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LIMIT THEOREMS FOR THE COEFFICIENTS OF RANDOM WALKS ON THE GENERAL LINEAR GROUP
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n 1 be a sequence of independent and identically distributed random elements with law µ on the general linear group GL(V ), where V = R d . Consider the random walk Gn := gn . . . g1, n 1, and the coefficients f, Gnv , where v ∈ V and f ∈ V * . Under suitable moment assumptions on µ, we prove the strong and weak laws of large numbers and the central limit theorem for f, Gnv , which improve the previous results established under the exponential moment condition on µ. We further demonstrate the Berry-Esseen bound, the Edgeworth expansion, the Cramér type moderate deviation expansion and the local limit theorem with moderate deviations for f, Gnv under the exponential moment condition. Under a subexponential moment condition on µ, we also show a Berry-Esseen type bound and the moderate deviation principle for f, Gnv . Our approach is based on various versions of the Hölder regularity of the invariant measure of the Markov chain Gn•x = RGnv on the projective space of V with the starting point x = Rv.

 [START_REF] Furstenberg | Products of random matrices[END_REF], the theory of random walks on linear groups (also called products of random matrices) has attracted a great deal of attention of many mathematicians for several decades, see for instance the influential work of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], Goldsheid and Margulis [START_REF] Goldsheid | Lyapunov indices of a product of random matrices[END_REF], Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF], and the references therein. This theory has important applications in a number of research areas such as spectral theory [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Carmona | Spectral theory of random Schrödinger operators[END_REF][START_REF] Bourgain | A Spectral Gap Theorem in SU (d)[END_REF], geometric measure theory [START_REF] Pelander | Products of random matrices and derivatives on p.c.f. fractals[END_REF][START_REF] Hochman | On the dimension of Furstenberg measure for SL(2, R) random matrix products[END_REF][START_REF] Gorodetski | Parametric Furstenberg Theorem on random products of SL(2, R) matrices[END_REF], statistical physics [START_REF] Crisanti | Products of random matrices: in Statistical Physics[END_REF], homogeneous dynamics [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF], stochastic recursions and smoothing transforms [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF], and branching processes in random environment [START_REF] Page | The survival probability of a critical multi-type branching process in iid random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF]. Of particular interest is the study of asymptotic properties of the random walk

G n := g n . . . g 1 , n 1,
where (g n ) n 1 is a sequence of independent and identically distributed (i.i.d.) random elements with law µ on the general linear group GL(V ) with V = R d . One natural and important way to describe the random walk (G n ) n 1 is to investigate the growth rate of the coefficients f, G n v , where v ∈ V and f ∈ V * , and •, • is the duality bracket: f, v = f (v). Bellman [START_REF] Bellman | Limit theorems for non-commutative operations[END_REF] conjectured that the classical central limit theorem should hold true for f, G n v in the case when the matrices (g n ) are positive. This conjecture was proved by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], who established the strong law of large numbers and central limit theorem under the condition that the matrices g n are strictly positive and that all the coefficients of g n are comparable. This condition was then relaxed by Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], Cohn, Nerman and Peligrad [START_REF] Cohn | Weak ergodicity and products of random matrices[END_REF] and Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF].

As noticed by Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], the analysis developed in [START_REF] Furstenberg | Products of random matrices[END_REF] for positive matrices breaks down for invertible matrices. It turns out that the situation of invertible matrices is much more complicated and delicate. Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] established the strong law of large numbers for the coefficients of products of invertible matrices under an exponential moment condition: for any v ∈ V \ {0} and f ∈ V * \ {0}, a.s.

lim n→∞ 1 n log | f, G n v | = λ 1 , (1.1) 
where λ 1 ∈ R is a constant (independent of f and v) called the first Lyapunov exponent of µ. It is worth mentioning that the result (1.1) does not follow from the classical subadditive ergodic theorem of Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], nor from the recent version by Gouëzel and Karlsson [START_REF] Gouëzel | Subadditive and multiplicative ergodic theorems[END_REF]. The central limit theorem for the coefficients has also been established in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] under the exponential moment condition: for any t ∈ R,

lim n→∞ P log | f, G n v | -nλ 1 σ √ n t = Φ(t), (1.2) 
where Φ is the standard normal distribution function on R and σ 2 > 0 is the asymptotic variance of 1

√ n log | f, G n v |.
Recently, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have extended (1.1) and (1.2) to the framework of the general linear group GL(V ) with V = K d , where K is a local field. Moreover, they also established the law of iterated logarithm and the large deviations bounds.

The first objective of this paper is to prove the weak law of large numbers under the first moment condition: we prove that, if GL(V ) log N (g)µ(dg) < ∞ with N (g) = max{ g , g -1 }, then (1.1) holds in probability. Moreover, under the second moment condition that GL(V ) log 2 N (g)µ(dg) < ∞, we prove the strong law of large numbers, namely that (1.1) holds a.s. Under the same second moment condition we also prove the central limit theorem: we show that the Gaussian approximation (1.2) holds.

Our second objective is to investigate the rate of convergence in the central limit theorem (1.2). To this end, we first establish a Berry-Esseen bound under the exponential moment condition: we prove that if GL(V ) N (g) ε µ(dg) < ∞ for some ε > 0, then there exists a constant c > 0 such that for all n 1, t ∈ R, v ∈ V and f ∈ V * with v = f = 1, and any γ-Hölder continuous function ϕ on P(V ),

E ϕ(G n •x)1 log | f,Gnv |-nλ 1 σ √ n t -ν(ϕ)Φ(t) c √ n ϕ γ , (1.3)
where ϕ γ is the γ-Hölder norm of the function ϕ. Our result (1.3) improves a very recent Berry-Esseen bound with ϕ = 1 in [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF], where a different approach is applied. In fact we will establish a much stronger result, that is, the first-order Edgeworth expansion (cf. Theorem 2.3). Moreover, under a subexponential moment condition, we prove that a weaker version of the Berry-Esseen bound holds true. Namely, the bound (1.3) holds with the rate c log β n √ n (for some β > 0) instead of c √ n . We next establish the moderate deviation principle under the subexponential moment condition that GL(V ) e log α N (g) µ(dg) < ∞ for some constant α ∈ (0, 1): for any Borel set B ⊆ R and any sequence (b n ) n 1 of positive real numbers satisfying bn n → 0 and b n = o(n

1 2-α ) as n → ∞, we have -inf t∈B • t 2 2σ 2 lim inf n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n ∈ B lim sup n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n ∈ B -inf t∈ B t 2 2σ 2 , ( 1.4) 
where B • and B are respectively the interior and the closure of B.

We then reinforce the moderate deviation principle (1.4) to the Cramér type moderate deviation expansion under the exponential moment condition: we prove that if GL(V ) N (g) ε µ(dg) < ∞ for some ε > 0, then uniformly 1) , (1.5) where ζ is the Cramér series (cf. (2.4)). A similar expansion for the lower tail is also obtained. More generally, we prove the Cramér type moderate deviation expansion for the couple (G n •x, log | f, G n v |) with a target function ϕ on the Markov chain (G n •x) on the projective space P(V ); see Theorem 2.8. We mention that Bahadur-Rao type and Petrov type large deviation asymptotics for the coefficients f, G n v have been recently established in [START_REF] Xiao | Large deviation expansions for the coefficients of random walks on the general linear group[END_REF], which give precise estimation of the rate of convergence in the weak law of large numbers (1.1). Our third objective is to establish the local limit theorem with moderate deviations for the coefficients f, G n v : for any real numbers a 1 < a 2 , we have, as n → ∞, uniformly in |t| = o( √ n),

in t ∈ [0, o( √ n)], v ∈ V and f ∈ V * with v = f = 1, as n → ∞, P log | f,Gnv |-nλ 1 σ √ n t 1 -Φ(t) = e t 3 √ n ζ( t √ n ) 1 + o(
P log | f, G n v | -nλ 1 ∈ [a 1 , a 2 ] + √ nσt = a 2 -a 1 σ √ 2πn e -t 2 2 + t 3 √ n ζ( t √ n ) [1 + o(1)]. (1.6)
See Theorem 2.9 for a more general statement where a local limit theorem with moderate deviations for the couple (G n • x, log | f, G n v |) with target functions is given. We would like to mention that using the approach developed in this paper, it is possible to establish some new and interesting limit theorems for the Gromov product of random walks on hyperbolic groups; we refer to Gouëzel [START_REF] Gouëzel | Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences[END_REF][START_REF] Gouëzel | Local limit theorem for symmetric random walks in Gromov-hyperbolic groups[END_REF] on this topic. Finally we would like to mention that all the results of the paper remain valid when V is C d or K d , where K is any local field.

1.2. Proof strategy. Our starting point is the following decomposition which relates the coefficients f, G n v to the cocycles σ(G n , x): for any x = Rv ∈ P(V ) and y = Rf ∈ P(V * ) with f = 1,

log | f, G n v | = σ(G n , x) + log δ(y, G n •x), (1.7) 
where δ(y, x)

= | f,v | f v .
The proof of (1.1) given in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF] is based on the exponential Hölder regularity of the invariant measure ν of the Markov chain (G n •x) on the projective space P(V ), which requires the exponential moment condition. We refer to Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] for a comprehensive account of the proof strategy developed in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF]. In order to relax the exponential moment condition, we will establish a weaker form of the Hölder regularity of ν: we prove that for any ε > 0, lim n→∞ P δ(y, G n •x) e -εn = 0, (1.8) provided that the first moment condition holds. See Proposition 3.4. The weak law of large numbers for the coefficients follows from this and the law of large numbers of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] for the norm cocycle σ(G n , x).

To prove the strong law of large numbers, we show the following stronger regularity of ν: if the second moment condition holds, then for any ε > 0 there exists a sequence of positive numbers (a k ) such that ∞ k=1 a k < ∞ and that for all n k 1, P δ(y, G n •x) e -εk a k .

(1.9) See Lemma 3.5. This permits us to conclude the strong law of large numbers for the coefficients, using that of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] for the norm cocycle. Using again (1.9), together with the central limit theorem for the norm cocycle σ(G n , x) due to Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF], allows us to prove the Gaussian approximation (1.2) under the optimal second moment condition.

For the proof of the Edgeworth expansion and the Berry-Esseen bound (1.3), we first use a partition (χ y n,k ) k 1 of the unity to discretise the component log δ(y, G n •x) in (1.7). This allows to reduce the study of the coefficients to that of the norm cocycle σ(G n , x) jointly with the target function χ y n,k (G n •x). Then our strategy is to make use of the Edgeworth expansion for the couple (G n •x, σ(G n , x)) with target functions on the Markov chain (G n •x). Finally, the result (1.3) is obtained by patching up these expansions by means of the exponential Hölder regularity of the invariant measure ν. For the proof of the Berry-Esseen type bound (Theorem 2.5) under a subexponential moment condition, we establish a subexponential regularity of the invariant measure ν (Theorem 2.6) and make use of the previous result in [START_REF] Cuny | Berry-Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] on Berry-Esseen bounds for the norm cocycle σ(G n , x).

To prove the moderate deviation principle (1.4), we use again the subexponential regularity of the invariant measure ν together with the moderate deviation principle for the norm cocycle σ(G n , x) established by in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF].

To establish the Cramér type moderate deviation expansion (1.5), our approach is different from the standard one which is based on performing a change of measure and proving a Berry-Esseen bound under the changed measure; see for example Cramér [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF] and Petrov [START_REF] Petrov | Sums of independent random variables[END_REF]. However, even with a Berry-Esseen bound under the changed measure at hands, we do not know how to obtain (1.5) using this strategy. Our approach is to use again a partition of the unity and for each piece to pass to the Fourier transforms under the changed measure, and then to establish exact asymptotic expansions. We then patch up these expansions by using the exponential Hölder regularity of the invariant measure ν.

The proof of the local limit theorem with moderate deviations (1.6) follows the same lines as that of (1.5), together with the uniform version of the exponential Hölder regularity of the invariant measure of the Markov chain (G n •x) under the changed measure.

Main results

2.1. Notation and conditions. For any integer d 1, denote by V = R d the d-dimensional Euclidean space. We fix a basis e 1 , . . . , e d of V and the associated norm on V is defined by

v 2 = d i=1 |v i | 2 for v = d i=1 v i e i ∈ V
. Let V * be the dual vector space of V and its dual basis is denoted by e * 1 , . . . , e * d so that e * i (e j ) = 1 if i = j and e * i (e j ) = 0 if i = j. For any integer 2 p d, let ∧ p V be the p-th exterior product of V and we use the same symbol • for the norms induced on ∧ p V and V * . We equip P(V ) with the angular distance

d(x, x ) = v ∧ v v v for x = Rv ∈ P(V ), x = Rv ∈ P(V ). (2.1)
We use the symbol •, • to denote the dual bracket defined by

f, v = f (v) for any f ∈ V * and v ∈ V . Set δ(x, y) = | f, v | f v for x = Rv ∈ P(V ), y = Rf ∈ P(V * ).
Denote by C (P(V )) the space of complex-valued continuous functions on P(V ), equipped with the norm ϕ

∞ := sup x∈P(V ) |ϕ(x)| for ϕ ∈ C (P(V )).
Let γ > 0 be a fixed small enough constant and set

ϕ γ := ϕ ∞ + sup x,x ∈P(V ):x =x |ϕ(x) -ϕ(x )| d(x, x ) γ .
Consider the Banach space

B γ := {ϕ ∈ C (P(V )) : ϕ γ < ∞} ,
which consists of complex-valued γ-Hölder continuous functions on P(V ). Denote by L (B γ , B γ ) the set of all bounded linear operators from B γ to B γ equipped with the operator norm • Bγ →Bγ . The topological dual of B γ endowed with the induced norm is denoted by B γ . Let B * γ be the Banach space of γ-Hölder continuous functions on P(V * ) endowed with the norm

ϕ B * γ = sup y∈P(V * ) |ϕ(x)| + sup y,y ∈P(V * ): y =y |ϕ(y) -ϕ(y )| d(y, y ) γ , where d(y, y ) = f ∧f f f
for y = Rf ∈ P(V * ) and y = Rf ∈ P(V * ). Let GL(V ) be the general linear group of the vector space V . The action of g ∈ GL(V ) on a vector v ∈ V is denoted by gv, and the action of g ∈ GL(V ) on a projective line x = Rv ∈ P(V ) is denoted by g • x = Rgv. For any g ∈ GL(V ), let g = sup v∈V \{0} gv v and denote N (g) = max{ g , g -1 }. Let µ be a Borel probability measure on GL(V ). We shall use the following exponential moment condition.

A1 (Exponential moment condition). There exists a constant

ε > 0 such that GL(V ) N (g) ε µ(dg) < ∞.
Let Γ µ be the smallest closed subsemigroup generated by the support of the measure µ. An endomorphism g of V is said to be proximal if it has an eigenvalue λ with multiplicity one and all other eigenvalues of g have modulus strcitly less than |λ|. We shall need the following strong irreducibility and proximality condition.

