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LIMIT THEOREMS FOR THE COEFFICIENTS OF
RANDOM WALKS ON THE GENERAL LINEAR GROUP

HUI XIAO, ION GRAMA, AND QUANSHENG LIU

Abstract. Let (gn)n>1 be a sequence of independent and identically
distributed random elements with law µ on the general linear group
GL(V ), where V = Rd. Consider the random walk Gn := gn . . . g1,
n > 1, and the coefficients 〈f,Gnv〉, where v ∈ V and f ∈ V ∗. Un-
der suitable moment assumptions on µ, we prove the strong and weak
laws of large numbers and the central limit theorem for 〈f,Gnv〉, which
improve the previous results established under the exponential moment
condition on µ. We further demonstrate the Berry-Esseen bound, the
Edgeworth expansion, the Cramér type moderate deviation expansion
and the local limit theorem with moderate deviations for 〈f,Gnv〉 un-
der the exponential moment condition. Under a subexponential moment
condition on µ, we also show a Berry-Esseen type bound and the mod-
erate deviation principle for 〈f,Gnv〉. Our approach is based on various
versions of the Hölder regularity of the invariant measure of the Markov
chain Gn·x = RGnv on the projective space of V with the starting point
x = Rv.
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1. Introduction

1.1. Background and main objectives. Since the pioneering work of
Furstenberg and Kesten [20], the theory of random walks on linear groups
(also called products of random matrices) has attracted a great deal of at-
tention of many mathematicians for several decades, see for instance the
influential work of Le Page [40], Guivarc’h and Raugi [32], Bougerol and
Lacroix [7], Goldsheid and Margulis [21], Benoist and Quint [6], and the
references therein. This theory has important applications in a number of
research areas such as spectral theory [7, 10, 9], geometric measure theory
[43, 35, 22], statistical physics [17], homogeneous dynamics [8, 4], stochastic
recursions and smoothing transforms [38, 31, 42], and branching processes
in random environment [41, 24]. Of particular interest is the study of as-
ymptotic properties of the random walk

Gn := gn . . . g1, n > 1,

where (gn)n>1 is a sequence of independent and identically distributed (i.i.d.)
random elements with law µ on the general linear group GL(V ) with V = Rd.
One natural and important way to describe the random walk (Gn)n>1 is to
investigate the growth rate of the coefficients 〈f,Gnv〉, where v ∈ V and f ∈
V ∗, and 〈·, ·〉 is the duality bracket: 〈f, v〉 = f(v). Bellman [3] conjectured
that the classical central limit theorem should hold true for 〈f,Gnv〉 in
the case when the matrices (gn) are positive. This conjecture was proved
by Furstenberg and Kesten [20], who established the strong law of large
numbers and central limit theorem under the condition that the matrices gn
are strictly positive and that all the coefficients of gn are comparable. This
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condition was then relaxed by Kingman [39], Cohn, Nerman and Peligrad
[12] and Hennion [33].

As noticed by Furstenberg [19], the analysis developed in [20] for positive
matrices breaks down for invertible matrices. It turns out that the situation
of invertible matrices is much more complicated and delicate. Guivarc’h and
Raugi [32] established the strong law of large numbers for the coefficients of
products of invertible matrices under an exponential moment condition: for
any v ∈ V \ {0} and f ∈ V ∗ \ {0}, a.s.

lim
n→∞

1
n

log |〈f,Gnv〉| = λ1, (1.1)

where λ1 ∈ R is a constant (independent of f and v) called the first Lyapunov
exponent of µ. It is worth mentioning that the result (1.1) does not follow
from the classical subadditive ergodic theorem of Kingman [39], nor from
the recent version by Gouëzel and Karlsson [28]. The central limit theorem
for the coefficients has also been established in [32] under the exponential
moment condition: for any t ∈ R,

lim
n→∞

P
( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t
)

= Φ(t), (1.2)

where Φ is the standard normal distribution function on R and σ2 > 0 is
the asymptotic variance of 1√

n
log |〈f,Gnv〉|. Recently, Benoist and Quint

[6] have extended (1.1) and (1.2) to the framework of the general linear
group GL(V ) with V = Kd, where K is a local field. Moreover, they also
established the law of iterated logarithm and the large deviations bounds.

The first objective of this paper is to prove the weak law of large numbers
under the first moment condition: we prove that, if

∫
GL(V ) logN(g)µ(dg) <

∞ with N(g) = max{‖g‖, ‖g−1‖}, then (1.1) holds in probability. Moreover,
under the second moment condition that

∫
GL(V ) log2N(g)µ(dg) < ∞, we

prove the strong law of large numbers, namely that (1.1) holds a.s. Under
the same second moment condition we also prove the central limit theorem:
we show that the Gaussian approximation (1.2) holds.

Our second objective is to investigate the rate of convergence in the central
limit theorem (1.2). To this end, we first establish a Berry-Esseen bound un-
der the exponential moment condition: we prove that if

∫
GL(V )N(g)εµ(dg) <

∞ for some ε > 0, then there exists a constant c > 0 such that for all n > 1,
t ∈ R, v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1, and any γ-Hölder continuous
function ϕ on P(V ),∣∣∣∣E [ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

σ
√
n

6t
}]− ν(ϕ)Φ(t)

∣∣∣∣ 6 c√
n
‖ϕ‖γ , (1.3)

where ‖ϕ‖γ is the γ-Hölder norm of the function ϕ. Our result (1.3) improves
a very recent Berry-Esseen bound with ϕ = 1 in [18], where a different
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approach is applied. In fact we will establish a much stronger result, that
is, the first-order Edgeworth expansion (cf. Theorem 2.3). Moreover, under
a subexponential moment condition, we prove that a weaker version of the
Berry-Esseen bound holds true. Namely, the bound (1.3) holds with the
rate c logβ n√

n
(for some β > 0) instead of c√

n
.

We next establish the moderate deviation principle under the subexpo-
nential moment condition that

∫
GL(V ) e

logαN(g) µ(dg) <∞ for some constant
α ∈ (0, 1): for any Borel set B ⊆ R and any sequence (bn)n>1 of positive
real numbers satisfying bn

n → 0 and bn = o(n
1

2−α ) as n→∞, we have

− inf
t∈B◦

t2

2σ2 6 lim inf
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

∈ B
)

6 lim sup
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

∈ B
)
6 − inf

t∈B̄

t2

2σ2 ,

(1.4)

where B◦ and B̄ are respectively the interior and the closure of B.
We then reinforce the moderate deviation principle (1.4) to the Cramér

type moderate deviation expansion under the exponential moment condi-
tion: we prove that if

∫
GL(V )N(g)εµ(dg) <∞ for some ε > 0, then uniformly

in t ∈ [0, o(
√
n)], v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1, as n→∞,

P
(

log |〈f,Gnv〉|−nλ1
σ
√
n

> t
)

1− Φ(t) = e
t3√
n
ζ( t√

n
)[1 + o(1)

]
, (1.5)

where ζ is the Cramér series (cf. (2.4)). A similar expansion for the lower tail
is also obtained. More generally, we prove the Cramér type moderate devi-
ation expansion for the couple (Gn ·x, log |〈f,Gnv〉|) with a target function
ϕ on the Markov chain (Gn ·x) on the projective space P(V ); see Theorem
2.8. We mention that Bahadur-Rao type and Petrov type large deviation
asymptotics for the coefficients 〈f,Gnv〉 have been recently established in
[48], which give precise estimation of the rate of convergence in the weak
law of large numbers (1.1).

Our third objective is to establish the local limit theorem with moderate
deviations for the coefficients 〈f,Gnv〉: for any real numbers a1 < a2, we
have, as n→∞, uniformly in |t| = o(

√
n),

P
(

log |〈f,Gnv〉| − nλ1 ∈ [a1, a2] +
√
nσt

)
= a2 − a1

σ
√

2πn
e
− t

2
2 + t3√

n
ζ( t√

n
)[1 + o(1)]. (1.6)

See Theorem 2.9 for a more general statement where a local limit theorem
with moderate deviations for the couple (Gn ·x, log |〈f,Gnv〉|) with target
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functions is given. We would like to mention that using the approach devel-
oped in this paper, it is possible to establish some new and interesting limit
theorems for the Gromov product of random walks on hyperbolic groups;
we refer to Gouëzel [26, 27] on this topic.

Finally we would like to mention that all the results of the paper remain
valid when V is Cd or Kd, where K is any local field.

1.2. Proof strategy. Our starting point is the following decomposition
which relates the coefficients 〈f,Gnv〉 to the cocycles σ(Gn, x): for any
x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗) with ‖f‖ = 1,

log |〈f,Gnv〉| = σ(Gn, x) + log δ(y,Gn ·x), (1.7)

where δ(y, x) = |〈f,v〉|
‖f‖‖v‖ . The proof of (1.1) given in [32, 6] is based on the

exponential Hölder regularity of the invariant measure ν of the Markov chain
(Gn·x) on the projective space P(V ), which requires the exponential moment
condition. We refer to Bougerol and Lacroix [7] for a comprehensive account
of the proof strategy developed in [32]. In order to relax the exponential
moment condition, we will establish a weaker form of the Hölder regularity
of ν: we prove that for any ε > 0,

lim
n→∞

P
(
δ(y,Gn ·x) 6 e−εn

)
= 0, (1.8)

provided that the first moment condition holds. See Proposition 3.4. The
weak law of large numbers for the coefficients follows from this and the law
of large numbers of Furstenberg [19] for the norm cocycle σ(Gn, x).

To prove the strong law of large numbers, we show the following stronger
regularity of ν: if the second moment condition holds, then for any ε > 0
there exists a sequence of positive numbers (ak) such that

∑∞
k=1 ak < ∞

and that for all n > k > 1,

P
(
δ(y,Gn ·x) 6 e−εk

)
6 ak. (1.9)

See Lemma 3.5. This permits us to conclude the strong law of large numbers
for the coefficients, using that of Furstenberg [19] for the norm cocycle.

Using again (1.9), together with the central limit theorem for the norm co-
cycle σ(Gn, x) due to Benoist and Quint [5], allows us to prove the Gaussian
approximation (1.2) under the optimal second moment condition.

For the proof of the Edgeworth expansion and the Berry-Esseen bound
(1.3), we first use a partition (χyn,k)k>1 of the unity to discretise the compo-
nent log δ(y,Gn ·x) in (1.7). This allows to reduce the study of the coeffi-
cients to that of the norm cocycle σ(Gn, x) jointly with the target function
χyn,k(Gn ·x). Then our strategy is to make use of the Edgeworth expansion
for the couple (Gn ·x, σ(Gn, x)) with target functions on the Markov chain
(Gn·x). Finally, the result (1.3) is obtained by patching up these expansions
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by means of the exponential Hölder regularity of the invariant measure ν.
For the proof of the Berry-Esseen type bound (Theorem 2.5) under a subex-
ponential moment condition, we establish a subexponential regularity of the
invariant measure ν (Theorem 2.6) and make use of the previous result in
[15] on Berry-Esseen bounds for the norm cocycle σ(Gn, x).

To prove the moderate deviation principle (1.4), we use again the subex-
ponential regularity of the invariant measure ν together with the moderate
deviation principle for the norm cocycle σ(Gn, x) established by in [14].

To establish the Cramér type moderate deviation expansion (1.5), our
approach is different from the standard one which is based on performing
a change of measure and proving a Berry-Esseen bound under the changed
measure; see for example Cramér [13] and Petrov [44]. However, even with a
Berry-Esseen bound under the changed measure at hands, we do not know
how to obtain (1.5) using this strategy. Our approach is to use again a
partition of the unity and for each piece to pass to the Fourier transforms
under the changed measure, and then to establish exact asymptotic expan-
sions. We then patch up these expansions by using the exponential Hölder
regularity of the invariant measure ν.

The proof of the local limit theorem with moderate deviations (1.6) follows
the same lines as that of (1.5), together with the uniform version of the
exponential Hölder regularity of the invariant measure of the Markov chain
(Gn ·x) under the changed measure.

2. Main results

2.1. Notation and conditions. For any integer d > 1, denote by V = Rd
the d-dimensional Euclidean space. We fix a basis e1, . . . , ed of V and the
associated norm on V is defined by ‖v‖2 =

∑d
i=1 |vi|2 for v =

∑d
i=1 viei ∈ V .

Let V ∗ be the dual vector space of V and its dual basis is denoted by
e∗1, . . . , e

∗
d so that e∗i (ej) = 1 if i = j and e∗i (ej) = 0 if i 6= j. For any integer

2 6 p 6 d, let ∧pV be the p-th exterior product of V and we use the same
symbol ‖ · ‖ for the norms induced on ∧pV and V ∗. We equip P(V ) with
the angular distance

d(x, x′) = ‖v ∧ v
′‖

‖v‖‖v′‖
for x = Rv ∈ P(V ), x′ = Rv′ ∈ P(V ). (2.1)

We use the symbol 〈·, ·〉 to denote the dual bracket defined by 〈f, v〉 = f(v)
for any f ∈ V ∗ and v ∈ V . Set

δ(x, y) = |〈f, v〉|
‖f‖‖v‖

for x = Rv ∈ P(V ), y = Rf ∈ P(V ∗).

Denote by C (P(V )) the space of complex-valued continuous functions on
P(V ), equipped with the norm ‖ϕ‖∞ := supx∈P(V ) |ϕ(x)| for ϕ ∈ C (P(V )).
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Let γ > 0 be a fixed small enough constant and set

‖ϕ‖γ := ‖ϕ‖∞ + sup
x,x′∈P(V ):x 6=x′

|ϕ(x)− ϕ(x′)|
d(x, x′)γ .

Consider the Banach space
Bγ := {ϕ ∈ C (P(V )) : ‖ϕ‖γ <∞} ,

which consists of complex-valued γ-Hölder continuous functions on P(V ).
Denote by L (Bγ ,Bγ) the set of all bounded linear operators from Bγ to
Bγ equipped with the operator norm ‖·‖Bγ→Bγ

. The topological dual of Bγ

endowed with the induced norm is denoted by B′γ . Let B∗γ be the Banach
space of γ-Hölder continuous functions on P(V ∗) endowed with the norm

‖ϕ‖B∗γ = sup
y∈P(V ∗)

|ϕ(x)|+ sup
y,y′∈P(V ∗): y 6=y′

|ϕ(y)− ϕ(y′)|
d(y, y′)γ ,

where d(y, y′) = ‖f∧f ′‖
‖f‖‖f ′‖ for y = Rf ∈ P(V ∗) and y′ = Rf ′ ∈ P(V ∗).

Let GL(V ) be the general linear group of the vector space V . The action of
g ∈ GL(V ) on a vector v ∈ V is denoted by gv, and the action of g ∈ GL(V )
on a projective line x = Rv ∈ P(V ) is denoted by g · x = Rgv. For any
g ∈ GL(V ), let ‖g‖ = supv∈V \{0}

‖gv‖
‖v‖ and denote N(g) = max{‖g‖, ‖g−1‖}.

Let µ be a Borel probability measure on GL(V ). We shall use the following
exponential moment condition.

A1 (Exponential moment condition). There exists a constant ε > 0 such
that

∫
GL(V )N(g)εµ(dg) <∞.

Let Γµ be the smallest closed subsemigroup generated by the support
of the measure µ. An endomorphism g of V is said to be proximal if it
has an eigenvalue λ with multiplicity one and all other eigenvalues of g
have modulus strcitly less than |λ|. We shall need the following strong
irreducibility and proximality condition.

A2. (i)(Strong irreducibility) No finite union of proper subspaces of V is
Γµ-invariant.

(ii)(Proximality) Γµ contains a proximal endomorphism.

Define the norm cocycle σ : GL(V )× P(V )→ R as follows:

σ(g, x) = log ‖gv‖
‖v‖

, for any g ∈ GL(V ) and x = Rv ∈ P(V ).

By [45, Proposition 3.15], under A1 and A2, the following limit exists and
is independent of x ∈ P(V ):

σ2 := lim
n→∞

1
n
E
[
(σ(Gn, x)− nλ1)2

]
∈ (0,∞). (2.2)
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For any s ∈ (−s0, s0) with s0 > 0 small enough, we define the transfer
operator Ps as follows: for any bounded measurable function ϕ on P(V ),

Psϕ(x) =
∫

GL(V )
esσ(g,x)ϕ(g ·x)µ(dg), x ∈ P(V ). (2.3)

It will be shown in Lemma 4.1 that there exists a constant s0 > 0 such that
for any s ∈ (−s0, s0), the operator Ps ∈ L (Bγ ,Bγ) has a unique dominant
eigenvalue κ(s) with κ(0) = 1 and the mapping s 7→ κ(s) being analytic.

We denote Λ = log κ. Set γm = Λ(m)(0) for any m > 1. In particular,
γ1 = λ1 and γ2 = σ2. Throughout the paper, we write ζ for the Cramér
series [44]:

ζ(t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + · · · , (2.4)

which converges for |t| small enough.
Under A1 and A2, the Markov chain (Gn ·x)n>0 has a unique invari-

ant probability measure ν on P(V ) such that for any bounded measurable
function ϕ on P(V ),∫

P(V )

∫
GL(V )

ϕ(g ·x)µ(dg)ν(dx) =
∫
P(V )

ϕ(x)ν(dx) =: ν(ϕ). (2.5)

2.2. Law of large numbers and central limit theorem. In this sub-
section we present the law of large numbers and the central limit theorem
for the coefficients 〈f,Gnv〉.

We first present the law of large numbers for 〈f,Gnv〉: namely we state
a weak law of large numbers under the existence of the first moment and a
strong law of large numbers under the second moment assumption. Denote
by λ1 and λ2 the first and second Lyapunov exponents of µ:

λ1 := lim
n→∞

1
n
E log ‖Gn‖, λ2 := lim

n→∞
1
n
E log ‖ ∧

2 Gn‖
‖Gn‖

. (2.6)

We say that Γµ is irreducible if no proper subspace of V is Γµ-invariant.

Theorem 2.1. Assume that
∫

GL(V ) logN(g)µ(dg) < ∞. Assume also that
λ1 > λ2 and that Γµ is irreducible. Then, we have, as n→∞, uniformly in
v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

1
n

log |〈f,Gnv〉| → λ1 in probability and in L1. (2.7)

Moreover, if
∫

GL(V ) log2N(g)µ(dg) < ∞ and condition A2 holds, then the
convergence in probability in (2.7) can be improved to the a.s. convergence.

Notice that, by a theorem of Guivarc’h [29], condition A2 implies that
λ1 > λ2 and that Γµ is irreducible. Under the exponential moment condi-
tion A1 together with the strong irreducibility and proximality condition



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 9

A2, Guivarc’h and Raugi [32] proved the a.s. convergence in (2.7) for the
special linear group SL(d,R) (the set of d× d matrices with determinant 1);
Benoist and Quint [6] extended it to the general linear group GL(V ). Our
Theorem 2.1 states the weak law of large numbers for GL(V ) under the first
moment condition, and the strong law of large numbers under the second
moment condition. The question remains open whether the strong law of
large numbers holds true under the first moment condition.

It is worth mentioning that Aoun and Sert [2] proved the weak law of large
numbers for the spectral radius of Gn under the first moment condition, and
the strong law of large numbers under the second moment condition.

In the next theorem we formulate the central limit theorem for the coef-
ficients 〈f,Gnv〉 under the second moment condition. Recall that

Φ(t) = 1√
2π

∫ t

−∞
e−u

2/2du, t ∈ R

is the standard normal distribution function, and σ2 is the asymptotic vari-
ation given by (2.2).

Theorem 2.2. If
∫

GL(V ) log2N(g)µ(dg) <∞ and condition A2 holds, then
for any t ∈ R, uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

lim
n→∞

P
( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t
)

= Φ(t). (2.8)

Theorem 2.2 improves the results of Guivarc’h and Raugi [32] on SL(d,R)
and those of Benoist and Quint [6] on GL(V ) by relaxing the exponential
moment condition A1 to the optimal second moment condition.

