MAGs. The total number of high-quality

(completeness >80%, contamination < 5%) MGS increased from 1,002 (MetaBAT2 only) to 1144 (MetaBAT2+canopy+refinement).

Also, within these sets the quality was higher, as median contamination dropped from 1.07 to 0.67 and median completeness

increased from 91.9 to 93.2 on 1002 and 1144MGS, respectively. On median, 37/40 marker genes were found in the MGS genomes.

Further, on median final MGS contained 131 more genes than the original dereplicated MAGs. Applying the quality criteria for high,

medium, and low quality reconstructed genomes proposed by (Bowers et al., 2017), would result in 805 high quality, 665 mid quality

and 176 low quality MGS (bearing in mind that no rRNA genes are included in gene catalogues and MGS gene clusters).

Using our de-novo assembly approach, wewere able to obtain 1,144 high quality MGSs (>80% completeness, <5%contamination)

that we included in the subsequent analyses. All MGSs could be assigned to known and candidate phyla (Figure 1B). Only ten archaeal

MGS were found and all were from the orders Methanomassiliicoccales or Methanobacteriales. The vast majority of 1,034 bacterial

MGSwere Firmicutes (67%of all MGS, 52%assigned to Firmicutes_A as it is defined in GTDB taxonomy (Parks et al., 2018)), followed

by Bacteroidota (17%), Proteobacteria (5.6%) and Actinobacteriota (4.4%); altogether 18 prokaryotic phyla were detected. We also

discovered several new clades not yet represented in NCBI or GTDB, including a candidate bacterial class in the phylum Lenti-

sphaerae that was represented by four MGS, 24 MGS without a family assignment and 196 MGS without a genus assignment.

MGS taxonomy and between MGS phylogenetic trees
Phylogenies of MGS were de novo calculated based on the amino acid (AA) sequences of 40 marker genes (Mende et al., 2013) ex-

tracted from eachMGS (or less if not all 40marker genes were present). These were aligned usingMAFFT (Katoh and Standley, 2013)
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with default options, The multiple sequence alignment (MSA) was trimmed and backtranslated to nucleotides using Trimal (Capella-

Gutiérrez et al., 2009) (options ‘‘-keepheader -ignorestopcodon -gt 0.1 -cons 60’’). From the backtranslated, concatenated AAMSA,

a phylogeny was reconstructed using IQ-TREE 1.6.3.a (Nguyen et al., 2015), with the options ‘‘-m GTR+F+I+G4 -B 1000’’. The phy-

logeny was visualized using iTOL (Letunic and Bork, 2016).

MGS were taxonomically assigned using GTDB-TK and following the GTDB phylogeny (Parks et al., 2018). In addition the single

copy marker genes from each MGS were matched to proGenomes (Mende et al., 2017), while all MGS genes were taxonomically

annotated using kraken2 (Wood et al., 2019) (implemented in the script ‘‘taxPerMGS.pl’’ in MATAFILER, detailed in section ‘‘MGS

abundance in metagenomes’’). The GTDB taxonomic assignment was primarily used, unless only proGenomes or Kraken2 species

level assignments were available, matching to the GTDB genus or family level assignment. This taxonomy was imposed on a phy-

logeny based on 40 conserved marker genes, allowing for a least-common-ancestor approach to obtain taxonomic assignments

of unplaced taxa, at higher taxonomic levels. Using this approach, we still find several unclassified genera, families, and orders,

but all MGS are assigned at least at phylum level.

Estimating MGS abundance in metagenomes
Taxonomic abundance within samples was estimated from themean abundance of 40 universally present, single copymarker genes

(MGs), found either in MGS or in reference genomes. This was derived from MGs clustered in the gene catalogue.

In detail, we assume that not all species present in the gut microbiome can be binned at a high quality, and wanted to use refer-

ence-based information to still estimate the abundance of these species in our samples, in order to obtain amore realistic abundance

of microbial species. For this, we used the 40 single copy ubiquitously present marker genes (MG) that can be predicted using specI

(Mende et al., 2013) in the gene catalogue, employing hiddenmarkovmodels trained on broad taxonomic groups to detect MGs. This

information was used to combine marker genes that were present in previously binned MGS, and those marker genes that could not

be binned into MGS, to have an estimate of MGS, and non-MGS species present in each sample.