A2. (i)(Strong irreducibility) No finite union of proper subspaces of

V is Γ µ -invariant.
(ii)(Proximality) Γ µ contains a proximal endomorphism.

Define the norm cocycle σ : GL(V ) × P(V ) → R as follows:

σ(g, x) = log gv v , for any g ∈ GL(V ) and x = Rv ∈ P(V ).
By [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]Proposition 3.15], under A1 and A2, the following limit exists and is independent of x ∈ P(V ):

σ 2 := lim n→∞ 1 n E (σ(G n , x) -nλ 1 ) 2 ∈ (0, ∞). (2.2)
For any s ∈ (-s 0 , s 0 ) with s 0 > 0 small enough, we define the transfer operator P s as follows: for any bounded measurable function ϕ on P(V ),

P s ϕ(x) = GL(V )
e sσ (g,x) ϕ(g•x)µ(dg), x ∈ P(V ).

(2.

3)

It will be shown in Lemma 4.1 that there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , s 0 ), the operator P s ∈ L (B γ , B γ ) has a unique dominant eigenvalue κ(s) with κ(0) = 1 and the mapping s → κ(s) being analytic.

We denote Λ = log κ. Set γ m = Λ (m) (0) for any m 1. In particular, γ 1 = λ 1 and γ 2 = σ 2 . Throughout the paper, we write ζ for the Cramér series [START_REF] Petrov | Sums of independent random variables[END_REF]:

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + • • • , ( 2.4) 
which converges for |t| small enough. Under A1 and A2, the Markov chain (G n • x) n 0 has a unique invariant probability measure ν on P(V ) such that for any bounded measurable function ϕ on P(V ),

P(V ) GL(V ) ϕ(g•x)µ(dg)ν(dx) = P(V ) ϕ(x)ν(dx) =: ν(ϕ).
(2.5) 2.2. Law of large numbers and central limit theorem. In this subsection we present the law of large numbers and the central limit theorem for the coefficients f, G n v . We first present the law of large numbers for f, G n v : namely we state a weak law of large numbers under the existence of the first moment and a strong law of large numbers under the second moment assumption. Denote by λ 1 and λ 2 the first and second Lyapunov exponents of µ:

λ 1 := lim n→∞ 1 n E log G n , λ 2 := lim n→∞ 1 n E log ∧ 2 G n G n . (2.6) We say that Γ µ is irreducible if no proper subspace of V is Γ µ -invariant. Theorem 2.1. Assume that GL(V ) log N (g)µ(dg) < ∞. Assume also that λ 1 > λ 2 and that Γ µ is irreducible. Then, we have, as n → ∞, uniformly in v ∈ V and f ∈ V * with v = f = 1, 1 n log | f, G n v | → λ 1 in probability and in L 1 . (2.7)
Moreover, if GL(V ) log 2 N (g) µ(dg) < ∞ and condition A2 holds, then the convergence in probability in (2.7) can be improved to the a.s. convergence.

Notice that, by a theorem of Guivarc'h [START_REF] Guivarc | Exposants de Liapunoff des marches aléatoires à pas markovien[END_REF], condition A2 implies that λ 1 > λ 2 and that Γ µ is irreducible. Under the exponential moment condition A1 together with the strong irreducibility and proximality condition A2, Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] proved the a.s. convergence in (2.7) for the special linear group SL(d, R) (the set of d × d matrices with determinant 1); Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] extended it to the general linear group GL(V ). Our Theorem 2.1 states the weak law of large numbers for GL(V ) under the first moment condition, and the strong law of large numbers under the second moment condition. The question remains open whether the strong law of large numbers holds true under the first moment condition.

It is worth mentioning that Aoun and Sert [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF] proved the weak law of large numbers for the spectral radius of G n under the first moment condition, and the strong law of large numbers under the second moment condition.

In the next theorem we formulate the central limit theorem for the coefficients f, G n v under the second moment condition. Recall that

Φ(t) = 1 √ 2π t -∞ e -u 2 /2 du, t ∈ R
is the standard normal distribution function, and σ 2 is the asymptotic variation given by (2.2).

Theorem 2.2.

If GL(V ) log 2 N (g) µ(dg) < ∞ and condition A2 holds, then for any t ∈ R, uniformly in v ∈ V and f ∈ V * with v = f = 1, lim n→∞ P log | f, G n v | -nλ 1 σ √ n t = Φ(t). (2.8) 
Theorem 2.2 improves the results of Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] on SL(d, R) and those of Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] on GL(V ) by relaxing the exponential moment condition A1 to the optimal second moment condition.

We mention that the central limit theorem for the spectral radius of G n has been obtained by Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF].

Edgeworth expansion and Berry-Esseen bound.

In many applications it is of primary interest to give an estimation of the rate of convergence in the Gaussian approximation (2.8). In this direction we prove a first-order Edgeworth expansion. For any ϕ ∈ B γ , define the functions

b ϕ (x) := lim n→∞ E (σ(G n , x) -nΛ (s))ϕ(G n •x) , x ∈ P(V ) (2.9)
and 

d ϕ (y) := P(V ) ϕ(x) log δ(y, x)ν(dx), y ∈ P(V * ). ( 2 
t ∈ R, x = Rv ∈ P(V ), y = Rf ∈ P(V * ) with v = f = 1, and ϕ ∈ B γ , as n → ∞, E ϕ(G n •x)1 log | f,Gnv |-nλ 1 σ √ n t = ν(ϕ) Φ(t) + Λ (0) 6σ 3 √ n (1 -t 2 )φ(t) - b ϕ (x) + d ϕ (y) σ √ n φ(t) + ν(ϕ)o 1 √ n + ϕ γ O 1 n 1-ε . (2.11)
As a consequence of Theorem 2.3 we get the following Berry-Esseen bound with the optimal convergence rate, under the exponential moment condition.

Theorem 2.4. Under A1 and A2, there exist constants γ > 0 and c > 0 such that for any n

1, t ∈ R, x = Rv ∈ P(V ) and f ∈ V * with v = f = 1, and ϕ ∈ B γ , E ϕ(G n •x)1 log | f,Gnv |-nλ 1 σ √ n t -ν(ϕ)Φ(t) c √ n ϕ γ .
(2.12)

Under the same conditions, our result (2.12) improves on two very recent results in [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF] and [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF]: it is proved in [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF] that (2.12) holds for the particular case when ϕ = 1, and in [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF] the authors also consider the case where ϕ = 1 but the convergence rate 1

√ n in (2.12) is replaced by log n √ n .
It is an open question how to relax the exponential moment condition A1 in the Edgeworth expansion and in the Berry-Esseen bound. For positive matrices, the Edgeworth expansion (2.11) and the Berry-Esseen bound (2.12) have been recently obtained using a different approach in a forthcoming paper [START_REF] Xiao | Edgeworth expansions for the coefficients of products of positive random matrices[END_REF] under optimal moment conditions. In the following theorem we get a Berry-Esseen type bound for invertible matrices under the subexponential moment condition, with an extra log 1 α n factor. Theorem 2.5. Assume A2 and that there exists a constant α ∈ (0, 1) such that µ(log N (g) > u) exp{-u α a(u)} for any u > 0 and for some function a(u) > 0 satisfying a(u) → ∞ as u → ∞. Then, there exists a constant c > 0 such that for any n

2, t ∈ R, v ∈ V and f ∈ V * with v = f = 1, P log | f, G n v | -nλ 1 σ √ n t -Φ(t) c log 1 α n √ n . (2.13) Note that the condition µ(log N (g) > u) exp{-u α a(u)} holds true if GL(V ) e log (α+ε) N (g) µ(dg) < ∞ for some ε > 0.
Recently in [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF], under the polynomial moment condition of order p 3, that is, GL(V ) log p N (g) µ(dg) < ∞, a Berry-Esseen type bound is obtained with the convergence rate n

-p-1 2p .
The proof of Theorem 2.5 is based on the Berry-Esseen type bound recently established in [START_REF] Cuny | Berry-Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] and on the subexponential Hölder regularity of the invariant measure ν which is the subject of Section 2.4.

2.4. Subexponential Hölder regularity. We shall establish the following subexponential Hölder regularity of the invariant measure ν under only subexponential moments condition. This turns out to be an important step for proving the Berry-Esseen type bound (2.13) as well as the moderate deviation principle for the coefficients f, G n v (see Theorem 2.7 below).

Theorem 2.6. Assume A2 and that there exists a constant α ∈ (0, 1) such that µ(log N (g) > u) exp{-u α a(u)} for any u > 0 and for some function a(u) > 0 satisfying a(u) → ∞ as u → ∞. Then, there exist constants c > 0 and k 0 ∈ N such that for all n k k 0 , x ∈ P(V ) and y ∈ P(V * ),

P δ(G n •x, y) e -k exp (-ck α ) . (2.14)
Moreover, there exists a constant η > 0 such that

sup y∈P(V * ) P(V ) exp (η| log δ(x, y)| α ) ν(dx) < +∞. (2.15)
In particular, there exist constants c > 0 and η > 0 such that for any y ∈ P(V * ) and r > 0,

ν(B(y, r)) c exp (η| log r| α ) , (2.16) 
where B(y, r) = {x ∈ P(V ) : δ(y, x) r}.

Notice that if A2 holds and that subexponential moment condition in Theorem 2.6 is strengthed to the exponential moment condition A1, then by a theorem due to Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF], the invariant measure ν satisfies a stronger regularity property: there exists a constant η > 0 such that sup y∈P(V * ) P(V ) 1 δ(x, y) η ν(dx) < +∞.

(2.17)

In this case, we say that the invariant measure ν is exponentially Hölder regular.

Under the p-th moment condition that GL(V ) log p N (g) µ(dg) < ∞ for some p > 1, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]Proposition 4.5] have recently established the log-regularity of ν: under A2,

sup y∈P(V * ) P(V ) | log δ(x, y)| p-1 ν(dx) < +∞. (2.18)
This result is one of the crucial points for establishing the central limit theorem for the norm cocycle σ(G n , x) under the optimal second moment condition GL(V ) log 2 N (g) µ(dg) < ∞, see [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

Moderate deviation principles and expansions.

In this subsection we state a moderate deviation principle and Cramér type moderate deviation expansions for the coefficients f, G n v . We first present the moderate deviation principle under a subexponential moment condition, whose proof is based upon the regularity of the invariant measure ν shown in Theorem 2.6. Theorem 2.7. Assume A2 and that GL(V ) e log α N (g) µ(dg) < ∞ for some constant α ∈ (0, 1). Then, for any Borel set B ⊆ R and any sequence

(b n ) n 1 of positive numbers satisfying bn √ n → ∞ and b n = o(n 1 2-α ) as n → ∞, we have, uniformly in v ∈ V and f ∈ V * with v = f = 1, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n ∈ B lim sup n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n ∈ B -inf y∈ B y 2 2σ 2 ,
where B • and B are respectively the interior and the closure of B.

When the sub-exponential moment condition is strengthened to the exponential moment condition A1, we are able to establish the following Cramér type moderate deviation expansions for the coefficients f, G n v , and more generally, for the couple (

G n •x, log | f, G n v |) with a target function ϕ on the Markov chain (G n •x) n 0 .
Theorem 2.8. Assume A1 and A2. Then, we have, as n → ∞, uniformly in v ∈ V and f ∈ V * with v = f = 1, and t ∈ [0, o( √ n)],

P log | f,Gnv |-nλ 1 σ √ n t 1 -Φ(t) = e t 3 √ n ζ( t √ n ) 1 + o(1) , ( 2.19) 
P log | f,Gnv |-nλ 1 σ √ n -t Φ(-t) = e -t 3 √ n ζ(-t √ n ) 1 + o(1) . (2.20)
More generally, for any ϕ ∈ B γ with γ > 0 sufficiently small, we have, as 

n → ∞, uniformly in x = Rv ∈ P(V ) and f ∈ V * with v = f = 1, and t ∈ [0, o( √ n)], E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) = e t 3 √ n ζ( t √ n ) ν(ϕ) + o(1) , (2.21) E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 - √ nσt} Φ(-t) = e -t 3 √ n ζ(-t √ n ) ν(ϕ) + o(1
= Rv ∈ P(V ), v ∈ V and f ∈ V * with v = f = 1, -inf t∈B • t 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(G n •x)1 log | f,Gnv |-nλ 1 bn ∈B lim sup n→∞ n b 2 n log E ϕ(G n •x)1 log | f,Gnv |-nλ 1 bn ∈B -inf t∈ B t 2 2σ 2 ,
where B • and B are respectively the interior and the closure of B. This moderate deviation principle is new even for ϕ = 1.

2.6. Local limit theorem with moderate deviations. In this subsection we state the local limit theorem with moderate deviations and target functions for the coefficients f, G n v .

Theorem 2.9. Assume A1 and A2. Then, for any real numbers

-∞ < a 1 < a 2 < ∞, we have, uniformly in v ∈ V and f ∈ V * with v = f = 1, and |t| = o( √ n), P log | f, G n v | -nλ 1 ∈ [a 1 , a 2 ] + √ nσt = a 2 -a 1 σ √ 2πn e -t 2 2 + t 3 √ n ζ( t √ n ) [1 + o(1)].
(2.23)

More generally, for any ϕ ∈ B γ with γ > 0 sufficiently small, and any directly Riemann integrable function ψ with compact support on R, we have,

as n → ∞, uniformly in x = Rv, v ∈ V and f ∈ V * with v = f = 1, and |t| = o( √ n), E ϕ(G n •x)ψ log | f, G n v | -nλ 1 - √ nσt = e -t 2 2 + t 3 √ n ζ( t √ n ) σ √ 2πn ν(ϕ) R ψ(u)du + o(1) . (2.24)
The asymptotic (2.23) improves the recent results obtained in [START_REF] Grama | A zero-one law for invariant measures and a local limit theorems for the coefficients of random walks on the general linear group[END_REF] and [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF]: the result in [START_REF] Grama | A zero-one law for invariant measures and a local limit theorems for the coefficients of random walks on the general linear group[END_REF] corresponds to the case when t = 0, and that in [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF] to the case when t = o(1).

Proofs of the laws of large numbers

The following strong law of large numbers for the norm cocycle σ(G n , x) is due to Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF]. Recall that Γ µ is irreducible if no proper subspace of V is Γ µ -invariant. Lemma 3.1 ([19]). Assume GL(V ) log N (g)µ(dg) < ∞ and that Γ µ is irreducible. Then, uniformly in x ∈ P(V ),

lim n→∞ σ(G n , x) n = λ 1 a.s.,
where λ 1 ∈ R is the first Lyapunov exponent of µ.