We mention that the central limit theorem for the spectral radius of Gn
has been obtained by Aoun [1].

2.3. Edgeworth expansion and Berry-Esseen bound. In many appli-
cations it is of primary interest to give an estimation of the rate of con-
vergence in the Gaussian approximation (2.8). In this direction we prove a
first-order Edgeworth expansion. For any ϕ ∈ Bγ , define the functions

bϕ(x) := lim
n→∞

E
[
(σ(Gn, x)− nΛ′(s))ϕ(Gn ·x)

]
, x ∈ P(V ) (2.9)

and

dϕ(y) :=
∫
P(V )

ϕ(x) log δ(y, x)ν(dx), y ∈ P(V ∗). (2.10)

It is shown in Lemmas 4.7 and 4.8 that both functions bϕ and dϕ are well-
defined and bϕ ∈ Bγ , dϕ ∈ B∗γ .
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Theorem 2.3. Assume A1 and A2. Then, for any ε > 0, uniformly in
t ∈ R, x = Rv ∈ P(V ), y = Rf ∈ P(V ∗) with ‖v‖ = ‖f‖ = 1, and ϕ ∈ Bγ,
as n→∞,

E
[
ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

σ
√
n

6t
}]

= ν(ϕ)
[
Φ(t) + Λ′′′(0)

6σ3√n
(1− t2)φ(t)

]
− bϕ(x) + dϕ(y)

σ
√
n

φ(t)

+ ν(ϕ)o
( 1√

n

)
+ ‖ϕ‖γO

( 1
n1−ε

)
. (2.11)

As a consequence of Theorem 2.3 we get the following Berry-Esseen bound
with the optimal convergence rate, under the exponential moment condition.
Theorem 2.4. Under A1 and A2, there exist constants γ > 0 and c > 0
such that for any n > 1, t ∈ R, x = Rv ∈ P(V ) and f ∈ V ∗ with ‖v‖ =
‖f‖ = 1, and ϕ ∈ Bγ,∣∣∣∣E [ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

σ
√
n

6t
}]− ν(ϕ)Φ(t)

∣∣∣∣ 6 c√
n
‖ϕ‖γ . (2.12)

Under the same conditions, our result (2.12) improves on two very recent
results in [18] and [16]: it is proved in [18] that (2.12) holds for the particular
case when ϕ = 1, and in [16] the authors also consider the case where ϕ = 1
but the convergence rate 1√

n
in (2.12) is replaced by logn√

n
.

It is an open question how to relax the exponential moment condition
A1 in the Edgeworth expansion and in the Berry-Esseen bound. For posi-
tive matrices, the Edgeworth expansion (2.11) and the Berry-Esseen bound
(2.12) have been recently obtained using a different approach in a forthcom-
ing paper [49] under optimal moment conditions. In the following theorem
we get a Berry-Esseen type bound for invertible matrices under the sub-
exponential moment condition, with an extra log

1
α n factor.

Theorem 2.5. Assume A2 and that there exists a constant α ∈ (0, 1) such
that µ(logN(g) > u) 6 exp{−uαa(u)} for any u > 0 and for some function
a(u) > 0 satisfying a(u)→∞ as u→∞. Then, there exists a constant c > 0
such that for any n > 2, t ∈ R, v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,∣∣∣∣P( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t
)
− Φ(t)

∣∣∣∣ 6 c log
1
α n√
n

. (2.13)

Note that the condition µ(logN(g) > u) 6 exp{−uαa(u)} holds true if∫
GL(V ) e

log(α+ε)N(g) µ(dg) <∞ for some ε > 0.
Recently in [16], under the polynomial moment condition of order p > 3,

that is,
∫

GL(V ) logpN(g)µ(dg) <∞, a Berry-Esseen type bound is obtained

with the convergence rate n−
p−1
2p .
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The proof of Theorem 2.5 is based on the Berry-Esseen type bound re-
cently established in [15] and on the subexponential Hölder regularity of the
invariant measure ν which is the subject of Section 2.4.

2.4. Subexponential Hölder regularity. We shall establish the follow-
ing subexponential Hölder regularity of the invariant measure ν under only
subexponential moments condition. This turns out to be an important step
for proving the Berry-Esseen type bound (2.13) as well as the moderate
deviation principle for the coefficients 〈f,Gnv〉 (see Theorem 2.7 below).

Theorem 2.6. Assume A2 and that there exists a constant α ∈ (0, 1) such
that µ(logN(g) > u) 6 exp{−uαa(u)} for any u > 0 and for some function
a(u) > 0 satisfying a(u)→∞ as u→∞. Then, there exist constants c > 0
and k0 ∈ N such that for all n > k > k0, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(Gn ·x, y) 6 e−k

)
6 exp (−ckα) . (2.14)

Moreover, there exists a constant η > 0 such that

sup
y∈P(V ∗)

∫
P(V )

exp (η| log δ(x, y)|α) ν(dx) < +∞. (2.15)

In particular, there exist constants c > 0 and η > 0 such that for any
y ∈ P(V ∗) and r > 0,

ν(B(y, r)) 6 c exp (η| log r|α) , (2.16)

where B(y, r) = {x ∈ P(V ) : δ(y, x) 6 r}.

Notice that if A2 holds and that subexponential moment condition in
Theorem 2.6 is strengthed to the exponential moment condition A1, then
by a theorem due to Guivarc’h [30], the invariant measure ν satisfies a
stronger regularity property: there exists a constant η > 0 such that

sup
y∈P(V ∗)

∫
P(V )

1
δ(x, y)η ν(dx) < +∞. (2.17)

In this case, we say that the invariant measure ν is exponentially Hölder
regular.

Under the p-th moment condition that
∫

GL(V ) logpN(g)µ(dg) < ∞ for
some p > 1, Benoist and Quint [5, Proposition 4.5] have recently established
the log-regularity of ν: under A2,

sup
y∈P(V ∗)

∫
P(V )
| log δ(x, y)|p−1ν(dx) < +∞. (2.18)

This result is one of the crucial points for establishing the central limit
theorem for the norm cocycle σ(Gn, x) under the optimal second moment
condition

∫
GL(V ) log2N(g)µ(dg) <∞, see [5].
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2.5. Moderate deviation principles and expansions. In this subsec-
tion we state a moderate deviation principle and Cramér type moderate
deviation expansions for the coefficients 〈f,Gnv〉.

We first present the moderate deviation principle under a subexponential
moment condition, whose proof is based upon the regularity of the invariant
measure ν shown in Theorem 2.6.

Theorem 2.7. Assume A2 and that
∫

GL(V ) e
logαN(g) µ(dg) < ∞ for some

constant α ∈ (0, 1). Then, for any Borel set B ⊆ R and any sequence (bn)n>1

of positive numbers satisfying bn√
n
→ ∞ and bn = o(n

1
2−α ) as n → ∞, we

have, uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

− inf
y∈B◦

y2

2σ2 6 lim inf
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

∈ B
)

6 lim sup
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

∈ B
)
6 − inf

y∈B̄

y2

2σ2 ,

where B◦ and B̄ are respectively the interior and the closure of B.

When the sub-exponential moment condition is strengthened to the expo-
nential moment condition A1, we are able to establish the following Cramér
type moderate deviation expansions for the coefficients 〈f,Gnv〉, and more
generally, for the couple (Gn ·x, log |〈f,Gnv〉|) with a target function ϕ on
the Markov chain (Gn ·x)n>0.

Theorem 2.8. Assume A1 and A2. Then, we have, as n→∞, uniformly
in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1, and t ∈ [0, o(

√
n)],

P
(

log |〈f,Gnv〉|−nλ1
σ
√
n

> t
)

1− Φ(t) = e
t3√
n
ζ( t√

n
)[1 + o(1)

]
, (2.19)

P
(

log |〈f,Gnv〉|−nλ1
σ
√
n

6 −t
)

Φ(−t) = e
− t3√

n
ζ(− t√

n
)[1 + o(1)

]
. (2.20)

More generally, for any ϕ ∈ Bγ with γ > 0 sufficiently small, we have, as
n→∞, uniformly in x = Rv ∈ P(V ) and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1, and
t ∈ [0, o(

√
n)],

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) = e

t3√
n
ζ( t√

n
)[
ν(ϕ) + o(1)

]
, (2.21)

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ16−

√
nσt}

]
Φ(−t) = e

− t3√
n
ζ(− t√

n
)[
ν(ϕ) + o(1)

]
. (2.22)

Note that the rate o(1) in (2.19), (2.20), (2.21) and (2.22) depends on the
rate o(

√
n) in t ∈ [0, o(

√
n)].
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Theorem 2.8 clearly implies the following moderate deviation principle
for the couple (Gn·x, log |〈f,Gnv〉|) with a target function ϕ on the Markov
chain (Gn ·x): under A1 and A2, for any sequence of positive numbers
(bn)n>1 satisfying bn

n → 0 and bn√
n
→ ∞, any Borel set B ⊆ R and real-

valued function ϕ ∈ Bγ satisfying ν(ϕ) > 0, we have that uniformly in
x = Rv ∈ P(V ), v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

− inf
t∈B◦

t2

2σ2 6 lim inf
n→∞

n

b2n
logE

[
ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

bn
∈B
}]

6 lim sup
n→∞

n

b2n
logE

[
ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

bn
∈B
}] 6 − inf

t∈B̄

t2

2σ2 ,

where B◦ and B̄ are respectively the interior and the closure of B. This
moderate deviation principle is new even for ϕ = 1.

2.6. Local limit theorem with moderate deviations. In this subsec-
tion we state the local limit theorem with moderate deviations and target
functions for the coefficients 〈f,Gnv〉.

Theorem 2.9. Assume A1 and A2. Then, for any real numbers −∞ <
a1 < a2 <∞, we have, uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,
and |t| = o(

√
n),

P
(

log |〈f,Gnv〉| − nλ1 ∈ [a1, a2] +
√
nσt

)
= a2 − a1

σ
√

2πn
e
− t

2
2 + t3√

n
ζ( t√

n
)[1 + o(1)].

(2.23)
More generally, for any ϕ ∈ Bγ with γ > 0 sufficiently small, and any
directly Riemann integrable function ψ with compact support on R, we have,
as n → ∞, uniformly in x = Rv, v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,
and |t| = o(

√
n),

E
[
ϕ(Gn ·x)ψ

(
log |〈f,Gnv〉| − nλ1 −

√
nσt

)]
= e

− t
2
2 + t3√

n
ζ( t√

n
)

σ
√

2πn

[
ν(ϕ)

∫
R
ψ(u)du+ o(1)

]
. (2.24)

The asymptotic (2.23) improves the recent results obtained in [25] and
[18]: the result in [25] corresponds to the case when t = 0, and that in [18]
to the case when t = o(1).

3. Proofs of the laws of large numbers

The following strong law of large numbers for the norm cocycle σ(Gn, x)
is due to Furstenberg [19]. Recall that Γµ is irreducible if no proper subspace
of V is Γµ-invariant.
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Lemma 3.1 ([19]). Assume
∫

GL(V ) logN(g)µ(dg) <∞ and that Γµ is irre-
ducible. Then, uniformly in x ∈ P(V ),

lim
n→∞

σ(Gn, x)
n

= λ1 a.s.,

where λ1 ∈ R is the first Lyapunov exponent of µ.

In the next lemma, we state two laws of large numbers for ‖Gn‖ and
‖ ∧2 Gn‖. The first law is due to Furstenberg-Kesten [20], which can be
proved by Kingman’s subadditive ergodic theorem [39]; the second one is also
an easy consequence of Kingman’s ergodic theorem [39] using the definition
of λ2 given in (2.6).

Lemma 3.2 ([20, 39]). Assume
∫

GL(V ) logN(g)µ(dg) <∞. Then,

lim
n→∞

1
n

log ‖Gn‖ = λ1 and lim
n→∞

1
n

log ‖ ∧2 Gn‖ = λ1 + λ2 a.s.

Denote by K the group of isometries of (V, ‖·‖) and by A+ the semigroup
A+ = {diag(a1, . . . , ad) : a1 > . . . > ad > 0}, where diag(a1, . . . , ad) is a
diagonal endomorphism under the basis e1, . . . , ed of V . The well known
Cartan decomposition states that GL(V ) = KA+K. For every g ∈ GL(V ),
we choose a decomposition (which is not necessarily unique)

g = kgaglg,

where kg, lg ∈ K and ag ∈ A+. Recall that (e∗i )16i6d is the dual basis in V ∗.
Set

xMg = Rkge1 and ymg = Rlge∗1.

Let g∗ denote the adjoint automorphism of g ∈ GL(V ). Following [5, 6],
xMg ∈ P(V ) and ymg ∈ P(V ∗) are called respectively the density point of g
and g∗.

The next result is taken from [5, Lemma 4.7].

Lemma 3.3 ([5]). For any g ∈ GL(V ), x = Rv and y = Rf with v ∈ V \{0}
and f ∈ V ∗ \ {0}, we have

(1) δ(x, ymg ) 6 ‖gv‖
‖g‖‖v‖ 6 δ(x, y

m
g ) + ‖∧2g‖

‖g‖2 ,

(2) δ(xMg , y) 6 ‖g∗f‖
‖g‖‖f‖ 6 δ(x

M
g , y) + ‖∧2g‖

‖g‖2 ,

(3) d(g ·x, xMg )δ(x, ymg ) 6 ‖∧
2g‖
‖g‖2 .

Using Lemmas 3.1-3.3, we get the following:

Proposition 3.4. Assume that
∫

GL(V ) logN(g)µ(dg) < ∞. Assume also
that λ1 > λ2 and that Γµ is irreducible. Then, for any ε > 0, we have that
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uniformly in x ∈ P(V ) and y ∈ P(V ∗),

lim
n→∞

P
(
d(Gn ·x, xMGn) > e−(λ1−λ2−ε)n

)
= 0, (3.1)

lim
n→∞

P
(
δ(xMGn , y) 6 e−εn

)
= 0, (3.2)

lim
n→∞

P
(
δ(Gn ·x, y) 6 e−εn

)
= 0. (3.3)

Proof. We first prove (3.1). For every g ∈ GL(V ), using the Cartan decom-
position g = kgaglg and the fact that kg is an isometry of (V, ‖ · ‖), we get
that for any x = Rv ∈ P(V ),

d(g ·x, xMg ) = ‖gv ∧ kge1‖
‖gv‖‖kge1‖

= ‖kgaglgv ∧ kge1‖
‖gv‖

= ‖aglgv ∧ e1‖
‖gv‖

.

Since ag = diag(a1, . . . , ad), we have ‖aglgv ∧ e1‖ 6 a2‖v‖. This, together
with the fact that a2 = ‖∧2g‖

‖g‖ , implies that d(g ·x, xMg ) 6 ‖∧2g‖‖v‖
‖g‖‖gv‖ . Hence,

for any x = Rv ∈ P(V ) and n > 1,

d(Gn ·x, xMGn) 6 ‖ ∧
2 Gn‖‖v‖

‖Gn‖‖Gnv‖
. (3.4)

By Lemmas 3.1 and 3.2, we get that for any ε > 0, uniformly in v ∈ V \{0},

lim
n→∞

P
(∣∣∣∣∣ 1n log ‖ ∧

2 Gn‖‖v‖
‖Gn‖‖Gnv‖

− (λ2 − λ1)
∣∣∣∣∣ > ε

)
= 0,

which implies that uniformly in v ∈ V \ {0},

lim
n→∞

P
(
‖ ∧2 Gn‖‖v‖
‖Gn‖‖Gnv‖

> e−(λ1−λ2−ε)n
)

= 0.

Hence, using (3.4), we obtain (3.1).
We next prove (3.2). By Lemma 3.3 (2), we have that for any ε′ > 0 and

any y = Rf with f ∈ V ∗ \ {0},

P
(
δ(xMGn , y) 6 e−ε′n

)
6 P

(
‖G∗nf‖
‖G∗n‖‖f‖

− ‖ ∧
2 Gn‖
‖Gn‖2

6 e−ε
′n

)
. (3.5)

Applying Lemma 3.2 and Lemma 3.1 to the measure µ∗ (µ∗ is the image of
the measure µ by the map g 7→ g∗, where g∗ is the adjoint automorphism of
g ∈ GL(V )), we get that for any ε > 0,

lim
n→∞

P
(
‖ ∧2 Gn‖
‖Gn‖2

> e−(λ1−λ2−ε)n
)

= 0, (3.6)

and that for any y = Rf with f ∈ V ∗ \ {0},

lim
n→∞

P
( ‖G∗nf‖
‖G∗n‖‖f‖

6 e−εn
)

= 0. (3.7)
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From (3.6) we derive that as n→∞,

P
(
‖G∗nf‖
‖G∗n‖‖f‖

− ‖ ∧
2 Gn‖
‖Gn‖2

6 e−ε
′n

)

6 P
(
‖G∗nf‖
‖G∗n‖‖f‖

− ‖ ∧
2 Gn‖
‖Gn‖2

6 e−ε
′n,
‖ ∧2 Gn‖
‖Gn‖2

< e−(λ1−λ2−ε)n
)

+ o(1)

6 P
( ‖G∗nf‖
‖G∗n‖‖f‖

6 e−ε
′n + e−(λ1−λ2−ε)n

)
+ o(1)

= o(1),

where in the last line we used (3.7). This, together with (3.5), gives (3.2).
We finally prove (3.3). Since, for any a ∈ P(V ) and y ∈ P(V ∗) it holds

that δ(a, y) = d(a, z), where z = y⊥ is the element in P(V ) orthogonal to y.
By triangular inequality, we have, for all a, b ∈ P(V ) and y ∈ P(V ∗),

δ(a, y) = d(a, z) 6 d(a, b) + d(b, z) = d(a, b) + δ(b, y).
It follows that

δ(Gn ·x, y) > δ(xMGn , y)− d(Gn ·x, xMGn).

Therefore, using (3.1), we get that, as n→∞,

P
(
δ(Gn ·x, y) 6 e−ε′n

)
6 P

(
δ(xMGn , y)− d(Gn ·x, xMGn) 6 e−ε′n

)
6 P

(
δ(xMGn , y)− d(Gn ·x, xMGn) 6 e−ε′n, d(Gn ·x, xMGn) < e−(λ1−λ2−ε)n

)
+ o(1)

6 P
(
δ(xMGn , y) 6 e−ε′n + e−(λ1−λ2−ε)n

)
+ o(1)

= o(1),

where in the last line we used (3.2). This ends the proof of (3.3). �

The following result is a direct consequence of [5, Lemma 4.8].

Lemma 3.5. Assume that
∫

GL(V ) log2N(g)µ(dg) < ∞ and that condition
A2 holds. Then, for any ε > 0, there exist constants ak > 0 with

∑∞
k=1 ak <

∞, such that for all n > k > 1, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(y,Gn ·x) 6 e−εk

)
6 ak.

Proof. Denote Gn,k = gn . . . gn−k+1 for n > k. Notice that

P
(
δ(y,Gn ·x) 6 e−εk

)
=
∫

GL(V )n−k
P
(
δ(y,Gn,kgn−k . . . g1 ·x) 6 e−εk

)
µ(dgn−k) . . . µ(dg1).
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By [5, Lemma 4.8], for any ε > 0, there exist constants ak > 0 with∑∞
k=1 ak <∞, such that for all n > k > 1, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(y,Gn ·x) 6 e−εk

)
6 ak.

The desired result follows. �

Proof of Theorem 2.1. We first prove the assertion (2.7). Note that for any
x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗) with ‖v‖ = ‖f‖ = 1,

log |〈f,Gnv〉| = σ(Gn, x) + log δ(y,Gn ·x). (3.8)

Using Lemma 3.1 and (3.3), we get that, as n → ∞, 1
n log |〈f,Gnv〉| con-

verges to λ1 in probability, uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ =
1. This, together with the fact that the sequence { 1

n log |〈f,Gnv〉|}n>1 is uni-
formly integrable, proves (2.7).