From this set of marker genes (some binned in MGS, others not), we used a similarity-based approach to identify known species

within these, mapping all predicted genes with Lambda 1.9.3 (Hauswedell et al., 2014) onto MGs clustered to specI’s in the proGe-

nomes database (Mende et al., 2017) and using aMG specific similarity cutoff (Mende et al., 2013). Hits were immediately accepted, if

a metagenomic MGwas hitting a single proGenomes specI at the required similarity threshold. However, since several metagenomic

MGs had valid hits tomultiple proGenomesMG’s, we supplemented the identification of a species using a coabundance approach, in

a concept similar to canopy clustering (Nielsen et al., 2014). Briefly, for ‘‘complete’’ specI’s (>30MGpresent or based on binnedMGS

annotations) we calculated the average profile across all MGs. The remaining MGs that were not uniquely assigned to a single specI

(with >30MG’s, or binnedMGS), were correlated to existing specI profiles. CorrelatedMG’s were then tested for taxonomic similarity

(being assigned to the same species or the same genus), and were combined to a new cluster if the pearson correlation coefficient

was >0.9.

Additionally, at different phases in the clustering algorithm, within each specI, MGs were checked to correlate with the average

profile (Spearman) < 0.9, or were removed as false positive assignments and iteratively tried to be added to different specI’s, as

described above. This is implemented in the script ‘‘annotateMGwSpecIs.pl’’ available in MATAFILER. For analysis, mean abun-

dance refers to non-zero mean abundance, excluding samples that do not show presence of a given species, unless otherwise

mentioned. This was chosen to reflect a population of a given bacterium better, that the species usually reaches in normal ecosys-

tems, excluding the prevalence of a species observed in our sample set. Prevalencewas calculated as samples with >1%abundance

of a given species

Characterisation of sporulation-related and oxygen-resistance genes in MGS
Core genes of MGS were annotated with EggNOG-mapper v2.0.0 based on eggNOG orthology data (Huerta-Cepas et al., 2019).

Sequence searches were performed using Diamond v0.9.24.125 (Buchfink et al., 2015). KO annotations were retrieved from

Eggnog-mapper annotations for eachMGS. KOs related to spores or to oxygen resistance (catalases, peroxidases, super-oxide dis-

mutases according to (Browne et al., 2017; Miller and Britigan, 1997; Rolfe et al., 1978)) were identified. The occurrences of all of

these KOs were counted by MGS.

Strain-level metagenomics—within MGS phylogenies
To obtain strain-resolved MGS, we used conserved marker genes within a MGS, to construct a within-MGS phylogeny. This phylog-

eny was based on SNP-resolved gene orthologues (derived from the gene catalogue) from each sample where these genes were

present at enough coverage. This approach is fundamentally different from aligning reads to reference genomes/genes, as it relies

on assembled genes andmultiple sequence alignments (MSA’s) instead of aligned reads, to describe genetic diversity.We chose this

approach to a) avoid inflating the mapping space and b) reduce reference biases - to mitigate SNP calling errors typically introduced

through mappings reads to a low similarity reference (Bush et al., 2019). The procedure from 1) SNP calling 2) conspecific strain

detection 3) MGS gene selection 4) multiple sequence alignment and phylogeny is described in the following.

Determining nucleotide variants per sample

Reads were mapped against the complete metagenomic co-assembly of a given sample group. From the filtered bam files (see

above), nucleotide variants per biological sample were computed using Bcftools mpileup 1.9 (Li, 2011) with the following additional

options ‘‘–count-orphans –min-BQ 30 -d 12000 –skip-indels –min-MQ20 -aDP,AD,ADF,ADR,SP ‘‘. The output vcf file was processed
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using a custom Perl script (Hildebrand et al., 2019), to calculate the consensus fasta sequence for each assembled contig in a given

sample. The minimum coverage was set to 2 reads per position. A 0.501 consensus threshold was used, to avoid introducing a refer-

ence bias in the consensus sequence and to filter reads assignments at a depth of 2, that have a 50% allele frequency. Further, using

the 50% allele frequency cut-off addresses conspecific strains present in the same host, by only estimating the genome of the most

abundant strain. If a second strain would in another time point arise to become the dominant strain, this would be immediately infer-

able from the within-host diversity and flagged as a strain exchange. However, to avoid conspecific strains being present in the same

time point at comparable abundances, which would introduce noise into our calculations, we specifically filtered all contigs in a sam-

ple, that might originate from conspecific strains.