In the next lemma, we state two laws of large numbers for G n and ∧ 2 G n . The first law is due to Furstenberg-Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], which can be proved by Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF]; the second one is also an easy consequence of Kingman's ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF] using the definition of λ 2 given in (2.6). Lemma 3.2 ([20, 39]). Assume GL(V ) log N (g)µ(dg) < ∞. Then,

lim n→∞ 1 n log G n = λ 1 and lim n→∞ 1 n log ∧ 2 G n = λ 1 + λ 2 a.s.
Denote by K the group of isometries of (V, • ) and by A + the semigroup

A + = {diag(a 1 , . . . , a d ) : a 1 . . . a d > 0}
, where diag(a 1 , . . . , a d ) is a diagonal endomorphism under the basis e 1 , . . . , e d of V . The well known Cartan decomposition states that GL(V ) = KA + K. For every g ∈ GL(V ), we choose a decomposition (which is not necessarily unique)

g = k g a g l g ,
where k g , l g ∈ K and a g ∈ A + . Recall that (e * i ) 1 i d is the dual basis in V * . Set

x M g = Rk g e 1 and y m g = Rl g e * 1 . Let g * denote the adjoint automorphism of g ∈ GL(V ). Following [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF],

x M g ∈ P(V ) and y m g ∈ P(V * ) are called respectively the density point of g and g * .

The next result is taken from [START_REF] Benoist | Central limit theorem for linear groups[END_REF]Lemma 4.7].

Lemma 3.3 ([5]). For any g ∈ GL(V ), x = Rv and y = Rf with v ∈ V \{0} and f ∈ V * \ {0}, we have (1) δ(x, y m g ) gv g v δ(x, y m g ) + ∧ 2 g g 2 , (2) δ(x M g , y) g * f g f δ(x M g , y) + ∧ 2 g g 2 , (3) d(g•x, x M g )δ(x, y m g ) ∧ 2 g g 2 .
Using Lemmas 3.1-3.3, we get the following: Proposition 3.4. Assume that GL(V ) log N (g)µ(dg) < ∞. Assume also that λ 1 > λ 2 and that Γ µ is irreducible. Then, for any ε > 0, we have that uniformly in x ∈ P(V ) and y ∈ P(V * ),

lim n→∞ P d(G n •x, x M Gn ) e -(λ 1 -λ 2 -ε)n = 0, (3.1) 
lim n→∞ P δ(x M Gn , y) e -εn = 0, (3.2) 
lim n→∞ P δ(G n •x, y) e -εn = 0. (3.3)
Proof. We first prove (3.1). For every g ∈ GL(V ), using the Cartan decomposition g = k g a g l g and the fact that k g is an isometry of (V, • ), we get that for any x = Rv ∈ P(V ),

d(g•x, x M g ) = gv ∧ k g e 1 gv k g e 1 = k g a g l g v ∧ k g e 1 gv = a g l g v ∧ e 1 gv .
Since a g = diag(a 1 , . . . , a d ), we have a g l g v ∧ e 1 a 2 v . This, together with the fact that

a 2 = ∧ 2 g g , implies that d(g •x, x M g ) ∧ 2 g v g gv
. Hence, for any x = Rv ∈ P(V ) and n 1,

d(G n •x, x M Gn ) ∧ 2 G n v G n G n v . ( 3.4) 
By Lemmas 3.1 and 3.2, we get that for any ε > 0, uniformly in v ∈ V \ {0},

lim n→∞ P 1 n log ∧ 2 G n v G n G n v -(λ 2 -λ 1 ) ε = 0, which implies that uniformly in v ∈ V \ {0}, lim n→∞ P ∧ 2 G n v G n G n v e -(λ 1 -λ 2 -ε)n = 0.
Hence, using (3.4), we obtain (3.1). We next prove (3.2). By Lemma 3.3 (2), we have that for any ε > 0 and any y = Rf with f ∈ V * \ {0},

P δ(x M Gn , y) e -ε n P G * n f G * n f - ∧ 2 G n G n 2 e -ε n . (3.5)
Applying Lemma 3.2 and Lemma 3.1 to the measure µ * (µ * is the image of the measure µ by the map g → g * , where g * is the adjoint automorphism of g ∈ GL(V )), we get that for any ε > 0,

lim n→∞ P ∧ 2 G n G n 2 e -(λ 1 -λ 2 -ε)n = 0, (3.6) 
and that for any y = Rf with f ∈ V * \ {0},

lim n→∞ P G * n f G * n f e -εn = 0. (3.7)
From (3.6) we derive that as n → ∞,

P G * n f G * n f - ∧ 2 G n G n 2 e -ε n P G * n f G * n f - ∧ 2 G n G n 2 e -ε n , ∧ 2 G n G n 2 < e -(λ 1 -λ 2 -ε)n + o(1) P G * n f G * n f e -ε n + e -(λ 1 -λ 2 -ε)n + o(1) = o(1),
where in the last line we used (3.7). This, together with (3.5), gives (3.2). We finally prove (3.3). Since, for any a ∈ P(V ) and y ∈ P(V * ) it holds that δ(a, y) = d(a, z), where z = y ⊥ is the element in P(V ) orthogonal to y. By triangular inequality, we have, for all a, b ∈ P(V ) and y ∈ P(V * ),

δ(a, y) = d(a, z) d(a, b) + d(b, z) = d(a, b) + δ(b, y). It follows that δ(G n •x, y) δ(x M Gn , y) -d(G n •x, x M Gn ). Therefore, using (3.1), we get that, as n → ∞, P δ(G n •x, y) e -ε n P δ(x M Gn , y) -d(G n •x, x M Gn ) e -ε n P δ(x M Gn , y) -d(G n •x, x M Gn ) e -ε n , d(G n •x, x M Gn ) < e -(λ 1 -λ 2 -ε)n + o(1) P δ(x M Gn , y) e -ε n + e -(λ 1 -λ 2 -ε)n + o(1) = o(1),
where in the last line we used (3.2). This ends the proof of (3.3).

The following result is a direct consequence of [START_REF] Benoist | Central limit theorem for linear groups[END_REF]Lemma 4.8]. Lemma 3.5. Assume that GL(V ) log 2 N (g)µ(dg) < ∞ and that condition A2 holds. Then, for any ε > 0, there exist constants

a k > 0 with ∞ k=1 a k < ∞, such that for all n k 1, x ∈ P(V ) and y ∈ P(V * ), P δ(y, G n •x) e -εk a k . Proof. Denote G n,k = g n . . . g n-k+1 for n k. Notice that P δ(y, G n •x) e -εk = GL(V ) n-k P δ(y, G n,k g n-k . . . g 1 •x) e -εk µ(dg n-k ) . . . µ(dg 1 )
.

By [START_REF] Benoist | Central limit theorem for linear groups[END_REF]Lemma 4.8], for any ε > 0, there exist constants a k > 0 with ∞ k=1 a k < ∞, such that for all n k 1, x ∈ P(V ) and y ∈ P(V * ),

P δ(y, G n •x) e -εk a k .
The desired result follows.

Proof of Theorem 2.1. We first prove the assertion (2.7). Note that for any

x = Rv ∈ P(V ) and y = Rf ∈ P(V * ) with v = f = 1, log | f, G n v | = σ(G n , x) + log δ(y, G n •x). (3.8) 
Using Lemma 3.1 and (3.3), we get that, as n → ∞,

1 n log | f, G n v | con- verges to λ 1 in probability, uniformly in v ∈ V and f ∈ V * with v = f = 1.
This, together with the fact that the sequence

{ 1 n log | f, G n v |} n 1 is uni- formly integrable, proves (2.7).
Now we prove the almost sure convergence based on Lemmas 3.1 and 3.5. By Lemma 3.5 and Borel-Cantelli's lemma, we get that for any ε > 0,

lim inf n→∞ 1 n log δ(y, G n •x) > -ε a.s.
Together with Lemma 3.1 and the fact that δ(y, G n •x) 1, this yields that lim n→∞

1 n log | f, G n v | = λ 1 , a.s.
In the proof of Theorem 2.2, we will use the central limit theorem for the norm cocycle σ(G n , x). Under the exponential moment condition A1, this result is due to Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. Recently, using the martingale approximation approach and the log-regularity of the invariant measure ν, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] relaxed condition A1 to the optimal second moment condition.

Lemma 3.6 ([5]

). Assume that GL(V ) log 2 N (g) µ(dg) < ∞ and that condition A2 holds. Then, for any t ∈ R, it holds that uniformly in x ∈ P(V ),

lim n→∞ P σ(G n , x) -nλ σ √ n t = Φ(t).
Now we prove Theorem 2.2 using Lemmas 3.5 and 3.6.

Proof of Theorem 2.2. By Lemma 3.6 and Slutsky's theorem, it suffices to prove that

1 σ √ n log δ(y, G n • x) converges to 0 in probability, as n → ∞.
Namely, we need to show that, for any ε > 0, uniformly in x ∈ P(V ) and y ∈ P(V * ),

lim n→∞ P log δ(y, G n •x) σ √ n < -ε = 0.
To prove this, taking k = √ n in Lemma 3.5, we get that uniformly in x ∈ P(V ) and y ∈ P(V * ),

P log δ(y, G n •x) σ √ n < -ε = P δ(y, G n •x) < e -εσ √ n a √ n ,
where a √ n converges to 0 as n → ∞, since ∞ k=1 a k < ∞.

Proof of the Edgeworth expansion

4.1. Spectral gap properties and a change of measure. For any z ∈ C with | z| small enough, we define the complex transfer operator P z as follows: for any bounded measurable function ϕ on P(V ),

P z ϕ(x) = GL(V ) e zσ(g,x) ϕ(g•x)µ(dg), x ∈ P(V ). (4.1)
Throughout this paper let B s 0 (0) := {z ∈ C : |z| < s 0 } be the open disc with center 0 and radius s 0 > 0 in the complex plane C. The following result shows that the operator P z has spectral gap properties when z ∈ B η (0); we refer to [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for the proof based on the perturbation theory of linear operators. Recall that B γ is the topological dual space of the Banach space B γ , and that L (B γ , B γ ) is the set of all bounded linear operators from B γ to B γ equipped with the operator norm • Bγ →Bγ .

Lemma 4.1 ([6, 45]). Assume A1 and A2. Then, there exists a constant s 0 > 0 such that for any z ∈ B s 0 (0) and n 1,

P n z = κ n (z)ν z ⊗ r z + L n z , (4.2)
where

z → κ(z) ∈ C, z → r z ∈ B γ , z → ν z ∈ B γ , z → L z ∈ L (B γ , B γ )
are analytic mappings which satisfy, for any z ∈ B s 0 (0), (a) the operator

M z := ν z ⊗ r z is a rank one projection on B γ , i.e. M z ϕ = ν z (ϕ)r z for any ϕ ∈ B γ ; (b) M z L z = L z M z = 0, P z r z = κ(z)r z with ν(r z ) = 1, and ν z P z = κ(z)ν z ; (c) κ(0) = 1, r 0 = 1, ν 0 = ν with ν defined by (2.

5), and κ(z) and r z

are strictly positive for real-valued z ∈ (-s 0 , s 0 ).

Using Lemma 4.1, a change of measure can be performed below. Specifically, for any s ∈ (-s 0 , s 0 ) with s 0 > 0 sufficiently small, any x ∈ P(V ) and g ∈ GL(V ), denote

q s n (x, g) = e sσ(g,x) κ n (s) r s (g•x) r s (x)
, n 1.

Since the eigenvalue κ(s) and the eigenfunction r s are strictly positive for s ∈ (-s 0 , s 0 ), using P s r s = κ(s)r s we get that

Q x s,n (dg 1 , . . . , dg n ) = q s n (x, G n )µ(dg 1 ) . . . µ(dg n ), n 1,
are probability measures and form a projective system on GL(V ) N . By the Kolmogorov extension theorem, there is a unique probability measure Q x s on GL(V ) N with marginals Q x s,n . We write E Q x s for the corresponding expectation and the change of measure formula holds: for any s ∈ (-s 0 , s 0 ), x ∈ P(V ), n 1 and bounded measurable function

h on (P(V ) × R) n , 1 κ n (s)r s (x) E r s (G n •x)e sσ(Gn,x) h G 1 •x, σ(G 1 , x), ..., G n •x, σ(G n , x) = E Q x s h G 1 •x, σ(G 1 , x), ..., G n •x, σ(G n , x) . (4.3)
Under the changed measure Q x s , the process (G n •x) n 0 is a Markov chain with the transition operator Q s given as follows: for any ϕ ∈ C (P(V )),

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ P(V ).
Under A1 and A2, it was shown in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that the Markov operator Q s has a unique invariant probability measure π s given by

π s (ϕ) = ν s (ϕr s ) ν s (r s ) for any ϕ ∈ C (P(V )). (4.4) 
By [45, Proposition 3.13], the following strong law of large numbers for the norm cocycle under the changed measure Q x s holds: under A1 and A2, for any s ∈ (-s 0 , s 0 ) and x ∈ P(V ),

lim n→∞ σ(G n , x) n = Λ (s), Q x s -a.s.
where Λ(s) = log κ(s). For any s ∈ (-s 0 , s 0 ) and u ∈ R, we define the perturbed operator R s,iu as follows: for ϕ ∈ C (P(V )),

R s,iu ϕ(x) = E Q x s e iu(σ(g,x)-Λ (s)) ϕ(g•x) , x ∈ P(V ). (4.5)
It follows from the cocycle property of σ(•, •) that for any n 1,

R n s,iu ϕ(x) = E Q x s e iu(σ(Gn,x)-nΛ (s)) ϕ(G n •x) , x ∈ P(V ).
The next result gives spectral gap properties of the perturbed operator R s,iu .

Lemma 4.2 ([45]

). Assume A1 and A2. Then, there exist constants s 0 > 0 and δ > 0 such that for any s ∈ (-s 0 , s 0 ) and u ∈ (-δ, δ),

R n s,iu = λ n s,iu Π s,iu + N n s,iu , (4.6) 
where λ s,iu = e Λ(s+iu)-Λ(s)-iuΛ (s) , (4.7) and for fixed s ∈ (-s 0 , s 0 ), the mappings

u → Π s,iu : (-δ, δ) → L (B γ , B γ ), u → N s,iu : (-δ, δ) → L (B γ , B γ ) and u → λ s,iu : (-δ, δ) → R are analytic.
In addition, for fixed s and u, the operator Π s,iu is a rank-one projection with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ P(V ), and Π s,iu N s,iu = N s,iu Π s,iu = 0. Moreover, for any k ∈ N, there exist constants c > 0 and 0 < a < 1 such that

sup |s|<s 0 sup |u|<δ d k du k Π n s,iu Bγ →Bγ c, sup |s|<s 0 sup |u|<δ d k du k N n s,iu Bγ →Bγ ca n . (4.8)
We end this subsection by giving the non-arithmetic property of the perturbed operator R s,iu .