Now we prove the almost sure convergence based on Lemmas 3.1 and 3.5.
By Lemma 3.5 and Borel-Cantelli’s lemma, we get that for any ε > 0,

lim inf
n→∞

1
n

log δ(y,Gn ·x) > −ε a.s.

Together with Lemma 3.1 and the fact that δ(y,Gn ·x) 6 1, this yields that
limn→∞

1
n log |〈f,Gnv〉| = λ1, a.s. �

In the proof of Theorem 2.2, we will use the central limit theorem for the
norm cocycle σ(Gn, x). Under the exponential moment condition A1, this
result is due to Le Page [40]. Recently, using the martingale approximation
approach and the log-regularity of the invariant measure ν, Benoist and
Quint [5] relaxed condition A1 to the optimal second moment condition.

Lemma 3.6 ([5]). Assume that
∫

GL(V ) log2N(g)µ(dg) < ∞ and that con-
dition A2 holds. Then, for any t ∈ R, it holds that uniformly in x ∈ P(V ),

lim
n→∞

P
(
σ(Gn, x)− nλ

σ
√
n

6 t
)

= Φ(t).

Now we prove Theorem 2.2 using Lemmas 3.5 and 3.6.

Proof of Theorem 2.2. By Lemma 3.6 and Slutsky’s theorem, it suffices to
prove that 1

σ
√
n

log δ(y,Gn ·x) converges to 0 in probability, as n → ∞.
Namely, we need to show that, for any ε > 0, uniformly in x ∈ P(V ) and
y ∈ P(V ∗),

lim
n→∞

P
( log δ(y,Gn ·x)

σ
√
n

< −ε
)

= 0.
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To prove this, taking k = b
√
nc in Lemma 3.5, we get that uniformly in

x ∈ P(V ) and y ∈ P(V ∗),

P
( log δ(y,Gn ·x)

σ
√
n

< −ε
)

= P
(
δ(y,Gn ·x) < e−εσ

√
n
)
6 ab√nc,

where ab√nc converges to 0 as n→∞, since
∑∞
k=1 ak <∞. �

4. Proof of the Edgeworth expansion

4.1. Spectral gap properties and a change of measure. For any z ∈
C with |<z| small enough, we define the complex transfer operator Pz as
follows: for any bounded measurable function ϕ on P(V ),

Pzϕ(x) =
∫

GL(V )
ezσ(g,x)ϕ(g ·x)µ(dg), x ∈ P(V ). (4.1)

Throughout this paper let Bs0(0) := {z ∈ C : |z| < s0} be the open disc
with center 0 and radius s0 > 0 in the complex plane C. The following result
shows that the operator Pz has spectral gap properties when z ∈ Bη(0); we
refer to [40, 34, 31, 6, 45] for the proof based on the perturbation theory of
linear operators. Recall that B′γ is the topological dual space of the Banach
space Bγ , and that L (Bγ ,Bγ) is the set of all bounded linear operators
from Bγ to Bγ equipped with the operator norm ‖·‖Bγ→Bγ

.

Lemma 4.1 ([6, 45]). Assume A1 and A2. Then, there exists a constant
s0 > 0 such that for any z ∈ Bs0(0) and n > 1,

Pnz = κn(z)νz ⊗ rz + Lnz , (4.2)

where

z 7→ κ(z) ∈ C, z 7→ rz ∈ Bγ , z 7→ νz ∈ B′γ , z 7→ Lz ∈ L (Bγ ,Bγ)

are analytic mappings which satisfy, for any z ∈ Bs0(0),
(a) the operator Mz := νz ⊗ rz is a rank one projection on Bγ, i.e.

Mzϕ = νz(ϕ)rz for any ϕ ∈ Bγ;
(b) MzLz = LzMz = 0, Pzrz = κ(z)rz with ν(rz) = 1, and νzPz =

κ(z)νz;
(c) κ(0) = 1, r0 = 1, ν0 = ν with ν defined by (2.5), and κ(z) and rz

are strictly positive for real-valued z ∈ (−s0, s0).

Using Lemma 4.1, a change of measure can be performed below. Specifi-
cally, for any s ∈ (−s0, s0) with s0 > 0 sufficiently small, any x ∈ P(V ) and
g ∈ GL(V ), denote

qsn(x, g) = esσ(g,x)

κn(s)
rs(g ·x)
rs(x) , n > 1.
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Since the eigenvalue κ(s) and the eigenfunction rs are strictly positive for
s ∈ (−s0, s0), using Psrs = κ(s)rs we get that

Qx
s,n(dg1, . . . , dgn) = qsn(x,Gn)µ(dg1) . . . µ(dgn), n > 1,

are probability measures and form a projective system on GL(V )N. By
the Kolmogorov extension theorem, there is a unique probability measure
Qx
s on GL(V )N with marginals Qx

s,n. We write EQxs for the corresponding
expectation and the change of measure formula holds: for any s ∈ (−s0, s0),
x ∈ P(V ), n > 1 and bounded measurable function h on (P(V )× R)n,

1
κn(s)rs(x)E

[
rs(Gn ·x)esσ(Gn,x)h

(
G1 ·x, σ(G1, x), .. ., Gn ·x, σ(Gn, x)

)]
= EQxs

[
h
(
G1 ·x, σ(G1, x), .. ., Gn ·x, σ(Gn, x)

)]
. (4.3)

Under the changed measure Qx
s , the process (Gn ·x)n>0 is a Markov chain

with the transition operator Qs given as follows: for any ϕ ∈ C (P(V )),

Qsϕ(x) = 1
κ(s)rs(x)Ps(ϕrs)(x), x ∈ P(V ).

Under A1 and A2, it was shown in [45] that the Markov operator Qs has a
unique invariant probability measure πs given by

πs(ϕ) = νs(ϕrs)
νs(rs)

for any ϕ ∈ C (P(V )). (4.4)

By [45, Proposition 3.13], the following strong law of large numbers for the
norm cocycle under the changed measure Qx

s holds: under A1 and A2, for
any s ∈ (−s0, s0) and x ∈ P(V ),

lim
n→∞

σ(Gn, x)
n

= Λ′(s), Qx
s -a.s.

where Λ(s) = log κ(s). For any s ∈ (−s0, s0) and u ∈ R, we define the
perturbed operator Rs,iu as follows: for ϕ ∈ C (P(V )),

Rs,iuϕ(x) = EQxs

[
eiu(σ(g,x)−Λ′(s))ϕ(g ·x)

]
, x ∈ P(V ). (4.5)

It follows from the cocycle property of σ(·, ·) that for any n > 1,

Rns,iuϕ(x) = EQxs

[
eiu(σ(Gn,x)−nΛ′(s))ϕ(Gn ·x)

]
, x ∈ P(V ).

The next result gives spectral gap properties of the perturbed operator Rs,iu.

Lemma 4.2 ([45]). Assume A1 and A2. Then, there exist constants s0 > 0
and δ > 0 such that for any s ∈ (−s0, s0) and u ∈ (−δ, δ),

Rns,iu = λns,iuΠs,iu +Nn
s,iu, (4.6)
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where

λs,iu = eΛ(s+iu)−Λ(s)−iuΛ′(s), (4.7)

and for fixed s ∈ (−s0, s0), the mappings u 7→ Πs,iu : (−δ, δ)→ L (Bγ ,Bγ),
u 7→ Ns,iu : (−δ, δ)→ L (Bγ ,Bγ) and u 7→ λs,iu : (−δ, δ)→ R are analytic.
In addition, for fixed s and u, the operator Πs,iu is a rank-one projection
with Πs,0(ϕ)(x) = πs(ϕ) for any ϕ ∈ Bγ and x ∈ P(V ), and Πs,iuNs,iu =
Ns,iuΠs,iu = 0.

Moreover, for any k ∈ N, there exist constants c > 0 and 0 < a < 1 such
that

sup
|s|<s0

sup
|u|<δ

∥∥∥ dk
duk

Πn
s,iu

∥∥∥
Bγ→Bγ

6 c, sup
|s|<s0

sup
|u|<δ

∥∥∥ dk
duk

Nn
s,iu

∥∥∥
Bγ→Bγ

6 can.

(4.8)

We end this subsection by giving the non-arithmetic property of the per-
turbed operator Rs,iu.

Lemma 4.3 ([45]). Assume A1 and A2. Then, for any compact set K ⊆
R\{0}, there exist constants s0, c, CK > 0 such that for any n > 1 and
ϕ ∈ Bγ,

sup
s∈(−s0,s0)

sup
u∈K

sup
x∈P(V )

|Rns,iuϕ(x)| 6 ce−nCK‖ϕ‖γ .

4.2. Exponential Hölder regularity of the invariant measure πs. We
need the following exponential regularity of the invariant measure πs from
[25].

Lemma 4.4 ([25]). Assume A1 and A2. Then there exist constants s0 > 0
and η > 0 such that

sup
s∈(−s0,s0)

sup
y∈P(V ∗)

∫
P(V )

1
δ(y, x)η πs(dx) < +∞. (4.9)

We also need the following property:

Lemma 4.5 ([25]). Assume A1 and A2. Then, for any ε > 0, there exist
constants s0 > 0 and c, C > 0 such that for all s ∈ (−s0, s0), n > k > 1,
x ∈ P(V ) and y ∈ P(V ∗),

Qx
s

(
log δ(y,Gn ·x) 6 −εk

)
6 Ce−ck. (4.10)

Note that (4.10) is stronger than the exponential Hölder regularity of the
invariant measure πs stated in Lemma 4.4.
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4.3. Proof of Theorem 2.3. We shall prove a more general version of
Theorem 2.3 under the changed measure Qx

s . For any s ∈ (−s0, s0) and
ϕ ∈ Bγ , define

bs,ϕ(x) := lim
n→∞

EQxs
[
(σ(Gn, x)− nΛ′(s))ϕ(Gn ·x)

]
, x ∈ P(V ) (4.11)

and

ds,ϕ(y) =
∫
P(V )

ϕ(x) log δ(y, x)πs(dx), y ∈ P(V ∗). (4.12)

These functions are well-defined as shown in Lemmas 4.7 and 4.8 below. In
particular, we have b0,ϕ = bϕ and d0,ϕ = dϕ, where bϕ and dϕ are defined in
(2.9) and (2.10), respectively.

Our goal of this subsection is to establish the following first-order Edge-
worth expansion for the coefficients 〈f,Gnv〉 under the changed measure Qx

s .
Note that σs =

√
Λ′′(s), which is strictly positive under A1 and A2.

Theorem 4.6. Assume A1 and A2. Then, for any ε > 0, there exist
constants γ > 0 and s0 > 0 such that uniformly in s ∈ (−s0, s0), t ∈ R,
x = Rv ∈ P(V ), y = Rf ∈ P(V ∗) with ‖v‖ = ‖f‖ = 1, and ϕ ∈ Bγ, as
n→∞,

EQxs

[
ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nΛ′(s)

σs
√
n

6t
}]

= πs(ϕ)
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]
− bs,ϕ(x) + ds,ϕ(y)

σs
√
n

φ(t)

+ πs(ϕ)o
( 1√

n

)
+ ‖ϕ‖γO

( 1
n1−ε

)
.

Theorem 2.3 follows from Theorem 4.6 by taking s = 0.
We begin with some properties of the function bs,ϕ (cf. (4.11)) proved

recently in [45].
Lemma 4.7 ([45]). Assume A1 and A2. Then, there exists s0 > 0 such
that for any s ∈ (−s0, s0), the function bs,ϕ is well-defined and

bs,ϕ(x) = dΠs,z

dz

∣∣∣
z=0

ϕ(x), x ∈ P(V ). (4.13)

Moreover, there exist constants γ > 0 and c > 0 such that bs,ϕ ∈ Bγ and
‖bs,ϕ‖γ 6 c‖ϕ‖γ for any s ∈ (−s0, s0).

In addition to Lemma 4.7, we prove the following result on the function
ds,ϕ defined in (4.12).
Lemma 4.8. Assume A1 and A2. Then, there exists s0 > 0 such that for
any s ∈ (−s0, s0), the function ds,ϕ is well-defined. Moreover, there exist
constants γ > 0 and c > 0 such that ds,ϕ ∈ B∗γ and ‖ds,ϕ‖γ 6 c‖ϕ‖∞ for
any s ∈ (−s0, s0).
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Proof. Since a 6 ea for any a > 0, for any η ∈ (0, 1) we have −η log δ(y, x) 6
δ(y, x)−η, so that

−ds,ϕ(y) 6 ‖ϕ‖∞
η

∫
P(V )

1
δ(y, x)η πs(dx).

Choosing η small enough, by Lemma 4.4, the latter integral is bounded
uniformly in y ∈ P(V ∗) and s ∈ (−s0, s0), which proves that ds,ϕ is well
defined and that ‖ds,ϕ‖∞ 6 c‖ϕ‖∞.

Note that | log(1 + a)| 6 c|a| for any |a| 6 1
2 . Then, using this, for any

y′ = Rf ′ ∈ P(V ∗), y′′ = Rf ′′ ∈ P(V ∗) and any γ > 0, we deduce that∣∣log δ(y′, x)− log δ(y′′, x)
∣∣

=
∣∣log δ(y′, x)− log δ(y′′, x)

∣∣1{∣∣ δ(y′,x)−δ(y′′,x)
δ(y′′,x)

∣∣> 1
2

}
+
∣∣log δ(y′, x)− log δ(y′′, x)

∣∣1{∣∣ δ(y′,x)−δ(y′′,x)
δ(y′′,x)

∣∣6 1
2

}
6 2γ

(∣∣log δ(y′, x)
∣∣+ ∣∣log δ(y′′, x)

∣∣) ∣∣∣∣δ(y′, x)− δ(y′′, x)
δ(y′′, x)

∣∣∣∣γ
+ cγ

∣∣log δ(y′, x)− log δ(y′′, x)
∣∣1−γ ∣∣∣∣δ(y′, x)− δ(y′′, x)

δ(y′′, x)

∣∣∣∣γ .
Taking into account the fact that −η log δ(y, x) 6 δ(y, x)−η, from the previ-
ous bound, we obtain

| log δ(y′, x)− log δ(y′′, x)|
6 cη

(
δ(y′, x)−ηδ(y′′, x)−γ + δ(y′′, x)−η−γ

) ∣∣δ(y′, x)− δ(y′′, x)
∣∣γ

+ cη,γ
(
δ(y′, x)−η(1−γ)δ(y′′, x)−γ + δ(y′′, x)−η(1−γ)−γ

) ∣∣δ(y′, x)− δ(y′′, x)
∣∣γ

6 cη,γ
(
δ(y′, x)−ηδ(y′′, x)−γ + δ(y′′, x)−η−γ

) ∣∣δ(y′, x)− δ(y′′, x)
∣∣γ

6 cη,γ
(
δ(y′, x)−2η + δ(y′′, x)−2γ + δ(y′′, x)−η−γ

) ∣∣δ(y′, x)− δ(y′′, x)
∣∣γ .

Since ‖ f ′

‖f ′‖ −
f ′′

‖f‖‖ 6 d(y′, y′′) where d(y′, y′′) is the angular distance on
P(V ∗), it follows that∣∣δ(y′, x)− δ(y′′, x)

∣∣ =
∣∣∣∣ v(f ′)
‖v‖‖f ′‖

− v(f ′′)
‖v‖‖f ′′‖

∣∣∣∣ 6 ∥∥∥ f ′

‖f ′‖
− f ′′

‖f‖

∥∥∥ 6 d(y′, y′′).

By the definition of the function ds,ϕ, using the above bounds, we obtain

|ds,ϕ(y′)− ds,ϕ(y′′)|
d(y′, y′′)γ

6 cη,γ‖ϕ‖∞
∫
P(V )

(
δ(y′, x)−2η + δ(y′′, x)−2γ + δ(y′′, x)−η−γ

)
πs(dx).
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By choosing η and γ sufficiently small, the last integral is bounded uniformly
in y′, y′′ ∈ P(V ∗) and s ∈ (−s0, s0) by Lemma 4.4. This proves that ds,ϕ ∈
B∗γ . �

In the proof of Theorem 2.4 we make use of the following Edgeworth
expansion for the couple (Gn · x, σ(Gn, x)) with a target function on Gn · x,
which slightly improves [45, Theorem 5.3] by giving more accurate reminder
terms. This improvement will be important for establishing Theorem 2.4.

Theorem 4.9. Assume A1 and A2. Then, there exists s0 > 0 such that,
as n→∞, uniformly in s ∈ (−s0, s0), x ∈ P(V ), t ∈ R and ϕ ∈ Bγ,

EQxs

[
ϕ(Gn · x)1{σ(Gn,x)−nΛ′(s)

σs
√
n

6t
}]

= πs(ϕ)
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]
− bs,ϕ(x)

σs
√
n
φ(t)

+ πs(ϕ)o
( 1√

n

)
+ ‖ϕ‖γO

( 1
n

)
.

Proof. For any x ∈ P(V ), define

F (t) = EQxs

[
ϕ(Gn ·x)1{σ(Gn,x)−nΛ′(s)

σs
√
n

6t
}]+ bs,ϕ(x)

σs
√
n
φ(t), t ∈ R,

H(t) = EQxs [ϕ(Gn ·x)]
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]
, t ∈ R.

Since F (−∞) = H(−∞) = 0 and F (∞) = H(∞), applying Proposition 4.1
of [45] we get that

sup
t∈R

∣∣F (t)−H(t)
∣∣ 6 1

π
(I1 + I2 + I3 + I4), (4.14)

where

I1 = o
( 1√

n

)
sup
t∈R
|H ′(t)|, I2 6 Ce

−cn‖ϕ‖γ , I3 6
c

n
‖ϕ‖γ , I4 6

c

n
‖ϕ‖γ .

Here the bounds for I2, I3 and I4 are obtained in [45]. It is easy to see that

I1 = o
( 1√

n

)
EQxs

[
ϕ(Gn ·x)

]
.

This, together with the fact that

EQxs

[
ϕ(Gn ·x)

]
6 πs(ϕ) + Ce−cn‖ϕ‖γ

(cf. Lemma 4.2), proves the theorem. �
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In the following we shall construct a partition (χyn,k)k>0 of the unity on
the projective space P(V ), which is similar to the partitions in [48, 25, 18].
In contrast to [48, 25], there is no escape of mass in our partition, which
simplifies the proofs. Our partition becomes finer when n → ∞, which
allows us to obtain precise expressions for remainder terms in the central
limit theorem and thereby to establish the Edgeworth expansion for the
coefficients.

Let U be the uniform distribution function on the interval [0, 1]: U(t) = t
for t ∈ [0, 1], U(t) = 0 for t < 0 and U(t) = 1 for t > 1. Let an = 1

logn . Here
and below we assume that n > 18 so that anean 6 1

2 . For any integer k > 0,
define

Un,k(t) = U

(
t− (k − 1)an

an

)
, hn,k(t) = Un,k(t)− Un,k+1(t), t ∈ R.

