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The net erosion-deposition rate of an avalanche is fundamental to its dynamics and in
determining its growth or decay. Small-scale experiments are performed by releasing a
given volume of yellow sand onto a stationary erodible red sand layer on a rough inclined
plane. Depending on the erodible layer depth and the slope angle, the avalanche is found
to either decay, grow, propagate steadily or rapidly shed grains to produce secondary
avalanches. The use of different coloured sand with identical properties shows that a
particle exchange occurs, which eventually results in a flow that is comprised entirely of
particles from the stationary layer rather than the initial release. It is notoriously difficult
to model the erosion and deposition processes in granular flows, but it is shown that a
two-dimensional depth-averaged avalanche model, with a hysteretic basal friction law, can
reproduce all of the observed behaviours. The results illustrate how a continuous exchange
of particles with the substrate layer is fundamentally important to the propagation of
such avalanches. An investigation into long distance propagation behaviour reveals that
avalanches can reach a steady state, the size and speed of which are independent of the
initially released volume. In certain conditions avalanches can grow to steady states that
are significantly more massive than the flows from which they are originally formed.
This paper demonstrates the importance of correctly including erosion-deposition in
operational forecast models of snow avalanches and other geophysical mass flows.
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1. Introduction

The dominant mechanism for growth of snow avalanches is by ploughing into an erodible
layer of fresh snow (Sovilla, Sommavilla & Tomaselli 2001; Sovilla & Bartelt 2002;
Sovilla, Burlando & Bartelt 2006), with entrainment taking place very close to the flow
front. This frontal entrainment increases the mass of an avalanche and, despite larger
bodies moving slower due to conservation of momentum, has the potential to significantly
increase its run-out distance and destructive power. Avalanche mass typically increases
fourfold after the initial failure (Sovilla et al. 2006), where the main limiting factors on
growth are the amount of snow available to erode and the snowpack structure. While
avalanches erode material at the front and sides, they also deposit snow at the base and
rear of the flow; these processes together determine the overall growth or decay of the
flowing mass. Deposition can lead to the formation of static levees at the lateral extents
of the avalanche front, with an incised trough that is thinner than the surrounding snow
cover between them and which contains previously mobilized material (Edwards et al.
2017). A flow can be brought rapidly to rest if the slope inclination decreases, causing the
avalanche to decay in mass by deposition (Bartelt, Buser & Platzer 2007) of an elevated
channel (Edwards et al. 2017) on top of the fresh snow layer.

The process by which an avalanche propagates on an erodible substrate, while entraining
material at the flow front and depositing it behind, is studied by performing analogous
experiments using 160–200 μm diameter sand. Various granular materials, including sand,
are commonly used to model snow avalanches (Naaim, Faug & Naaim-Bouvet 2003)
and other types of geophysical flow (Forterre & Pouliquen 2003), since their physical
properties can be incorporated into an empirical friction rule. An avalanche is triggered
by releasing grains from a cylinder on top of a static erodible layer of constant depth
that is made from the same material. This erodible layer is formed initially by a steady
uniform flow, which comes to rest with a thickness hstop(ζ ) on a slope inclined at an angle
ζ (Pouliquen 1999a). Hysteresis in the rough bed friction rule (Daerr & Douady 1999;
Pouliquen & Forterre 2002) means that the inclination can be increased without disturbing
the stationary layer provided that is thinner than hstart(ζ ), the thickness of a layer that
spontaneously flows on the current slope angle ζ . This allows thick erodible layers to be
produced that provide an abundance of material for frontal entrainment. During avalanche
propagation, particles are exchanged between the avalanche and the erodible substrate,
which is investigated by releasing a finite volume of yellow coloured sand onto a stationary
layer of red sand with the same frictional properties (Viroulet et al. 2019). This allows the
relative concentrations of yellow sand, from which the avalanche is initially composed,
and red sand, which is increasingly entrained from the erodible layer, to be visualized
throughout the flow.

For flows of carborundum on a static layer of the same material, Edwards et al. (2017)
found that avalanches would decay, grow or propagate in an apparently steady manner,
depending on the slope inclination and the thickness of the substrate layer. Another type
of behaviour is observed here, whereby an avalanche on a steep slope is forced to quickly
shed mass to adjust to a preferential size, with the deposited material forming secondary
avalanches if their volume is sufficient. This shedding behaviour was first investigated
experimentally by Viroulet et al. (2019), although they only showed the near-end states
of each avalanche type (apart from steadily propagating) compared to the time-dependent
results and quantitative comparison with numerics that are presented here. Apart from
avalanches that come to rest after travelling a short distance, the long-time behaviour of
the other waves is unknown, because the experiments are limited to a finite sized plane.
Further numerical simulations are therefore used to provide insight into the dynamics that
is not possible to observe with this experimental set-up.
915 A9-2
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Erosion-deposition dynamics of granular avalanches

The importance of frontal entrainment was recognized by early snow avalanche models
(Briukhanov et al. 1967; Grigorian, Eglit & Iakimov 1967; Eglit & Demidov 2005) that
used mass and momentum jump conditions to solve for the erosion rate and the propagation
speed of the moving flow front, which was considered to be a shock wave separating a
rapid liquid-like avalanche and a finite depth solid-like substrate. Eglit (1983) proposed a
model with the erosion rate proportional to flow speed, which is greatest at the front and
thus provides more gradual erosion at the base of the avalanche, to circumvent tracking
the position of the moving interface between a static snowpack and a mobile avalanche.
Geophysical mass flows are conventionally modelled in a shallow-water-like avalanche
framework (e.g. Grigorian et al. 1967; Eglit 1983; Savage & Hutter 1989; Iverson 1997;
Gray, Wieland & Hutter 1999; Gray, Tai & Noelle 2003; Mangeney-Castelnau et al.
2003). Erosion and deposition are incorporated into most current avalanche models by
introducing source terms into depth-averaged mass and downslope momentum balance
equations (e.g. Bouchaud et al. 1994; Douady, Andreotti & Daerr 1999; Gray 2001; Doyle
et al. 2007; Tai & Kuo 2008; Gray & Ancey 2009; Iverson 2012; Tai & Kuo 2012), which
are also sometimes augmented with an energy balance equation (e.g. Bouchut et al. 2008;
Capart, Hung & Stark 2015). Additional non-trivial empirical relations are required to
close such models, and the interface between the flowing and static regions is hard to define
if slow creep exists deep beneath the avalanche (Komatsu et al. 2001), meaning that all
of these approaches are notoriously difficult. Numerous empirical erosion and deposition
relations have been proposed for depth-integrated models (Iverson & Ouyang 2015), but
derivation of a predictive relation from the underlying physics remains an active area of
research.

Experimental observations of erosion-deposition waves were made by Daerr & Douady
(1999), who found that they could trigger two types of avalanche on a metastable layer
of grains, the behaviour depending on the slope angle and the layer thickness. Edwards
& Gray (2015) modelled one-dimensional erosion-deposition waves by incorporating
Pouliquen & Forterre’s (2002) extended basal friction rule into a depth-averaged
μ(I)-rheology (Gray & Edwards 2014). This one-dimensional erosion-deposition wave
model makes a crude approximation that the avalanche is either moving or static through
its entire depth at any point, rather than explicitly resolving the frontal entrainment.
Despite the basal friction rule essentially determining which regions are in motion,
Edwards & Gray’s (2015) model was able to accurately predict the amplitude, wavelength
and coarsening dynamics of spontaneously formed erosion-deposition waves. This is
of direct relevance to snow avalanches, which are also granular flows, and have been
extensively modelled using depth-averaged formulations (see e.g. Grigorian et al. 1967;
Eglit 1983; Eglit & Demidov 2005; Sovilla et al. 2006; Christen, Kowalski & Bartelt 2010;
Mangeney et al. 2010; Bartelt et al. 2015). In particular, Naaim et al. (2003) incorporated
Pouliquen’s (1999a) dynamic rough bed friction law (which is also used in this paper) into
the shallow-water-like depth-averaged avalanche equations of Savage & Hutter (1989) to
model dry cohesionless snow avalanches.

In this paper, erosion-deposition waves with both cross-slope and down-slope variation
are modelled using a two-dimensional depth-averaged system that includes granular
viscosity (Baker, Barker & Gray 2016) and source terms in the momentum balance
equations. The latter are momentum conserving because they are comprised of a
non-dimensional net acceleration that changes sign depending on the balance between the
downslope component of gravity and an effective basal friction rule for angular particles
(Edwards et al. 2019), which is well characterized for eroding and depositing flows. To
track the exchange of particles between an avalanche and an erodible layer during the
continual process of frontal entrainment balanced by rear, basal and lateral deposition, the

915 A9-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

ou
lo

us
e 

II
I, 

on
 1

6 
N

ov
 2

02
1 

at
 1

4:
37

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
34

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.34


A.N. Edwards, S. Viroulet, C.G. Johnson and J.M.N.T. Gray

release of yellow sand grains are tracked as individual particles. As such, the equations
governing the three-dimensional movement of particles, which are derived from the
depth-averaged quantities by assuming a general form of the downslope velocity profile,
are numerically integrated at the same time as the depth-averaged mass and momentum
equations.

2. Experimental results

Small-scale experiments are performed to investigate the exchange of particles that
occurs between a granular avalanche and the erodible layer on which it propagates.
The experimental set-up consists of a 1.6 m long by 0.6 m wide plane inclined at an
angle ζ to the horizontal that is roughened by attaching a mono-layer of 750–1000 μm
diameter spherical glass beads using double-sided sticky tape (see figure 1 here and figure
2 of Russell et al. 2019). A hopper and gate located 1.2 m upslope of the end of the
plane allows the bed to be coated with a static layer of 160–200 μm diameter red sand
(coloured by the manufacturer) prior to the start of the experiments. This erodible red
sand layer spreads to approximately 50 cm wide, meaning that it is not in contact with
the solid edges of the plane and so there is no wall friction. Any particles that reach
the downstream end of the slope flow out freely and are collected underneath the plane.
The static layer has a thickness h0 = hstop(ζ0), where hstop(ζ0) is the thickness of the
deposit left by the thinnest steady uniform flow on a slope inclined at an angle ζ0 to the
horizontal (Daerr & Douady 1999; Pouliquen 1999a; Edwards et al. 2019). Inclination of
the slope can be carefully adjusted without disturbing the erodible layer thanks to a car jack
underneath the plane. The slope angle is measured to an accuracy of ±0.1◦ using a digital
inclinometer.