Lemma 4.3 ([45]

). Assume A1 and A2. Then, for any compact set K ⊆ R\{0}, there exist constants s 0 , c, C K > 0 such that for any n 1 and

ϕ ∈ B γ , sup s∈(-s 0 ,s 0 ) sup u∈K sup x∈P(V ) |R n s,iu ϕ(x)| ce -nC K ϕ γ .
4.2. Exponential Hölder regularity of the invariant measure π s . We need the following exponential regularity of the invariant measure π s from [START_REF] Grama | A zero-one law for invariant measures and a local limit theorems for the coefficients of random walks on the general linear group[END_REF].

Lemma 4.4 ([25]

). Assume A1 and A2. Then there exist constants s 0 > 0 and η > 0 such that

sup s∈(-s 0 ,s 0 ) sup y∈P(V * ) P(V ) 1 δ(y, x) η π s (dx) < +∞. (4.9)
We also need the following property: Lemma 4.5 ([25]). Assume A1 and A2. Then, for any ε > 0, there exist constants s 0 > 0 and c, C > 0 such that for all s ∈ (-s 0 , s 0 ), n k 1, x ∈ P(V ) and y ∈ P(V * ), Our goal of this subsection is to establish the following first-order Edgeworth expansion for the coefficients f, G n v under the changed measure Q x s . Note that σ s = Λ (s), which is strictly positive under A1 and A2. Theorem 4.6. Assume A1 and A2. Then, for any ε > 0, there exist constants γ > 0 and s 0 > 0 such that uniformly in s ∈ (-s 0 , s 0 ), t ∈ R,

Q x s log δ(y, G n •x) -εk Ce -ck . ( 4 
∈ B γ , define b s,ϕ (x) := lim n→∞ E Q x s (σ(G n , x) -nΛ (s))ϕ(G n •x) , x ∈ P(V ) (4.
x = Rv ∈ P(V ), y = Rf ∈ P(V * ) with v = f = 1, and ϕ ∈ B γ , as n → ∞, E Q x s ϕ(G n •x)1 log | f,Gnv |-nΛ (s) σs √ n t = π s (ϕ) Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) - b s,ϕ (x) + d s,ϕ (y) σ s √ n φ(t) + π s (ϕ)o 1 √ n + ϕ γ O 1 n 1-ε .
Theorem 2.3 follows from Theorem 4.6 by taking s = 0. We begin with some properties of the function b s,ϕ (cf. (4.11)) proved recently in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Lemma 4.7 ([45]). Assume A1 and A2. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , s 0 ), the function b s,ϕ is well-defined and

b s,ϕ (x) = dΠ s,z dz z=0 ϕ(x), x ∈ P(V ). (4.13)
Moreover, there exist constants γ > 0 and c > 0 such that b s,ϕ ∈ B γ and b s,ϕ γ c ϕ γ for any s ∈ (-s 0 , s 0 ).

In addition to Lemma 4.7, we prove the following result on the function d s,ϕ defined in (4.12). Lemma 4.8. Assume A1 and A2. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , s 0 ), the function d s,ϕ is well-defined. Moreover, there exist constants γ > 0 and c > 0 such that d s,ϕ ∈ B * γ and d s,ϕ γ c ϕ ∞ for any s ∈ (-s 0 , s 0 ).

Proof. Since a e a for any a 0, for any η ∈ (0, 1) we have -η log δ(y, x) δ(y, x) -η , so that

-d s,ϕ (y) ϕ ∞ η P(V ) 1 δ(y, x) η π s (dx).
Choosing η small enough, by Lemma 4.4, the latter integral is bounded uniformly in y ∈ P(V * ) and s ∈ (-s 0 , s 0 ), which proves that d s,ϕ is well defined and that d s,ϕ ∞ c ϕ ∞ .

Note that | log(1 + a)| c|a| for any |a| 1 2 . Then, using this, for any y = Rf ∈ P(V * ), y = Rf ∈ P(V * ) and any γ > 0, we deduce that log δ(y , x) -log δ(y , x)

= log δ(y , x) -log δ(y , x) 1 δ(y ,x)-δ(y ,x) δ(y ,x) > 1 2 + log δ(y , x) -log δ(y , x) 1 δ(y ,x)-δ(y ,x) δ(y ,x) 1 2 2 γ log δ(y , x) + log δ(y , x) δ(y , x) -δ(y , x) δ(y , x) γ + c γ log δ(y , x) -log δ(y , x) 1-γ δ(y , x) -δ(y , x) δ(y , x) γ .
Taking into account the fact that -η log δ(y, x) δ(y, x) -η , from the previous bound, we obtain

| log δ(y , x) -log δ(y , x)| c η δ(y , x) -η δ(y , x) -γ + δ(y , x) -η-γ δ(y , x) -δ(y , x) γ + c η,γ δ(y , x) -η(1-γ) δ(y , x) -γ + δ(y , x) -η(1-γ)-γ δ(y , x) -δ(y , x) γ c η,γ δ(y , x) -η δ(y , x) -γ + δ(y , x) -η-γ δ(y , x) -δ(y , x) γ c η,γ δ(y , x) -2η + δ(y , x) -2γ + δ(y , x) -η-γ δ(y , x) -δ(y , x) γ . Since f f -f f d(y , y
) where d(y , y ) is the angular distance on

P(V * ), it follows that δ(y , x) -δ(y , x) = v(f ) v f - v(f ) v f f f - f f d(y , y ).
By the definition of the function d s,ϕ , using the above bounds, we obtain

|d s,ϕ (y ) -d s,ϕ (y )| d(y , y ) γ c η,γ ϕ ∞ P(V ) δ(y , x) -2η + δ(y , x) -2γ + δ(y , x) -η-γ π s (dx).
By choosing η and γ sufficiently small, the last integral is bounded uniformly in y , y ∈ P(V * ) and s ∈ (-s 0 , s 0 ) by Lemma 4.4. This proves that d s,ϕ ∈ B * γ .

In the proof of Theorem 2.4 we make use of the following Edgeworth expansion for the couple (G n • x, σ(G n , x)) with a target function on G n • x, which slightly improves [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]Theorem 5.3] by giving more accurate reminder terms. This improvement will be important for establishing Theorem 2.4. Theorem 4.9. Assume A1 and A2. Then, there exists

s 0 > 0 such that, as n → ∞, uniformly in s ∈ (-s 0 , s 0 ), x ∈ P(V ), t ∈ R and ϕ ∈ B γ , E Q x s ϕ(G n • x)1 σ(Gn,x)-nΛ (s) σs √ n t = π s (ϕ) Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) - b s,ϕ (x) σ s √ n φ(t) + π s (ϕ)o 1 √ n + ϕ γ O 1 n .
Proof. For any x ∈ P(V ), define

F (t) = E Q x s ϕ(G n •x)1 σ(Gn,x)-nΛ (s) σs √ n t + b s,ϕ (x) σ s √ n φ(t), t ∈ R, H(t) = E Q x s [ϕ(G n •x)] Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) , t ∈ R. Since F (-∞) = H(-∞) = 0 and F (∞) = H(∞), applying Proposition 4.1 of [45] we get that sup t∈R F (t) -H(t) 1 π (I 1 + I 2 + I 3 + I 4 ), (4.14) 
where

I 1 = o 1 √ n sup t∈R |H (t)|, I 2 Ce -cn ϕ γ , I 3 c n ϕ γ , I 4 c n ϕ γ .
Here the bounds for I 2 , I 3 and I 4 are obtained in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. It is easy to see that

I 1 = o 1 √ n E Q x s ϕ(G n •x) .
This, together with the fact that

E Q x s ϕ(G n •x) π s (ϕ) + Ce -cn ϕ γ (cf. Lemma 4.
2), proves the theorem.

In the following we shall construct a partition (χ y n,k ) k 0 of the unity on the projective space P(V ), which is similar to the partitions in [START_REF] Xiao | Large deviation expansions for the coefficients of random walks on the general linear group[END_REF][START_REF] Grama | A zero-one law for invariant measures and a local limit theorems for the coefficients of random walks on the general linear group[END_REF][START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF]. In contrast to [START_REF] Xiao | Large deviation expansions for the coefficients of random walks on the general linear group[END_REF][START_REF] Grama | A zero-one law for invariant measures and a local limit theorems for the coefficients of random walks on the general linear group[END_REF], there is no escape of mass in our partition, which simplifies the proofs. Our partition becomes finer when n → ∞, which allows us to obtain precise expressions for remainder terms in the central limit theorem and thereby to establish the Edgeworth expansion for the coefficients.

Let U be the uniform distribution function on the interval [0, 1]:

U (t) = t for t ∈ [0, 1], U (t) = 0 for t < 0 and U (t) = 1 for t > 1. Let a n = 1 log n .
Here and below we assume that n 18 so that a n e an 1 2 . For any integer k 0, define

U n,k (t) = U t -(k -1)a n a n , h n,k (t) = U n,k (t) -U n,k+1 (t), t ∈ R.
It is easy to see that U n,m = ∞ k=m h n,k for any m 0. Therefore, for any t 0 and m 0, we have

∞ k=0 h n,k (t) = 1, m k=0 h n,k (t) + U n,m+1 (t) = 1. (4.15)
Note that, for any k 0, sup

s,t 0:s =t |h n,k (s) -h n,k (t)| |s -t| 1 a n . ( 4.16) 
For any x = Rv ∈ P(V ) and y = Rf ∈ P(V * ), set χ y n,k (x) = h n,k (-log δ(y, x)) and χ y n,k (x) = U n,k (-log δ(y, x)), (4.17) where we recall thatlog δ(y, x) 0 for any x ∈ P(V ) and y ∈ P(V * ). From (4.15) we have the following partition of the unity on P(V ): for any x ∈ P(V ), y ∈ P(V * ) and m 0,

∞ k=0 χ y n,k (x) = 1, m k=0 χ y n,k (x) + χ y n,m+1 (x) = 1. (4.18)
Denote by supp(χ y n,k ) the support of the function χ y n,k . It is easy to see that for any k 0 and y ∈ P(V * ),

-log δ(y, x) ∈ [a n (k -1), a n (k + 1)] for any x ∈ supp(χ y n,k ). (4.19)
Lemma 4.10. There exists a constant c > 0 such that for any γ ∈ (0, 1], k 0 and y ∈ P(V * ), it holds χ y n,k ∈ B γ and, moreover,

χ y n,k γ ce γkan a γ n . (4.20) Proof. Since χ y n,k ∞
1, it is enough to give a bound for the modulus of continuity:

[χ y n,k ] γ = sup x ,x ∈P(V ):x =x |χ y n,k (x ) -χ y n,k (x )| d(x , x ) γ ,
where d is the angular distance on P(V ) defined by (2.1). Asume that x = Rv ∈ P(V ) and 

x = Rv ∈ P(V ) are such that v = v = 1. We note that v -v √ 2d(x , x ). ( 4 
|χ y n,k (x ) -χ y n,k (x )| = |h n,k (t ) -h n,k (t )| 1-γ |h n,k (t ) -h n,k (t )| γ |h n,k (t ) -h n,k (t )| γ |t -t | γ a γ n = 1 a γ n | log u -log u | γ , ( 4.22) 
where we set for brevity u = δ(y, x ) and u = δ(y, x ). Since u = e -t , u = e -t and t, t ∈ B k , we have u e -kan and |u -u | e -(k-1)an -e -kan . Therefore,

u u -1 = u -u u e -(k-1)
an -e -kan e -kan = e an -1 a n e an 

| log u -log u | = log 1 + u u -1 2 |u -u | u . (4.23)
Since u e -kan , using the fact that v = v = 1 and (4.21), we get

|u -u | u e kan |δ(y, x ) -δ(y, x )| = e kan |f (v ) -f (v )| f = e kan |f (v -v )| f √ 2e kan d(x , x ). (4.24)
Therefore, from (4.22), (4.23) and (4.24), it follows that for γ ∈ (0, 1],

|χ y n,k (x ) -χ y n,k (x )| 3 e γkan a γ n d(x , x ) γ . (4.25)
The case t , t ∈ B k is treated in the same way.

To conclude the proof we shall consider the case when t = -log δ(y, x ) ∈ B k-1 and t = -log δ(y, x ) ∈ B k ; the other cases can be handled in the same way. We shall reduce this case to the previous ones. Let x * ∈ P(V ) be the point on the geodesic line [x , x ] on P(V ) such that d(x , x ) = d(x , x * ) + d(x * , x ) and t * = -log δ(y, x * ) = ka n . Then 

|χ y n,k (x ) -χ y n,k (x )| |χ y n,k (x ) -χ y n,k (x * )| + |χ y n,k (x ) -χ y n,k (x * )|
(k + 1)a n π s (ϕ y n,k ) -d s,ϕ (y) + 2a n π s (ϕ)
and

Mn k=0 (k -1)a n π s (ϕ y n,k ) -d s,ϕ (y) -2a n π s (ϕ) -c ϕ ∞ n 2 .
Proof. Recall that d ϕ (y) is defined in (2.10). Using (4.18) we deduce that

-d s,ϕ (y) = - Mn k=0 P(V ) ϕ y n,k (x) log δ(y, x)π s (dx) Mn k=0 (k -1)a n π s (ϕ y n,k ) = Mn k=0 (k + 1)a n π s (ϕ y n,k ) -2a n π s (ϕ),
which proves the first assertion of the lemma.

Using the Markov inequality and the exponential Hölder regularity of the invariant measure π s (Lemma 4.4), we get that there exists a small η > 0 such that

- P(V ) ϕ y n,Mn (x) log δ(y, x)π s (dx) c ϕ ∞ P(V ) e -ηA log n δ(y, x) η δ(y, x) -η π s (dx) = e -ηA log n ϕ ∞ P(V ) δ(y, x) -2η π s (dx) c ϕ ∞ n 2 ,
where in the last inequality we choose A > 0 to be sufficiently large so that ηA 2. Therefore,

-d s,ϕ (y) = - Mn k=0 P(V ) ϕ y n,k (x) log δ(y, x)π s (dx) Mn-1 k=0 (k + 1)a n π s (ϕ y n,k ) + c ϕ ∞ n 2 Mn-1 k=0 (k -1)a n π s (ϕ y n,k ) + 2a n π s (ϕ) + c ϕ ∞ n 2 Mn k=0 (k -1)a n π s (ϕ y n,k ) + 2a n π s (ϕ) + c ϕ ∞ n 2 .
This proves the second assertion of the lemma.