It is easy to see that Un,m =
∑∞
k=m hn,k for any m > 0. Therefore, for any

t > 0 and m > 0, we have
∞∑
k=0

hn,k(t) = 1,
m∑
k=0

hn,k(t) + Un,m+1(t) = 1. (4.15)

Note that, for any k > 0,

sup
s,t>0:s 6=t

|hn,k(s)− hn,k(t)|
|s− t|

6
1
an
. (4.16)

For any x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗), set

χyn,k(x) = hn,k(− log δ(y, x)) and χyn,k(x) = Un,k(− log δ(y, x)), (4.17)

where we recall that − log δ(y, x) > 0 for any x ∈ P(V ) and y ∈ P(V ∗).
From (4.15) we have the following partition of the unity on P(V ): for any
x ∈ P(V ), y ∈ P(V ∗) and m > 0,

∞∑
k=0

χyn,k(x) = 1,
m∑
k=0

χyn,k(x) + χyn,m+1(x) = 1. (4.18)

Denote by supp(χyn,k) the support of the function χ
y
n,k. It is easy to see that

for any k > 0 and y ∈ P(V ∗),

− log δ(y, x) ∈ [an(k − 1), an(k + 1)] for any x ∈ supp(χyn,k). (4.19)

Lemma 4.10. There exists a constant c > 0 such that for any γ ∈ (0, 1],
k > 0 and y ∈ P(V ∗), it holds χyn,k ∈ Bγ and, moreover,

‖χyn,k‖γ 6
ceγkan

aγn
. (4.20)



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 25

Proof. Since ‖χyn,k‖∞ 6 1, it is enough to give a bound for the modulus of
continuity:

[χyn,k]γ = sup
x′,x′′∈P(V ):x′ 6=x′′

|χyn,k(x′)− χ
y
n,k(x′′)|

d(x′, x′′)γ ,

where d is the angular distance on P(V ) defined by (2.1). Asume that
x′ = Rv′ ∈ P(V ) and x′′ = Rv′′ ∈ P(V ) are such that ‖v′‖ = ‖v′′‖ = 1. We
note that

‖v′ − v′′‖ 6
√

2d(x′, x′′). (4.21)
For short denote Bk = ((k − 1)an, kan]. Remark that the function hn,k is
increasing on Bk and decreasing on Bk+1. Set for brevity t′ = − log δ(y, x′)
and t′′ = − log δ(y, x′′). First we consider the case when t′ and t′′ are such
that t′, t′′ ∈ Bk. Then, using (4.17) and (4.16), for any γ ∈ (0, 1], we have

|χyn,k(x
′)− χyn,k(x

′′)| = |hn,k(t′)− hn,k(t′′)|1−γ |hn,k(t′)− hn,k(t′′)|γ

6 |hn,k(t′)− hn,k(t′′)|γ 6
|t′ − t′′|γ

aγn
= 1
aγn
| log u′ − log u′′|γ , (4.22)

where we set for brevity u′ = δ(y, x′) and u′′ = δ(y, x′′). Since u′ = e−t
′ , u′′ =

e−t
′′ and t, t′ ∈ Bk, we have u′′ > e−kan and |u′ − u′′| 6 e−(k−1)an − e−kan .

Therefore,∣∣∣ u′
u′′
− 1

∣∣∣ =
∣∣∣u′ − u′′

u′′

∣∣∣ 6 e−(k−1)an − e−kan
e−kan

= ean − 1 6 anean 6
1
2 ,

which, together with the inequality | log(1 + a)| 6 2|a| for any |a| 6 1
2 ,

implies

| log u′ − log u′′| =
∣∣∣∣log

(
1 + u′

u′′
− 1

)∣∣∣∣ 6 2 |u
′ − u′′|
u′′

. (4.23)

Since u′′ > e−kan , using the fact that ‖v′‖ = ‖v′′‖ = 1 and (4.21), we get
|u′ − u′′|

u′′
6 ekan |δ(y, x′)− δ(y, x′′)| = ekan

|f(v′)− f(v′′)|
‖f‖

= ekan
|f(v′ − v′′)|
‖f‖

6
√

2ekand(x′, x′′). (4.24)

Therefore, from (4.22), (4.23) and (4.24), it follows that for γ ∈ (0, 1],

|χyn,k(x
′)− χyn,k(x

′′)| 6 3e
γkan

aγn
d(x′, x′′)γ . (4.25)

The case t′, t′′ ∈ Bk is treated in the same way.
To conclude the proof we shall consider the case when t′ = − log δ(y, x′) ∈

Bk−1 and t′′ = − log δ(y, x′′) ∈ Bk; the other cases can be handled in the
same way. We shall reduce this case to the previous ones. Let x∗ ∈ P(V )
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be the point on the geodesic line [x′, x′′] on P(V ) such that d(x′, x′′) =
d(x′, x∗) + d(x∗, x′′) and t∗ = − log δ(y, x∗) = kan. Then

|χyn,k(x
′)− χyn,k(x

′′)| 6 |χyn,k(x
′)− χyn,k(x

∗)|+ |χyn,k(x
′′)− χyn,k(x

∗)|

6 3e
γkan

aγn
d(x′, x∗)γ + 3e

γkan

aγn
d(x′′, x∗)γ

6 6e
γkan

aγn
d(x′, x′′)γ . (4.26)

From (4.25) and (4.26) we conclude that [χyn,k]γ 6 6 eγkan
aγn

, which shows
(4.20). �

We need the following bounds. Let Mn = bA log2 nc, where A > 0 is a
constant and n is large enough. It is convenient to denote

ϕyn,k = ϕχyn,k for 0 6 k 6Mn − 1, ϕyn,Mn
= ϕχyn,Mn

. (4.27)

Lemma 4.11. Assume A1 and A2. Then there exist constants s0 > 0 and
c > 0 such that for any s ∈ (−s0, s0), y ∈ P(V ∗) and any non-negative
bounded measurable function ϕ on P(V ),

Mn∑
k=0

(k + 1)anπs(ϕyn,k) 6 −ds,ϕ(y) + 2anπs(ϕ)

and
Mn∑
k=0

(k − 1)anπs(ϕyn,k) > −ds,ϕ(y)− 2anπs(ϕ)− c‖ϕ‖∞
n2 .

Proof. Recall that dϕ(y) is defined in (2.10). Using (4.18) we deduce that

−ds,ϕ(y) = −
Mn∑
k=0

∫
P(V )

ϕyn,k(x) log δ(y, x)πs(dx)

>
Mn∑
k=0

(k − 1)anπs(ϕyn,k)

=
Mn∑
k=0

(k + 1)anπs(ϕyn,k)− 2anπs(ϕ),

which proves the first assertion of the lemma.
Using the Markov inequality and the exponential Hölder regularity of the

invariant measure πs (Lemma 4.4), we get that there exists a small η > 0
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such that

−
∫
P(V )

ϕyn,Mn
(x) log δ(y, x)πs(dx)

6 c‖ϕ‖∞
∫
P(V )

e−ηA logn

δ(y, x)η δ(y, x)−ηπs(dx)

= e−ηA logn‖ϕ‖∞
∫
P(V )

δ(y, x)−2ηπs(dx) 6 c‖ϕ‖∞
n2 ,

where in the last inequality we choose A > 0 to be sufficiently large so that
ηA > 2. Therefore,

−ds,ϕ(y) = −
Mn∑
k=0

∫
P(V )

ϕyn,k(x) log δ(y, x)πs(dx)

6
Mn−1∑
k=0

(k + 1)anπs(ϕyn,k) + c
‖ϕ‖∞
n2

6
Mn−1∑
k=0

(k − 1)anπs(ϕyn,k) + 2anπs(ϕ) + c
‖ϕ‖∞
n2

6
Mn∑
k=0

(k − 1)anπs(ϕyn,k) + 2anπs(ϕ) + c
‖ϕ‖∞
n2 .

This proves the second assertion of the lemma. �

Proof of Theorem 4.6. Without loss of generality, we assume that the target
function ϕ is non-negative. With the notation in (4.27), we have

In(t) := EQxs

[
ϕ(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

σs
√
n

6t
}]

=
Mn∑
k=0

EQxs

[
ϕyn,k(Gn ·x)1{ log |〈f,Gnv〉|−nλ1

σs
√
n

6t
}] =:

Mn∑
k=0

Fn,k(t). (4.28)

For 0 6 k 6Mn − 1, using (1.7) and the fact that − log δ(y, x) 6 (k + 1)an
when x ∈ suppϕyn,k, we get

Fn,k(t) 6 EQxs

[
ϕyn,k(Gn ·x)1{σ(Gn,x)−nλ1

σs
√
n

6t+ (k+1)an
σs
√
n

}] =: Hn,k(t). (4.29)
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For k = Mn, we have

Fn,Mn(t) 6 EQxs

[
ϕyn,Mn

(Gn ·x)1{ logσ(Gn,x)−nλ1
σs
√
n

6t+ (Mn+1)an
σs
√
n

}]
+ EQxs

[
ϕyn,Mn

(Gn ·x)1{
−log δ(y,Gn·x)>(Mn+1)an

}]
=: Hn,Mn(t) +Wn(t), (4.30)

where, by Lemma 4.5, choosing A large enough,

Wn(t) 6 ‖ϕ‖∞Qx
s (− log δ(y,Gn · x) > A logn)

6 ‖ϕ‖∞
c0
nc1A

6 ‖ϕ‖∞
c0
n2 . (4.31)

Now we deal with Hn,k(t) for 0 6 k 6 Mn. Denote for short tn,k = t +
(k+1)an
σs
√
n

. Applying the Edgeworth expansion (Theorem 4.9) we obtain that,
uniformly in s ∈ (−s0, s0), x ∈ P(V ), t ∈ R, 0 6 k 6 Mn and ϕ ∈ Bγ , as
n→∞,

Hn,k(t) = πs(ϕyn,k)
[
Φ(tn,k) + Λ′′′(s)

6σ3
s

√
n

(1− t2n,k)φ(tn,k)
]

−
bs,ϕy

n,k
(x)

σs
√
n

φ(tn,k) + πs(ϕyn,k)o
( 1√

n

)
+ ‖ϕyn,k‖γO

( 1
n

)
.

By the Taylor expansion we have, uniformly in s ∈ (−s0, s0), x ∈ P(V ),
t ∈ R and 0 6 k 6Mn,

Φ(tn,k) = Φ(t) + φ(t)(k + 1)an
σs
√
n

+O
( log2 n

n

)
and

(1− t2n,k)φ(tn,k) = (1− t2)φ(t) +O

( logn√
n

)
.

Moreover, using Lemma 4.7,

bs,ϕy
n,k

(x)
σs
√
n

φ(tn,k) =
bs,ϕy

n,k
(x)

σs
√
n

φ(t) + ‖ϕyn,k‖γO
( logn

n

)
.

Using these expansions and (4.29), (4.30) and (4.31), we get that there exists
a sequence (βn)n>1 of positive numbers satisfying βn → 0 as n → ∞, such
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that for any 0 6 k 6Mn,

Fn,k(t) 6 πs(ϕyn,k)
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]

−
bs,ϕy

n,k
(x)

σs
√
n

φ(t) + φ(t)
σs
√
n
πs(ϕyn,k)(k + 1)an

+ πs(ϕyn,k)
βn√
n

+ ‖ϕyn,k‖γ
c logn
n

. (4.32)

By Lemma 4.10, it holds that for any γ ∈ (0, 1] and 0 6 k 6Mn,

‖ϕyn,k‖γ 6 c‖ϕ‖∞n
γA logγ n+ ‖ϕ‖γ . (4.33)

Summing up over k in (4.32), using (4.33) and taking γ > 0 to be sufficiently
small such that γA < ε/2, we obtain

In(t) =
Mn∑
k=0

Fn,k 6 πs(ϕ)
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]

− bs,ϕ(x)
σs
√
n
φ(t) + φ(t)

σs
√
n

Mn∑
k=0

πs(ϕyn,k)(k + 1)an

+ πs(ϕ) βn√
n

+ ‖ϕ‖γ
c

n1−ε . (4.34)

Combining (4.34) and Lemma 4.11, together with the fact that an → 0 as
n→∞, yields the desired upper bound.

The lower bound is established in the same way. Instead of (4.32) we
use the following bound, which is obtained using (1.7) and the fact that
− log δ(y, x) > (k − 1)an for x ∈ suppϕyn,k and 0 6 k 6Mn,

Fn,k(t) > EQxs

[
ϕyn,k(Gn ·x)1{σ(Gn,x)−nλ1

σs
√
n

6t+ (k−1)an
σs
√
n

}] . (4.35)

Proceeding in the same way as in the proof of the upper bound, using (4.35)
instead of (4.29) and (4.30), we get

In(t) =
Mn∑
k=0

Fn,k > πs(ϕ)
[
Φ(t) + Λ′′′(s)

6σ3
s

√
n

(1− t2)φ(t)
]

− bs,ϕ(x)
σs
√
n
φ(t) + φ(t)

σs
√
n

Mn∑
k=0

πs(ϕyn,k)(k − 1)an

+ πs(ϕ)o
( 1√

n

)
+ ‖ϕ‖γO

( 1
n1−ε

)
.

The lower bound is obtained using again Lemma 4.11. �
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5. Proof of the subexponential regularity and applications

In this section we first establish Theorem 2.6 on the regularity of the in-
variant measure ν under a sub-exponential moment condition. Then we shall
apply Theorem 2.6 to prove Theorem 2.5 on the Berry-Esseen type bound
for the coefficients 〈f,Gnv〉, and Theorem 2.7 on the moderate deviation
principle for 〈f,Gnv〉 also under a sub-exponential moment condition.

5.1. Proof of Theorem 2.6. The following moderate deviation principle
is proved in [14] under a subexponential moment condition.

Lemma 5.1 ([14]). Assume A2. Assume also that
∫

GL(V ) log2N(g)µ(dg) <
∞ and

lim sup
n→∞

n

b2n
log

[
nµ
(

logN(g) > bn
)]

= −∞, (5.1)

where (bn)n>1 is a sequence of positive numbers satisfying bn
n → 0 and bn√

n
→

∞ as n→∞. Then, for any Borel set B ⊂ R,

− inf
t∈B◦

t2

2σ2 6 lim inf
n→∞

n

b2n
log inf

x∈P(V )
P
(
σ(Gn, x)− nλ1

bn
∈ B

)
6 lim sup

n→∞

n

b2n
log sup

x∈P(V )
P
(
σ(Gn, x)− nλ1

bn
∈ B

)
6 − inf

t∈B̄

t2

2σ2 ,

where B◦ and B̄ are respectively the interior and the closure of B.

The following result is an easy consequence of Lemma 5.1.

Lemma 5.2. Assume the conditions of Lemma 5.1. Then, there exist con-
stants c, c′ > 0 and n0 ∈ N such that for any n > n0 and v ∈ V \ {0},

e−c
′ b

2
n
n 6 P

(‖Gnv‖
‖v‖

> eλ1n+bn
)
6 e−c

b2n
n , (5.2)

e−c
′ b

2
n
n 6 P

(‖Gnv‖
‖v‖

6 eλ1n−bn
)
6 e−c

b2n
n , (5.3)

e−c
′ b

2
n
n 6 P

(
‖Gn‖ > eλ1n+bn

)
6 e−c

b2n
n , (5.4)

e−c
′ b

2
n
n 6 P

(
‖Gn‖ 6 eλ1n−bn

)
6 e−c

b2n
n . (5.5)

Proof. Inequalities (5.2) and (5.3) are direct consequences of Lemma 5.1. By
(5.2) and the fact that ‖Gn‖ > ‖Gnv‖

‖v‖ , the first inequality in (5.4) follows.
To show the second inequality in (5.4), since all matrix norms on V are
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equivalent, we get

P
(
‖Gn‖ > enλ1+bn

)
6 P

(
max
16i6d

‖Gnei‖ > enλ1+bn
)

6
d∑
i=1

P
(
‖Gnei‖ > enλ1+bn

)
6 e−c

b2n
n ,

where the last inequality holds due to (5.2). This concludes the proof of
(5.4). Using (5.3), the proof of (5.5) can be carried out in the same way as
that of (5.4). �

The following purely algebraic result is due to Chevalley [11]; see also
Bougerol and Lacroix [7, page 125, Lemma 5.5].

Lemma 5.3 ([11, 7]). Let G be an irreducible subgroup of GL(V ). Then,
for any integer 1 6 p 6 d, there exists a direct-sum decomposition of the
p-th exterior power: ∧p(V ) = V1 ⊕ . . .⊕ Vk such that (∧pg)Vj = Vj for any
g ∈ G and 1 6 j 6 k. Moreover, ∧p(G) := {∧pg : g ∈ G} is irreducible on
each subspace Vj , j = 1, · · · , k.

Using Lemma 5.3 and the strategies from [7, 46], we extend (5.4) and
(5.5) to the exterior product ∧pGn.

Lemma 5.4. Assume the conditions of Lemma 5.1. Let 1 6 p 6 d be an
integer. Then there exist constants c, c′ > 0 and n0 ∈ N such that for any
n > n0,

e−c
′ b

2
n
n 6 P

(
‖ ∧p Gn‖ > en

∑p

i=1 λi+bn
)
6 e−c

b2n
n , (5.6)

e−c
′ b

2
n
n 6 P

(
‖ ∧p Gn‖ 6 en

∑p

i=1 λi−bn
)
6 e−c

b2n
n . (5.7)

Proof. We first prove (5.6). Since the Lyapunov exponents (λp)16p6d of µ
are given by λ1 > λ2 > . . . > λd, the two largest Lyapunov exponents of
∧pGn satisfy

∑p
i=1 λi >

∑p+1
i=2 λi (see [7]), where we use the convention that

λd+1 = λd. Without loss of generality, we can assume that
∑p
i=1 λi = 0;

otherwise we replace ∧pGn by e−
∑p

i=1 λi ∧p Gn.
Since the action of ∧pGn on ∧pV is in general not irreducible, we need

to consider a decomposition of ∧pV . Applying Lemma 5.3 to G = Gµ
(the smallest closed subgroup of GL(V ) generated by the support of µ),
we get the following direct-sum decomposition of the p-th exterior power
∧pV : ∧pV = V1 ⊕ V2 ⊕ . . . ⊕ Vk, where Vj are subspaces of ∧pV such that
(∧pg)Vj = Vj for any g ∈ Gµ and 1 6 j 6 k. Moreover, ∧p(Gµ) := {∧pg :
g ∈ Gµ} is irreducible on each subspace Vj . Since the set of all Lyapunov
exponents of ∧pGn on the space ∧pV coincides with the union of all the
Lyapunov exponents of (∧pGn) restricted to each subspace Vj , 1 6 j 6 k,
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we can choose V1 in such a way that the restrictions of ∧pGn to V1 and
V ′1 := V2 ⊕ . . .⊕ Vk, denoted respectively by G′n and G′′n, satisfy:

‖ ∧p Gn‖ = max{‖G′n‖, ‖G′′n‖}, (5.8)

and a.s.,

lim
n→∞

1
n

log ‖G′n‖ =
p∑
i=1

λi = 0 and lim
n→∞

1
n

log ‖G′′n‖ =
p+1∑
i=2

λi < 0. (5.9)

Here, G′n and G′′n are products of i.i.d. random variables of the form G′n =
g′n · · · g′1 and G′′n = g′′n · · · g′′1 . We denote by µ1 the law of the random variable
g1, by d1 the dimension of the vector space V1, and by Γµ1 the smallest closed
subsemigroup of GL(V1) generated by the support of µ1. Then, following the
analogous argument used in the proof of the central limit theorem for ‖Gn‖
(see [7, Theorem V.5.4]), one can verify that the semigroup Γµ1 is strongly
irreducible and proximal on V1. Therefore, we can apply the moderate
deviation bounds (5.4) and (5.5) (with Gn replaced by G′n) to get

e−c
′ b

2
n
n 6 P

(
‖G′n‖ > ebn

)
6 e−c

b2n
n , e−c

′ b
2
n
n 6 P

(
‖G′n‖ 6 e−bn

)
6 e−c

b2n
n .