Detecting conspecific strains
To filter out sequences that likely arose from >1 strain of the same species present in the same sample, we tested in each contig the

frequency of non-reference alleles. Since fixed SNPs (>0.80 or <0.20 allele frequency) are simply a function of differences between

reference sequence and strains present in a sample, these alleles were completely ignored. Instead, we only focused on mid ranging

frequencies (0.20 to 0.80), in analogy to a strain delineation threshold of 1% base differences, we approximated the probability of

conspecific strains (Pc) in a sample corresponding to the % of mid-frequency positions, out of covered positions. The likelihood

of a specific gene being confounded by conspecific strain signature was conservatively calculated as:

Pgc = Pc * NmidF * 100 / Lg

where NmidF is the number of SNPs at midrange frequencies and Lg the gene length of a given gene.

MGS representative genes and outgroups
For each MGS of sufficient quality, initially 300 genes were selected, that were either part of the conserved 40 MG’s (Mende et al.,

2013), or were ubiquitiously present (a sorted list of gene presence was used, to select the top 300 genes, minus the number of pre-

sent MG genes). To avoid conspecific strains, two checks were performed: 1) a gene catalogue gene was completely excluded from

further analysis, if it was represented by >1 gene within a sample in more than 5% of cases 2) a gene within a sample was excluded, if

Pgc > 0.1.

An outgroup for each MGS was automatically chosen based on the between MGS phylogeny: the closest neighbour that was

further than 0.1 evolutionary distance from the currentMGSwas automatically extracted from this phylogeny, using customR scripts.

To obtain corresponding genes between in- and outgroup, we used the functional assignments of the gene catalogue: in the outgroup

we obtained those genes that were either of the same MG assignment, or (for non-MG genes) of the same eggNOG assignment.

Alignment and phylogeny

From ingroup and outgroup genes, multiple sequence alignments (MSA’s) per gene category were created (independently of each

other), using AA sequences and mafft (Katoh and Standley, 2013) with default parameters. MSA’s suffer from their own technical

idiosyncrasies, which we tried to mitigate through extensive automatic filtering. First, MSA’s were back-translated and filtered using

trimal (Capella-Gutiérrez et al., 2009), with the parameters ‘‘-ignorestopcodon -gt 0.1 -cons 60’’. Second, we observed sporadically

occurring ‘‘frameshifts’’ in few MSA’s: whole sections of a gene were shifted by 3 nucleotides (typically the 30 or 50 part), leading to

very low sequence identities on part of the MSA. To correct for these, a custom C++ program was implemented (available on https://

github.com/hildebra/MSAfix). This calculates iteratively for each sequence the identity to all other sequences in a 150bp window; if

such a window falls below the expected identity threshold (E[id]) for at least 50 nucleotides, that region of the gene is masked. If more

than 60% of nucleotides were masked, the entire sequence was discarded. The expected identity threshold was calculated as

E[id] = (IDi) - ((1 - IDi)*0.25) - max(0.1,s*3)

With IDi being the average %identity of sequence i to all other sequences in the MSA, s the standard deviation of %identities

among sequences. After these corrections, the final set of genes to be used in the phylogeny was selected, choosing those genes

that were at least 400 bp long, were at least 75%non-N characters. A strain (that is a sample representing aMGS) was excluded from

further analysis, if not at least 10% of overall nucleotides were covered (non-N) or not at least 20% of genes used in the phylogeny

were present.

From these filtered MSA’s, a partitioned phylogeny was created using IQ-tree (Nguyen et al., 2015) in fast mode, to handle the

computational complexity of this dataset (with some trees containing >4,000 tips), with the options ‘‘-m GTR+F+I+G4 -seed 678

-alrt 1000 -fast’’.

To capture statistics on the tree structure imbalances, wemeasured Sackins index. Tomeasure these on our rooted trees, we used

the R-package ‘‘apTreeshape’’, using pda normalization to account for tree size.

Strain individual, family, and geographic stability
All samples related to fecal microbiota transfers were excluded for host/family/geographic association statistics. For each species

we calculated the fraction of stable phylogenetic clustering of strains detected in a given individual, defined as either the same sMGS

(strain) between two samples, or different sMGS, where the MGS (species) was sufficiently abundant to allow for strain identification.

We developed three separate approaches to measure if a strain was in the same cluster using: first we set a hard cutoff at 0.01
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evolutionary distance, based on our nucleotide derived phylogenetic trees. Second, we used the tree specific cutoff at 10% quantile

of all distances in a species’ tree (usually considerably lower than 0.01, see Figure 1D formedian values). Third, we used a phylogeny-

based approach, where we only confirmed that the closest relative to a given leaf (sMGS) was of the same individual. From this latter

approach thewithin-individual evolutionary distancewas derived at 95%quantile, whichwas subsequently used to cluster remaining

leaf’s if they fall within this distance to their closest strain from the same individual. The second and third approach were virtually

identical (Rho=0.99), but the hard cutoff at 0.01 led to divergent results (Rho~0.77 to either). The third approach was used for the

majority of analysis, unless otherwise mentioned.