Proof of Theorem 4.6. Without loss of generality, we assume that the target function ϕ is non-negative. With the notation in (4.27), we have

I n (t) := E Q x s ϕ(G n •x)1 log | f,Gnv |-nλ 1 σs √ n t = Mn k=0 E Q x s ϕ y n,k (G n •x)1 log | f,Gnv |-nλ 1 σs √ n t =: Mn k=0 F n,k (t). (4.28)
For 0 k M n -1, using (1.7) and the fact thatlog δ(y, x) (k + 1)a n when x ∈ supp ϕ y n,k , we get

F n,k (t) E Q x s ϕ y n,k (G n •x)1 σ(Gn,x)-nλ 1 σs √ n t+ (k+1)an σs √ n =: H n,k (t). (4.29)
For k = M n , we have

F n,Mn (t) E Q x s ϕ y n,Mn (G n •x)1 log σ(Gn,x)-nλ 1 σs √ n t+ (Mn+1)an σs √ n + E Q x s ϕ y n,Mn (G n •x)1 -log δ(y,Gn•x) (Mn+1)an =: H n,Mn (t) + W n (t), (4.30) 
where, by Lemma 4.5, choosing A large enough, 

W n (t) ϕ ∞ Q x s (-log δ(y, G n • x) A log n) ϕ ∞ c 0 n c 1 A ϕ ∞ c 0 n 2 . ( 4 
, s 0 ), x ∈ P(V ), t ∈ R, 0 k M n and ϕ ∈ B γ , as n → ∞, H n,k (t) = π s (ϕ y n,k ) Φ(t n,k ) + Λ (s) 6σ 3 s √ n (1 -t 2 n,k )φ(t n,k ) - b s,ϕ y n,k (x) σ s √ n φ(t n,k ) + π s (ϕ y n,k )o 1 √ n + ϕ y n,k γ O 1 n .
By the Taylor expansion we have, uniformly in s ∈ (-s 0 , s 0 ),

x ∈ P(V ), t ∈ R and 0 k M n , Φ(t n,k ) = Φ(t) + φ(t) (k + 1)a n σ s √ n + O log 2 n n and (1 -t 2 n,k )φ(t n,k ) = (1 -t 2 )φ(t) + O log n √ n .
Moreover, using Lemma 4.7,

b s,ϕ y n,k (x) σ s √ n φ(t n,k ) = b s,ϕ y n,k (x) σ s √ n φ(t) + ϕ y n,k γ O log n n .
Using these expansions and (4.29), (4.30) and (4.31), we get that there exists a sequence (β n ) n 1 of positive numbers satisfying β n → 0 as n → ∞, such that for any 0 k M n ,

F n,k (t) π s (ϕ y n,k ) Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) - b s,ϕ y n,k (x) σ s √ n φ(t) + φ(t) σ s √ n π s (ϕ y n,k )(k + 1)a n + π s (ϕ y n,k ) β n √ n + ϕ y n,k γ c log n n . ( 4.32) 
By Lemma 4.10, it holds that for any γ ∈ (0, 1] and 0 k M n ,

ϕ y n,k γ c ϕ ∞ n γA log γ n + ϕ γ . (4.33)
Summing up over k in (4.32), using (4.33) and taking γ > 0 to be sufficiently small such that γA < ε/2, we obtain

I n (t) = Mn k=0 F n,k π s (ϕ) Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) - b s,ϕ (x) σ s √ n φ(t) + φ(t) σ s √ n Mn k=0 π s (ϕ y n,k )(k + 1)a n + π s (ϕ) β n √ n + ϕ γ c n 1-ε . ( 4.34) 
Combining (4.34) and Lemma 4.11, together with the fact that a n → 0 as n → ∞, yields the desired upper bound. The lower bound is established in the same way. Instead of (4.32) we use the following bound, which is obtained using (1.7) and the fact that log δ(y, x) (k -1)a n for x ∈ supp ϕ y n,k and 0 k M n ,

F n,k (t) E Q x s ϕ y n,k (G n •x)1 σ(Gn,x)-nλ 1 σs √ n t+ (k-1)an σs √ n . (4.35)
Proceeding in the same way as in the proof of the upper bound, using (4.35) instead of (4.29) and (4.30), we get

I n (t) = Mn k=0 F n,k π s (ϕ) Φ(t) + Λ (s) 6σ 3 s √ n (1 -t 2 )φ(t) - b s,ϕ (x) σ s √ n φ(t) + φ(t) σ s √ n Mn k=0 π s (ϕ y n,k )(k -1)a n + π s (ϕ)o 1 √ n + ϕ γ O 1 n 1-ε .
The lower bound is obtained using again Lemma 4.11.

Proof of the subexponential regularity and applications

In this section we first establish Theorem 2.6 on the regularity of the invariant measure ν under a sub-exponential moment condition. Then we shall apply Theorem 2.6 to prove Theorem 2.5 on the Berry-Esseen type bound for the coefficients f, G n v , and Theorem 2.7 on the moderate deviation principle for f, G n v also under a sub-exponential moment condition.

5.1. Proof of Theorem 2.6. The following moderate deviation principle is proved in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF] under a subexponential moment condition. Lemma 5.1 ([14]). Assume A2. Assume also that GL(V ) log 2 N (g) µ(dg) < ∞ and

lim sup n→∞ n b 2 n log nµ log N (g) > b n = -∞, (5.1) 
where (b n ) n 1 is a sequence of positive numbers satisfying bn n → 0 and bn

√ n → ∞ as n → ∞. Then, for any Borel set B ⊂ R, -inf t∈B • t 2 2σ 2 lim inf n→∞ n b 2 n log inf x∈P(V ) P σ(G n , x) -nλ 1 b n ∈ B lim sup n→∞ n b 2 n log sup x∈P(V ) P σ(G n , x) -nλ 1 b n ∈ B -inf t∈ B t 2 2σ 2 ,
where B • and B are respectively the interior and the closure of B.

The following result is an easy consequence of Lemma 5.1.

Lemma 5.2. Assume the conditions of Lemma 5.1. Then, there exist constants c, c > 0 and n 0 ∈ N such that for any n n 0 and v ∈ V \ {0}, where the last inequality holds due to (5.2). This concludes the proof of (5.4). Using (5.3), the proof of (5.5) can be carried out in the same way as that of (5.4).

e -c b 2 n n P G n v v e λ 1 n+bn e -c b 2 n n , (5.2) e -c b 2 n n P G n v v e λ 1 n-bn e -c b 2 n n , (5.3) e -c b 2 n n P G n e λ 1 n+bn e -c b 2 n n , ( 5 
The following purely algebraic result is due to Chevalley [START_REF] Chevalley | Théorie des groupes de Lie[END_REF]; see also Bougerol and Lacroix [7, page 125, Lemma 5.5].

Lemma 5.3 ([11, 7]). Let G be an irreducible subgroup of GL(V ). Then, for any integer 1 p d, there exists a direct-sum decomposition of the p-th exterior power:

∧ p (V ) = V 1 ⊕ . . . ⊕ V k such that (∧ p g)V j = V j for any g ∈ G and 1 j k. Moreover, ∧ p (G) := {∧ p g : g ∈ G} is irreducible on each subspace V j , j = 1, • • • , k.
Using Lemma 5.3 and the strategies from [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Xiao | Berry-Esseen bounds and moderate deviations for random walks on GL d (R)[END_REF], we extend (5.4) and (5.5) to the exterior product ∧ p G n . Proof. We first prove (5.6). Since the Lyapunov exponents (λ p ) 1 p d of µ are given by λ 1 > λ 2 . . . λ d , the two largest Lyapunov exponents of ∧ p G n satisfy p i=1 λ i > p+1 i=2 λ i (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]), where we use the convention that λ d+1 = λ d . Without loss of generality, we can assume that p i=1 λ i = 0; otherwise we replace ∧ p G n by e -p i=1 λ i ∧ p G n . Since the action of ∧ p G n on ∧ p V is in general not irreducible, we need to consider a decomposition of ∧ p V . Applying Lemma 5.3 to G = G µ (the smallest closed subgroup of GL(V ) generated by the support of µ), we get the following direct-sum decomposition of the p-th exterior power

∧ p V : ∧ p V = V 1 ⊕ V 2 ⊕ . . . ⊕ V k ,
where V j are subspaces of ∧ p V such that (∧ p g)V j = V j for any g ∈ G µ and 1 j k. Moreover, ∧ p (G µ ) := {∧ p g : g ∈ G µ } is irreducible on each subspace V j . Since the set of all Lyapunov exponents of ∧ p G n on the space ∧ p V coincides with the union of all the Lyapunov exponents of (∧ p G n ) restricted to each subspace V j , 1 j k,

we can choose V 1 in such a way that the restrictions of ∧ p G n to V 1 and V 1 := V 2 ⊕ . . . ⊕ V k ,
denoted respectively by G n and G n , satisfy: Here, G n and G n are products of i.i.d. random variables of the form

∧ p G n = max{ G n , G n }, (5.8 
G n = g n • • • g 1 and G n = g n • • • g 1 .
We denote by µ 1 the law of the random variable g 1 , by d 1 the dimension of the vector space V 1 , and by Γ µ 1 the smallest closed subsemigroup of GL(V 1 ) generated by the support of µ 1 . Then, following the analogous argument used in the proof of the central limit theorem for G n (see [7, Theorem V.5.4]), one can verify that the semigroup Γ µ 1 is strongly irreducible and proximal on V 1 . Therefore, we can apply the moderate deviation bounds (5.4) and (5. Now we prove the upper bound of (5.6). Since the first Lyapunov exponent of the sequence (G n ) n 1 is strictly less than 0 (see (5.9)), we have

1 m E(log G m ) < 0
for sufficiently large integer m 1. If we write n = km + r with k 1 and 0 r < m, then we have the identity

G n = [G n (G km ) -1 ] [G km (G (k-1)m ) -1 ] . . . [G 2m (G m ) -1 ] G m ,
and hence

log G n log G n (G km ) -1 + log G km (G (k-1)m ) -1 + . . . + log G m .
(5.12)

For fixed integer m 1, we denote u m := -E(log G m ) > 0. Then,

P(log G n 0) P log G n (G km ) -1 k u m 2 + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m k u m 2 . (5.13)
For the first term, using (5.8) and the inequality ∧ p g g p for any g ∈ Γ µ , we get

P log G n (G km ) -1 k u m 2 = P log G r k u m 2 P log ∧ p G r k u m 2 = P r i=1 log ∧ p g i k u m 2 r i=1 P log ∧ p g 1 k u m 2r r i=1 P log g 1 k u m 2rp c k e -c b 2 k k , ( 5.14) 
where in the last inequality we use condition (5.1). The second term on the right hand side of (5.13) is dominated by e -cb 2 k /k , by using the moderate deviation bounds for sums of i.i.d. real-valued random variables. This, together with (5.14), (5.13) and the fact that k n/(m + 1), yields that

P(log G n 0) e -c b 2 n n .
(5.15)

From (5.8), (5.10) and (5.15), we derive that

P ∧ p G n e bn P G n e bn + P G n e bn 2e -c b 2 n n .
Combining this with (5.11), we get (5.6). The proof of (5.7) can be carried out in a similar way.

Our next result is an analog of Proposition 3.4 under a subexponential moment assumption. Proposition 5.5. Assume the conditions of Lemma 5.1. Then, there exist constants c > 0 and n 0 ∈ N such that for any n n 0 , x ∈ P(V ) and y ∈ P(V * ), Proof. We first prove (5.16). By (3.4), we have

P d(G n •x, x M Gn ) e -(λ 1 -λ 2 )n+bn e -c b 2 n n , ( 5 
P d(G n •x, x M Gn ) e -(λ 1 -λ 2 )n+bn P ∧ 2 G n v G n G n v e -(λ 1 -λ 2 )n+bn =: I n .
Using (5.3) gives

I n P ∧ 2 G n v G n G n v e -(λ 1 -λ 2 )n+bn , G n v v > e λ 1 n-bn 3 + e -c b 2 n n P ∧ 2 G n G n e λ 2 n+ 2 3 bn + e -c b 2 n n .
In the same way, from (5.5) and (5.6) it follows that

I n P ∧ 2 G n G n e λ 2 n+ 2 3 bn , G n > e λ 1 n-1 3 bn + 2e -c b 2 n n P ∧ 2 G n e (λ 1 +λ 2 )n+ 1 3 bn + 2e -c b 2 n n 3e -c b 2 n n , ( 5.19) 
which concludes the proof of (5.16). We next prove (5.17). By Lemma 3.3 (2), we have that for any y = Rf with f ∈ V * \ {0},

P δ(x M Gn , y) e -bn P G * n f G * n f - ∧ 2 G n G n 2 e -bn =: J n . (5.20)
Following the proof of (5. [START_REF] Furstenberg | Noncommuting random products[END_REF]), one has

P ∧ 2 G n G n 2 e -(λ 1 -λ 2 )n+bn e -c b 2 n n .
Using this together with (5.3) and (5.4) applied to the measure µ * (µ * is the image of the measure µ by the map g → g * , where g * is the adjoint automorphism of g ∈ GL(V ) acting on the dual space V * ), we get

J n P G * n f G * n f - ∧ 2 G n G n 2 e -bn , ∧ 2 G n G n 2 < e -(λ 1 -λ 2 )n+bn + e -c b 2 n n P G * n f G * n f 2e -bn + e -c b 2 n n P G * n f G * n f 2e -bn , G * n e λ 1 n+ bn 2 + 2e -c b 2 n n P G * n f f 2e λ 1 n-bn 2 + 2e -c b 2 n n 3e -c b 2 n n ,
which ends the proof of (5.17).

We finally prove (5.18). Since

δ(G n •x, y) δ(x M Gn , y) -d(G n •x, x M
Gn ), using (5.16), (5.17) and the fact that λ 1 > λ 2 , we get

P δ(G n •x, y) e -bn P δ(x M Gn , y) -d(G n •x, x M Gn ) e -bn P δ(x M Gn , y) -d(G n •x, x M Gn ) e -bn , d(G n •x, x M Gn ) < e -(λ 1 -λ 2 )n+bn + e -c b 2 n n P δ(x M Gn , y) e -bn + e -(λ 1 -λ 2 )n+bn + e -c b 2 n n e -c b 2
n n , which concludes the proof of (5.18).

As a consequence of Proposition 5.5, we get the following: Proposition 5.6. Assume the conditions of Lemma 5.1. Then there exist constants c > 0 and k 0 ∈ N such that for all n k k 0 , x ∈ P(V ) and y ∈ P(V * ),

P δ(G n •x, y) e -b k e -c b 2 k k . (5.21)
Moreover, there exist constants c > 0 and n 0 > 0 such that for any n n 0 and y ∈ P(V * ), Proof. By using (5.18), the proof of (5.21) is similar to that of Lemma 3.5. Inequality (5.22) is a consequence of (5.18) and the fact that ν is the unique invariant measure of the Markov chain (G n •x) n 0 .