(5.10)

From (5.8) and (5.10), the lower bound of (5.6) easily follows:

e−c
′ b

2
n
n 6 P

(
‖ ∧p Gn‖ > ebn

)
. (5.11)

Now we prove the upper bound of (5.6). Since the first Lyapunov expo-
nent of the sequence (G′′n)n>1 is strictly less than 0 (see (5.9)), we have

1
m
E(log ‖G′′m‖) < 0

for sufficiently large integer m > 1. If we write n = km+ r with k > 1 and
0 6 r < m, then we have the identity

G′′n = [G′′n(G′′km)−1] [G′′km(G′′(k−1)m)−1] . . . [G′′2m(G′′m)−1]G′′m,

and hence

log ‖G′′n‖ 6 log ‖G′′n(G′′km)−1‖+ log ‖G′′km(G′′(k−1)m)−1‖+ . . .+ log ‖G′′m‖.
(5.12)

For fixed integer m > 1, we denote um := −E(log ‖G′′m‖) > 0. Then,

P(log ‖G′′n‖ > 0) 6 P
(

log ‖G′′n(G′′km)−1‖ > kum2
)

+ P
(

log ‖G′′km(G′′(k−1)m)−1‖+ · · ·+ log ‖G′′m‖+ kum > k
um
2
)
. (5.13)
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For the first term, using (5.8) and the inequality ‖ ∧p g‖ 6 ‖g‖p for any
g ∈ Γµ, we get

P
(

log ‖G′′n(G′′km)−1‖ > kum2
)

= P
(

log ‖G′′r‖ > k
um
2
)

6 P
(

log ‖ ∧p Gr‖ > k
um
2
)

= P
( r∑
i=1

log ‖ ∧p gi‖ > k
um
2
)

6
r∑
i=1

P
(

log ‖ ∧p g1‖ > k
um
2r
)
6

r∑
i=1

P
(

log ‖g1‖ > k
um
2rp

)
6
c

k
e−c

b2
k
k , (5.14)

where in the last inequality we use condition (5.1). The second term on the
right hand side of (5.13) is dominated by e−cb

2
k/k, by using the moderate

deviation bounds for sums of i.i.d. real-valued random variables. This,
together with (5.14), (5.13) and the fact that k > n/(m+ 1), yields that

P(log ‖G′′n‖ > 0) 6 e−c
b2n
n . (5.15)

From (5.8), (5.10) and (5.15), we derive that

P
(
‖ ∧p Gn‖ > ebn

)
6 P

(
‖G′n‖ > ebn

)
+ P

(
‖G′′n‖ > ebn

)
6 2e−c

b2n
n .

Combining this with (5.11), we get (5.6).
The proof of (5.7) can be carried out in a similar way. �

Our next result is an analog of Proposition 3.4 under a subexponential
moment assumption.

Proposition 5.5. Assume the conditions of Lemma 5.1. Then, there exist
constants c > 0 and n0 ∈ N such that for any n > n0, x ∈ P(V ) and
y ∈ P(V ∗),

P
(
d(Gn ·x, xMGn) > e−(λ1−λ2)n+bn

)
6 e−c

b2n
n , (5.16)

P
(
δ(xMGn , y) 6 e−bn

)
6 e−c

b2n
n , (5.17)

P
(
δ(Gn ·x, y) 6 e−bn

)
6 e−c

b2n
n . (5.18)

Proof. We first prove (5.16). By (3.4), we have

P
(
d(Gn ·x, xMGn) > e−(λ1−λ2)n+bn

)
6 P

(
‖ ∧2 Gn‖‖v‖
‖Gn‖‖Gnv‖

> e−(λ1−λ2)n+bn

)
=: In.
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Using (5.3) gives

In 6 P
(
‖ ∧2 Gn‖‖v‖
‖Gn‖‖Gnv‖

> e−(λ1−λ2)n+bn ,
‖Gnv‖
‖v‖

> eλ1n− bn3

)
+ e−c

b2n
n

6 P
(
‖ ∧2 Gn‖
‖Gn‖

> eλ2n+ 2
3 bn

)
+ e−c

b2n
n .

In the same way, from (5.5) and (5.6) it follows that

In 6 P
(
‖ ∧2 Gn‖
‖Gn‖

> eλ2n+ 2
3 bn , ‖Gn‖ > eλ1n− 1

3 bn

)
+ 2e−c

b2n
n

6 P
(
‖ ∧2 Gn‖ > e(λ1+λ2)n+ 1

3 bn
)

+ 2e−c
b2n
n

6 3e−c
b2n
n , (5.19)

which concludes the proof of (5.16).
We next prove (5.17). By Lemma 3.3 (2), we have that for any y = Rf

with f ∈ V ∗ \ {0},

P
(
δ(xMGn , y) 6 e−bn

)
6 P

(
‖G∗nf‖
‖G∗n‖‖f‖

− ‖ ∧
2 Gn‖
‖Gn‖2

6 e−bn
)

=: Jn. (5.20)

Following the proof of (5.19), one has

P
(
‖ ∧2 Gn‖
‖Gn‖2

> e−(λ1−λ2)n+bn

)
6 e−c

b2n
n .

Using this together with (5.3) and (5.4) applied to the measure µ∗ (µ∗ is
the image of the measure µ by the map g 7→ g∗, where g∗ is the adjoint
automorphism of g ∈ GL(V ) acting on the dual space V ∗), we get

Jn 6 P
(
‖G∗nf‖
‖G∗n‖‖f‖

− ‖ ∧
2 Gn‖
‖Gn‖2

6 e−bn ,
‖ ∧2 Gn‖
‖Gn‖2

< e−(λ1−λ2)n+bn

)
+ e−c

b2n
n

6 P
( ‖G∗nf‖
‖G∗n‖‖f‖

6 2e−bn
)

+ e−c
b2n
n

6 P
( ‖G∗nf‖
‖G∗n‖‖f‖

6 2e−bn , ‖G∗n‖ 6 eλ1n+ bn
2

)
+ 2e−c

b2n
n

6 P
(‖G∗nf‖
‖f‖

6 2eλ1n− bn2
)

+ 2e−c
b2n
n

6 3e−c
b2n
n ,

which ends the proof of (5.17).
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We finally prove (5.18). Since
δ(Gn ·x, y) > δ(xMGn , y)− d(Gn ·x, xMGn),

using (5.16), (5.17) and the fact that λ1 > λ2, we get

P
(
δ(Gn ·x, y) 6 e−bn

)
6 P

(
δ(xMGn , y)− d(Gn ·x, xMGn) 6 e−bn

)
6 P

(
δ(xMGn , y)− d(Gn ·x, xMGn) 6 e−bn , d(Gn ·x, xMGn) < e−(λ1−λ2)n+bn

)
+ e−c

b2n
n

6 P
(
δ(xMGn , y) 6 e−bn + e−(λ1−λ2)n+bn

)
+ e−c

b2n
n

6 e−c
b2n
n ,

which concludes the proof of (5.18). �

As a consequence of Proposition 5.5, we get the following:

Proposition 5.6. Assume the conditions of Lemma 5.1. Then there exist
constants c > 0 and k0 ∈ N such that for all n > k > k0, x ∈ P(V ) and
y ∈ P(V ∗),

P
(
δ(Gn ·x, y) 6 e−bk

)
6 e−c

b2
k
k . (5.21)

Moreover, there exist constants c > 0 and n0 > 0 such that for any n > n0
and y ∈ P(V ∗),

ν
(
x ∈ P(V ) : δ(x, y) 6 e−bn

)
6 e−c

b2n
n . (5.22)

Proof. By using (5.18), the proof of (5.21) is similar to that of Lemma 3.5.
Inequality (5.22) is a consequence of (5.18) and the fact that ν is the unique
invariant measure of the Markov chain (Gn ·x)n>0. �

Proof of Theorem 2.6. As a particular case of (5.21), by taking bk = kβ with
β ∈ (1

2 , 1), we get that if A2 holds and µ(logN(g) > u) 6 exp{−u
2β−1
β a(u)}

for any u > 0 and for some function a(u) > 0 satisfying a(u)→∞ as u→∞,
then there exist constants c > 0 and k0 ∈ N such that for all n > k > k0,
x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(Gn ·x, y) 6 e−kβ

)
6 exp

{
−ck2β−1

}
.

Letting α = 2β−1
β , this implies that if A2 holds and µ(logN(g) > u) 6

exp{−uαlu} for some α ∈ (0, 1) and any u > 0, then there exist constants
c > 0 and k0 ∈ N such that for all n > k > k0, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(Gn ·x, y) 6 e−k

)
6 exp {−ckα} .
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This proves (2.14).
Now we prove (2.15). Taking k = n in (2.14), we get that there exist

constants c0 > 0 and n0 > 0 such that for any n > n0 and y ∈ P(V ∗),

ν
(
x ∈ P(V ) : δ(x, y) 6 e−n

)
6 e−c0n

α
. (5.23)

Set Bn,y := {x ∈ P(V ) : e−(n+1) 6 δ(x, y) 6 e−n} for y ∈ P(V ∗) and n > 1.
From (5.23) we deduce that for any η ∈ (0, c0), uniformly in y ∈ P(V ∗),∫

P(V )
exp (η| log δ(x, y)|α) ν(dx)

6 eηn
α
0 +

∞∑
n=n0

∫
Bn,y

exp (η| log δ(x, y)|α) ν(dx)

6 eηn
α
0 +

∞∑
n=n0

e−(c0−η)nα <∞, (5.24)

since α > 0. This concludes the proof of (2.15).
Using (2.15) and the Markov inequality, one can easily get (2.16). �

5.2. Proof of Theorem 2.5. To prove Theorem 2.5, we shall use Theorem
2.6 and the following Berry-Esseen bound for the norm cocycle σ(Gn, x).

Lemma 5.7 ([15]). Assume A2 and that
∫

GL(V ) log4N(g)µ(dg) < ∞.
Then, there exists a constant c > 0 such that for any n > 1, t ∈ R and
x ∈ P(V ), ∣∣∣∣P(σ(Gn, x)− nλ1

σ
√
n

6 t
)
− Φ(t)

∣∣∣∣ 6 c√
n
.

The same result has been obtained in [37] under the slightly stronger
moment condition

∫
GL(V ) log8N(g)µ(dg) <∞.

Proof of Theorem 2.5. We first prove (2.13). The lower bound is a direct
consequence of Lemma 5.7 and the fact that log |〈f,Gnv〉| 6 log |Gnv|: there
exists a constant c > 0 such that for any n > 1, t ∈ R, v ∈ V and f ∈ V ∗
with ‖v‖ = ‖f‖ = 1,

In := P
( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t
)
> Φ(t)− c√

n
. (5.25)

The upper bound follows from Proposition 5.6 together with Lemma 5.7.
Specifically, from the identity (3.8) and Theorem 2.6, we get that for x = Rv



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 37

and y = Rf with ‖v‖ = ‖f‖ = 1,

In = P
( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t, δ(y,Gn · x) > e−k
)

+ P
( log |〈f,Gnv〉| − nλ1

σ
√
n

6 t, δ(y,Gn · x) 6 e−k
)

6 P
( log ‖Gnv‖ − nλ1

σ
√
n

6 t+ k

σ
√
n

)
+ e−c1k

α
. (5.26)

Taking k = b( 1
c1

logn)
1
α c, we get that there exists a constant c > 0 such

that e−c1kα 6 c√
n
. By Theorem 4.9, we get

P
( log ‖Gnv‖ − nλ1

σ
√
n

6 t+ k

σ
√
n

)
6 Φ

(
t+ k

σ
√
n

)
+ c√

n

6 Φ(t) + c log
1
α n√
n

. (5.27)

The desired bound (2.13) follows by combining (5.25), (5.26) and (5.27). �

5.3. Proof of Theorem 2.7. In this subsection we establish Theorem 2.7
using Theorem 2.6 and Lemma 5.1.

Proof of Theorem 2.7. By Lemma 4.4 of [36], it suffices to prove the follow-
ing moderate deviation asymptotics: for any t > 0, uniformly in v ∈ V and
f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

lim
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

> t
)

= − t2

2σ2 , (5.28)

lim
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

6 −t
)

= − t2

2σ2 . (5.29)

We first prove (5.28). The upper bound is an easy consequence of Lemma
5.1. Since there exists a constant α ∈ (0, 1) such that µ(logN(g) > u) 6
c exp{−uα} for any u > 0, clearly

∫
GL(V ) log2N(g)µ(dg) < ∞. Moreover,

by taking (bn)n>1 such that bn√
n
→∞ and bn = o(n

1
2−α ) as n→∞, we get

lim sup
n→∞

n

b2n
log

[
nµ
(

logN(g) > bn
)]

= lim sup
n→∞

n

b2n
log

[
µ
(

logN(g) > bn
)]

6 lim sup
n→∞

(
− n

b2−αn

)
= −∞. (5.30)
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Therefore, from Lemma 5.1 it follows that for any t > 0,

− t2

2σ2 6 lim inf
n→∞

n

b2n
log inf

x∈P(V )
P
(
σ(Gn, x)− nλ1

bn
> t
)

6 lim sup
n→∞

n

b2n
log sup

x∈P(V )
P
(
σ(Gn, x)− nλ1

bn
> t
)
6 − t2

2σ2 . (5.31)

Hereafter, (bn)n>1 is any sequence of positive numbers satisfying bn√
n
→ ∞

and bn = o(n
1

2−α ) as n → ∞. By (5.31) and the fact that log |〈f,Gnv〉| 6
σ(Gn, x) for x = Rv ∈ P(V ) with ‖v‖ = ‖f‖ = 1, we get the desired upper
bound: for any t > 0, uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

lim sup
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

> t
)
6 − t2

2σ2 . (5.32)

The lower bound can be deduced from Lemma 5.1 together with Theorem
2.6. Specifically, by (2.14), there exist constants c1 > 0 and k0 ∈ N such
that for any n > k > k0, any v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

In : = P
( log |〈f,Gnv〉| − nλ1

bn
> t
)

> P
( log |〈f,Gnv〉| − nλ1

bn
> t, log δ(Gn ·x, y) > −k

)
> P

(
σ(Gn, x)− nλ1

b′n
> t, log δ(Gn ·x, y) > −k

)
> P

(
σ(Gn, x)− nλ1

b′n
> t
)
− e−c1kα , (5.33)

where b′n = bn + k
t and t > 0. We take

k =
⌊(
c2
b2n
n

) 1
α
⌋
, (5.34)

where c2 > 0 is a constant whose value will be chosen large enough. Since
bn√
n
→ ∞ and bn

n → 0 as n → ∞, from b′n = bn + k
t and (5.34), we get that

as n→∞,

b′n√
n
→∞ and b′n

n
= bn

n
+ k

tn
6
bn
n

+ c

t
n−

1−α
2−α → 0.

From (5.31) it follows that for any t > 0 and ε > 0, there exists n0 ∈ N such
that for any n > n0 and x ∈ P(V ),

P
(
σ(Gn, x)− nλ1

b′n
> t
)
> e−

(b′n)2
n

(
t2

2σ2 +ε
)
.
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Substituting this into (5.33), we obtain

In > e
− (b′n)2

n

(
t2

2σ2 +ε
)[

1− e−c1k
α+ (b′n)2

n

(
t2

2σ2 +ε
)]
.

Choosing c2 > 0 in (5.34) to be sufficiently large, one gets (b′n)2

n

(
t2

2σ2 + ε
)
<

c1k
α, so that there exists a constant c3 > 0 such that

In > e
− (b′n)2

n

(
t2

2σ2 +ε
)(

1− e−c3kα
)
.

Since k = b(c2
b2n
n )

1
α c → ∞ and 1 6 b′n

bn
= 1+ k

tbn
6 1+ c b

2−α
α

n

n
1
α
→ 1 as n→∞,

it follows that

lim inf
n→∞

n

b2n
log In > lim inf

n→∞
n

b2n

[
− (b′n)2

n

( t2

2σ2 + ε
)]

= −
( t2

2σ2 + ε
)
.

Letting ε→ 0, the desired lower bound follows: for any t > 0, uniformly in
v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

lim inf
n→∞

n

b2n
logP

( log |〈f,Gnv〉| − nλ1
bn

> t
)
> − t2

2σ2 .

This, together with the upper bound (5.32), concludes the proof of (5.28).
The proof of (5.29) can be carried out in the same way. �

6. Proof of Cramér type moderate deviation expansion

6.1. Smoothing inequality. For any integrable function h : R → C, de-
note its Fourier transform by ĥ(u) =

∫
R e
−iuwh(w)dw, u ∈ R. If ĥ is

integrable on R, then by the Fourier inversion formula we have h(w) =
1

2π
∫
R e

iuwĥ(u)du, for almost all w ∈ R with respect to the Lebesgue mea-
sure on R.

Now we fix a non-negative density function ρ on R with compact support
[−1, 1], whose Fourier transform ρ̂ is integrable on R. For any 0 < ε < 1,
define the scaled density function ρε(w) = 1

ερ(wε ), w ∈ R, which has a
compact support on [−ε−1, ε−1].

For any ε > 0 and non-negative integrable function ψ on R, set

ψ+
ε (w) = sup

|w−w′|6ε
ψ(w′) and ψ−ε (w) = inf

|w−w′|6ε
ψ(w′), w ∈ R. (6.1)

We need the following smoothing inequality shown in [23]. Denote by h1∗h2
the convolution of functions h1 and h2 on the real line.

Lemma 6.1 ([23]). Assume that ψ is a non-negative integrable function on
R and that ψ+

ε and ψ−ε are measurable for any ε ∈ (0, 1). Then, there exists
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a positive constant Cρ(ε) with Cρ(ε)→ 0 as ε→ 0, such that for any w ∈ R,

ψ−ε ∗ ρε2(w)−
∫
|u|>ε

ψ−ε (w − u)ρε2(u)du 6 ψ(w) 6 (1 + Cρ(ε))ψ+
ε ∗ ρε2(w).

For sufficiently small constant s0 > 0 and s ∈ (0, s0), let

ψs(w) = e−sw1{w>0}, w ∈ R.

With the notation ψ−s,ε(w) = inf |w−w′|6ε ψs(w′) (cf. (6.1)), we have that for
any ε ∈ (0, 1),

ψ−s,ε(w) = e−s(w+ε)1{w>ε}, w ∈ R. (6.2)

By elementary calculations, for any s ∈ (0, s0) and ε ∈ (0, 1), the Fourier
transform of ψ−s,ε is given by

ψ̂−s,ε(u) =
∫
R
e−iuwψ−s,ε(w)dw = e−2εs e

−2iεu

s+ iu
, u ∈ R. (6.3)

6.2. An asymptotic expansion of the perturbed operator. The goal
of this section is to establish the precise asymptotic behaviors of the per-
turbed operator Rs,it. This asymptotic result will play an important role
for establishing the Cramér type moderate deviation expansion for the coef-
ficients 〈f,Gnv〉 in Theorem 2.8. In the sequel, for any fixed t > 1, we shall
choose s > 0 satisfying the following equation:

Λ′(s)− Λ′(0) = σt√
n
. (6.4)

For brevity we denote σs =
√

Λ′′(s). By [45], the function Λ is strictly
convex in a small neighborhood of 0, so that σs > 0 uniformly in s ∈ (0, s0).

Proposition 6.2. Assume conditions A1 and A2. Let s > 0 be such that
(6.4) holds. Then, for any ε ∈ (0, 1) and any positive sequence (tn)n>1
satisfying tn → ∞ and tn/

√
n → 0 as n → ∞, we have, uniformly in

s ∈ (0, s0), x ∈ P(V ), t ∈ [tn, o(
√
n)], ϕ ∈ Bγ and |l| = O( 1√

n
),∣∣∣∣sσs√n ∫

R
e−iulnRns,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u)du−

√
2ππs(ϕ)

∣∣∣∣
6 c

(
t√
n

+ 1
t2

)
‖ϕ‖∞ + c

(
|l|
√
n+ 1√

n

)
‖ϕ‖γ . (6.5)

Proof. Without loss of generality, we assume that the target function ϕ is
non-negative on P(V ). By Lemma 4.2, we have the following decomposition:
with δ > 0 small enough,

sσs
√
n

∫
R
e−iulnRns,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u)du =: I1 + I2 + I3, (6.6)
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where

I1 = sσs
√
n

∫
|u|>δ

e−iulnRns,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u)du,

I2 = sσs
√
n

∫
|u|<δ

e−itlnNn
s,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u)du,

I3 = sσs
√
n

∫
|t|<δ

e−iulnλns,iuΠs,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u)du.