An avalanche is initiated by manually releasing a finite volume V = hcπR2 of yellow
sand from a cylinder of radius R = 1.5 cm filled to the required height hc, approximately
80 cm from the end of the chute, on top of the red sand layer. The cylinder is lifted
quickly and perpendicularly to the plane such that any non-normal releases are evident
due to instantaneous symmetry breaking and are repeated, ensuring that the results are
reproducible. The red and yellow sands are comprised of the same material with identical
frictional properties, and differ only in colour. When the cylinder is raised, yellow particles
spread from the downslope edge like a small inclined column collapse (Maeno et al. 2013),
before forming an avalanche that travels downslope whilst eroding the red sand at the
flow front and depositing particles behind. The point of release defines the origin of a
coordinate system Oxyz with the x-axis pointing downslope, the y-axis across the slope
(with y = 0 at the midpoint of the width of the plane) and the z-axis pointing normal to
the rough plane at z = 0. Evolution of the avalanche is captured in still images, which
will be shown here in their raw formats aside from cropping, at a rate of 10 frames per
second with a Canon 7D Mark II camera that is mounted perpendicularly to the inclined
plane.

The behaviour of the avalanche that forms after the initial column collapse is dependent
on the slope inclination angle, static layer thickness and volume of material initially
released from the cylinder. While the values of these parameters, for which different types
of behaviour can be observed, are dependent on the frictional properties of both the grains
and the rough bed, the results are qualitatively reproducible on different experimental
set-ups and using alternative materials. For example, Edwards et al. (2017) observed some
similar avalanche behaviours to those presented here for flows of carborundum particles
on a rough bed of spherical glass beads.
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Figure 1. A plane with a layer of 750–1000 μm spherical glass beads stuck to the surface is inclined at an angle
ζ to the horizontal. The bed is coated with an erodible layer of 160–200 μm diameter red sand, of thickness
h0. A volume V of yellow sand, with the same frictional properties, is then released on top of this layer from a
hollow cylinder of radius R = 1.5 cm filled to the required height hc.

2.1. Decaying avalanche experiments
The release of a small volume V = 5 ml of yellow sand on an erodible layer of red sand of
thickness h0 = hstop(33.5◦) ≈ 2.0 mm, inclined at the same 33.5◦ angle at which the red
sand was deposited, is shown in figure 2. The initial avalanche that forms shrinks in size
(both width and height) before coming to rest 66 cm downslope. Much of the yellow sand
is deposited in the first 20 cm of propagation and no yellow grains are clearly visible at
all beyond 40 cm in the x-direction. The avalanche is therefore comprised entirely of red
particles in the latter stages of movement, which implies that it must propagate downslope
whilst undergoing a continuous exchange of particles between the mobile bulk flow and
the erodible static layer ahead of it. Such decaying avalanches are observed over a range
of slope angles, dependent on the volume of the release.

2.2. Growing avalanche experiments
A qualitatively different avalanche over an identical 2.0 mm thick erodible layer is shown
in figure 3. This differs from the previous experiment in that the inclination angle is raised
to 34.0◦ after preparation of the erodible layer at 33.5◦, and a greater volume V = 10 ml
of yellow sand is released. Since the thickness of the deposit left by the slowest steady
uniform flow at the 34.0◦ experimental slope angle, hstop(34.0◦), is now smaller than
the erodible layer thickness, h0, there is an abundance of erodible red sand ahead of the
avalanche. This leads to a positive net erosion rate, so the avalanche continuously grows
in size whilst digging out a widening trough as it propagates downslope. A consequence
of this is that yellow particles from the cylinder are transported further than before. Much
of the yellow sand release is deposited in the first 20 cm of travel, but the yellow-particle
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Figure 2. A sequence of overhead photos taken at 1.2 s time intervals (a–e) showing a 5 ml volume of
160–200 μm diameter yellow sand released from a R = 1.5 cm radius cylinder on top of an h0 = hstop(33.5◦) ≈
2.0 mm deep erodible layer of initially static red sand, on a rough plane inclined at ζ = 33.5◦. An avalanche,
which is initially formed entirely of yellow sand, propagates to x ≈ 66 cm downslope before coming to rest,
undergoing an exchange of particles with the red sand substrate layer whilst doing so. The red and yellow sands
are comprised of the same material with identical frictional properties and they only differ in colour. The bed
is made rough by attaching a monolayer of 750–1000 μm diameter spherical glass beads. A movie showing the
time-dependent evolution is available in the online supplementary material available at https://doi.org/10.1017/
jfm.2021.34 and https://doi.org/10.17632/s8c6dws3s4.1.

concentration then decays slowly, reaching zero by approximately 67 cm downslope. Such
growing avalanches are only found here to occur when the erodible layer thickness is
deeper than the value of hstop(ζ ) corresponding to the avalanche slope angle ζ .

2.3. Steady avalanche experiments
An avalanche of 10 ml of yellow sand at ζ = 34.0◦ over an erodible layer of h0 =
hstop(34.0◦) ≈ 1.7 mm deep red sand is shown in figure 4. The avalanche propagates at a
constant speed whilst eroding material ahead of the bulk flow front and depositing grains
behind in its wake, in a near exact balance. This results in the deposition of grains in a
leveed channel of almost constant width, after an initial transient region of approximately
10 cm in length. These observations suggest that the avalanche reaches a steady state,
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Figure 3. A sequence of overhead photos taken at 0.7 s time intervals (a–e) showing a 10 ml volume of
160–200 μm diameter yellow sand released from a R = 1.5 cm radius cylinder on top of an h0 = hstop(33.5◦) ≈
2.0 mm deep static erodible layer of the same sand, but coloured red, on a rough plane inclined at ζ = 34.0◦. An
avalanche forms that continuously grows by eroding more red sand from the static layer than is deposited behind
the bulk flow, whilst the yellow sand from which it is originally comprised is eventually all exchanged with the
erodible substrate. A movie showing the time-dependent evolution is available in the online supplementary
material.

which could travel indefinitely so long as the slope angle and deposit thickness remain
constant. Although the avalanche itself propagates steadily, its composition becomes
increasingly made up of red grains eroded from the static layer, whilst the number of
visible yellow particles continuously decreases. Although there are still some yellow
particles visible just behind the bulk head up to approximately 73 cm down the plane,
the behaviour of the avalanche suggests that, if allowed to travel a short distance further, it
will reach a steady state consisting entirely of red particles.

Different steady states are possible at, or near to, this slope angle for this particular
granular system, according to experimental observations by Viroulet et al. (2019). Despite
this, decreasing the slope angle just below a 34.0◦ inclination, for which a steady state
was found above, results in a decaying avalanche. On the other hand, increasing the
slope angle just above 34.0◦ produces different steady states with slightly increasing
leveed-channel widths. However, for sufficiently steep inclinations, more complicated
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Figure 4. A sequence of overhead photos taken at 0.8 s time intervals (a–e) showing a 10 ml volume of
160–200 μm diameter yellow sand released from a R = 1.5 cm radius cylinder on top of an h0 = hstop(34.0◦) ≈
1.7 mm deep static erodible layer of the same sand, but coloured red, on a rough plane inclined at ζ = 34.0◦.
An avalanche, which is initially formed entirely of yellow sand, propagates steadily downslope by undergoing
a finely balanced exchange of particles with the red sand-substrate layer, such that all of the original yellow
particles are eventually deposited whilst the avalanche itself maintains a constant speed and size. A movie
showing the time-dependent evolution is available in the online supplementary material.

avalanching behaviours also occur that do not result in steady states, and which will be
investigated below.

2.4. Shedding material and secondary avalanches
An avalanche of 10 ml of yellow sand at ζ = 35.5◦ over an erodible layer of h0 =
hstop(35.5◦) = 1.0 mm deep red sand is shown in figure 5. The initial collapse of
material from the cylinder produces an avalanche that has a greater amplitude and greater
leveed-channel width than the steady state for this slope angle. As a result, the avalanche
deposits material soon after its formation as small chevron-shaped deposits at x ≈ 22 cm
and x ≈ 30 cm downslope, in the middle of the channel (figure 5d,e). This shedding of
material corresponds to a gradually decreasing channel width further downstream. Yellow
particles released from the cylinder are transported further along the channel than in
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Figure 5. A sequence of overhead photos taken at 0.6 s time intervals (a–e) showing a 10 ml volume of
160–200 μm diameter yellow sand released from a R = 1.5 cm radius cylinder on top of an h0 = hstop(35.5◦) ≈
1.0 mm deep static erodible layer of the same sand, but coloured red, on a rough plane inclined at ζ = 35.5◦.
The avalanche that forms from the release of yellow sand quickly sheds excess grains in chevron-shaped
deposits, visible at x ≈ 22 cm and x ≈ 30 cm in panels (d,e), which causes the channel width to decrease
whilst the bulk flow continues to propagate downslope, exchanging particles with the red sand-substrate layer
as it does so. A movie showing the time-dependent evolution is available in the online supplementary material.

previous experiments, being visible in the shedding deposits, as well as still being present
in the avalanche as it approaches the end of the plane, as in the steady state regime.

For the final experiment, the slope inclination of 35.5◦ and red sand depth h0 =
hstop(35.5◦) = 1.0 mm depth remain as in the previous experiment, but the volume of
yellow sand released from the cylinder is increased to 20 ml (figure 6). The shedding
behaviour occurs more rapidly due to the larger volume of material released onto the
erodible layer, and the chevron-shaped deposits close to the initial collapse have enough
momentum themselves to propagate some distance further downslope as secondary
avalanches (figure 6c–e), which transport yellow grains even further downslope.