To estimate strain resilience, sMGS assignments between all consecutive timepoints within the same individual host were

compared. Strain resilience is the number of consecutive timepoint with the same sMGS (Ncts) divided by the number of consecutive

timepoints with a different sMGS (Nctd); timepoints were the MGS could not be detected were excluded. Ncts and Nctd were

summed across individuals, divided by each other to obtain a fraction and multiplied by 100 to obtain a percentage strain resilience

per MGS. Strain persistence was calculated similarly, but instead of Ncts and Nctd representing the number of cases of similar/dis-

similar sMGS, these represented the accumulated days between two time points, Dcts and Dctd. While it was straightforward to

calculate Dcts as consecutive days with the same sMGS (Dcts += Tx+1 – Tx, T being relative timepoint in individual, x the considered

sample), Dctd could represent a strain exchange happening on any time point between last and current observation. Therefore, we

used amaximum likelihood approach, assuming the strain exchange happening in the middle between timepoints (Dcts += Tx+1 – Tx/

2 and Dctd += Tx+1 – Tx/2). Annual survival rate was estimated using survival statistics. Here the R-package ‘‘survival’’ and function

‘‘Surv’’ was used on the longest timeframe within each individual, where we could detect a strain (right censoring). To estimate the

percentage of strains that survived for 365 (or other times) days, we used the stepfun and survest R functions.

Family persistence was estimated from the same within-MGS phylogenies, using the same algorithm described above. This was

used to obtain strains shared between individuals of the same family (any timepoint was valid for this). If the family members were

both adults, this was defined horizontal, if an adult and infant/teenager shared a strain, this was defined as vertical strain sharing.

Geographic stability was tested twofold, but in either case we reduced the sample set to include only one sample per individual, or

per family if other family members were within out dataset. This representative sample was chosen randomly, as long as it contained

the MGS, even if we detected >1 strain per sample, to avoid any false positive signal due to incomplete strain delineation. We tested

the association to a specific country, by testing if within-country genetic distance was significantly smaller than between-country

distance, using a perMANOVA, as implemented in the vegan R package (Oksanen et al., 2014).We tested the geographic association

by testing for a significant correlation between geographic distance and genetic distance, using amantel test. As genetic distancewe

used the cophenetic distance between leaves of the within-MGS phylogeny. As all metagenomic samples were from anonymised

individuals, we inferred GPS coordinates for either the sampling hospital (if detailed in original publications) or the country the study

was conducted in. For multi-country studies, the information of participant origin was obtained from published metadata or directly

from the authors. Geographic distance was estimated fromGPS coordinates of the samples origin, using the distm function from the

geosphere R-package with option ‘‘fun = distHaversine’’.

Estimating population genetic parameters of MGS in metagenomic samples
All population genetic parameters (Tajima’s D, Q, p, dN/dS, pN/pS) were calculated from the same set of core genes used for strain

delineation (see above). This set was optimally aligned to our aim of describing the evolutionary forces underlying the stably trans-

ferred core genome, experienced by the species over longer time scales. This set also has the advantage of being less likely subject

to horizontal gene transfer (HGTs) and being present in multiple, paralogous copies. Based onMSA’s described above, all population

genetic parameters were calculated separately for each gene, after filtering for genes present in too few samples and conspecific/

paralogous gene filtering. This resulted in 64 genes on median per MGS, and the median value for each population genetic param-

eters was used to represent said parameter for each MGS (see Table S4 for detailed listing).

Estimates were inferred either directly from the MSAs (Tajima’s D,Q, p, dN/dS) or MSAs plus derived phylogeny to estimate pN/pS

(Murrell et al., 2013). Tajima’s D,Q, p and pN/pS were calculated solely from nucleotide multiple sequence alignments within a MGS,

while for dN/dS sequences from an outgroup MGS were included. However, within-MGS sequences were later downsampled to ac-

count for potential biases (see further). Tajima’s D,Q,pwere calculated using the R packages PEGAS and APE (Paradis, 2010; Para-

dis et al., 2004), using the functions ‘‘tajima.test’’, ’’theta.s’’ and ‘‘nuc.div’’.