For simplicity, we denote Ks(iu) = log λs,iu and choose the branch where
Ks(0) = 0. Using the formula (4.7), we have that for u ∈ (−δ, δ),

Ks(iu) = Λ′(s+ iu)− Λ′(s)− iuΛ′(s).
Since the function Λ is analytic in a small neighborhood of 0, using Taylor’s
formula gives

Ks(iu) =
∞∑
k=2

Λ(k)(s)
k! (iu)k, where Λ(s) = log κ(s) (6.7)

and

Λ′(s)− Λ′(0) =
∞∑
k=2

γk
(k − 1)!s

k−1, where γk = Λ(k)(0). (6.8)

Combining (6.4) and (6.8), we get

σt√
n

=
∞∑
k=2

γk
(k − 1)!s

k−1. (6.9)

Since γ2 = σ2 > 0, from (6.9) we deduce that for any t > 1 and sufficiently
large n, the equation (6.4) has a unique solution given by

s = 1
γ

1/2
2

t√
n
− γ3

2γ2
2

(
t√
n

)2
− γ4γ2 − 3γ2

3

6γ7/2
2

(
t√
n

)3
+ · · · . (6.10)

For sufficiently large n > 1, the series on the right-hand side of (6.10) is
absolutely convergent according to the theorem on the inversion of analytic
functions. Besides, from (6.4) and t = o(

√
n) we see that s→ 0+ as n→∞,

so that we can assume s ∈ (0, s0) for sufficiently small constant s0 > 0.
Estimate of I1. By Lemma 4.3, for fixed δ > 0, there exist constants

c, C > 0 such that
sup

s∈(0,s0)
sup
|u|>δ

sup
x∈P(V )

|Rns,iuϕ(x)| 6 Ce−cn‖ϕ‖γ . (6.11)

From (6.3) and the fact that ρε2 is a density function on R, we see that

sup
u∈R
|ψ̂−s,ε(u)| 6 ψ̂−s,ε(0) = 1

s
e−2εs, sup

u∈R
|ρ̂ε2(u)| 6 ρ̂ε2(0) = 1. (6.12)
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Using (6.11) and the first inequality in (6.12), and taking into account that
the function ρ̂ε2 is integrable on R, we obtain the desired bound for I1:

|I1| 6 Ce−cn‖ϕ‖γ . (6.13)

Estimate of I2. Using the bound (4.8), we have that uniformly in s ∈
(0, s0), u ∈ (−δ, δ) and x ∈ P(V ),

|Nn
s,iu(ϕ)(x)| 6 ‖Nn

s,iu‖Bγ→Bγ‖ϕ‖γ 6 Ce−cn‖ϕ‖γ .

This, together with (6.12), implies the desired bound for I2:

|I2| 6 Ce−cn‖ϕ‖γ . (6.14)

Estimate of I3. For brevity, we denote for any s ∈ (0, s0) and x ∈ P(V ),

Ψs,x(u) := Πs,iu(ϕ)(x)ψ̂−s,ε(u)ρ̂ε2(u), −δ < u < δ. (6.15)

Recalling that Ks(iu) = log λs,iu, we decompose the term I3 into two parts:

I3 = I31 + I32, (6.16)

where

I31 = sσs
√
n

∫
n−

1
2 logn6|u|6δ

enKs(iu)−iulnΨs,x(u)du,

I32 = sσs
√
n

∫
|u|<n−

1
2 logn

enKs(iu)−iulnΨs,x(u)du.

Estimate of I31. By (4.8), there exists a constant c > 0 such that for any
s ∈ (0, s0), u ∈ [−δ, δ] and x ∈ P(V ),

|Πs,iu(ϕ)(x)| 6 c‖ϕ‖γ . (6.17)

This, together with (6.12), yields that there exists a constant c > 0 such
that for all s ∈ (0, s0), |u| < δ, x ∈ P(V ) and ϕ ∈ Bγ ,

|Ψs,x(u)| 6 c

s
‖ϕ‖γ . (6.18)

Using (6.7) and noting that Λ′′(s) = σ2
s > 0, we find that there exists a

constant c > 0 such that for all s ∈ (0, s0),

<
(
Ks(iu)

)
= <

( ∞∑
k=2

K
(k)
s (0)(iu)k

k!

)
< −1

8σ
2
su

2 < −cu2.

Combining this with (6.18), we derive that there exists a constant c > 0
such that for all s ∈ (0, s0), x ∈ P(V ) and ϕ ∈ Bγ ,

|I31| 6 c
√
n‖ϕ‖γ

∫
n−

1
2 logn6|u|6δ

e−cnu
2
du 6

c√
n
‖ϕ‖γ . (6.19)
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Estimate of I32. By a change of variable u′ = σs
√
nu, we get

I32 = s

∫ σs logn

−σs logn
e−

u2
2 exp

{ ∞∑
k=3

K
(k)
s (0)(iu)k

σks k!nk/2−1

}
e−iul

√
n/σsΨs,x

(
u

σs
√
n

)
du

= I321 + I322 + I323,

where

I321 = s

∫ σs logn

−σs logn
e−

u2
2

[
exp

{ ∞∑
k=3

K
(k)
s (0)(iu)k

σks k!nk/2−1

}
− 1

]
e−iul

√
n/σsΨs,x

(
u

σs
√
n

)
du

I322 = s

∫ σs logn

−σs logn
e−

u2
2
[
e−iul

√
n/σs − 1

]
Ψs,x

(
u

σs
√
n

)
du

I323 = s

∫ σs logn

−σs logn
e−

u2
2 Ψs,x

(
u

σs
√
n

)
du.

Estimate of I321. By simple calculations, there exists a constant c > 0
such that for all |u| 6 σs logn and s ∈ (0, s0),∣∣∣∣∣exp

{ ∞∑
k=3

K
(k)
s (0)(iu)k

σks k!nk/2−1

}
− 1

∣∣∣∣∣ 6 c |u|3√n .
This, together with (6.18) and the fact |e−iul

√
n/σs | = 1, implies that

|I321| 6
c√
n
‖ϕ‖γ . (6.20)

Estimate of I322. Since |e−iul
√
n/σs − 1| 6 |ul

√
n/σs| 6 c|l|

√
n|u|, combin-

ing this with (6.18) gives

|I322| 6 c|l|
√
n‖ϕ‖γ . (6.21)

Estimate of I323. We shall establish the following bound for I323: there
exists a constant c > 0 such that for all s ∈ (0, s0), x ∈ P(V ), t ∈ [tn, o(

√
n)]

and ϕ ∈ Bγ ,∣∣∣I323 −
√

2ππs(ϕ)
∣∣∣ 6 cs‖ϕ‖∞ + c√

n
‖ϕ‖γ + c

t2
‖ϕ‖∞. (6.22)

Now let us prove (6.22). For brevity, denote

un = u

σs
√
n
.

In view of (6.15), we write

Ψs,x(un) = h1(un) + h2(un) + h3(un) + h4(un),
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where
h1(un) =

[
Πs,iun(ϕ)(x)− πs(ϕ)

]
ψ̂−s,ε(un)ρ̂ε2(un),

h2(un) = πs(ϕ)ψ̂−s,ε(un) [ρ̂ε2(un)− ρ̂ε2(0)]

h3(un) = πs(ϕ)
[
ψ̂−s,ε(un)− ψ̂−s,ε(0)

]
ρ̂ε2(0),

h4(un) = πs(ϕ)ψ̂−s,ε(0)ρ̂ε2(0).
With the above notation, the term I323 can be decomposed into four parts:

I323 = J1 + J2 + J3 + J4, (6.23)
where for j = 1, 2, 3, 4,

Jj = s

∫ σs logn

−σs logn
e−

u2
2 hj(un)du.

Estimate of J1. By Lemma 4.2, we have |Πs,iun(ϕ)(x)−πs(ϕ)| 6 c |u|√
n
‖ϕ‖γ ,

uniformly in x ∈ P(V ), s ∈ (0, s0) and |u| 6 σs logn. Combining this with
(6.12) gives |h1(un)| 6 c |u|

s
√
n
‖ϕ‖γ , and hence

|J1| 6
c√
n
‖ϕ‖γ . (6.24)

Estimate of J2. It is easy to verify that |ρ̂ε2(un) − ρ̂ε2(0)| 6 c |un|
ε4 . This,

together with (6.12), leads to |h2(un)| 6 c
ε4
|u|
s
√
n
, and therefore,

|J2| 6
c

ε4
1√
n
‖ϕ‖∞ 6

C√
n
‖ϕ‖∞. (6.25)

Estimate of J3. By the definition of the function ψ̂−s,ε (see (6.3)), we have

ψ̂−s,ε(un)− ψ̂−s,ε(0) = e−2εs
(
e−iεun

s+ iun
− 1
s

)

= e−2εse−iεun
( 1
s+ iun

− 1
s

)
+ e−2εs 1

s

(
e−iεun − 1

)
= e−2εs

(
e−iεun − 1

) −isun − u2
n

s(s2 + u2
n)

+ e−2εs−isun − u2
n

s(s2 + u2
n) + e−2εs 1

s

(
e−iεun − 1

)
=: A1(t) +A2(t) +A3(t).

Since ρ̂ε2(0) = 1, it follows that J3 = J31 + J32 + J33, where

J3j = sπs(ϕ)
∫ σs logn

−σs logn
e−

u2
2 Aj(u)du, j = 1, 2, 3.
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To deal with J31, we first give a bound for A1(u). Using the basic inequality
|ez − 1| 6 e<z|z|, z ∈ C, we get

|A1(u)| 6 e−2εs|un|
s|un|+ u2

n

s(s2 + u2
n)

= e−2εs u2
n

s2 + u2
n

+ e−2εs |un|
s

u2
n

s2 + u2
n

6 c
u2

t2 + u2 + c
|u|
t

u2

t2 + u2

6 c
u2

t2
+ c
|u|3

t3
.

Then, recalling that s = O( t√
n

) and |πs(ϕ)| 6 c‖ϕ‖∞, we obtain that there
exists a constant c > 0 such that for all n > 1, s ∈ (0, s0) and ϕ ∈ Bγ ,

|J31| 6
c√
n
‖ϕ‖∞. (6.26)

For J32, using again s = O( t√
n

) and the fact that the integral of an odd
function over a symmetric interval is identically zero, by elementary calcu-
lations we deduce that there exists a constant c > 0 such that for all n > 1,
s ∈ (0, s0) and ϕ ∈ Bγ ,

|J32| =
∣∣∣∣∣e−2εsπs(ϕ)

∫ σs logn

−σs logn
e−

u2
2

u2
n

s2 + u2
n

du

∣∣∣∣∣ 6 c

t2
‖ϕ‖∞. (6.27)

For J33, using again the inequality |ez−1| 6 e<z|z|, z ∈ C, we see that there
exists a constant c > 0 such that for all n > 1, s ∈ (0, s0) and ϕ ∈ Bγ ,

|J33| 6
c√
n
‖ϕ‖∞. (6.28)

Consequently, putting together the bounds (6.26), (6.27) and (6.28), we
obtain

J3 6
c√
n
‖ϕ‖∞ + c

t2
‖ϕ‖∞. (6.29)

Estimate of J4. It follows from (6.3) and ρ̂ε2(0) = 1 that

J4 = πs(ϕ)e−2εs
∫ σs logn

−σs logn
e−

u2
2 du. (6.30)

Since there exists a constant c > 0 such that for all s ∈ (0, s0),
√

2π >
∫ σs logn

−σs logn
e−

u2
2 du >

√
2π − c

n
,
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we get

J4 =
√

2ππs(ϕ)e−2εs
[
1 +O

( 1
n

)]
.

Note that s = O( t√
n

) with y > 1. It follows that∣∣∣J4 −
√

2ππs(ϕ)
∣∣∣ 6 ct√

n
‖ϕ‖∞. (6.31)

In view of (6.23), putting together the bounds (6.24), (6.25), (6.29) and
(6.31), and noting that ‖ϕ‖∞ 6 ‖ϕ‖γ , we obtain the desired bound (6.22).
Combining (6.20), (6.21) and (6.22), we derive that there exists a constant
c > 0 such that for all s ∈ (0, s0), x ∈ P(V ), t ∈ [tn, o(

√
n)], ϕ ∈ Bγ and

|l| = O
( 1√

n

)
,∣∣∣I32 −

√
2ππs(ϕ)

∣∣∣ 6 c( t√
n

+ 1
t2

)
‖ϕ‖∞ + c

(
|l|
√
n+ 1√

n

)
‖ϕ‖γ . (6.32)

Putting together (6.13), (6.14), (6.19) and (6.32), we conclude the proof of
Proposition 6.2. �

For s ∈ (−s0, 0) where s0 > 0 is sufficiently small, let

φs(w) = e−sw1{w60}, w ∈ R.

With the notation in (6.1), for ε ∈ (0, 1), the function φ+
s,ε is given as follows:

φ+
s,ε(w) = 0 when w > ε; φ+

s,ε(w) = 1 when w ∈ [−ε, ε]; φ+
s,ε(w) = e−s(w+ε)

when w < −ε. By calculations, one can give the explicit expression for the
Fourier transform of φ+

s,ε:

φ̂+
s,ε(u) =

∫
R
e−iuwφ+

s,ε(w)dw = 2sin(εu)
u

+ eiεu
1

−s− iu
, u ∈ R. (6.33)

In the sequel, for any fixed t > 1, we choose s < 0 satisfying the equation:

Λ′(s)− Λ′(0) = − σt√
n
. (6.34)

Proposition 6.3. Assume conditions A1 and A2. Let φ+
s,ε be defined in

(6.33). Suppose that s < 0 satisfies the equation (6.34). Then, for any 0 <
ε < 1 and any positive sequence (tn)n>1 satisfying limn→∞ tn = +∞ with
tn = o(

√
n), we have, uniformly in s ∈ (−s0, 0), x ∈ P(V ), t ∈ [tn, o(

√
n)],

ϕ ∈ Bγ and l ∈ R with |l| = O( 1√
n

),∣∣∣∣−sσs√n enhs(l) ∫
R
e−itlnRns,iu(ϕ)(x)φ̂+

s,ε(u)ρ̂ε2(u)du−
√

2ππs(ϕ)
∣∣∣∣

6 c
(

t√
n

+ 1
t2

)
‖ϕ‖∞ + c

(
|l|
√
n+ 1√

n

)
‖ϕ‖γ .
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Proof. Since the proof of Proposition 6.3 can be carried out in an analogous
way as that of Proposition 6.2, we only sketch the main differences.

Without loss of generality, we assume that the target function ϕ is non-
negative. From Lemma 4.2, we have the following decomposition: with δ > 0
small enough,

−sσs
√
n

∫
R
e−iulnRns,iu(ϕ)(x)φ̂+

s,ε(u)ρ̂ε2(u)du = I1 + I2 + I3, (6.35)

where

I1 = −sσs
√
n

∫
|u|>δ

e−itlnRns,iu(ϕ)(x)φ̂+
s,ε(t)ρ̂ε2(u)du,

I2 = −sσs
√
n

∫
|u|<δ

e−iulnNn
s,iu(ϕ)(x)φ̂+

s,ε(u)ρ̂ε2(u)du,

I3 = −sσs
√
n

∫
|u|<δ

e−iulnλns,iuΠs,iu(ϕ)(x)φ̂+
s,ε(u)ρ̂ε2(u)du.

Similarly to the proof of (6.9), from (6.34) one can verify that

− σt√
n

=
∞∑
k=2

γk
(k − 1)!s

k−1, (6.36)

where γk = Λ(k)(0). For any y > 1 and sufficiently large n, the equation
(6.36) has a unique solution given by

s = 1
γ

1/2
2

(
− t√

n

)
− γ3

2γ2
2

(
− t√

n

)2
− γ4γ2 − 3γ2

3

6γ7/2
2

(
− t√

n

)3
+ · · · . (6.37)

The series on the right-hand side of (6.37) is absolutely convergent, and we
can assume that s ∈ (−s0, 0) for sufficiently small constant η > 0.

Estimate of I1. By Lemma 4.3, there exist constants c, C > 0 such that

sup
s∈(−s0,0)

sup
|u|>δ

sup
x∈P(V )

|Rns,iuϕ(x)| 6 Ce−cn‖ϕ‖γ . (6.38)

From (6.33) and the fact that ρε2 is a density function on R, we see that

sup
u∈R
|φ̂−s,ε(u)| 6 φ̂−s,ε(0) = 1

−s
+ 2ε, sup

u∈R
|ρ̂ε2(u)| 6 ρ̂ε2(0) = 1. (6.39)

From (6.38) and the first inequality in (6.39), the desired bound for I1
follows:

|I1| 6 Ce−cn‖ϕ‖γ . (6.40)

Estimate of I2. Using the bound (4.8) and (6.39), one has

|I2| 6 Ce−cn‖ϕ‖γ . (6.41)
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Estimate of I3. For brevity, we denote for any s ∈ (−s0, 0) and x ∈ P(V ),

Ψs,x(u) := Πs,iu(ϕ)(x)φ̂+
s,ε(u)ρ̂ε2(u), −δ < u < δ. (6.42)

Recalling that Ks(iu) = log λs,iu, we decompose the term I3 into two parts:
I3 = I31 + I32, (6.43)

where

I31 = −sσs
√
n

∫
n−

1
2 logn6|u|6δ

enKs(iu)−iulnΨs,x(u)du,

I32 = −sσs
√
n

∫
|u|<n−

1
2 logn

enKs(iu)−iulnΨs,x(u)du.

Estimate of I31. Using (4.8) and (6.39), we get that there exists a constant
c > 0 such that for all s ∈ (−s0, 0), |u| < δ, x ∈ P(V ) and ϕ ∈ Bγ ,

|Ψs,x(u)| 6 c

−s
‖ϕ‖γ . (6.44)

Similarly to the proof of (6.19), it follows that there exists a constant c > 0
such that for all s ∈ (−s0, 0), x ∈ P(V ) and ϕ ∈ Bγ ,

|I31| 6 c
√
n‖ϕ‖γ

∫
n−

1
2 logn6|u|6δ

e−cnu
2
du 6

c√
n
‖ϕ‖γ . (6.45)

Estimate of I32. Making a change of variable u′ = uσs
√
n, we get

I32 = −s
∫ σs logn

−σs logn
e−

u2
2 exp

{ ∞∑
k=3

K
(k)
s (0)(iu)k

σks k!nk/2−1

}
e−iul

√
n/σsΨs,x

(
u

σs
√
n

)
du

= (−s)
∫ σs logn

−σs logn
e−

u2
2

[
exp

{ ∞∑
k=3

K
(k)
s (0)(iu)k

σks k!nk/2−1

}
− 1

]
e−iul

√
n/σsΨs,x

(
u

σs
√
n

)
du

+ (−s)
∫ σs logn

−σs logn
e−

u2
2
[
e−iul

√
n/σs − 1

]
Ψs,x

(
u

σs
√
n

)
du

+ (−s)
∫ σs logn

−σs logn
e−

u2
2 Ψs,x

(
u

σs
√
n

)
du

=: I321 + I322 + I323.