3. Governing equations

The shallow granular flows described in § 2 are modelled using Edwards et al.’s
(2017) avalanche equations (a two-dimensional generalization of the depth-averaged
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Figure 6. A sequence of overhead photos taken at 1.1 s time intervals (a–e) showing a 20 ml volume of
160–200 μm diameter yellow sand released from a R = 1.5 cm radius cylinder on top of an h0 = hstop(35.5◦) ≈
1.0 mm deep static erodible layer of the same sand, but coloured red, on a rough plane inclined at ζ = 35.5◦.
The avalanche undergoes extreme shedding of excess yellow sand particles from which it is originally formed,
such that the deposits have sufficient momentum to form secondary avalanches that can be seen to travel from
x ≈ 40 cm to x ≈ 48 cm between panels (c,d) or from x ≈ 70 cm to x ≈ 80 cm between panels (d,e). A movie
showing the time-dependent evolution is available in the online supplementary material.

μ(I)-rheology of Gray & Edwards 2014), with a hysteretic basal friction rule for granular
flows (Edwards et al. 2019). The mixing of red and yellow grains is captured by Lagrangian
tracking of the three-dimensional position of yellow grains from the initial release, and
then inference of a depth-averaged concentration from their individual positions.

3.1. Depth-averaged equations with viscous dissipation
The shallow-water-like avalanche framework of Edwards et al. (2017) defines the
thickness h and depth-averaged velocity ū = (ū, v̄) through the entire layer, rather
than explicitly resolving the interface between static and flowing layers in the normal
direction to the chute or the erosion and deposition rates between them. Whilst this
is a crude approximation, in that an avalanche is assumed to be either moving or
static throughout its entire depth, it is a reasonable one for the shallow erodible layers
studied here. The depth-averaged mass and momentum balance equations are therefore
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Erosion-deposition dynamics of granular avalanches

ζ1 ζ2 ζ3 L β Γ β∗

30.4◦ 43.2◦ 34.9◦ 0.56 mm 0.63 0.40 0.47

Table 1. Material properties for flows of sand on a bed of glass beads, measured by Viroulet et al. (2019) and
Edwards et al. (2017).

given by

∂h
∂t

+ ∇ · (hū) = 0, (3.1)

∂

∂t
(hū) + ∇ · (hū ⊗ ū) + ∇

(
1
2

h2g cos ζ

)
= hgS cos ζ + ∇ ·

(
νh3/2D̄

)
, (3.2)

where g is the constant of gravitational acceleration, ν is a coefficient in the depth-averaged
kinematic granular viscosity νh1/2/2, ∇ = (∂/∂x, ∂/∂y) is the two-dimensional gradient
operator, ‘·’ is the dot product and ⊗ is the dyadic product. The non-dimensional net
acceleration,

S = tan ζ i − μbe, (3.3)

consists of the components of gravity and effective basal friction, where μb is the
basal friction coefficient (a function of flow thickness and Froude number Fr =
|ū|/√gh cos ζ ), i is the downslope unit vector and the direction of the frictional force is
determined by

e =

⎧⎪⎪⎨
⎪⎪⎩

ū
|ū| , if |ū| > 0,

tan ζ i − ∇h
| tan ζ i − ∇h| , if |ū| = 0.

(3.4)

The final, ‘viscous’, term on the right-hand side of (3.2) arises from the inclusion of in
plane deviatoric stresses in the depth-averaged (Gray & Edwards 2014) μ(I)-rheology
(GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006) with Pouliquen’s (1999a) dynamic
friction rule. The depth-integrated strain-rate tensor D̄ is given by

D̄ = 1
2

(
L̄ + L̄T)

, (3.5)

where L̄ = ∇ū is the two-dimensional gradient of the depth-averaged velocity. The
coefficient

ν = 2
9

L
√

g
β

sin ζ√
cos ζ

(
tan ζ2 − tan ζ

tan ζ − tan ζ1

)
, (3.6)

is explicitly determined by the depth-integration process. The parameters L , β, ζ1 and ζ2
follow from Pouliquen’s (1999a) dynamic basal friction rule, which is equivalent to the
dynamic part of Edwards et al.’s (2019) friction rule used here. Values of the parameters
taken in this paper are those measured by Viroulet et al. (2019) and Edwards et al.
(2017), which are summarized in table 1. The corresponding values of ν(ζ ) are given in
table 2, alongside critical flow thicknesses associated with the friction rule, for the various
experimental and numerical slope angles.
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ζ hstop(ζ ) h∗(ζ ) hstart(ζ ) ν(ζ )

33.5◦ 2.0 mm 2.8 mm undefined 1.4 × 10−3 m3/2 s−1

34.0◦ 1.7 mm 2.3 mm undefined 1.1 × 10−3 m3/2 s−1

34.5◦ 1.4 mm 1.9 mm undefined 1.0 × 10−3 m3/2 s−1

35.5◦ 1.0 mm 1.4 mm 11.3 mm 0.7 × 10−3 m3/2 s−1

35.8◦ 0.9 mm 1.2 mm 7.5 mm 0.6 × 10−3 m3/2 s−1

Table 2. Critical layer thicknesses and coefficients ν(ζ ) in the depth-averaged viscosity νh1/2/2 for various
different slope angles, with the material properties for sand in table 1.

3.2. Non-monotonic friction coefficient for hysteresis and particle deposition
The expression used here for the basal friction coefficient μb(h, Fr) is that of Edwards
et al. (2019),

μb(h, Fr) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan ζ1 + tan ζ2 − tan ζ1

1 + hβ/L (Fr + �)
, Fr ≥ β∗, (3.7)

(
Fr
β∗

) (
tan ζ1 + tan ζ2 − tan ζ1

1 + hβ/L (β∗ + �)
− tan ζ3

− tan ζ2 − tan ζ1

1 + h/L

)
+ tan ζ3 + tan ζ2 − tan ζ1

1 + h/L
, 0 < Fr ≤ β∗, (3.8)

min
(

tan ζ3 + tan ζ2 − tan ζ1

1 + h/L
, | tan ζ i − ∇h|

)
, Fr = 0, (3.9)

where the constant non-dimensional parameters β, ζ1, ζ2, ζ3 and length L are measured
from independent experiments as best fits to the inverse functions of the slope
angle-dependent critical layer thicknesses hstop(ζ ) and hstart(ζ ). Since the form of these
curves means that the non-dimensional constants are somewhat tuneable, it is perhaps
more intuitive to consider the critical thicknesses hstop(ζ ) and hstart(ζ ) themselves as the
two important outputs that parameterize the friction rule. The remaining non-dimensional
constants β∗ and Γ are also determined independently of the avalanche experiments as a
pair of best fits to the empirical steady uniform flow relationship between the ratio of the
flow thickness h to hstop(ζ ) and the Froude number.

This parameterization follows Pouliquen & Forterre (2002) in describing the
experimentally observed hysteresis in granular avalanches through dynamic (3.7) to static
(3.9) friction regimes via an intermediate regime (3.8) in which friction decreases with
flow speed. The (3.7)–(3.9) extend the expressions given by Pouliquen & Forterre (2002)
in three main ways: they describe non-spherical grains (Edwards et al. 2017), they capture
the difference between the thickness h∗ of the slowest possible steady uniform flow and
the smaller thickness hstop of the deposit that it leaves (Edwards et al. 2017, 2019) and
they provide a quantitative description of the friction in the intermediate region using an
experimentally inferred functional form (Russell et al. 2019). A derivation of this friction
rule, and further details of how the parameters are measured experimentally, are given by
Edwards et al. (2017, 2019).
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Erosion-deposition dynamics of granular avalanches

3.3. Particle tracking
In order to model the erosion, transport and deposition of grains by the avalanche, the
three-dimensional trajectories of point particles are calculated. All of these particles
are given initial positions within the confines of the experimental release cylinder and
thus represent yellow grains, such that regions of three-dimensional space containing no
tracked particles are assumed to be comprised entirely of red grains. A depth-averaged
red-particle concentration φ̄ can then be inferred by calculating the relative volume
occupied by yellow particles in each grid cell, which allows the erosion-deposition process
to be visualized as an exchange of coloured particles on the surface as in the experiments.
Note that although this colour exchange has previously been modelled by Viroulet et al.
(2019), they did this by using a large-particle-transport-like equation (Gray & Kokelaar
2010) that assumed the existence of an instantaneously and sharply segregated layer of
yellow on top of red sand. This method only allowed for movement of grains relative to
the bulk flow as a result of vertical shear rather than by tracking their three-dimensional
positions, and resulted in unphysical shocks between regions of different colour for certain
types of avalanche behaviour.