Proof of Theorem 2.6. As a particular case of (5.21), by taking b k = k β with β ∈ ( 1 2 , 1), we get that if A2 holds and µ(log N (g) > u) exp{-u 2β-1 β a(u)} for any u > 0 and for some function a(u) > 0 satisfying a(u) → ∞ as u → ∞, then there exist constants c > 0 and k 0 ∈ N such that for all n k k 0 , x ∈ P(V ) and y ∈ P(V * ),

P δ(G n •x, y) e -k β exp -ck 2β-1 .
Letting α = 2β-1 β , this implies that if A2 holds and µ(log N (g) > u) exp{-u α l u } for some α ∈ (0, 1) and any u > 0, then there exist constants c > 0 and k 0 ∈ N such that for all n k k 0 , x ∈ P(V ) and y ∈ P(V * ),

P δ(G n •x, y) e -k exp {-ck α } .
This proves (2.14). Now we prove (2.15). Taking k = n in (2.14), we get that there exist constants c 0 > 0 and n 0 > 0 such that for any n n 0 and y ∈ P(V * ), ν x ∈ P(V ) : δ(x, y) e -n e -c 0 n α .

(5.23)

Set B n,y := {x ∈ P(V ) : e -(n+1) δ(x, y) e -n } for y ∈ P(V * ) and n 1. From (5.23) we deduce that for any η ∈ (0, c 0 ), uniformly in y ∈ P(V * ),

P(V ) exp (η| log δ(x, y)| α ) ν(dx) e ηn α 0 + ∞ n=n 0 Bn,y exp (η| log δ(x, y)| α ) ν(dx) e ηn α 0 + ∞ n=n 0 e -(c 0 -η)n α < ∞, (5.24) 
since α > 0. This concludes the proof of (2.15). Using (2.15) and the Markov inequality, one can easily get (2.16).

Proof of Theorem 2.5.

To prove Theorem 2.5, we shall use Theorem 2.6 and the following Berry-Esseen bound for the norm cocycle σ(G n , x).

Lemma 5.7 ([15]

). Assume A2 and that GL(V ) log 4 N (g) µ(dg) < ∞.

Then, there exists a constant c > 0 such that for any n 1, t ∈ R and x ∈ P(V ),

P σ(G n , x) -nλ 1 σ √ n t -Φ(t) c √ n .
The same result has been obtained in [START_REF] Jirak | A Berry-Esseen bound with (almost) sharp dependence conditions[END_REF] under the slightly stronger moment condition GL(V ) log 8 N (g) µ(dg) < ∞.

Proof of Theorem 2.5. We first prove (2.13). The lower bound is a direct consequence of Lemma 5.7 and the fact that log

| f, G n v | log |G n v|: there exists a constant c > 0 such that for any n 1, t ∈ R, v ∈ V and f ∈ V * with v = f = 1, I n := P log | f, G n v | -nλ 1 σ √ n t Φ(t) - c √ n .
(5.25)

The upper bound follows from Proposition 5.6 together with Lemma 5.7. Specifically, from the identity (3.8) and Theorem 2.6, we get that for x = Rv and y = Rf with v = f = 1,

I n = P log | f, G n v | -nλ 1 σ √ n t, δ(y, G n • x) > e -k + P log | f, G n v | -nλ 1 σ √ n t, δ(y, G n • x) e -k P log G n v -nλ 1 σ √ n t + k σ √ n + e -c 1 k α .
(5.26)

Taking k = ( 1 c 1 log n) 1 α
, we get that there exists a constant c > 0 such that e -c 1 k α c √ n . By Theorem 4.9, we get

P log G n v -nλ 1 σ √ n t + k σ √ n Φ t + k σ √ n + c √ n Φ(t) + c log 1 α n √ n .
(5.27)

The desired bound (2.13) follows by combining (5.25), (5.26) and (5.27).

Proof of Theorem 2.7.

In this subsection we establish Theorem 2.7 using Theorem 2.6 and Lemma 5.1.

Proof of Theorem 2.7. By Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it suffices to prove the following moderate deviation asymptotics: for any t > 0, uniformly in v ∈ V and

f ∈ V * with v = f = 1, lim n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n t = - t 2 2σ 2 , (5.28) lim n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n -t = - t 2 2σ 2 .
(5.29)

We first prove (5.28). The upper bound is an easy consequence of Lemma 5.1. Since there exists a constant α ∈ (0, 1) such that µ(log N (g

) > u) c exp{-u α } for any u > 0, clearly GL(V ) log 2 N (g) µ(dg) < ∞. Moreover, by taking (b n ) n 1 such that bn √ n → ∞ and b n = o(n 1 2-α ) as n → ∞, we get lim sup n→∞ n b 2 n log nµ log N (g) > b n = lim sup n→∞ n b 2 n log µ log N (g) > b n lim sup n→∞ - n b 2-α n = -∞.
(5.30) Therefore, from Lemma 5.1 it follows that for any t > 0, 

- t 2 2σ 2 lim inf n→∞ n b 2 n log inf x∈P(V ) P σ(G n , x) -nλ 1 b n t lim sup n→∞ n b 2 n log sup x∈P(V ) P σ(G n , x) -nλ 1 b n t - t 2 2σ 
| f, G n v | σ(G n , x) for x = Rv ∈ P(V ) with v = f = 1, we get the desired upper bound: for any t > 0, uniformly in v ∈ V and f ∈ V * with v = f = 1, lim sup n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n t - t 2 2σ 2 .
(5.32)

The lower bound can be deduced from Lemma 5.1 together with Theorem 2.6. Specifically, by (2.14), there exist constants c 1 > 0 and k 0 ∈ N such that for any n k k 0 , any v ∈ V and f ∈ V * with v = f = 1,

I n : = P log | f, G n v | -nλ 1 b n t P log | f, G n v | -nλ 1 b n t, log δ(G n •x, y) > -k P σ(G n , x) -nλ 1 b n t, log δ(G n •x, y) > -k P σ(G n , x) -nλ 1 b n t -e -c 1 k α , ( 5.33) 
where b n = b n + k t and t > 0. We take

k = c 2 b 2 n n 1 α , ( 5.34) 
where c 2 > 0 is a constant whose value will be chosen large enough. Since bn √ n → ∞ and bn n → 0 as n → ∞, from b n = b n + k t and (5.34), we get that as n → ∞,

b n √ n → ∞ and b n n = b n n + k tn b n n + c t n -1-α 2-α → 0.
From (5.31) it follows that for any t > 0 and ε > 0, there exists n 0 ∈ N such that for any n n 0 and x ∈ P(V ),

P σ(G n , x) -nλ 1 b n t e -(b n ) 2 n t 2 2σ 2 +ε .
Substituting this into (5.33), we obtain

I n e -(b n ) 2 n t 2 2σ 2 +ε 1 -e -c 1 k α + (b n ) 2 n t 2 2σ 2 +ε .
Choosing c 2 > 0 in (5.34) to be sufficiently large, one gets

(b n ) 2 n t 2
2σ 2 + ε < c 1 k α , so that there exists a constant c 3 > 0 such that

I n e -(b n ) 2 n t 2 2σ 2 +ε 1 -e -c 3 k α . Since k = (c 2 b 2 n n ) 1 α → ∞ and 1 b n bn = 1 + k tbn 1 + c b 2-α α n n 1 α → 1 as n → ∞, it follows that lim inf n→∞ n b 2 n log I n lim inf n→∞ n b 2 n - (b n ) 2 n t 2 2σ 2 + ε = - t 2 2σ 2 + ε .
Letting ε → 0, the desired lower bound follows: for any t > 0, uniformly in

v ∈ V and f ∈ V * with v = f = 1, lim inf n→∞ n b 2 n log P log | f, G n v | -nλ 1 b n t - t 2 2σ 2 .
This, together with the upper bound (5.32), concludes the proof of (5.28). The proof of (5.29) can be carried out in the same way. 

(w) = 1 ε ρ( w ε ), w ∈ R, which has a compact support on [-ε -1 , ε -1 ].
For any ε > 0 and non-negative integrable function ψ on R, set

ψ + ε (w) = sup |w-w | ε ψ(w ) and ψ - ε (w) = inf |w-w | ε ψ(w ), w ∈ R. (6.1)
We need the following smoothing inequality shown in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. Denote by h 1 * h 2 the convolution of functions h 1 and h 2 on the real line.

Lemma 6.1 ([23]

). Assume that ψ is a non-negative integrable function on R and that ψ + ε and ψ - ε are measurable for any ε ∈ (0, 1). Then, there exists a positive constant C ρ (ε) with C ρ (ε) → 0 as ε → 0, such that for any w ∈ R,

ψ - ε * ρ ε 2 (w) - |u| ε ψ - ε (w -u)ρ ε 2 (u)du ψ(w) (1 + C ρ (ε))ψ + ε * ρ ε 2 (w).
For sufficiently small constant s 0 > 0 and s ∈ (0, s 0 ), let

ψ s (w) = e -sw 1 {w 0} , w ∈ R.
With the notation ψ - s,ε (w) = inf |w-w | ε ψ s (w ) (cf. (6.1)), we have that for any ε ∈ (0, 1),

ψ - s,ε (w) = e -s(w+ε) 1 {w ε} , w ∈ R. (6.2)
By elementary calculations, for any s ∈ (0, s 0 ) and ε ∈ (0, 1), the Fourier transform of ψ - s,ε is given by

ψ - s,ε (u) = R e -iuw ψ - s,ε (w)dw = e -2εs e -2iεu s + iu , u ∈ R. (6.3) 6.
2. An asymptotic expansion of the perturbed operator. The goal of this section is to establish the precise asymptotic behaviors of the perturbed operator R s,it . This asymptotic result will play an important role for establishing the Cramér type moderate deviation expansion for the coefficients f, G n v in Theorem 2.8. In the sequel, for any fixed t > 1, we shall choose s > 0 satisfying the following equation:

Λ (s) -Λ (0) = σt √ n . (6.4)
For brevity we denote σ s = Λ (s). By [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], the function Λ is strictly convex in a small neighborhood of 0, so that σ s > 0 uniformly in s ∈ (0, s 0 ). Proposition 6.2. Assume conditions A1 and A2. Let s > 0 be such that (6.4) holds. Then, for any ε ∈ (0, 1) and any positive sequence

(t n ) n 1 satisfying t n → ∞ and t n / √ n → 0 as n → ∞, we have, uniformly in s ∈ (0, s 0 ), x ∈ P(V ), t ∈ [t n , o( √ n)], ϕ ∈ B γ and |l| = O( 1 √ n ), sσ s √ n R e -iuln R n s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u)du - √ 2ππ s (ϕ) c t √ n + 1 t 2 ϕ ∞ + c |l| √ n + 1 √ n ϕ γ . (6.5)
Proof. Without loss of generality, we assume that the target function ϕ is non-negative on P(V ). By Lemma 4.2, we have the following decomposition: with δ > 0 small enough,

sσ s √ n R e -iuln R n s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u)du =: I 1 + I 2 + I 3 , ( 6.6) 
where

I 1 = sσ s √ n |u| δ e -iuln R n s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u)du, I 2 = sσ s √ n |u|<δ e -itln N n s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u)du, I 3 = sσ s √ n |t|<δ e -iuln λ n s,iu Π s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u)du.
For simplicity, we denote K s (iu) = log λ s,iu and choose the branch where K s (0) = 0. Using the formula (4.7), we have that for u ∈ (-δ, δ),

K s (iu) = Λ (s + iu) -Λ (s) -iuΛ (s).
Since the function Λ is analytic in a small neighborhood of 0, using Taylor's formula gives

K s (iu) = ∞ k=2 Λ (k) (s) k! (iu) k , where Λ(s) = log κ(s) (6.7) and Λ (s) -Λ (0) = ∞ k=2 k (k -1)! s k-1 , where γ k = Λ (k) (0). (6.8) 
Combining (6.4) and (6.8), we get

σt √ n = ∞ k=2 γ k (k -1)! s k-1 . (6.9)
Since γ 2 = σ 2 > 0, from (6.9) we deduce that for any t > 1 and sufficiently large n, the equation ( 6.4) has a unique solution given by

s = 1 γ 1/2 2 t √ n - γ 3 2γ 2 2 t √ n 2 - γ 4 γ 2 -3γ 2 3 6γ 7/2 2 t √ n 3 + • • • . (6.10)
For sufficiently large n 1, the series on the right-hand side of (6.10) is absolutely convergent according to the theorem on the inversion of analytic functions. Besides, from (6.4) and t = o( √ n) we see that s → 0 + as n → ∞, so that we can assume s ∈ (0, s 0 ) for sufficiently small constant s 0 > 0.

Estimate of I 1 . By Lemma 4.3, for fixed δ > 0, there exist constants c, C > 0 such that sup s∈(0,s 0 )

sup |u| δ sup x∈P(V ) |R n s,iu ϕ(x)| Ce -cn ϕ γ . (6.11)
From (6.3) and the fact that ρ ε 2 is a density function on R, we see that

sup u∈R | ψ - s,ε (u)| ψ - s,ε (0) = 1 s e -2εs , sup u∈R | ρ ε 2 (u)| ρ ε 2 (0) = 1. (6.12)
Using (6.11) and the first inequality in (6.12), and taking into account that the function ρ ε 2 is integrable on R, we obtain the desired bound for I 1 :

|I 1 | Ce -cn ϕ γ . (6.13)
Estimate of I 2 . Using the bound (4.8), we have that uniformly in s ∈ (0, s 0 ), u ∈ (-δ, δ) and x ∈ P(V ),

|N n s,iu (ϕ)(x)| N n s,iu Bγ →Bγ ϕ γ Ce -cn ϕ γ .
This, together with (6.12), implies the desired bound for I 2 :

|I 2 | Ce -cn ϕ γ . (6.14)
Estimate of I 3 . For brevity, we denote for any s ∈ (0, s 0 ) and x ∈ P(V ),

Ψ s,x (u) := Π s,iu (ϕ)(x) ψ - s,ε (u) ρ ε 2 (u), -δ < u < δ. ( 6.15) 
Recalling that K s (iu) = log λ s,iu , we decompose the term I 3 into two parts:

I 3 = I 31 + I 32 , (6.16) 
where

I 31 = sσ s √ n n -1 2 log n |u| δ
e nKs(iu)-iuln Ψ s,x (u)du,

I 32 = sσ s √ n |u|<n -1 2 log n e nKs(iu)-iuln Ψ s,x (u)du.
Estimate of I 31 . By (4.8), there exists a constant c > 0 such that for any s ∈ (0, s 0 ), u ∈ [-δ, δ] and x ∈ P(V ),

|Π s,iu (ϕ)(x)| c ϕ γ . ( 6.17) 
This, together with (6.12), yields that there exists a constant c > 0 such that for all s ∈ (0, s 0 ), |u| < δ, x ∈ P(V ) and ϕ ∈ B γ ,

|Ψ s,x (u)| c s ϕ γ . ( 6.18) 
Using (6.7) and noting that Λ (s) = σ 2 s > 0, we find that there exists a constant c > 0 such that for all s ∈ (0, s 0 ),