For I321 and I322, in a similar way as in the proof of (6.20) and (6.21), we
have

|I321| 6
c√
n
‖ϕ‖γ , |I322| 6 c|l|

√
n‖ϕ‖γ . (6.46)

For I323, we shall establish the following bound: there exists a constant c > 0
such that for all s ∈ (−s0, 0), x ∈ P(V ), t ∈ [tn, o(

√
n)] and ϕ ∈ Bγ ,∣∣∣I323 −

√
2ππs(ϕ)

∣∣∣ 6 c t√
n
‖ϕ‖∞ + c√

n
‖ϕ‖γ + c

t2
‖ϕ‖∞. (6.47)
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For brevity, denote un = u
σs
√
n
. In view of (6.42), we write

Ψs,x(un) = h1(un) + h2(un) + h3(un) + h4(un),

where

h1(un) =
[
Πs,iun(ϕ)(x)− πs(ϕ)

]
φ̂+
s,ε(un)ρ̂ε2(un),

h2(un) = πs(ϕ)φ̂+
s,ε(un) [ρ̂ε2(un)− ρ̂ε2(0)]

h3(un) = πs(ϕ)
[
φ̂+
s,ε(un)− φ̂+

s,ε(0)
]
ρ̂ε2(0),

h4(un) = πs(ϕ)φ̂+
s,ε(0)ρ̂ε2(0).

Then I323 can be decomposed into four parts:

I323 = J1 + J2 + J3 + J4, (6.48)

where for j = 1, 2, 3, 4,

Jj = −s
∫ σs logn

−σs logn
e−

u2
2 hj(un)du.

Estimates of J1 and J2. Similarly to the proof of (6.24) and (6.25), one
can verify that

|J1| 6
c√
n
‖ϕ‖γ , |J2| 6

c

ε4
1√
n
‖ϕ‖∞ 6

C√
n
‖ϕ‖∞. (6.49)

Estimate of J3. By the definition of the function φ̂+
s,ε (see (6.33)), we have

φ̂+
s,ε(un)− φ̂+

s,ε(0) = 2
(sin εun

un
− ε

)
+
(
eiεun

1
−s− iun

− 1
−s

)
= 2

(sin εun
un

− ε
)

+ eiεun − 1
−s− itn

+
( 1
−s− iun

− 1
−s

)
=: A1(u) +A2(u) +A3(u).

Since ρ̂ε2(0) = 1, it follows that J3 = J31 + J32 + J33, where

J3j = −sπs(ϕ)
∫ σs logn

−σs logn
e−

u2
2 Aj(u)du, j = 1, 2, 3.

For J31, since |A1(u)| 6 c|u|2/n and |πs(ϕ)| 6 c‖ϕ‖∞, we have

|J31| 6 c
−s
n
‖ϕ‖∞ 6

C

n
‖ϕ‖∞. (6.50)

For J32, using the inequality |ez − 1| 6 e<z|z|, z ∈ C, we get

|A2(u)| 6 ε|un|
| − s− iun|

6
ε|un|
−s

.
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Hence,

|J32| 6
c√
n
‖ϕ‖∞. (6.51)

For J33, note that A3(u) = −isun−u2
n

−s(s2+u2
n) and s = O( −t√

n
). Using the fact that

the integral of an odd function over a symmetric interval is identically zero,
by elementary calculations we derive that

|J33| =
∣∣∣∣∣πs(ϕ)

∫ σs logn

−σs logn
e−

u2
2

u2
n

s2 + u2
n

du

∣∣∣∣∣ 6 c

t2
‖ϕ‖∞. (6.52)

Putting together (6.50), (6.51) and (6.52), we obtain

J3 6
c√
n
‖ϕ‖∞ + c

t2
‖ϕ‖∞. (6.53)

Estimate of J4. Similarly to the proof of (6.31), one has∣∣∣J4 −
√

2ππs(ϕ)
∣∣∣ 6 c t√

n
‖ϕ‖∞. (6.54)

In view of (6.48), combining (6.49), (6.53), and (6.54), we obtain the desired
bound (6.47) for I323. Putting together the bounds (6.40), (6.41), (6.45),
(6.46) and (6.47), we finish the proof of Proposition 6.3. �

6.3. Proof of Theorem 2.8. The goal of this section is to establish The-
orem 2.8. To this aim we first prove the moderate deviation expansion in
the normal range y ∈ [0, o(n1/6)] for the couple (Gn·x, log |〈f,Gnv〉|) with a
target function ϕ on Gn ·x.

Theorem 6.4. Assume A1 and A2. Then, as n → ∞, uniformly in x =
Rv ∈ P(V ) and y = Rf ∈ P(V ∗) with ‖v‖ = ‖f‖ = 1, t ∈ [0, o(n1/6)] and
ϕ ∈ Bγ,

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) = ν(ϕ) + ‖ϕ‖γo(1),

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ16−

√
nσt}

]
Φ(−t) = ν(ϕ) + ‖ϕ‖γo(1).

In order to establish Theorem 6.4, we need the exponential Hölder regu-
larity of the invariant measure ν (Lemma 4.5 with s = 0) and the following
moderate deviation expansion for the norm cocycle σ(Gn, x) proved in [45].
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Lemma 6.5 ([45]). Assume A1 and A2. Then, we have, as n → ∞,
uniformly in x ∈ P(V ), t ∈ [0, o(

√
n)] and ϕ ∈ Bγ,

E
[
ϕ(Gn ·x)1{σ(Gn,x)−nλ1>

√
nσt}

]
1− Φ(t) = e

t3√
n
ζ( t√

n
)
[
ν(ϕ) + ‖ϕ‖γO

(
t+ 1√
n

)]
,

E
[
ϕ(Gn ·x)1{σ(Gn,x)−nλ16−

√
nσt}

]
1− Φ(t) = e

− t3√
n
ζ(− t√

n
)
[
ν(ϕ) + ‖ϕ‖γO

(
t+ 1√
n

)]
.

Proof of Theorem 6.4. Without loss of generality, we assume that the target
function ϕ is non-negative. We only show the first expansion in Theorem
6.4 since the proof of the second one can be carried out in a similar way.

The upper bound is a direct consequence of Lemma 6.5. Specifically, since
log |〈f,Gnv〉| 6 σ(Gn, x) for f ∈ V ∗ with ‖f‖ = 1, x = Rv ∈ P(V ) with
‖v‖ = 1, using the first expansion in Lemma 6.5, we get that there exists
a constant c > 0 such that uniformly in f ∈ V ∗, x = Rv ∈ P(V ) with
‖v‖ = ‖f‖ = 1, and t ∈ [0, o(

√
n)],

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) 6 e

t3√
n
ζ( t√

n
)
[
ν(ϕ) + c‖ϕ‖γ

t+ 1√
n

]
.

(6.55)

The lower bound follows from Lemmas 4.5 and 6.5. By Lemma 4.5 with
s = 0, we have that for any ε > 0, there exist constants c, C > 0 such that
for all n > k > 1, and f ∈ V ∗ with ‖f‖ = 1, x = Rv ∈ P(V ) with ‖v‖ = 1,

P
(

log |〈f,Gnv〉| − σ(Gn, x) 6 −εk
)
6 Ce−ck.

Using this inequality, we get

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
> E

[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}1{log |〈f,Gnv〉|−σ(Gn,x)>−εk}

]
> E

[
ϕ(Gn ·x)1{σ(Gn,x)−nλ1>

√
nσt+εk}1{log |〈f,Gnv〉|−σ(Gn,x)>−εk}

]
> E

[
ϕ(Gnx)1{σ(Gn,x)−nλ1>

√
nσt+εk}

]
− Ce−ck‖ϕ‖∞. (6.56)

Take k = bA lognc in (6.56), where A > 0 is a fixed sufficiently large con-
stant. Denote t1 = t+ εk

σ
√
n
. By Lemma 6.5, we have, as n→∞, uniformly

in x ∈ P(V ), t ∈ [0,
√

logn] and ϕ ∈ Bγ ,

E
[
ϕ(Gn ·x)1{σ(Gn,x)−nλ1>

√
nσt+εk}

]
1− Φ(t1) = ν(ϕ) + ‖ϕ‖γO

(
t31 + 1√

n

)
. (6.57)
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We claim that uniformly in t ∈ [0,
√

logn],

1 > 1− Φ(t1)
1− Φ(t) = 1−

∫ t1
t e−

u2
2 du∫∞

t e−
u2
2 du

> 1− ct+ 1√
n

logn. (6.58)

Indeed, when y ∈ [0, 2], the inequality (6.58) holds due to the fact that
t1 = t + εk

σ
√
n

and k = bA lognc; when t ∈ [2,
√

logn], we can use the

inequality e
t2
2
∫∞
t e−

u2
2 du > 1

t −
1
t3 >

1
2t to get

1−
∫ t1
t e−

u2
2 du∫∞

t e−
u2
2 du

> 1− (t1 − t)e−t
2/2

1
2te
−t2/2 > 1− ct+ 1√

n
logn.

Hence (6.58) holds. It is easy to check that t31+1√
n

= O( t3+1√
n

), uniformly in t ∈
[0,
√

logn]. Consequently, we get that uniformly in x ∈ P(V ), t ∈ [0,
√

logn]
and ϕ ∈ Bγ ,

E
[
ϕ(Gn ·x)1{σ(Gn,x)−nλ1>

√
nσt+εk}

]
1− Φ(t) > ν(ϕ)− c‖ϕ‖γ

t+ 1√
n

logn.

This, together with (6.56) and the fact that e−ck/[1−Φ(t)] decays to 0 faster
than 1

n , implies that uniformly in f ∈ V ∗ with ‖f‖ = 1, x = Rv ∈ P(V )
with ‖v‖ = 1, t ∈ [0,

√
logn] and ϕ ∈ Bγ ,

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) > ν(ϕ)− c‖ϕ‖γ

t+ 1√
n

logn. (6.59)

It remains to prove the lower bound when t ∈ [
√

logn, o(n1/6)]. We take
k = bAt2c in (6.56), where A > 0 is a fixed sufficiently large constant. In
the same way as in (6.57), we get that, with t1 = t + εk

σ
√
n
, uniformly in

x ∈ P(V ), t ∈ [
√

logn, o(n1/6)] and ϕ ∈ Bγ ,

E
[
ϕ(Gn ·x)1{σ(Gn,x)−nλ1>

√
nσt+εk}

]
1− Φ(t1) = ν(ϕ) + ‖ϕ‖γO

(
t31 + 1√

n

)
. (6.60)

Using the inequality 1
t > e

t2
2
∫∞
t e−

u2
2 du > 1

t −
1
t3 for t > 0, by elementary

calculations, we get that uniformly in t ∈ [
√

logn, o(n1/6)],

1 > 1− Φ(t1)
1− Φ(t) >

t

t1

(
1− 1

t21

)
e
t2
2 −

t21
2 >

(
1− c

t2

)(
1− ct3√

n

)
. (6.61)

Taking into account that t
3
1+1√
n

= O( t3+1√
n

) and that e−cAt2/[1−Φ(t)] decays to
0 faster than 1

n (by taking A > 0 to be sufficiently large), from (6.56), (6.60)
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and (6.61) we deduce that uniformly in f ∈ V ∗ with ‖f‖ = 1, x = Rv ∈ P(V )
with ‖v‖ = 1, t ∈ [

√
logn, o(n1/6)] and ϕ ∈ Bγ ,

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) > ν(ϕ)− c‖ϕ‖γ

( 1
t2

+ t3√
n

)
. (6.62)

Combining (6.55), (6.59) and (6.62) finishes the proof of Theorem 6.4. �

Now we apply Propositions 6.2 and 6.3 to establish the following moderate
deviation expansion when t ∈ [nα, o(n1/2)] for any α ∈ (0, 1/2).

Theorem 6.6. Assume A1 and A2. Then, for any ϕ ∈ Bγ and α ∈
(0, 1/2), as n → ∞, we have, uniformly in x = Rv ∈ P(V ) and y = Rf ∈
P(V ∗) with ‖v‖ = ‖f‖ = 1, and t ∈ [nα, o(

√
n)],

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
1− Φ(t) = e

t3√
n
ζ( t√

n
)[
ν(ϕ) + o(1)

]
, (6.63)

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ16−

√
nσt}

]
Φ(−t) = e

− t3√
n
ζ(− t√

n
)[
ν(ϕ) + o(1)

]
. (6.64)

Proof. As in Section 4.3 we define a partition of the unity. Let U be the
uniform distribution function on the interval [0, 1]. Let a ∈ (0, 1

2 ] be a
constant. For any integer k > 0, define

Uk(t) = U

(
t− (k − 1)a

a

)
, hk(t) = Uk(t)− Uk+1(t), t ∈ R.

Note that Um =
∑∞
k=m hk for m > 0 and for any t > 0 and m > 0,
∞∑
k=0

hk(t) = 1,
m∑
k=0

hk(t) + Um+1(t) = 1. (6.65)

For any x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗), set

χyk(x) = hk(− log δ(y, x)) and χyk(x) = Uk(− log δ(y, x)). (6.66)

From (6.65) we have the following partition of the unity on P(V ): for any
x ∈ P(V ), y ∈ P(V ∗) and m > 0,

∞∑
k=0

χyk(x) = 1,
m∑
k=0

χyk(x) + χym+1(x) = 1. (6.67)

Denote by supp(χyk) the support of the function χyk. It is easy to see that
for any k > 0 and y ∈ P(V ∗),

− log δ(y, x) ∈ [a(k − 1), a(k + 1)] for any x ∈ supp(χyk). (6.68)



54 HUI XIAO, ION GRAMA, AND QUANSHENG LIU

As in Lemma 4.10 we show that there exists a constant c > 0 such that for
any γ ∈ (0, 1], k > 0 and y ∈ P(V ∗), it holds χyk ∈ Bγ and

‖χyk‖γ 6
ceγka

aγ
. (6.69)

Without loss of generality, we assume that the target function ϕ is non-
negative. We first establish (6.63). Since the upper bound of the moderate
deviation expansion for the couple (Gn ·x, log |〈f,Gnv〉|) has been shown in
(6.55), it remains to establish the following lower bound: for any ϕ ∈ Bγ

and α ∈ (0, 1/2), uniformly in x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗) with
‖v‖ = ‖f‖ = 1, and t ∈ [nα, o(

√
n)],

lim inf
n→∞

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
e
t3√
n
ζ( t√

n
)[1− Φ(t)]

> ν(ϕ). (6.70)

Now we are going to prove (6.70). From the change of measure formula (4.3)
and the fact λ1 = Λ′(0), we get

An : = E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ1>

√
nσt}

]
(6.71)

= rs(x)κn(s)EQxs

[
(ϕr−1

s )(Gn ·x)e−sσ(Gn,x)1{log |〈f,Gnv〉|>nΛ′(0)+
√
nσt}

]
.

For brevity, we denote

T xn = σ(Gn, x)− nΛ′(s), Y x,y
n := log δ(y,Gn ·x).

Choosing s > 0 as the solution of the equation (6.4), from (6.71) and (3.8)
it follows that

An = rs(x)e−n[sΛ′(s)−Λ(s)]EQxs

[
(ϕr−1

s )(Gn ·x)e−sTxn1{Txn+Y x,yn >0}
]
.

Using (6.4), one can verify that

sΛ′(s)− Λ(s) = t2

2n −
t3

n3/2 ζ
( t√

n

)
, (6.72)

where ζ is the Cramér series defined by (2.4). Thus An can be rewritten as

An = rs(x)e−
t2
2 + t3√

n
ζ( t√

n
)EQxs

[
(ϕr−1

s )(Gn ·x)e−sTxn1{Txn+Y x,yn >0}
]
. (6.73)
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Since the functions ϕ and rs are positive, using the partition of the unity
(6.67) and (6.68), we have that for Mn = blognc and a ∈ (0, 1/2),

An > rs(x)e−
t2
2 + t3√

n
ζ( t√

n
)
Mn∑
k=0

EQxs

[
(ϕr−1

s χyk)(Gn ·x)e−sTxn1{Txn+Y x,yn >0}

]

> rs(x)e−
t2
2 + t3√

n
ζ( t√

n
)
Mn∑
k=0

EQxs

[
(ϕr−1

s χyk)(Gn ·x)e−sTxn1{Txn−a(k+1)>0}
]
.

(6.74)
Let

ϕys,k(x) = (ϕr−1
s χyk)(x), x ∈ P(V ),

and
ψs(w) = e−sw1{w>0}, w ∈ R.

It then follows from (6.74) that

An > rs(x)e−
t2
2 + t3√

n
ζ( t√

n
)
Mn∑
k=0

e−sa(k+1)EQxs

[
ϕys,k(Gn ·x)ψs(T xn − a(k + 1))

]
,

which implies that

An

e
t3√
n
ζ( t√

n
)[1− Φ(t)]

> rs(x)
Mn∑
k=0

e−sa(k+1)EQxs
[
ϕys,k(Gn ·x)ψs(T xn − a(k + 1))

]
e
t2
2 [1− Φ(t)]

.

From Lemma 6.1, it follows that for any small constant ε > 0,

ψs(w) > ψ−s,ε ∗ ρε2(w)−
∫
|u|>ε

ψ−s,ε(w − u)ρε2(u)du, w ∈ R,

where ψ−s,ε is given by (6.2). Using this inequality we get

An

e
t3√
n
ζ( t√

n
)[1− Φ(t)]

> rs(x)
Mn∑
k=0

Bn,k −Dn,k

e
t2
2 [1− Φ(t)]

, (6.75)

where

Bn,k = e−sa(k+1)EQxs

[
ϕys,k(Gn ·x)(ψ−s,ε ∗ ρε2)(T xn − a(k + 1))

]
,

Dn,k = e−sa(k+1)
∫
|w|>ε

EQxs

[
ϕys,k(Gn ·x)ψ−s,ε(T xn − a(k + 1)− w)

]
ρε2(w)dw.

Since Bn,k > Dn,k and supx∈P(V ) |rs(x) − 1| → 0 as n → ∞, by Fatou’s
lemma, we get

lim inf
n→∞

An

e
t3√
n
ζ( t√

n
)[1− Φ(t)]

>
∞∑
k=0

lim inf
n→∞

Bn,k −Dn,k

e
t2
2 [1− Φ(t)]

1{k6Mn}.
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Estimate of Bn,k. Since the function ρ̂ε2 is integrable on R, by the Fourier
inversion formula, we have

ψ−s,ε∗ρε2(w) = 1
2π

∫
R
eiuwψ̂−s,ε(u)ρ̂ε2(u)du, w ∈ R.

Substituting w = T xn − a(k + 1), taking expectation with respect to EQxs ,
and using Fubini’s theorem, we get

Bn,k = 1
2πe

−sa(k+1)
∫
R
e−iua(k+1)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du, (6.76)

where

Rns,iu(ϕys,k)(x) = EQxs

[
ϕys,k(Gn ·x)eiuTxn

]
, x ∈ P(V ).

Applying Proposition 6.2 with l = a(k+1)
n and ϕ = ϕys,k, by simple cal-

culations we deduce that uniformly in x ∈ P(V ), y ∈ P(V ∗), s ∈ (0, s0),
0 6 k 6Mn and t ∈ [nα, o(

√
n)],∫

R
e−iua(k+1)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du− πs(ϕys,k)

√
2π

sσs
√
n

> −C
(
t

sn
+ 1
st2
√
n

)
‖ϕys,k‖∞ − C

logn
sn
‖ϕys,k‖γ .

Note that σs =
√

Λ′′(s) = σ[1+O(s)]. From (6.10), we have t
sσ
√
n

= 1+O(s),

and thus t
sσs
√
n

= 1 + O(s). Using the inequality
√

2πte
t2
2 [1− Φ(t)] 6 1 for

any t > 0, it follows that∫
R e
−iua(k+1)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

e
t2
2 [1− Φ(t)]

− πs(ϕys,k)
2πt

sσs
√
n

> −C
(
t2

sn
+ 1
st
√
n

)
‖ϕys,k‖∞ − C

t logn
sn
‖ϕys,k‖γ

> −C
(

t√
n

+ 1
t2

)
‖ϕys,k‖∞ − C

t logn
sn
‖ϕys,k‖γ . (6.77)

Using the construction of the function ϕys,k and (6.69) give that uniformly
in s ∈ (0, s0), w ∈ P(V ∗), ϕ ∈ Bγ and 0 6 k 6Mn,

‖ϕys,k‖∞ 6 c‖ϕ‖∞ (6.78)

and

‖ϕys,k‖γ 6 c‖ϕ‖γ + c
eγka

aγ
‖ϕ‖∞. (6.79)
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Recalling that t ∈ [nα, o(
√
n)] and taking γ > 0 sufficiently small such that

eγka

aγ < nα/2, from (6.77) we deduce that

lim
n→∞

∫
R e
−iua(k+1)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

e
t2
2 [1− Φ(t)]

> ν(ϕy0,k)× 2π.