The motion of a particle at position xp = (xp, yp, zp) that is advected by a
divergence-free three-dimensional velocity field (u, v, w), in which

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (3.10)

with no flux through the base of the flow, i.e. w(z = 0) = 0, is determined by

dxp

dt
= u(xp),

dyp

dt
= v(xp),

dzp

dt
= w(xp) = −

∫ zp

0

(
∂u
∂x

+ ∂v

∂y

)
dz. (3.11a–c)

Defining a non-dimensional vertical particle position, between the base z = 0 and the
free surface z = h(x, t), as Φp = zp/h(x, t) allows the dimensionless vertical motion to
be written, by using (3.11c), as

dΦp

dt
= 1

h
dzp

dt
− Φp

h
dh
dt

= −1
h

∫ zp

0

(
∂u
∂x

+ ∂v

∂y

)
dz − Φp

h
dh
dt

. (3.12)

Expressions for the non-depth-averaged downslope and cross-slope velocity components
of the vector u = (u, v) are required in order to calculate the movement of particles from
the depth-averaged equations of motion. The components of the velocity vector parallel to
the slope are assumed to take the following general form in terms of its depth-averaged
counterpart,

u = f (Φ)ū, (3.13)

for an arbitrary function f (Φ) and Φ = z/h. In this paper a linear variation with depth
(e.g. Gray & Thornton 2005) will be assumed, i.e.

f (Φ) = α + 2(1 − α)Φ, (3.14)

for a parameter 0 ≤ α ≤ 1. This allows the horizontal velocity profiles to vary from
simple shear, for α = 0, to plug flow, for α = 1, and linear shear with basal slip for
intermediate values. Baker et al. (2016) showed that a Bagnold velocity profile can be
closely represented with a shear parameter value of α = 1/7, which will be used here.
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In general,
∂u
∂x

+ ∂v

∂y
=

(
∂ ū
∂x

+ ∂v̄

∂y

)
f (Φ) −

(
ū
∂h
∂x

+ v̄
∂h
∂y

)
Φf ′(Φ)

h
, (3.15)

where f ′(Φ) is the derivative of f (Φ). The dimensionless vertical particle motion can then
be determined, by substituting (3.15) into (3.12) and evaluating the integral in terms of Φ,
to give

dΦp

dt
= −1

h

[
h

(
∂ ū
∂x

+ ∂v̄

∂y

)
F(Φp) +

(
ū
∂h
∂x

+ v̄
∂h
∂y

)
(F(Φp) − Φpf (Φp))

]
− Φp

h
dh
dt

,

(3.16)
where F(Φp) = ∫ Φp

0 f (Φ)dΦ is the integral of the velocity profile function f (Φ) with
respect to Φ. This can be simplified by expanding the total derivative dh/dt, substituting
for the velocity components from (3.13) and then cancelling common terms using
conservation of mass (3.1), to give the general functional form of the dimensionless
vertical motion of particles as

dΦp

dt
= 1

h
∂h
∂t

(F(Φp) − Φp). (3.17)

The three-dimensional particle motion is therefore completely determined by (3.11a,b) and
(3.17), which can be calculated at the same time as solving the depth-averaged governing
equation (3.1)–(3.2) numerically.

A semi-discrete non-oscillatory shock-capturing scheme (Kurganov & Tadmor 2000)
is used to time integrate the governing equations (3.1)–(3.2). Details of the method, as
applied to granular flows with depth-averaged viscosity, are given in Edwards et al. (2019).
The particle transport equations (3.11a,b) and (3.17) for each particle are time integrated
alongside the discretized conservation laws (3.1)–(3.2).

4. Numerical simulation of decaying, growing and steady avalanches

The depth-averaged mass and momentum balance equations (3.1)–(3.2) in conservative
form, with the hysteretic friction rule for angular particles (3.7)–(3.9), are solved
numerically in a configuration that replicates the experiments of § 2. The computational
domain is −5 cm ≤ x ≤ 95 cm and −7.5 cm ≤ y ≤ 7.5 cm, discretized to 1000 × 150
finite volume cells (1 grid point per mm). The initial conditions at t = 0 are hū = hv̄ =
0 (initially static material), h = hc for x2 + y2 < R2 (representing the initial cylinder
of grains) and h = h0 elsewhere. As in experiments, R = 1.5 cm and hc = V/(πR2),
where the volume V is set to 5 ml, 10 ml or 20 ml. The flow reaches only the
downstream boundary x = xd = 95 cm, at which an outflow condition is imposed by linear
extrapolation of the values of h and hū from the final two columns of interior cells.

Three-dimensional particle tracking is initiated at time t = 0 by randomly distributing
Np = 1.5 million particles within the initial region of yellow grains, x2 + y2 < R2 and
h0 ≤ z ≤ h0 + hc, of the volume V . A depth-averaged red-particle concentration φ̄ can
then be inferred from the locations of individual yellow particles by first rounding their
horizontal positions to the nearest grid cell. In a grid cell of size δx × δy × h with np such
particles, the depth-averaged red-particle concentration is then

φ̄0 = 1 − npV
Npδxδyh

. (4.1)

When the simulations commence, the cylinder collapses to form an avalanche that
mobilizes initially static material ahead of the flow front as it propagates downslope.
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Erosion-deposition dynamics of granular avalanches

The behaviour of the avalanche depends upon the slope angle, the stationary layer
thickness and the volume in the cylinder, as previously found by Edwards et al. (2017) and
in the experiments performed here in § 2. Each experimental configuration will now be
replicated in the numerics and the results will be shown as three-dimensional surface plots
of the flow thickness h at three successive time intervals, viewed from an oblique angle.
An artificial light source at the downslope end of the domain creates a shading effect that
allows for variations in the flow thickness to be visualized, in the same way that the real
lighting does in the experiments. The surface is coloured according to the depth-averaged
red-particle concentration φ̄, such that regions where φ̄ = 1 (purely red-particle phases)
appear red and regions where φ̄ ≤ 0.6 (where there are both red and yellow particles
present through the flow depth at a given point) appear yellow. The colouring is biased
towards highlighting surface particles (effectively as it is for an observer of the analogous
experiments) so that it is not required to have φ̄ = 0 (purely yellow-particle phase) in
order for the surface to appear yellow in colour. At the final simulated time, the flow
thickness profile h is plotted (and filled solid red) in both the downslope x-direction at
the midpoint y = 0 of the plane and in the cross-slope y-direction at locations x = 0.2 m,
x = 0.4 m and x = 0.6 m. All of the tracked particles whose interpolated positions lie
in these two-dimensional planes will also be plotted on the cross-slope profiles as solid
yellow markers.

4.1. Decaying avalanches
Simulations are first performed to model the colour change in the decaying avalanche
shown in figure 2. The slope angle is set to ζ = 33.5◦ and an initial layer thickness of h0 =
2.0 mm is prescribed, which is equivalent to hstop(33.5◦) = 2.0 mm at this inclination. The
results are plotted as three-dimensional flow thickness surfaces coloured by red-particle
concentration at 1.2 s time intervals in figure 7(a–c) and as cross-slope profiles at the
latter time t = 2.9 s in figure 7(d–f ). On this shallow slope angle, the avalanche deposits
material on top of the static layer and by t = 2.9 s (figure 7c) has completely come to
rest, with the front reaching x ≈ 0.5 m downslope. A consequence of this net deposition
of material and decrease in momentum of the avalanche is that the yellow particles from
the cylinder are transported only a short distance downslope. In particular, the cross-slope
profiles show that yellow particles are being deposited at x = 0.2 m (figure 7d) and that
the flow is composed entirely of red particles by x = 0.4 m (figure 7e). Furthermore, the
downslope profile in figure 12(a) shows that all of the yellow particles from the initial
release are deposited behind the point at which the avalanche peak comes to rest.

The downslope position of the avalanche wavefront xw and the leveed-channel width
W (measured as the cross-slope distance between levee peaks) are compared to the
experimental results in figure 13. This shows that the numerical avalanche reaches a
shorter distance than the 0.66 m travelled by the experimental one, despite the former
propagating around 50 % faster than the latter before they come to rest. Furthermore,
the leveed channel from the decaying avalanche simulation is approximately 25 % wider
than that observed experimentally. This same behaviour was identified by Edwards et al.
(2017), who postulated that it could be a consequence of needing to either modify the
friction rule, resolve the interface between flowing and stationary regions in the vertical
direction, or better capture the initial column collapse. The first of these ideas has been
investigated in this paper without overcoming the problem of width discrepancy, and
so it remains an open problem that might be solved with application of the alternative
suggestions.
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Figure 7. Numerical simulation of a 5 ml release on a static layer of thickness h0 = hstop(33.5◦) = 2.0 mm
and a slope angle of ζ = 33.5◦. The avalanche that forms from an initial cylindrical release comes to rest after
propagating to x ≈ 0.5 m downslope and no yellow particles are visible further than x ≈ 0.3 m downslope.
Oblique surface plots of the plane, plotted at times (a) 0.5 s, (b) 1.7 s and (c) 2.9 s, are coloured by the
depth-averaged red-particle concentration φ̄ and an artificial light source at the downslope end provides
visualization of the three-dimensional flow thickness, as in the experiments. Mobile regions of flow with
non-zero momentum appear brighter due to an increased reflectance. Flow thickness h (solid black lines and
red filled area) and individual particle positions (yellow markers) are plotted in the cross-slope y-direction at
(d) x = 0.2 m, (e) x = 0.4 m and ( f ) x = 0.6 m downslope for the final shown time t = 2.9 s. A movie showing
the time-dependent evolution is available in the online supplementary material.

915 A9-16

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

ou
lo

us
e 

II
I, 

on
 1

6 
N

ov
 2

02
1 

at
 1

4:
37

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
34

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.34


Erosion-deposition dynamics of granular avalanches

4.2. Growing avalanches
Next, the slope inclination is set to 34.0◦ and the static layer thickness to h0 = 1.7 mm,
which is equivalent to hstop(33.5◦) = 1.7 mm of the shallower 33.5◦ angle and is greater
than hstop(34.0◦) = 1.4 mm of the current slope angle. This thick erodible layer provides
an abundance of material for the avalanche to erode as it propagates downslope, which
it does at a greater rate than it deposits. This results in a bulk flow that grows in size,
as shown by coloured flow thickness surfaces at 1.3 s intervals in figure 8(a–c), whilst
eroding a widening leveed trough, whose cross-slope profiles are plotted in figure 8(d–f ).
Despite the avalanche growing in size, there is still deposition of a large proportion of the
yellow particles shortly after the initial column collapse, while a small number of yellow
grains are transported with the avalanche front as it approaches the end of the domain. A
U-shaped curve of yellow particles around the bulk avalanche head deposits grains inside
and parallel to the leveed-channel walls with a lower red-particle concentration than at the
midpoint y = 0 of the plane. This curve is thinning as the avalanche propagates downslope,
entraining an increasing number of red particles from the substrate layer as its width
increases. An ever-decreasing amount of yellow grains is left in the trough that is eroded in
the wake of the flow, as shown in figure 8(d–f ), meaning that the avalanche is continuously
exchanging particles with the stationary layer. The downslope profile in figure 12(b) shows
that a yellow-particle layer of decreasing thickness below the free surface is deposited as
the avalanche propagates, whilst there is still a yellow particle-rich head including a small
region that have been overturned by recirculating red grains. The comparison of avalanche
front position with time and leveed-channel width versus downslope location between
simulations and experiments in figure 13 shows that the numerical growing avalanche
propagates at a speed of 0.26 m s−1, which is roughly 18 % faster than the experimental
value of 0.22 m s−1. It is also shown that the width of the leveed channel in the simulation
grows from 10.1 cm at x = 0.2 m downslope to 13.1 cm at x = 0.8 m compared to a growth
of 7.6 cm to 11.4 cm in the equivalent experiment, which represents a greater numerical
width by a factor of 33 % initially and 15 % at the final recorded position.