Tajima’s D,Q,p at synonymous and non-synonymous sites (Tajima’s DS,QS,pS, Tajima’s DN,QN,pN ) were calculated based only

on sites of the MSA, for simplicity represented by either 4-fold (synonymous) or 0-fold (non-synonymous) degenerate coding DNA

positions, as determined with subfunctions from ‘‘dnds’’ (R-package APE). To estimate the strength of purifying selection acting

on of polymorphisms potentially segregating within the bacterial species (pN/pS), we chose to use a Bayesian approach to estimate

pN/pS, using a maximum likelihood approach implemented in FUBAR (Murrell et al., 2013). After consultation with one of the soft-

ware’s author (SK Pond), we used grid-estimated pN and pS values, corrected by their posterior probability.

We found that some of our estimates correlated strongly to the number of samples included per MGS (Figure S4). While this could

be a genuine biological signal it may be possible that the number of sequences in an analysis might bias results for technical reasons.

To address this, we corrected for differences in sampling depth (i.e. number of genomes available per MGS) and autocorrelation in

time series data, by 1) randomly selecting 1 sample per host-individual and 2) randomly selecting from this set n=10,20,30,100,200 or

500 genes.Within each of these randomly downsampled (and therefore normalized) subsets the correlation between pN/pS as well as

Q (and other tested variables, data not shown) to the number of samples remained stable, indicating that a biological signal was
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present (data not shown). We choose to use n=20 in the remaining analysis, a downsampling that still represented 452 MGS, mostly

overlapping with the 441 MGS chosen to investigate persistence, where key population genetic estimates were stable at different

downsamplings.

To estimate dN/dS, that is the ratio of between species nucleotide divergence at non-synonymous and synonymous sites, a nucle-

otide sequences of an outgroup species was included. For this we reused the outgroup included to build the within-MGS phylogeny

(see section above) to obtain and align orthologous genes of this outgroup MGS. Based on the MSA used to delineate strains. dN/dS
was estimated using the function ‘‘dnds’’ fromAPE (Paradis et al., 2004) in R, by sequentially comparing the outgroup to each ingroup

sequence to obtain estimates of dN/dS, dN, dS. The median of these across all ingroup sequences was taken to represent the gene’s

dN/dS, dN, dS values for a specific MGS.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis and plotting of graphs was conducted in R 3.6.2, unless otherwise mentioned. All correlations and tests of cor-

relations used spearman correlations, unless otherwise mentioned, using function ‘‘cor.test’’ in base R and all reported correlations

are spearman Rho values. All tests comparing groups used a two-sided Wilcoxon rank-sum test, or a Kruskal-wallis test in case of

more than three categories, using functions ‘‘wilcox.test’’ and ‘‘kruskal.test’’ implemented in base R. Whenever multiple tests were

conducted, these were multiple testing corrected, using Benjamin-Hochberg multiple testing correction with the base R function

‘‘p.adjust’’. Partial correlations were calculated using function pcor.test from package ‘‘ppcor’’ ver 1.1. Correlelograms were calcu-

lated with function ‘‘corrgram’’ package ‘‘corrgram’’ ver 1.13, using argument cor.method="spearman". Enrichments of persistence

or resilience of taxa in hosts of differing age, delivery mode or antibiotic treatment, as well as taxa enriched in vertical compared to

horizontal strain sharing were calculated based on count data (observed cases with the same / different strain). For this a Fisher’s

exact test was used, as implemented in the R function ‘‘fisher.test’’. Strain persistence is directly calculated from observations be-

tween consecutive time points, that we interpreted as independent observations that could be used directly in Fisher’s exact test.

However, strain persistence is based on days a strain is consecutively observed. Therefore, we used the information of total obser-

vations in strain resilience, to downscale consecutive time to reflect the total N obtain from strain resilience. P-values were not mul-

tiple testing corrected, as we rather sought an overview of plausible enrichments or depletions of taxa upon antibiotic exposure.

‘‘Antibiotic Impact’’ on persistence/resilience was determined by comparing the persistence or resilience of a species in hosts that

were not exposed to antibiotics to these values in hosts exposed to antibiotics. The ratio of the averages was taken as ‘‘impact’’ that

antibiotics will have on the persistence/resilience.

Strain persistence and resilience in agewindowswas calculated by first calculating either statistic for a patient and then calculating

themedian age of the individual. Median age and persistence/resilience were averaged in age windows to understand the changes in

persistence and resilience that come with host age, for the different microbial species in our data.

ADDITIONAL RESOURCES

Gene catalog and sample metadata are available on http://vm-lux.embl.de/�hildebra/Drama_GC.
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