As s = o(1) as n → ∞ for any fixed k > 1 and a ∈ (0, 1
2), it holds that

limn→∞ e
−sa(k+1) = 1. Then, in view of (6.76), it follows that

lim
n→∞

Bn,k

e
t2
2 [1− Φ(t)]

= ν(ϕy0,k).

This, together with (4.18), implies the desired lower bound:
∞∑
k=0

lim inf
n→∞

Bn,k

e
t2
2 [1− Φ(t)]

1{k6Mn} >
∞∑
k=0

ν(ϕy0,k) = ν(ϕ). (6.80)

Estimate of Dn,k. We shall apply Fatou’s lemma to provide an upper
bound for Dn,k. An important issue here is to find a dominating function,
which is possible due to the integrability of the density function ρε2 on the
real line. More specifically, in the same way as in the proof of (6.76), we use
the Fourier inversion formula and the Fubini theorem to get

Dn,k = 1
2πe

−sa(k+1)

×
∫
|w|>ε

[∫
R
e−iu(a(k+1)+w)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

]
ρε2(w)dw.

We decompose the integral in Dn,k into two parts:

Dn,k

e
t2
2 [1− Φ(t)]

= 1
2πe

−sa(k+1)
{∫

ε6|w|<
√
n

+
∫
|w|>

√
n

}

×
∫
R e
−iu(a(k+1)+w)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

e
t2
2 [1− Φ(t)]

ρε2(w)dw

=: En,k + Fn,k. (6.81)

Estimate of En,k. Since k 6Mn and |w| 6
√
n, we have |l| := |a(k+ 1) +

w|/n = O( 1√
n

). Note that t
sσs
√
n

= 1+O(s) and e
t2
2 [1−Φ(t)] > 1√

2π (1
t −

1
t3 ),

t > 1. Applying Proposition 6.2 with l = (a(k + 1) + w)/n, we get that
uniformly in ε 6 |w| <

√
n,

lim
n→∞

∫
R e
−iu(a(k+1)+w)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

e
t2
2 [1− Φ(t)]

= 2π × πs(ϕy0,k).
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As above, for any fixed k > 1 and a ∈ (0, 1
2), we have limn→∞ e

−sa(k+1) =
1. Since the function ρε2 is integrable on R, by the Lebesgue dominated
convergence theorem, we obtain that there exists a constant c > 0 such that

lim
n→∞

En,k1{k6Mn} = ν(ϕy0,k)
∫
|w|>ε

ρε2(w)dw 6 cεν(ϕy0,k).

This, together with (4.18), implies that
∞∑
k=0

lim
n→∞

En,k1{k6Mn} 6 cε
∞∑
k=0

ν(ϕy0,k) 6 cεν(ϕ). (6.82)

Estimate of En,k,2. Notice that there exists a constant c > 0 such that
for any n > 1,∣∣∣∣∫

R
e−iu(a(k+1)+w)Rns,iu(ϕys,k)(x)ψ̂−s,ε(u)ρ̂ε2(u)du

∣∣∣∣ 6 ‖ϕys,k‖∞ ∫
R
ρ̂ε2(u)du

6 c‖ϕys,k‖∞.

Using the fact that t = o(
√
n) and ρε2(u) 6 cε

u2 , and again the inequality

e
t2
2 [1− Φ(t)] > 1√

2π (1
t −

1
t3 ), t > 1, we get

lim sup
n→∞

Fn,k1{k6Mn} 6 cε lim sup
n→∞

t

∫
|w|>

√
n
ρε2(w)dw 6 cε lim

n→∞
t√
n

= 0.

Hence
∞∑
k=0

lim sup
n→∞

Fn,k1{k6Mn} = 0. (6.83)

Since ε > 0 can be arbitrary small, combining (6.81), (6.82) and (6.83), we
get the desired bound for Dn,k:

∞∑
k=0

lim sup
n→∞

Dn,k

e
t2
2 [1− Φ(t)]

1{k6Mn} = 0. (6.84)

Putting together (6.80) and (6.84), we conclude the proof of (6.70) as well
as the first expansion (6.63).

The proof of the second expansion (6.64) can be carried out in a similar
way. As in (6.71) and (6.73), using (6.67), we have

E
[
ϕ(Gn ·x)1{log |〈f,Gnv〉|−nλ16−

√
nσt}

]
= rs(x)e−

t2
2 −

t3√
n
ζ(− t√

n
)
Mn∑
k=0

EQxs

[
(ϕr−1

s χyk)(Gn ·x)e−sTxn1{Txn+Y x,yn 60}

]
+ rs(x)e−

t2
2 −

t3√
n
ζ(− t√

n
)EQxs

[
(ϕr−1

s χyMn+1)(Gn ·x)e−sTxn1{Txn+Y x,yn 60}

]
=: A′n +A′′n,
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where this time we choose Mn = bA lognc with A > 0, and s < 0 satisfies
the equation (6.34). The main difference for handling the first term consists
in using Proposition 6.3 instead of Proposition 6.2. For second term, we
have

EQxs

[
(ϕr−1

s χyMn+1)(Gn ·x)e−sTxn1{Txn+Y x,yn 60}

]
6 c‖ϕ‖∞EQxs

[
χyMn+1(Gn ·x)esY

x,y
n

]
6 c‖ϕ‖∞e−saA lognQx

s (− log δ(y,Gn · x) > aA logn)

6
c

n
‖ϕ‖∞, (6.85)

where in the last inequality we use Lemma 4.5 and choose A large enough.
Using (6.85), the inequality te

t2
2 Φ(−t) > 1√

2π for all t > 0 and the fact that
t = o(

√
n), we get

A′′n

e
− t3√

n
ζ(− t√

n
)Φ(−t)

6
c

n
‖ϕ‖∞

1

e
t2
2 Φ(−t)

6
ct

n
‖ϕ‖∞ 6

c√
n
‖ϕ‖∞.

This finishes the proof of the expansion (6.64). �

Proof of Theorem 2.8. Theorem 2.8 follows from Theorems 6.4 and 6.6. �

7. Proof of the local limit theorem with moderate deviations

The goal of this section is to establish Theorem 2.9 on the local limit
theorems with moderate deviations for the coefficients 〈f,Gnv〉.

The following result which is proved in [45] will be used to prove Theorem
2.9. Assume that ψ : R 7→ C is a continuous function with compact support
in R, and that ψ is differentiable in a small neighborhood of 0 on the real
line.

Lemma 7.1 ([45]). Assume conditions A1 and A2. Then, there exist con-
stants s0, δ, c, C > 0 such that for all s ∈ (−s0, s0), x ∈ P(V ), |l| 6 1√

n
,

ϕ ∈ Bγ and n > 1,∣∣∣∣∣σs√n e nl
2

2σ2
s

∫
R
e−itlnRns,iu(ϕ)(x)ψ(t)dt−

√
2ππs(ϕ)ψ(0)

∣∣∣∣∣
6

C√
n
‖ϕ‖γ + C

n
‖ϕ‖γ sup

|t|6δ

(
|ψ(t)|+ |ψ′(t)|

)
+ Ce−cn‖ϕ‖γ

∫
R
|ψ(t)|dt. (7.1)

We also need the result below, which is proved in [48, Lemma 6.2].
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Lemma 7.2 ([48]). Assume A1 and A2. Let p > 0 be any fixed constant.
Then, there exists a constant s0 > 0 such that

sup
n>1

sup
s∈(−s0,s0)

sup
y∈P(V ∗)

sup
x∈P(V )

EQxs

( 1
δ(y,Gn ·x)p|s|

)
< +∞.

Using Lemmas 4.5, 7.1 and 7.2, we are equipped to prove Theorem 2.9.

Proof of Theorem 2.9. It suffices to establish the second assertion of the
theorem since the first one is its particular case. Without loss of generality,
we assume that the target functions ϕ and ψ are non-negative.

By the change of measure formula (4.3), we get that for any s ∈ (−s0, s0)
with sufficiently small s0 > 0,

I := E
[
ϕ(Gn ·x)ψ

(
σ(Gn, x)− nλ1 −

√
nσt

)]
(7.2)

= rs(x)κn(s)EQxs

[
(ϕr−1

s )(Gnx)e−sσ(Gn,x)ψ
(

log |〈f,Gnv〉| − nλ1 −
√
nσt

)]
.

As in the equation (6.4), for any |t| = o(
√
n) (not necessarily t > 1), we

choose s ∈ (−s0, s0) satisfying the equation

Λ′(s)− Λ′(0) = σt√
n
. (7.3)

Note that s ∈ (−s0, 0] if t ∈ (−o(
√
n), 0], and s ∈ [0, s0) if t ∈ [0, o(

√
n)).

In the same way as in the proof of (6.72), from (7.3) it follows that for any
|t| = o(

√
n),

sΛ′(s)− Λ(s) = t2

2n −
t3

n3/2 ζ
( t√

n

)
,

where ζ is the Cramér series defined by (2.4). For brevity, denote

T xn = σ(Gn, x)− nΛ′(s), Y x,y
n = log δ(y,Gn ·x).

Hence, using (3.8), we have

I = rs(x)e−n[sΛ′(s)−Λ(s)]EQxs

[
(ϕr−1

s )(Gn ·x)e−sTxnψ
(
T xn + Y x,y

n

)]
= rs(x)e−

t2
2 + t3√

n
ζ( t√

n
)EQxs

[
(ϕr−1

s )(Gn ·x)e−sTxnψ
(
T xn + Y x,y

n

)]
.

Notice that rs(x) → 1 as n → ∞, uniformly in x ∈ P(V ). Thus in order
to establish Theorem 2.9, it suffices to prove the following asymptotic: as
n→∞,

J := σ
√

2πnEQxs

[
(ϕr−1

s )(Gn ·x)e−sTxnψ
(
T xn + Y x,y

n

)]
→ ν(ϕ)

∫
R
ψ(u)du.

(7.4)
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We shall apply Lemmas 4.5 and 7.1 to establish (7.4). Recall that the
functions χyk and χyk are defined by (6.66). Then, using the partition of the
unity (6.67) as in the proof of Theorem 6.6, we have

J =: J1 + J2, (7.5)

where, with Mn = bA lognc and a sufficiently large constant A > 0,

J1 = σ
√

2πnEQxs

[
(ϕr−1

s χyMn
)(Gn ·x)e−sTxnψ

(
T xn + Y x,y

n

)]
J2 = σ

√
2πn

Mn−1∑
k=0

EQxs

[
(ϕr−1

s χyk)(Gn ·x)e−sTxnψ
(
T xn + Y x,y

n

)]
.

Upper bound of J1. In order to prove that J1 → 0 as n→∞, we are led
to consider two cases: s > 0 and s < 0.

When s > 0, since the function ψ has a compact support, say [b1, b2], we
have T xn + Y x,y

n ∈ [b1, b2]. Noting that Y x,y
n 6 0, we get T xn > b1, and hence

e−sT
x
n 6 e−sb1 6 c. Since the function ψ is directly Riemann integrable on

R, it is bounded and hence

J1 6 c
√
nQx

s

(
Y x,y
n 6 −bA lognc

)
.

Applying Lemma 4.5 with k = bA lognc and choosing A sufficiently large,
we obtain that, as n→∞, uniformly in s ∈ [0, s0),

J1 6 C
√
n e−cbA lognc → 0. (7.6)

When s < 0, from T xn + Y x,y
n ∈ [b1, b2], we get that e−sTxn 6 e−sb2+sY x,yn .

Hence, by the Hölder inequality, Lemmas 4.5 and 7.2, we obtain that, as
n→∞, uniformly in s ∈ (−s0, 0],

J1 6 C
√
n

{
EQxs

( 1
δ(y,Gn ·x)−2s

)
Qx
s

(
Y x,y
n 6 −bA lognc

)}1/2

6 C
√
n e−cbA lognc → 0,

where again A is large enough.
Upper bound of J2. Note that the support of the function χyk is contained

in the set {x ∈ P(V ) : −Y x,y
n ∈ [a(k − 1), a(k + 1)]}. Therefore on suppχyk

we have −a 6 Y x,y
n + ak 6 a. For any w ∈ R set Ψs(w) = e−swψ(w) and,

according to (6.1), define Ψ+
s,ε(w) = supw′∈Bε(w) Ψs(w′), for ε ∈ (0, 1

2). Let
also

ϕys,k(x) = (ϕr−1
s χyk)(x), x ∈ P(V ). (7.7)
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With this notation, choosing a ∈ (0, ε), it follows that

J2 6 σ
√

2πn
Mn−1∑
k=0

EQxs

[
ϕys,k(Gn ·x)e−sY

x,y
n Ψ+

s,ε(T xn − ak)
]

6 σ
√

2πn
Mn−1∑
k=0

e−sa(k−1)EQxs

[
ϕys,k(Gn ·x)Ψ+

s,ε(T xn − ak)
]
.

Since the function Ψ+
s,ε is non-negative and integrable on the real line, using

Lemma 6.1, we get

J2 6 (1 + Cρ(ε))σ
√

2πn
Mn−1∑
k=0

e−sa(k−1)

× EQxs

[
ϕys,k(Gn ·x)(Ψ+

s,ε ∗ ρε2)(T xn − ak)
]
,

where Cρ(ε) > 0 is a constant converging to 0 as ε→ 0. Since the function
ρ̂ε2 is integrable on R, by the Fourier inversion formula, we have

(Ψ+
s,η,ε ∗ ρε2)(T xn − ak) = 1

2π

∫
R
eiu(Txn−ak)Ψ̂+

s,ε(u)ρ̂ε2(u)du.

By the definition of the perturbed operator Rs,iu (cf. (4.5)), and Fubini’s
theorem, we obtain

J2 6 (1 + Cρ(ε))σ
√
n

2π

∞∑
k=0

1{k6Mn−1}e
−sa(k−1)

×
∫
R
e−iuakRns,iu(ϕys,k)(x)Ψ̂+

s,ε(u)ρ̂ε2(u)du. (7.8)

To deal with the integral in (7.8), we shall use Lemma 7.1. Note that
e
Ck2
n → 1 as n → ∞, uniformly in 0 6 k 6 Mn − 1. Since the function

Ψ̂+
s,ερ̂ε2 is compactly supported on R, applying Lemma 7.1 with ϕ = ϕys,k,

ψ = Ψ̂+
s,ερ̂ε2 and l = ak

nσ , we obtain that there exists a constant C > 0 such
that for all s ∈ (−s0, s0), x ∈ P(V ), y ∈ P(V ∗), 0 6 k 6 Mn − 1, ϕ ∈ Bγ

and n > 1,∣∣∣∣σ√ n

2π

∫
R
e−itakRns,iu(ϕys,k)(x)Ψ̂+

s,ε(u)ρ̂ε2(u)du− Ψ̂+
s,ε(0)ρ̂ε2(0)πs(ϕys,k)

∣∣∣∣
6

C√
n
‖ϕys,k‖γ .

Using (6.79) and choosing a sufficiently small γ > 0, one can verify that
the series C√

n

∑Mn−1
k=0 ‖ϕys,k‖γ converges to 0 as n → ∞. Consequently, we

are allowed to interchange the limit as n→∞ and the sum over k in (7.8).
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Then, noting that ρ̂ε2(0) = 1 and Ψ̂+
0,ε(0) =

∫
R supw′∈Bε(w) Ψ0(w′)dw, we

obtain that uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = 1 and ‖f‖ = 1,

lim sup
n→∞

J2 6 (1 + Cρ(ε))
∫
R

sup
w′∈Bε(w)

Ψ0(w′)dw
∞∑
k=1

ν
(
ϕy0,k

)
= (1 + Cρ(ε))ν(ϕ)

∫
R

sup
w′∈Bε(w)

Ψ0(w′)dw, (7.9)

where in the last equality we used (4.18). Letting ε→ 0, n→∞, and noting
that Cρ(ε) → 0, we obtain the desired upper bound for J2: uniformly in
v ∈ V and f ∈ V ∗ with ‖v‖ = ‖f‖ = 1,

lim sup
n→∞

J2 6 ν(ϕ)
∫
R
ψ(u)du. (7.10)

Lower bound of J2. Since on the set {−Y x,y
n ∈ [a(k − 1), a(k + 1)]}, we

have −a 6 Y x,y
n + ak 6 a. Set Ψs(w) = e−swψ(w), w ∈ R and Ψ+

s,ε(w) =
infw′∈Bε(w) Ψs(w′), for ε ∈ (0, 1

2). Then, with a ∈ (0, ε),

J2 > σ
√

2πn
Mn−1∑
k=0

EQxs

[
ϕys,k(Gn ·x)e−sY

x,y
n Ψ−s,ε(T xn − ak)

]

> σ
√

2πn
Mn−1∑
k=0

e−sakEQxs

[
ϕys,k(Gn ·x)Ψ−s,ε(T xn − ak)

]
.

By Fatou’s lemma, it follows that

lim inf
n→∞

J2 >
∞∑
k=0

lim inf
n→∞

σ
√

2πne−sakEQxs

[
ϕys,k(Gn ·x)Ψ−s,ε(T xn − ak)

]
.

Since s = o(1) as n→∞, we see that for fixed k > 1, we have e−sak → 1 as
n → ∞. Since the function Ψ−s,ε is non-negative and integrable on the real
line, by Lemma 6.1, we get

lim inf
n→∞

J2 >
∞∑
k=0

lim inf
n→∞

σ
√

2πnEQxs

[
ϕys,k(Gn ·x)(Ψ−s,ε ∗ ρε2)(T xn − ak)

]
−
∞∑
k=0

lim sup
n→∞

σ
√

2πn
∫
|w|>ε

EQxs

[
ϕys,k(Gn ·x)Ψ−s,ε(T xn − ak − w)

]
ρε2(w)dw

=: J3 − J4. (7.11)

Lower bound of J3. Proceeding as in the proof of the upper bound (7.9)
and using Lemma 7.1, we obtain

J3 >
∫
R

inf
w′∈Bε(w)

Ψ−0,ε(w′)dw
∞∑
k=0

ν
(
ϕy0,k

)
. (7.12)
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Taking the limit as ε → 0 and n → ∞, we get the lower bound for J3:
uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = 1 and ‖f‖ = 1,

lim inf
n→∞

J3 > ν(ϕ)
∫
R
ψ(u)du. (7.13)

Upper bound of J4. By Lemma 6.1, we have Ψ−s,ε 6 (1 + Cρ(ε))Ψ+
s,ε ∗ ρε2 .

Applying Lemma 7.1 with ϕ = ϕys,k and ψ = Ψ̂+
s,ερ̂ε2 , it follows from the

Lebesgue dominated convergence theorem that

J4 6 (1 + Cρ(ε))
∞∑
k=0

ν
(
ϕy0,k

)
Ψ̂+

0,ε(0)ρ̂ε2(0)
∫
|w|>ε

ρε2(w)dw, (7.14)

which converges to 0 as ε→ 0.
Combining (7.11), (7.13) and (7.14), we get the desired lower bound for

J2: uniformly in v ∈ V and f ∈ V ∗ with ‖v‖ = 1 and ‖f‖ = 1,

lim inf
n→∞

J2 > ν(ϕ)
∫
R
ψ(u)du. (7.15)

Putting together (7.5), (7.6), (7.10) and (7.15), we obtain the asymptotic
(2.24). This ends the proof of Theorem 2.9. �
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