4.3. Steady avalanches
The slope of the plane is kept at the same ζ = 34.0◦ angle but the initial stationary
layer thickness is now set to a thinner value of h0 = 1.4 mm, which is equivalent to
hstop(34.0◦) = 1.4 mm at this inclination. These conditions result in an avalanche that
appears to propagate steadily downslope with an almost exact balance between net erosion
and deposition of particles. The size and propagation speed of the bulk flow front are
shown to be constant in figure 9(a–c), via coloured flow thickness surfaces plotted at 1.3 s
intervals. Furthermore, cross-slope profiles in figure 9(d–f ) show that the width of the
channel between lateral levees, where material is deposited above the static layer thickness,
remains virtually constant as the avalanche travels down the plane. Again there is the
formation of a U-shaped yellow particles curve around the avalanche head, though the
bands are thicker than those in the growing avalanche and as a result all of the yellow grains
appear to have left the flow front by the final shown time (figure 9c). It also clearly evident
from figure 9 that there is again a continually decreasing number of yellow particles being
deposited by the avalanche as it propagates downslope, and that the mean red-particle
concentration is lower than that of the growing avalanche at corresponding times, meaning
that the rate of particle exchange between a steady avalanche and the static layer ahead
of it is faster in comparison. In fact, the downslope profile in figure 12(c) explicitly
demonstrates that the steady avalanche head contains fewer yellow particles than that
of the growing type (figure 12b). The comparison of front position between simulations
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Figure 8. Numerical simulation of a 10 ml release on a static layer of thickness h0 = hstop(33.5◦) = 2.0 mm
and a slope angle of ζ = 34.0◦. The resulting avalanche continually grows in size as it propagates downslope,
by eroding more particles from the stationary layer than are deposited in the lateral levees, whilst digging out
a widening trough in its wake. This leads to more and more red grains being entrained by the avalanche and
a reduction in the number of yellow particles with increasing downslope distance. Oblique surface plots of
the plane coloured by the depth-averaged red-particle concentration φ̄ are plotted at times (a) 0.5 s, (b) 1.8 s
and (c) 3.1 s. Flow thickness h (solid black lines and red filled area) and individual particle positions (yellow
markers) are plotted in the cross-slope y-direction at (d) x = 0.2 m, (e) x = 0.4 m and (f ) x = 0.6 m downslope
for the final shown time t = 3.1 s. A movie showing the time-dependent evolution is available in the online
supplementary material.
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Figure 9. Numerical simulation of a 10 ml release on a static layer of thickness h0 = hstop(34.0◦) =
1.7 mm and a slope angle of ζ = 34.0◦. An avalanche forms that propagates in an apparently steady
manner, maintaining a constant size and speed as it travels downslope due to the amount of grains eroded
from the stationary layer being in a delicate balance with those deposited in the lateral levees. Oblique
surface plots of the plane coloured by the depth-averaged red-particle concentration φ̄ are plotted at times
(a) 0.5 s, (b) 1.8 s and (c) 3.1 s. Flow thickness h (solid black lines and red filled area) and individual particle
positions (yellow markers) are plotted in the cross-slope y-direction at (d) x = 0.2 m, (e) x = 0.4 m and
( f ) x = 0.6 m downslope for the final shown time t = 3.1 s. A movie showing the time-dependent evolution is
available in the online supplementary material.
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and experiments in figure 13(a) shows that the steady avalanche propagates at a near
constant speed of 0.23 m s−1, which is approximately 21 % faster than the experimental
value of 0.19 m s−1. The leveed channels are compared in figure 13(b), which shows that
the width for the steady avalanche simulation remains close to 9.5 cm, compared to an
almost constant experimental value of 7.4 cm. This is equivalent to an approximate 28 %
over-prediction of width by the theory.

4.4. Numerical simulation of shedding and secondary avalanches
Numerical simulations are now performed with the slope angle increased to ζ = 35.8◦
and the stationary layer is given a thickness of h0 = 0.9 mm, equivalent to hstop(35.8◦)
at the same inclination. At this steep slope angle and correspondingly thin layer ahead
of the avalanche, it is forced to shed material in the centre of the channel between the
lateral levees. As a result, whilst the three-dimensional surfaces, which are plotted at
1.4 s time intervals in figure 10(a–c), resemble those of a steady avalanche, there is in
fact a net deposition of material. This is also apparent from the cross-slope profiles in
figure 10(d–f ) that show the depth of the channel between the levees is slightly greater than
that of the initial layer, meaning that the avalanche has deposited some of its mass here.
Interestingly, it is this particular avalanche behaviour that transports the yellow particles
from the initial column the furthest of all. The bulk flow consists of a yellow-particle-rich
U-shaped curve around the avalanche head for the entire distance that it propagates on this
domain (figure 10c), whilst in this case the lateral bands of lower red particle concentration
encompass the levees themselves as well as the inner lining of the channel walls. This is
in contrast to all of the other types of avalanche studied here, which had exchanged most
of their yellow grains with red particles from the static layer before they came to rest
or reached the end of the plane. There is also a visibly thicker layer of yellow particles
remaining in the deposit at x = 0.6 m (figure 10f ) than in any of the previous simulations
in § 4, whilst the downslope profile plotted in figure 12(d) shows that the avalanche head
contains more yellow grains than those too. This suggests that either shedding avalanches
do indeed exhibit a slower exchange of particles with the erodible layer than all of the
other behaviour types, or that an α = 1/7 shear rate in the downslope velocity profile
(3.14) is not such a good approximation in this case. Furthermore, the cross-slope profiles
show that the width between the lateral levees is decreasing with increasing downslope
distance, which implies that the avalanche is either readjusting to a thinner and less
massive steady state, or that it will continuously decay on a sufficiently long domain. This
will be investigated later by performing numerical simulations in a frame of reference that
moves with the avalanche.

The avalanche front position and the leveed-channel width W are compared to
experiments in figure 13, where it is shown that the numerical shedding avalanche
propagates at around 14 % slower than the experimental equivalent. However, the leveed
channel in the simulations is still wider than that of the experiments by 9.8 cm compared
to 8.2 cm, or a factor of 20 %, at x = 0.2 m downslope and by 7.9 cm compared to 6.3 cm,
or a factor of 25 %, which is also the mean value for all recorded positions, at x = 0.8 m.

Next, the volume of material released from the cylinder is increased to V = 20 ml
whilst the slope angle and stationary layer thickness are unchanged. In this case, there
is an even greater excess of mass that the avalanche sheds quickly after the initial release
from the cylinder. This leads to the formation of two secondary avalanches between the
lateral levees that propagate a short distance before leaving chevron-shaped deposits,
as shown by the surfaces plotted at 1.3 s intervals in figure 11(a–c). The results agree
qualitatively with those of the experiment in figure 6, where there are two chevron-shaped
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Figure 10. Numerical simulation of a 10 ml release on a static layer of thickness h0 = hstop(35.8◦) = 0.9 mm
and a slope angle of ζ = 35.8◦. Shortly after its formation the avalanche sheds a small amount of material in
the centre of the leveed channel, whose width subsequently decreases slightly. The channel thickness is the
same depth as the erodible layer, hence additional mass is continually deposited in the lateral levees. Oblique
surface plots of the plane coloured by the depth-averaged red-particle concentration φ̄ are plotted at times (a)
0.5 s, (b) 1.9 s and (c) 3.3 s. Flow thickness h (solid black lines and red filled area) and individual particle
positions (yellow markers) are plotted in the cross-slope y-direction at (d) x = 0.2 m, (e) x = 0.4 m and ( f )
x = 0.6 m downslope for the final shown time t = 3.3 s. A movie showing the time-dependent evolution is
available in the online supplementary material.
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Figure 11. Numerical simulation of a 20 ml release on a static layer of thickness h0 = hstop(35.8◦) = 0.9 mm
and a slope angle of ζ = 35.8◦. The avalanche sheds two chevron-shaped deposits at x ≈ 0.3 m and x ≈ 0.5 m
downslope in the centre of the leveed channel, which then undergoes a reduction in width corresponding to the
net loss of mass. Oblique surface plots of the plane coloured by the depth-averaged red-particle concentration
φ̄ are plotted at times (a) 0.5 s, (b) 1.8 s and (c) 3.1 s. Flow thickness h (solid black lines and red filled area) and
individual particle positions (yellow markers) are plotted in the cross-slope y-direction at (d) x = 0.2 m, (e) x =
0.4 m and ( f ) x = 0.6 m downslope for the final shown time t = 3.1 s. A movie showing the time-dependent
evolution is available in the online supplementary material.

deposits left by secondary avalanches. The numerical results also clearly show that the
first chevron consists mainly of yellow particles and the second mainly of red, for which
there is also some evidence of in the experiments. Cross-slope profiles of the final deposit,
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plotted in figure 11(d–f ), show that the two successive chevron-shaped deposits leave
thicker regions near the centre of the channel. The downslope profile in figure 12(e)
shows that a greater number of yellow particles than any previous avalanche behaviours
are both deposited in the channel and continue to propagate in the bulk head, although
more yellow grains were released in this case. The cross-slope flow profiles also show
that the leveed-channel depth is thicker than the stationary layer and that the width is
again decreasing with increasing propagation distance, which implies that the avalanche
is continuously losing mass as it travels downslope. Once again, this suggests that the
avalanche is either continually decaying or readjusting to a smaller steady state regime.
The long distance propagation behaviour of both the 10 ml and 20 ml volume shedding
and secondary avalanche behaviours will be investigated in § 5.3 to determine which is the
case for both.

The comparison of avalanche front position with time and leveed-channel width
versus downslope location between simulations and experiments in figure 13 shows that
the shedding with secondary avalanche wavefront propagates at 0.23 m s−1, which is
approximately 26 % slower than the experimental value of 0.29 m s−1. It is also shown
that the width of the leveed channel in the simulation decreases from 13.6 cm at x = 0.2 m
downslope to 11.4 cm at x = 0.8 m compared to a reduction of 11.3 cm to 9.6 cm in the
equivalent experiment, while the numerical estimation of width remains near the mean
value of 21 % across all recorded locations.

A phase diagram of the different avalanche behaviour types depending on the slope
inclination angle and initial volume release is shown in figure 14. It is clear that for the
release of a fixed volume, in particular V = 20 ml, increasing ζ can change the resultant
avalanche behaviour from decaying to steady, through to shedding and finally secondary
avalanches. Alternatively, increasing the volume released on a fixed inclination increases
the propensity for flow, e.g. changing a decaying avalanche to steady for 33.5◦ ≤ ζ ≤
34.0◦ or from steady to shedding and secondary avalanches for ζ = 35.5◦. Note that
growing avalanches do not appear on the phase diagram, since they require an abundantly
thick stationary layer that is prepared on a shallower slope angle than that at which
the material is released. There is good quantitative agreement between experiments and
numerics about the type of behaviour that is observed according to inclination and volume,
although shedding occurs for slightly shallower inclinations or smaller volumes in the
former than the latter.

Note that the ζ = 35.8◦ numerical slope angle is slightly steeper than the 35.5◦
inclination on which the experimental shedding avalanche results of § 2.4 were obtained,
and the corresponding stationary layer depth of h0 = hstop(35.8◦) = 0.9 mm is also
slightly thinner than the experimental hstop(35.5◦) = 1.0 mm deep layer. However, both
the shedding and secondary avalanches do occur in simulations for these parameters
replicating the experiments, though the behaviours are much less pronounced and so are
harder to visualize than those of the numerical results presented here.

5. Long distance propagation behaviour in a travelling frame

Limits on both the physical size of an experimental plane and the computational demand of
a numerical domain mean that, aside from the decaying case, the long distance propagation
behaviour of the different types of avalanche are all unknown. Their behaviour can,
however, be investigated numerically by transforming the governing equations into a
travelling frame in a domain that contains all the flowing material. This allows efficient
computation of avalanches that travel long distances relative to their own length.
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Figure 12. Numerical simulations of (a) decaying, (b) growing, (c) steady flows, (d) shedding and (e) shedding
with secondary avalanches. Downslope flow thickness profiles (solid black lines with solid red fill) and
individual particle positions (yellow markers) are plotted in the downslope x-direction at the cross-slope centre
y = 0 of the plane and at their final simulation times, which are shown in figures 7(c), 8(c), 9(c), 10(c) and 11(c)
respectively. Movies showing the time-dependent evolution are available in the online supplementary material.

5.1. Travelling frame equations
For a constant speed of the travelling frame uf that takes different values, applying the
change of coordinates

τ = t − t0, ξ = x − uf t, υ = y, (5.1a–c)

to the mass and momentum conservation laws (3.1)–(3.2) leads to a set of new governing
equations in this frame, which are given in Edwards et al. (2017). The velocities of particles
in the moving frame are obtained by making the coordinate transformation (5.1a–c) and
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Figure 13. A comparison of (a) downslope avalanche front position in time and (b) leveed-channel width
against downslope location between experiments (markers) and simulations (solid lines) for each of the
decaying (red), growing (green), steady (blue), shedding (black) and shedding with secondary avalanche
(magenta) behaviours.

5
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Figure 14. Phase diagram showing the inclination angles and initial volume release for which the various
decaying (red), steady (blue), shedding (black) and shedding with secondary avalanche (magenta) behaviours
are observed in experiments (hollow markers) and simulations (solid markers).

following the derivation process in § 3.3, leading to particle transport equations,

dξp

dτ
= u − uf ,

dυp

dτ
= v,

dΦp

dτ
= 1

h

(
∂h
∂τ

− uf
∂h
∂ξ

)
(F(Φp) − Φp). (5.2a–c)

As before, the discretized conservation law and particle positions in the moving frame are
time integrated numerically. The boundary condition at the downslope end, ξ = 95 cm is
now an inflow, and a stationary layer of red particles is supplied by imposing h = h0 and
hū = 0 there. An outflow is imposed as in the lab frame, but now at the upstream boundary
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ξ = −5 cm. The initial conditions of the travelling frame computations are taken from
the laboratory frame numerical computations at a time t = t0, when the avalanches have
developed but have almost flowed out of the domain.

5.2. Long distance propagation of growing avalanches
The late-time behaviour of the growing avalanche of figure 8 (h0 = 2.0 mm, ζ = 34◦, V =
10 ml) is shown in figure 15. The avalanche continues to grow in length, width and height
during the first 30 s of propagation, leaving gradually diverging lateral levees. The wake
of the bulk flow front begins to break into a double-tail structure after 15 s (figure 15a),
which extends in length during the next 30 s of propagation (figure 15b,c), but reaches a
large steady state (figure 15c,d) with a flowing region approximately 95 cm long and 35
cm wide. This is reminiscent of the limiting amplitude of coarsening roll waves observed
in one-dimensional flows by Razis et al. (2014), which prevented waves growing beyond
a certain amplitude that they could sustain. The size of the large steady-state avalanche is
highly sensitive to the thickness of erodible layer; in the simulations of § 4.3, which differ
only in that the erodible layer thickness is 1.7 mm rather than 2.0 mm, the comparable
steady state is only 14 cm in length by 10 cm in width. This suggests that the quantity
of erodible material available to an avalanche, which is often highly uncertain in natural
systems, may have a profound effect on the size of an erosive avalanche or geophysical
mass flow.

Further numerical simulations are carried out for 10 ml releases on various inclinations
ζ = 34.5◦, ζ = 35.0◦, ζ = 35.5◦ and ζ = 36.0◦ and ζ = 36.5◦ with the stationary layer
thickness for each slope angle set to h0 = hstop(ζ − 0.5◦) > hstop(ζ ). Each of these initial
conditions result in avalanches that grow in size as they propagate downslope by eroding
more grains from the abundantly thick stationary layers than they deposit, until a large
steady state is eventually reached. Relationships between the slope inclination on which
the cylinder is released and the wave speeds uw (measured as the front speed), widths
W (between levee peaks), amplitudes A (peak avalanche height above h0) and mobile flow
volume Vm (the integral over non-stationary flow regions) of the resultant large steady-state
avalanches are shown in figure 16. In general, the large steady-state avalanche wave speeds,
widths, volumes and amplitudes are all found to decrease with increasing slope angle.

5.3. Long distance propagation of shedding and secondary avalanches
For the shedding and secondary avalanche simulations, the computational domain consists
of (1000, 200) grid points in the (ξ, υ)-plane defined for the range −5 cm ≤ ξ ≤ 95 cm
and −10 cm ≤ υ ≤ 10 cm. Firstly, the initial conditions are taken from the shedding
avalanche simulation shown in figure 10 at t0 = 3.7 s, which resulted from a V = 10 ml
standard release (as described in § 4) of grains on a static layer of h0 = hstop(35.8◦) =
0.9 mm depth and at a slope angle of ζ = 35.8◦. The frame speed is set to a constant
speed uf = 0.17 m s−1, which is used to transform back to the physical x-coordinate and
the results are shown as surface plots in figure 17. It is evident that the avalanche is in fact
slowly decaying, and comes to rest after travelling to x ≈ 2.1 m downslope.

Next, the initial conditions are taken from the shedding and secondary avalanche
simulation shown in figure 11 at t0 = 2.9 s, which resulted from a V = 20 ml standard
release of grains on a static layer of the same depth on the same slope inclination. The
frame speed in this case is set to a slightly greater value of uf = 0.18 m s−1 to compensate
for extra momentum of the avalanche following a larger release, and which is used to
transform back to the physical x-coordinate. The resultant surface plots in figure 18 show
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Figure 15. Travelling frame numerical simulation of a 10 ml release on a static layer of thickness h0 =
hstop(33.5◦) = 2.0 mm and a slope angle of ζ = 34.0◦, shown at 15 s time intervals (a–d). An inflow of h0 deep
stationary material is imposed at the downstream boundary. The frame travels at a speed of uf = 0.31 m s−1

for the first 20 s, uf = 0.34 m s−1 for the next 15 s and uf = 0.35 m s−1 for the final 25 s, which are used to
transform back to the physical x-coordinate. Surface plots of the plane viewed perpendicularly from above are
coloured red, since no yellow particles remain at the times shown, and an artificial light source at the downslope
end provides visualization of the three-dimensional flow thickness, as in the experiments. Mobile regions
of flow with non-zero momentum appear brighter due to an increased reflectance. The growing avalanche
eventually reaches a massive steady state with a double-tailed bulk head that fills almost half of the 2.0 m
by 0.4 m domain. A movie showing the time-dependent evolution is available in the online supplementary
material.

that this larger avalanche also comes to rest after travelling slightly further downslope
due to this greater initial momentum, eventually coming to rest after reaching x ≈ 2.7 m
downslope. These results suggest that, as well as avalanches decaying when the slope angle
is too shallow for them to gain momentum, a slow decay is also possible if the inclination
is sufficiently steep. In such cases, the bulk flow immediately sheds an abundance of mass,
and in doing so reduces its momentum below the minimum that is required to maintain
flow. This result therefore suggests that not only is the avalanche behaviour sensitive to the
erodible layer thickness, but also that there is only a small range of slope angles for which
a steady state can prevail.
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Figure 16. Large steady-state characteristics resulting from travelling frame numerical simulations of 10 ml
releases on static layers of thickness h0 = hstop(ζ − 0.5◦) and at slope angles of ζ = 34.5◦, ζ = 35.0◦, ζ =
35.5◦ and ζ = 36.0◦ and ζ = 36.5◦. (a) Travelling wave speed, (b) leveed-channel width, (c) peak amplitude
and (d) mobile flow volume are plotted (solid markers) against slope angle. All of these quantities are found to
decrease with increasing slope angle.

6. The existence of a unique steady state

The apparently steady propagating avalanche observed both experimentally in § 2.3 and
numerically in § 4.3, which propagates downslope at constant speed and deposits a leveed
channel of constant width, implies the existence a steady state solution. As in the above
§ 5, this can be investigated numerically by using a travelling frame of reference to study
the long distance propagation behaviour. This allows a much longer computational time
for a steady state to be achieved than is possible on a full-size physical domain or in
experiments.

The system of conservative travelling frame equations are solved numerically on a
rectangular computational domain of (1000, 200) grid points in the (ξ, υ)-plane defined
for the range 0 cm ≤ ξ ≤ 100 cm and −10 cm ≤ υ ≤ 10 cm. For each travelling frame
simulation, the initial conditions are taken from a near-end state of a steady avalanche
computation on a domain representing the experimental plane, after a time t = t0 when
the flow front is close to the downstream boundary.

6.1. Long distance propagation of a steady avalanche
A 10 ml volume of yellow grains is released on a static layer of h0 = hstop(34.5◦) =
1.4 mm depth and at a slope angle of ζ = 34.5◦ on an experimental plane domain in
the standard way, as described in § 4. The state after t0 = 3.3 s of this computation is then

915 A9-28

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f T

ou
lo

us
e 

II
I, 

on
 1

6 
N

ov
 2

02
1 

at
 1

4:
37

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

1.
34

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.34


Erosion-deposition dynamics of granular avalanches

t = 6.1 s

0.4 0.6 0.8 1.0 1.2

t = 8.1 s

0.8 1.0 1.2 1.4 1.6

(c)
t = 10.1 s

1.2 1.4 1.6 1.8

(d)
t = 12.1 s

y 
(c

m
)

y 
(c

m
)

7.5

0

–7.5

7.5

0

–7.5

y 
(c

m
)

7.5

0

–7.5

y 
(c

m
)

7.5

0

–7.5

x (m)

1.6 1.8 2.0 2.2

(a)

(b)

Figure 17. Travelling frame numerical simulation of a 10 ml release on a static layer of thickness h0 =
hstop(35.8◦) = 0.9 mm and a slope angle of ζ = 35.8◦, shown at 2.0 s time intervals (a–d). An inflow of
h0 deep stationary material is imposed at the downstream boundary and the frame travels at a constant speed
uf = 0.17 m s−1, which is used to transform back to the physical x-coordinate. Surface plots of the plane viewed
perpendicularly from above are coloured red, ignoring the yellow-particle concentration. The avalanche loses
momentum after shedding mass and eventually comes to rest after travelling to x ≈ 2.1 m downslope. A movie
showing the time-dependent evolution is available in the online supplementary material.

imposed as the initial condition for a travelling frame simulation, with the frame speed
set to uf = 0.22 m s−1. The results are shown at 25 s time intervals as surface plots of
the flow thickness viewed perpendicularly from above, coloured by the depth-averaged
red-particle concentration φ̄ (though no yellow particles remain at the times shown) and
with an artificial light source at the downslope end of the domain, in figure 19. It is clear
that the apparently steady avalanche of the initial conditions does reach a genuinely steady
state that maintains a constant size, speed (slightly slower than that of the frame) and
leveed-channel width for the entire latter 75 s of the simulation, between panels (a,d).
Thus, avalanches may propagate long distances downslope so long as they continually
have the necessary conditions of slope inclination angle and erodible layer thickness to do
so. In such cases, they are able to propagate by eroding stationary grains ahead of its flow
front and depositing particles behind its tail in an exact delicate balance.
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Figure 18. Travelling frame numerical simulation of a 20 ml release on a static layer of thickness h0 =
hstop(35.8◦) = 0.9 mm and a slope angle of ζ = 35.8, shown at 3.0 s time intervals (a–d). An inflow of h0
deep stationary material is imposed at the downstream boundary and the frame travels at a constant speed
uf = 0.18 m s−1, which is used to transform back to the physical x-coordinate. Surface plots of the plane viewed
perpendicularly from above are coloured red, ignoring the yellow-particle concentration. The avalanche loses
momentum after shedding mass in two chevron-shaped deposits and eventually comes to rest after travelling to
x ≈ 2.7 m downslope. A movie showing the time-dependent evolution is available in the online supplementary
material.

Further evidence of this steady state is provided by the cross-slope flow thickness
profiles plotted in figure 20 at 25 s time intervals. At each of the simulation times, the
cross-slope profile is plotted at the downslope position x = xp − 0.5 m, where xp is the
time-dependent x-location of the maximum peak amplitude. The latter two plots show
that the deposit is practically identical during the final 25 s of the simulation and that
a steady state is therefore reached after a small adjustment over a long period. All of
the yellow grains released from the cylinder are deposited early on, such that the steady
avalanche is comprised only of red particles eroded from the static layer by 28.3 s of
propagation (figures 19 and 20). This confirms that the erosion-deposition process by
which the avalanche propagates involves a continuous exchange of particles with the
stationary substrate layer.
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Figure 19. Travelling frame numerical simulation of a 10 ml release on a static layer of thickness h0 =
hstop(34.5◦) = 1.4 mm and a slope angle of ζ = 34.5◦, shown at 25 s time intervals (a–d). An inflow of h0
deep stationary material is imposed at the downstream boundary and the frame travels at a constant speed
uf = 0.22 m s−1, which is used to transform back to the physical x-coordinate. Surface plots of the plane
viewed perpendicularly from above are coloured red, since no yellow particles remain at the times shown.
The avalanche reaches a steady state and propagates for the entire 100 s simulation. A movie showing the
time-dependent evolution is available in the online supplementary material.

It has not been previously investigated whether there exist multiple steady states
corresponding to different volumes of material released for a given slope angle and
erodible layer thickness. It will now be shown that changing the volume of the cylinder
does not actually affect the long-time steady state solution, so long as there is sufficient
material for the avalanche to propagate rather than to decay.

6.2. A unique steady state
Additional travelling frame simulations are now performed, in the same manner as
above, for different volumes V = 8 ml, 12 ml, 15 ml and 20 ml of the standard release.
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Figure 20. Travelling frame numerical simulation of a 10 ml release on a static layer of thickness h0 =
hstop(34.5◦) = 1.4 mm and a slope angle of ζ = 34.5◦. Flow thickness h is plotted against the cross-slope
y-direction and filled with red colour at times t = 28.3 s (dashed black line), t = 53.3 s (dotted black line),
t = 78.3 s (dash-dotted black line) and t = 103.3 s (solid black line) at x = xp − 0.5 m, where xp is the
downslope position of the peak amplitude at those times. The leveed-channel width slowly adjusts and then
remains essentially unchanged in the final 25 s of propagation after a steady state has been reached, which
contains no yellow particles from the initial release.

The initial conditions for each are taken at times t0 = 3.3 s of simulations on a domain that
represents an experimental plane, inclined at a slope angle of ζ = 34.5◦ and covered with
an h0 = hstop(34.5◦) = 1.4 mm deep static erodible layer. The speed of the moving frame
is set to uf = 0.22 m s−1 for all of the simulations and the results, after a further 100 s has
elapsed, are plotted as coloured flow thickness surfaces in figure 21 alongside the previous
V = 10 ml computation. Aside from small variations in the distance of propagation, due to
the differing initial momentum of each cylindrical volume collapse, all of the avalanches
are shown to reach exactly the same steady state as one another.

Cross-slope profiles for each volume release, shown at x = xp − 0.5 m downslope and
times t = 103.3 s in figure 22, are identical and thus confirm an equivalence of deposit
thickness profile. This implies the existence of a unique steady state for avalanches
that propagate downslope by undergoing a delicately balanced particle exchange with a
stationary precursor layer via erosion and deposition. For a given set of suitable conditions
on which a steady state avalanche can form, there is therefore an associated preferential
bulk flow size and constant speed, with a corresponding leveed-channel deposit width.
These attributes are likely to be dependent on the magnitude of viscosity, as they are for
levees formed by self-channelizing monodisperse flows (Rocha, Johnson & Gray 2019).
The unique steady states are independent of the volume of material from which it is
formed, provided that enough momentum is gained during an initial collapse of sufficient
mass for the resultant avalanche to reach a steady state instead of abruptly coming to rest.
For instance, in this flow configuration, a standard release of V = 5 ml forms a decaying
avalanche like those observed experimentally in § 2.1 and numerically in § 4.1, since the
initial volume of grains is insufficient for a steady state to be attained.

Note that the existence of a unique steady state contradicts the experimental
observations of Viroulet et al. (2019), who found different steady state widths when
varying the initial volume of releases at the same slope angle and on the same erodible
layer thickness. However, their conclusions were reached based on experiments on an
80 cm long plane, over which distance the avalanches have been shown above to still
be adjusting. It is reasonable to expect then, that experimental avalanches on a sufficiently
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Figure 21. Travelling frame numerical simulations of (a) 8 ml, (b) 10 ml, (c) 12 ml, (d) 15 ml and (e) 20 ml
releases on a static layer of thickness h0 = hstop(34.5◦) = 1.4 mm and a slope angle of ζ = 34.5◦ shown at the
final simulation times t = 103.3 s. An inflow of h0 deep stationary material is imposed at the downstream
boundary and the frame travels at a constant speed uf = 0.22 m s−1, which is used to transform back to
the physical x-coordinate. Surface plots of the plane viewed perpendicularly from above are coloured red, since
no yellow particles remain at the times shown. Each volume release eventually forms an avalanche with the
same steady state as one another, which only travel slightly different distances according to initial momentum.
Movies showing the time-dependent evolution are available in the online supplementary material.

long plane would also eventually reach a unique steady state, independent of the volume
released.

Various steady state avalanches are also found numerically at different slope angles
ζ = 34.2◦, ζ = 34.5◦, ζ = 34.8◦, ζ = 35.0◦ and ζ = 35.2◦, on stationary layers of
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Figure 22. Convergence of solutions from travelling frame numerical simulations of 8 ml (red lines), 10 ml
(black lines), 12 ml (green lines) 15 ml (blue lines) and 20 ml (magenta lines) volume releases on a static
layer of thickness h0 = hstop(34.5◦) = 1.4 mm and a slope angle of ζ = 34.5◦ shown at the final simulation
times t = 103.3 s. Flow thickness h is plotted against the cross-slope y-direction for each simulation at times
t = 13.3 s (dashed lines) and t = 103.3 s (solid lines) at x = xp − 0.5 m, where xp is the downslope position
of the peak amplitude at those times. The leveed-channel widths at the earlier time are different and increase
with the volume of the release. At the later time, however, the widths are all equal and correspond to a unique
steady state avalanche, which is independent of the volume release and is comprised entirely of red particles
eroded from the substrate layer.

corresponding thickness h0 = hstop(ζ ). Steady states are only found to exist in this small
range of inclinations 34.2◦ ≤ ζ ≤ 35.2◦, and the relationships between the slope angle and
the resulting avalanche wave speeds uw (measured as the front speed), widths W (between
levee peaks), amplitudes A (peak avalanche height above h0) and mobile flow volume
Vm (the integral over non-stationary flow regions) are shown in figure 23. Below the
minimum angle for the existence of steady states, particles move more slowly on shallow
inclinations. As such, the resulting avalanches are unable to gain sufficient momentum
required to propagate and so they decay, as previously observed in both experiments and
numerics. Above the maximum angle that steady state avalanches are found numerically,
the plotted characteristic flow relationships show that avalanches become too small in
amplitude and volume to maintain the necessary momentum for steady propagation. In
general, the steady avalanche wave speeds, widths and amplitudes are all found to decrease
linearly with increasing slope angle, while the volumes decrease quadratically, in the range
of inclinations where the steady states are found to exist.

The existence of a unique steady state flow regime, which has a preferential size and
speed that depends only on the slope inclination and erodible layer depth, is another
important discovery for application to risk assessment, since this implies that the mass
of an avalanche does not necessarily depend on the volume of material that triggers it.

6.3. Transportation of particles by a steady state avalanche
The continuous erosion-deposition process by which a steady avalanche propagates is
investigated further by performing a travelling frame numerical simulation in which the
positions of particles that are initially located downslope of a steady avalanche front are
tracked. The final time t = 103.3 s state for a steady avalanche resulting from a 10 ml
release on an erodible layer of h0 = hstop(34.5◦) = 1.4 mm depth and at a slope angle of
ζ = 34.5◦, shown in figure 19(d), is then imposed as the initial conditions for a further
travelling frame simulation with the frame speed still set to uf = 0.22 m s−1. Note that
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Figure 23. Steady state characteristics resulting from travelling frame numerical simulations of 10 ml releases
on static layers of thickness h0 = hstop(ζ ) and at slope angles of ζ = 34.2◦, ζ = 34.5◦, ζ = 34.8◦, ζ = 35.0◦
and ζ = 35.2◦. (a) Travelling wave speed, (b) leveed-channel width, (c) peak amplitude and (d) mobile flow
volume are plotted (solid markers) against slope angle at simulation times t = 103.3 s, along with best linear
(a–c) and quadratic (d) fits (solid lines) to the data. Steady states are only found to exist for slope angles
34.2◦ ≤ ζ ≤ 35.2◦ (white regions) and not outside this range (grey regions).

the properties of the steady state avalanche are independent of the initial volume release,
provided that it is sufficient to sustain its momentum, as shown above.

Three-dimensional particle tracking is initiated by randomly distributing 600 thousand
particles within a cross-slope strip of the domain, 77 cm ≤ ξ ≤ 79 cm and 0 ≤ z ≤ h0,
which is immediately downslope of the avalanche front at the simulation start time
t̂ = 0. The individual positions of these yellow tracer particles are then calculated
by solving (5.2a–c) concurrently with time integration of the conservation equations,
as before.

The transportation of these tracer particles is shown in figure 24, where the results
are plotted as flow thickness contours and yellow markers where grains are located on
the free surface. Some particles are pushed around the sides of the avalanche flow front
and immediately deposited in the lateral levees, while others are entrained into the bulk
head. The latter type eventually resurface near the point of peak amplitude before being
deposited at the rear of the avalanche, forming a double-tail structure in the center of the
channel between the levees. Particles that are transported furthest are gradually deposited
at the interior lateral extents of the channel walls, and the avalanche eventually contains
no yellow tracers once more. This result reinforces the observation that avalanches like
these propagate by continually eroding grains from the substrate layer and depositing them
behind, rather than transporting the same grains in the bulk flow head.
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Figure 24. Travelling frame numerical simulation of a 10 ml release on a static layer of thickness h0 =
hstop(34.5◦) = 1.4 mm and a slope angle of ζ = 34.5◦, shown at 3 s time intervals (a–f ). An inflow of h0
deep stationary material is imposed at the downstream boundary and the frame travels at a constant speed
uf = 0.22 m s−1. Surface plots of the plane viewed perpendicularly from above are coloured red. A section of
tracer particles (solid yellow markers) are inserted into the flow on the downslope side of the avalanche front,
and their positions as time elapses are followed. Particles are either pushed to the sides of the flow front to form
the lateral levees or are entrained by the bulk head and eventually deposited in the channel at the rear of the
avalanche. A movie showing the time-dependent evolution is available in the online supplementary material.

7. Conclusions

This paper has shown that a finite release of yellow sand on a rough inclined plane covered
with an erodible layer of the same material, but coloured red, triggers an avalanche whose
behaviour depends on the slope angle and the substrate depth. As well as the decaying,
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growing and steady avalanche behaviours previously studied by Edwards et al. (2017)
for flows of carborundum on a static layer of the same grains, shedding behaviours and
secondary flows have also been observed here on steeper slopes when an avalanche
quickly loses excess mass to adjust to a preferential size. Using two different colours
of sand with identical frictional properties allows the exchange of particles, which takes
place through erosion and deposition between the erodible layer and the avalanche during
its propagation, to be visualized. It is evident that all of the observed avalanche types
continually exchange particles with the erodible substrate as they travel downslope, such
that they will eventually be composed entirely of particles originally from the stationary
layer if allowed to propagate for sufficient distances. The long distance propagation
behaviour of all but decaying avalanches, which travel a short distance before coming
to rest, is unknown, however, since the experiments are restricted to a finite sized plane.
Numerical simulations of a model replicating the experimental conditions, but in a moving
frame, are therefore used to investigate the behaviour when the avalanches are allowed to
propagate further.

Remarkably, given the notorious difficulty of modelling erosion-deposition problems,
all of the experimentally observed avalanche behaviours can be captured in a framework
that implements Edwards et al.’s (2019) basal friction rule into a two-dimensional
generalization (Baker et al. 2016) of the depth-averaged μ(I)-rheology (Gray & Edwards
2014). The flow is assumed to be either static or mobile throughout its entire depth at
each point instead of explicitly resolving the interface between stationary and moving
grains in the vertical direction, which is a crude yet reasonable approximation for the
shallow erodible layers studied here. The extended rough bed friction rule (3.7)–(3.9),
which instead essentially determines which regions are in motion, has been modified from
Pouliquen & Forterre’s (2002) formulation to transition between dynamic and static states
more gradually, with a κ = 1 interpolation power, and at a higher than normal, constant
slope-angle independent Froude number β∗. These modifications provide greater stability
to static layers in the hysteretic region hstop < h < hstart as well as correctly predicting
the experimental deposit depth hstop left by a steady uniform flow over the whole range
of permissible slope angles (Edwards et al. 2019), respectively. A result of this is that
the model is able to capture the novel shedding and secondary avalanche behaviours, in
particular, which were observed here in experiments. Equations of motion for individual
particles are solved simultaneously with the depth-averaged model, which qualitatively
reproduces the particle exchange observed between an erodible layer and an avalanche
that will eventually contain only grains that have been entrained from the substrate.

The long distance propagation behaviour of growing, shedding and apparently steady
avalanches was investigated by performing numerical simulations in a frame of reference
that moved at the wave speed of the bulk flow. The results showed that growing avalanches
are able to eventually reach massive steady states by entraining much more material than
they deposit until a limiting size is reached. Shedding avalanches were found to slowly
decay after first travelling some distance downslope, due to a loss of momentum following
the initial readjustment of mass. Finally, it was shown that a genuine steady state can
be achieved given suitable conditions are provided indefinitely, with an avalanche able
to propagate for more than 100 s by undergoing a perfectly balanced erosion-deposition
process. The motion of particle tracers initially located in a strip across the stationary layer
ahead of this steady state corroborate the previous findings that an avalanche propagates on
an erodible layer by continually exchanging grains with it and the bulk flow. Furthermore,
different volume releases for the same slope angle and erodible layer depth all eventually
converge to the same unique steady state, unless there was insufficient mass and therefore
momentum to prevent decay, implying a preferential avalanche size and speed exists.
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Despite the model for erosion and deposition used here being relatively simple, these
findings may all have important consequences for mitigation of risk posed by various types
of erosive geophysical mass flows, since the growth of snow avalanches through frontal
entrainment (Sovilla et al. 2001; Sovilla & Bartelt 2002; Sovilla et al. 2006) is strongly
dependent on the net erosion-deposition rate and the existence of an easily erodible layer
can significantly enhance run-out distances (Mangeney et al. 2010; Iverson et al. 2011).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.34 and
https://doi.org/10.17632/s8c6dws3s4.1.
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