K s (iu) = ∞ k=2 K (k) s (0)(iu) k k! < - 1 8 σ 2 s u 2 < -cu 2 .
Combining this with (6.18), we derive that there exists a constant c > 0 such that for all s ∈ (0, s 0 ), x ∈ P(V ) and ϕ ∈ B γ ,

|I 31 | c √ n ϕ γ n -1 2 log n |u| δ e -cnu 2 du c √ n ϕ γ . (6.19)
Estimate of I 32 . By a change of variable u = σ s √ nu, we get

I 32 = s σs log n -σs log n e -u 2 2 exp ∞ k=3 K (k) s (0)(iu) k σ k s k! n k/2-1 e -iul √ n/σs Ψ s,x u σ s √ n du = I 321 + I 322 + I 323 ,
where

I 321 = s σs log n -σs log n e -u 2 2 exp ∞ k=3 K (k) s (0)(iu) k σ k s k! n k/2-1 -1 e -iul √ n/σs Ψ s,x u σ s √ n du I 322 = s σs log n -σs log n e -u 2 2 e -iul √ n/σs -1 Ψ s,x u σ s √ n du I 323 = s σs log n -σs log n e -u 2 2 Ψ s,x u σ s √ n du.
Estimate of I 321 . By simple calculations, there exists a constant c > 0 such that for all |u| σ s log n and s ∈ (0, s 0 ),

exp ∞ k=3 K (k) s (0)(iu) k σ k s k! n k/2-1 -1 c |u| 3 √ n .
This, together with (6.18) and the fact |e -iul √ n/σs | = 1, implies that Estimate of I 323 . We shall establish the following bound for I 323 : there exists a constant c > 0 such that for all s ∈ (0, s 0 ),

|I 321 | c √ n ϕ γ . ( 6 
x ∈ P(V ), t ∈ [t n , o( √ n)] and ϕ ∈ B γ , I 323 - √ 2ππ s (ϕ) cs ϕ ∞ + c √ n ϕ γ + c t 2 ϕ ∞ . ( 6.22) 
Now let us prove (6.22). For brevity, denote

u n = u σ s √ n .
In view of (6.15), we write

Ψ s,x (u n ) = h 1 (u n ) + h 2 (u n ) + h 3 (u n ) + h 4 (u n ),
where

h 1 (u n ) = Π s,iun (ϕ)(x) -π s (ϕ) ψ - s,ε (u n ) ρ ε 2 (u n ), h 2 (u n ) = π s (ϕ) ψ - s,ε (u n ) [ ρ ε 2 (u n ) -ρ ε 2 (0)] h 3 (u n ) = π s (ϕ) ψ - s,ε (u n ) -ψ - s,ε (0) ρ ε 2 (0), h 4 (u n ) = π s (ϕ) ψ - s,ε (0) ρ ε 2 (0).
With the above notation, the term I 323 can be decomposed into four parts:

I 323 = J 1 + J 2 + J 3 + J 4 , (6.23) 
where for j = 1, 2, 3, 4,

J j = s σs log n -σs log n e -u 2 2 h j (u n )du. Estimate of J 1 . By Lemma 4.2, we have |Π s,iun (ϕ)(x)-π s (ϕ)| c |u| √ n ϕ γ , uniformly in x ∈ P(V ), s ∈ (0, s 0 ) and |u| σ s log n. Combining this with (6.12) gives |h 1 (u n )| c |u| s √ n ϕ γ , and hence |J 1 | c √ n ϕ γ . (6.24) Estimate of J 2 . It is easy to verify that | ρ ε 2 (u n ) -ρ ε 2 (0)| c |un| ε 4 .
This, together with (6.12), leads to

|h 2 (u n )| c ε 4 |u| s √
n , and therefore,

|J 2 | c ε 4 1 √ n ϕ ∞ C √ n ϕ ∞ . (6.25)
Estimate of J 3 . By the definition of the function ψ - s,ε (see (6.3)), we have

ψ - s,ε (u n ) -ψ - s,ε (0) = e -2εs e -iεun s + iu n - 1 s = e -2εs e -iεun 1 s + iu n - 1 s + e -2εs 1 s e -iεun -1 = e -2εs e -iεun -1 -isu n -u 2 n s(s 2 + u 2 n ) + e -2εs -isu n -u 2 n s(s 2 + u 2 n ) + e -2εs 1 s e -iεun -1 =: A 1 (t) + A 2 (t) + A 3 (t).
Since ρ ε 2 (0) = 1, it follows that J 3 = J 31 + J 32 + J 33 , where

J 3j = sπ s (ϕ) σs log n -σs log n e -u 2 2 A j (u)du, j = 1, 2, 3.
To deal with J 31 , we first give a bound for A 1 (u). Using the basic inequality |e z -1| e z |z|, z ∈ C, we get

|A 1 (u)| e -2εs |u n | s|u n | + u 2 n s(s 2 + u 2 n ) = e -2εs u 2 n s 2 + u 2 n + e -2εs |u n | s u 2 n s 2 + u 2 n c u 2 t 2 + u 2 + c |u| t u 2 t 2 + u 2 c u 2 t 2 + c |u| 3 t 3 .
Then, recalling that s = O( t √ n ) and |π s (ϕ)| c ϕ ∞ , we obtain that there exists a constant c > 0 such that for all n 1, s ∈ (0, s 0 ) and ϕ ∈ B γ ,

|J 31 | c √ n ϕ ∞ . ( 6.26) 
For J 32 , using again s = O( t √ n ) and the fact that the integral of an odd function over a symmetric interval is identically zero, by elementary calculations we deduce that there exists a constant c > 0 such that for all n 1, s ∈ (0, s 0 ) and ϕ ∈ B γ ,

|J 32 | = e -2εs π s (ϕ) σs log n -σs log n e -u 2 2 u 2 n s 2 + u 2 n du c t 2 ϕ ∞ . ( 6.27) 
For J 33 , using again the inequality |e z -1| e z |z|, z ∈ C, we see that there exists a constant c > 0 such that for all n 1, s ∈ (0, s 0 ) and ϕ ∈ B γ ,

|J 33 | c √ n ϕ ∞ . ( 6.28) 
Consequently, putting together the bounds (6.26), (6.27) and (6.28), we obtain

J 3 c √ n ϕ ∞ + c t 2 ϕ ∞ . (6.29)
Estimate of J 4 . It follows from (6.3) and ρ ε 2 (0) = 1 that

J 4 = π s (ϕ)e -2εs σs log n -σs log n e -u 2 2 du. ( 6.30) 
Since there exists a constant c > 0 such that for all s ∈ (0, s 0 ),

√ 2π > σs log n -σs log n e -u 2 2 du > √ 2π - c n ,
we get

J 4 = √ 2ππ s (ϕ)e -2εs 1 + O 1 n . Note that s = O( t √ n ) with y > 1. It follows that J 4 - √ 2ππ s (ϕ) ct √ n ϕ ∞ . ( 6.31) 
In view of (6.23), putting together the bounds (6.24), (6.25), (6.29) and (6.31), and noting that ϕ ∞ ϕ γ , we obtain the desired bound (6.22). Combining (6.20), (6.21) and (6.22), we derive that there exists a constant c > 0 such that for all s ∈ (0, s 0 ),

x ∈ P(V ), t ∈ [t n , o( √ n)], ϕ ∈ B γ and |l| = O 1 √ n , I 32 - √ 2ππ s (ϕ) c t √ n + 1 t 2 ϕ ∞ + c |l| √ n + 1 √ n ϕ γ . (6.32)
Putting together (6.13), (6.14), (6. [START_REF] Furstenberg | Noncommuting random products[END_REF]) and (6.32), we conclude the proof of Proposition 6.2.

For s ∈ (-s 0 , 0) where s 0 > 0 is sufficiently small, let

φ s (w) = e -sw 1 {w 0} , w ∈ R.
With the notation in (6.1), for ε ∈ (0, 1), the function φ + s,ε is given as follows: φ + s,ε (w) = 0 when w > ε; φ + s,ε (w) = 1 when w ∈ [-ε, ε]; φ + s,ε (w) = e -s(w+ε) when w < -ε. By calculations, one can give the explicit expression for the Fourier transform of φ + s,ε :

φ + s,ε (u) = R e -iuw φ + s,ε (w)dw = 2 sin(εu) u + e iεu 1 -s -iu , u ∈ R. (6.33)
In the sequel, for any fixed t > 1, we choose s < 0 satisfying the equation:

Λ (s) -Λ (0) = - σt √ n . ( 6.34) 
Proposition 6.3. Assume conditions A1 and A2. Let φ + s,ε be defined in (6.33). Suppose that s < 0 satisfies the equation (6.34). Then, for any 0 < ε < 1 and any positive sequence

(t n ) n 1 satisfying lim n→∞ t n = +∞ with t n = o( √ n), we have, uniformly in s ∈ (-s 0 , 0), x ∈ P(V ), t ∈ [t n , o( √ n)], ϕ ∈ B γ and l ∈ R with |l| = O( 1 √ n ), -sσ s √ n e nhs(l) R e -itln R n s,iu (ϕ)(x) φ + s,ε (u) ρ ε 2 (u)du - √ 2ππ s (ϕ) c t √ n + 1 t 2 ϕ ∞ + c |l| √ n + 1 √ n ϕ γ .
Proof. Since the proof of Proposition 6.3 can be carried out in an analogous way as that of Proposition 6.2, we only sketch the main differences. Without loss of generality, we assume that the target function ϕ is nonnegative. From Lemma 4.2, we have the following decomposition: with δ > 0 small enough,

-sσ s √ n R e -iuln R n s,iu (ϕ)(x) φ + s,ε (u) ρ ε 2 (u)du = I 1 + I 2 + I 3 , (6.35) 
where

I 1 = -sσ s √ n |u| δ e -itln R n s,iu (ϕ)(x) φ + s,ε (t) ρ ε 2 (u)du, I 2 = -sσ s √ n |u|<δ e -iuln N n s,iu (ϕ)(x) φ + s,ε (u) ρ ε 2 (u)du, I 3 = -sσ s √ n |u|<δ e -iuln λ n s,iu Π s,iu (ϕ)(x) φ + s,ε (u) ρ ε 2 (u)du.
Similarly to the proof of (6.9), from (6.34) one can verify that

- σt √ n = ∞ k=2 γ k (k -1)! s k-1 , (6.36) 
where γ k = Λ (k) (0). For any y > 1 and sufficiently large n, the equation (6.36) has a unique solution given by

s = 1 γ 1/2 2 - t √ n - γ 3 2γ 2 2 - t √ n 2 - γ 4 γ 2 -3γ 2 3 6γ 7/2 2 - t √ n 3 + • • • . (6.37)
The series on the right-hand side of (6.37) is absolutely convergent, and we can assume that s ∈ (-s 0 , 0) for sufficiently small constant η > 0.

Estimate of I 1 . By Lemma 4.3, there exist constants c, C > 0 such that sup s∈(-s 0 ,0)

sup |u| δ sup x∈P(V ) |R n s,iu ϕ(x)| Ce -cn ϕ γ . ( 6.38) 
From (6.33) and the fact that ρ ε 2 is a density function on R, we see that

sup u∈R | φ - s,ε (u)| φ - s,ε (0) = 1 -s + 2ε, sup u∈R | ρ ε 2 (u)| ρ ε 2 (0) = 1. (6.39) 
From (6.38) and the first inequality in (6.39), the desired bound for I 1 follows:

|I 1 | Ce -cn ϕ γ . (6.40)
Estimate of I 2 . Using the bound (4.8) and (6.39), one has

|I 2 | Ce -cn ϕ γ . (6.41)
Estimate of I 3 . For brevity, we denote for any s ∈ (-s 0 , 0) and x ∈ P(V ),

Ψ s,x (u) := Π s,iu (ϕ)(x) φ + s,ε (u) ρ ε 2 (u), -δ < u < δ. (6.42)
Recalling that K s (iu) = log λ s,iu , we decompose the term I 3 into two parts:

I 3 = I 31 + I 32 , (6.43) 
where

I 31 = -sσ s √ n n -1 2 log n |u| δ
e nKs(iu)-iuln Ψ s,x (u)du,

I 32 = -sσ s √ n |u|<n -1 2 log n
e nKs(iu)-iuln Ψ s,x (u)du.

Estimate of I 31 . Using (4.8) and (6.39), we get that there exists a constant c > 0 such that for all s ∈ (-s 0 , 0), |u| < δ, x ∈ P(V ) and ϕ ∈ B γ ,

|Ψ s,x (u)| c -s ϕ γ . (6.44)
Similarly to the proof of (6.19), it follows that there exists a constant c > 0 such that for all s ∈ (-s 0 , 0), x ∈ P(V ) and ϕ ∈ B γ ,

|I 31 | c √ n ϕ γ n -1 2 log n |u| δ e -cnu 2 du c √ n ϕ γ . (6.45)
Estimate of I 32 . Making a change of variable u = uσ s √ n, we get For I 321 and I 322 , in a similar way as in the proof of (6.20) and (6.21), we have

I 32 = -s σs log n -σs log n e -u 2 2 exp ∞ k=3 K (k) s (0)(iu) k σ k s k! n k/2-1 e -iul √ n/σs Ψ s,x u σ s √ n du = (-s) σs log n -σs log n e -u 2 2 exp ∞ k=3 K (k) s (0)(iu) k σ k s k! n k/2-
|I 321 | c √ n ϕ γ , |I 322 | c|l| √ n ϕ γ . ( 6.46) 
For I 323 , we shall establish the following bound: there exists a constant c > 0 such that for all s ∈ (-s 0 , 0),

x ∈ P(V ), t ∈ [t n , o( √ n)] and ϕ ∈ B γ , I 323 - √ 2ππ s (ϕ) c t √ n ϕ ∞ + c √ n ϕ γ + c t 2 ϕ ∞ . (6.47)
For brevity, denote u n = u σs √ n . In view of (6.42), we write

Ψ s,x (u n ) = h 1 (u n ) + h 2 (u n ) + h 3 (u n ) + h 4 (u n ),
where

h 1 (u n ) = Π s,iun (ϕ)(x) -π s (ϕ) φ + s,ε (u n ) ρ ε 2 (u n ), h 2 (u n ) = π s (ϕ) φ + s,ε (u n ) [ ρ ε 2 (u n ) -ρ ε 2 (0)] h 3 (u n ) = π s (ϕ) φ + s,ε (u n ) -φ + s,ε (0) ρ ε 2 (0), h 4 (u n ) = π s (ϕ) φ + s,ε (0) ρ ε 2 (0)
. Then I 323 can be decomposed into four parts:

I 323 = J 1 + J 2 + J 3 + J 4 , ( 6.48) 
where for j = 1, 2, 3, 4,

J j = -s σs log n -σs log n e -u 2 2 h j (u n )du.
Estimates of J 1 and J 2 . Similarly to the proof of (6.24) and ( 6.25), one can verify that

|J 1 | c √ n ϕ γ , |J 2 | c ε 4 1 √ n ϕ ∞ C √ n ϕ ∞ . (6.49)
Estimate of J 3 . By the definition of the function φ + s,ε (see (6.33)), we have

φ + s,ε (u n ) -φ + s,ε (0) = 2 sin εu n u n -ε + e iεun 1 -s -iu n - 1 -s = 2 sin εu n u n -ε + e iεun -1 -s -it n + 1 -s -iu n - 1 -s =: A 1 (u) + A 2 (u) + A 3 (u).
Since ρ ε 2 (0) = 1, it follows that J 3 = J 31 + J 32 + J 33 , where

J 3j = -sπ s (ϕ) σs log n -σs log n e -u 2 2 A j (u)du, j = 1, 2, 3. For J 31 , since |A 1 (u)| c|u| 2 /n and |π s (ϕ)| c ϕ ∞ , we have |J 31 | c -s n ϕ ∞ C n ϕ ∞ . (6.50)
For J 32 , using the inequality |e z -1| e z |z|, z ∈ C, we get

|A 2 (u)| ε|u n | | -s -iu n | ε|u n | -s .
Hence,

|J 32 | c √ n ϕ ∞ . (6.51) For J 33 , note that A 3 (u) = -isun-u 2 n -s(s 2 +u 2 n ) and s = O( -t √ n ).
Using the fact that the integral of an odd function over a symmetric interval is identically zero, by elementary calculations we derive that

|J 33 | = π s (ϕ) σs log n -σs log n e -u 2 2 u 2 n s 2 + u 2 n du c t 2 ϕ ∞ . (6.52)
Putting together (6.50), (6.51) and (6.52), we obtain

J 3 c √ n ϕ ∞ + c t 2 ϕ ∞ . (6.53)
Estimate of J 4 . Similarly to the proof of (6.31), one has

J 4 - √ 2ππ s (ϕ) c t √ n ϕ ∞ . ( 6.54) 
In view of (6.48), combining (6.49), (6.53), and (6.54), we obtain the desired bound (6.47) for I 323 . Putting together the bounds (6.40), (6.41), (6.45), (6.46) and (6.47), we finish the proof of Proposition 6.3. 

(V * ) with v = f = 1, t ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) = ν(ϕ) + ϕ γ o(1), E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 - √ nσt} Φ(-t) = ν(ϕ) + ϕ γ o(1).
In order to establish Theorem 6.4, we need the exponential Hölder regularity of the invariant measure ν (Lemma 4.5 with s = 0) and the following moderate deviation expansion for the norm cocycle σ(G n , x) proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Lemma 6.5 ([45]). Assume A1 and A2. Then, we have, as n → ∞, uniformly in

x ∈ P(V ), t ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(G n •x)1 {σ(Gn,x)-nλ1 √ nσt} 1 -Φ(t) = e t 3 √ n ζ( t √ n ) ν(ϕ) + ϕ γ O t + 1 √ n , E ϕ(G n •x)1 {σ(Gn,x)-nλ1 - √ nσt} 1 -Φ(t) = e -t 3 √ n ζ(-t √ n ) ν(ϕ) + ϕ γ O t + 1 √ n .
Proof of Theorem 6.4. Without loss of generality, we assume that the target function ϕ is non-negative. We only show the first expansion in Theorem 6.4 since the proof of the second one can be carried out in a similar way. The upper bound is a direct consequence of Lemma 6.5. Specifically, since log

| f, G n v | σ(G n , x) for f ∈ V * with f = 1, x = Rv ∈ P(V ) with v = 1,
using the first expansion in Lemma 6.5, we get that there exists a constant c > 0 such that uniformly in

f ∈ V * , x = Rv ∈ P(V ) with v = f = 1, and t ∈ [0, o( √ n)], E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) e t 3 √ n ζ( t √ n ) ν(ϕ) + c ϕ γ t + 1 √ n .
(6.55)

The lower bound follows from Lemmas 4.5 and 6.5. By Lemma 4.5 with s = 0, we have that for any ε > 0, there exist constants c, C > 0 such that for all n k 1, and f ∈ V * with f = 1, x = Rv ∈ P(V ) with v = 1,

P log | f, G n v | -σ(G n , x) -εk Ce -ck .
Using this inequality, we get

E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 {log | f,Gnv |-σ(Gn,x)>-εk} E ϕ(G n •x)1 {σ(Gn,x)-nλ1 √ nσt+εk} 1 {log | f,Gnv |-σ(Gn,x)>-εk} E ϕ(G n x)1 {σ(Gn,x)-nλ1 √ nσt+εk} -Ce -ck ϕ ∞ . ( 6 

.56)

Take k = A log n in (6.56), where A > 0 is a fixed sufficiently large constant. Denote t 1 = t + εk σ √ n . By Lemma 6.5, we have, as n → ∞, uniformly in

x ∈ P(V ), t ∈ [0, √ log n] and ϕ ∈ B γ , E ϕ(G n •x)1 {σ(Gn,x)-nλ1 √ nσt+εk} 1 -Φ(t 1 ) = ν(ϕ) + ϕ γ O t 3 1 + 1 √ n . (6.57)
We claim that uniformly in t ∈ [0, √ log n], 

1 > 1 -Φ(t 1 ) 1 -Φ(t) = 1 - t 1 t e -u
t 1 t e -u 2 2 du ∞ t e -u 2 2 du > 1 - (t 1 -t)e -t 2 /2 1 2t e -t 2 /2 > 1 -c t + 1 √ n log n.
Hence (6.58) holds. It is easy to check that

t 3 1 +1 √ n = O( t 3 +1 √ n ), uniformly in t ∈ [0, √ log n]. Consequently, we get that uniformly in x ∈ P(V ), t ∈ [0, √ log n] and ϕ ∈ B γ , E ϕ(G n •x)1 {σ(Gn,x)-nλ1 √ nσt+εk} 1 -Φ(t) ν(ϕ) -c ϕ γ t + 1 √ n log n.
This, together with (6.56) and the fact that e -ck /[1-Φ(t)] decays to 0 faster than 1 n , implies that uniformly in

f ∈ V * with f = 1, x = Rv ∈ P(V ) with v = 1, t ∈ [0, √ log n] and ϕ ∈ B γ , E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) ν(ϕ) -c ϕ γ t + 1 √ n log n. (6.59)
It remains to prove the lower bound when t ∈ [ √ log n, o(n 1/6 )]. We take k = At 2 in (6.56), where A > 0 is a fixed sufficiently large constant. In the same way as in (6.57), we get that, with

t 1 = t + εk σ √ n , uniformly in x ∈ P(V ), t ∈ [ √ log n, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(G n •x)1 {σ(Gn,x)-nλ1 √ nσt+εk} 1 -Φ(t 1 ) = ν(ϕ) + ϕ γ O t 3 1 + 1 √ n . (6.60)
Using the inequality 

√ log n, o(n 1/6 )], 1 > 1 -Φ(t 1 ) 1 -Φ(t) t t 1 1 - 1 t 2 1 e t 2 2 - t 2 1 2 > 1 - c t 2 1 - ct 3 √ n . (6.61)
Taking into account that

t 3 1 +1 √ n = O( t 3 +1
√ n ) and that e -cAt 2 /[1-Φ(t)] decays to 0 faster than 1 n (by taking A > 0 to be sufficiently large), from (6.56), (6.60) and (6.61) we deduce that uniformly in

f ∈ V * with f = 1, x = Rv ∈ P(V ) with v = 1, t ∈ [ √ log n, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) ν(ϕ) -c ϕ γ 1 t 2 + t 3 √ n . (6.62)
Combining (6.55), (6.59) and (6.62) finishes the proof of Theorem 6.4. Now we apply Propositions 6.2 and 6.3 to establish the following moderate deviation expansion when t ∈ [n α , o(n 1/2 )] for any α ∈ (0, 1/2). Theorem 6.6. Assume A1 and A2. Then, for any ϕ ∈ B γ and α ∈ (0, 1/2), as n → ∞, we have, uniformly in x = Rv ∈ P(V ) and 1) , (6.63) 1) . (6.64)

y = Rf ∈ P(V * ) with v = f = 1, and t ∈ [n α , o( √ n)], E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} 1 -Φ(t) = e t 3 √ n ζ( t √ n ) ν(ϕ) + o(
E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 - √ nσt} Φ(-t) = e -t 3 √ n ζ(-t √ n ) ν(ϕ) + o(
Proof. As in Section 4.3 we define a partition of the unity. Let U be the uniform distribution function on the interval [0, 1]. Let a ∈ (0, 1 2 ] be a constant. For any integer k 0, define

U k (t) = U t -(k -1)a a , h k (t) = U k (t) -U k+1 (t), t ∈ R.
Note that U m = ∞ k=m h k for m 0 and for any t 0 and m 0,

∞ k=0 h k (t) = 1, m k=0 h k (t) + U m+1 (t) = 1. ( 6 

.65)

For any x = Rv ∈ P(V ) and y = Rf ∈ P(V * ), set χ y k (x) = h k (-log δ(y, x)) and χ y k (x) = U k (-log δ(y, x)). (6.66) From (6.65) we have the following partition of the unity on P(V ): for any x ∈ P(V ), y ∈ P(V * ) and m 0, Without loss of generality, we assume that the target function ϕ is nonnegative. We first establish (6.63). Since the upper bound of the moderate deviation expansion for the couple (G n •x, log | f, G n v |) has been shown in (6.55), it remains to establish the following lower bound: for any ϕ ∈ B γ and α ∈ (0, 1/2), uniformly in x = Rv ∈ P(V ) and y

∞ k=0 χ y k (x) = 1, m k=0 χ y k (x) + χ y m+1 (x) = 1. ( 6 
= Rf ∈ P(V * ) with v = f = 1, and t ∈ [n α , o( √ n)], lim inf n→∞ E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} e t 3 √ n ζ( t √ n ) [1 -Φ(t)]
ν(ϕ). (6.70)

Now we are going to prove (6.70). From the change of measure formula (4.3) and the fact λ 1 = Λ (0), we get

A n : = E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 √ nσt} (6.71) = r s (x)κ n (s)E Q x s (ϕr -1 s )(G n •x)e -sσ(Gn,x) 1 {log | f,Gnv | nΛ (0)+ √ nσt} .
For brevity, we denote

T x n = σ(G n , x) -nΛ (s), Y x,y n := log δ(y, G n •x).
Choosing s > 0 as the solution of the equation (6.4), from (6.71) and (3.8) it follows that

A n = r s (x)e -n[sΛ (s)-Λ(s)] E Q x s (ϕr -1 s )(G n •x)e -sT x n 1 {T x n +Y x,y n 0} .
Using (6.4), one can verify that

sΛ (s) -Λ(s) = t 2 2n - t 3 n 3/2 ζ t √ n , (6.72)
where ζ is the Cramér series defined by (2.4). Thus A n can be rewritten as

A n = r s (x)e -t 2 2 + t 3 √ n ζ( t √ n ) E Q x s (ϕr -1 s )(G n •x)e -sT x n 1 {T x n +Y x,y n 0} . (6.73)
Since the functions ϕ and r s are positive, using the partition of the unity (6.67) and (6.68), we have that for M n = log n and a ∈ (0, 1/2),

A n r s (x)e -t 2 2 + t 3 √ n ζ( t √ n ) Mn k=0 E Q x s (ϕr -1 s χ y k )(G n •x)e -sT x n 1 {T x n +Y x,y n 0} r s (x)e -t 2 2 + t 3 √ n ζ( t √ n ) Mn k=0 E Q x s (ϕr -1 s χ y k )(G n •x)e -sT x n 1 {T x n -a(k+1) 0} . (6.74) Let ϕ y s,k (x) = (ϕr -1 s χ y k )(x), x ∈ P(V ), and 
ψ s (w) = e -sw 1 {w 0} , w ∈ R.
It then follows from (6.74) that

A n r s (x)e -t 2 2 + t 3 √ n ζ( t √ n ) Mn k=0 e -sa(k+1) E Q x s ϕ y s,k (G n •x)ψ s (T x n -a(k + 1)) , which implies that A n e t 3 √ n ζ( t √ n ) [1 -Φ(t)] r s (x) Mn k=0 e -sa(k+1) E Q x s ϕ y s,k (G n •x)ψ s (T x n -a(k + 1)) e t 2 2 [1 -Φ(t)]
. From Lemma 6.1, it follows that for any small constant ε > 0,

ψ s (w) ψ - s,ε * ρ ε 2 (w) - |u| ε ψ - s,ε (w -u)ρ ε 2 (u)du, w ∈ R,
where ψ - s,ε is given by (6.2). Using this inequality we get

A n e t 3 √ n ζ( t √ n ) [1 -Φ(t)] r s (x) Mn k=0 B n,k -D n,k e t 2 2 [1 -Φ(t)] , ( 6.75) 
where

B n,k = e -sa(k+1) E Q x s ϕ y s,k (G n •x)(ψ - s,ε * ρ ε 2 )(T x n -a(k + 1)) , D n,k = e -sa(k+1) |w| ε E Q x s ϕ y s,k (G n •x)ψ - s,ε (T x n -a(k + 1) -w) ρ ε 2 (w)dw. Since B n,k D n,k and sup x∈P(V ) |r s (x) -1| → 0 as n → ∞, by Fatou's lemma, we get lim inf n→∞ A n e t 3 √ n ζ( t √ n ) [1 -Φ(t)] ∞ k=0 lim inf n→∞ B n,k -D n,k e t 2 2 [1 -Φ(t)] 1 {k Mn} .
Estimate of B n,k . Since the function ρ ε 2 is integrable on R, by the Fourier inversion formula, we have

ψ - s,ε * ρ ε 2 (w) = 1 2π R e iuw ψ - s,ε (u) ρ ε 2 (u)du, w ∈ R.
Substituting w = T x n -a(k + 1), taking expectation with respect to E Q x s , and using Fubini's theorem, we get

B n,k = 1 2π e -sa(k+1) R e -iua(k+1) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du, (6.76) 
where

R n s,iu (ϕ y s,k )(x) = E Q x s ϕ y s,k (G n •x)e iuT x n , x ∈ P(V ).
Applying Proposition 6.2 with l = a(k+1) n and ϕ = ϕ y s,k , by simple calculations we deduce that uniformly in x ∈ P(V ), 

y ∈ P(V * ), s ∈ (0, s 0 ), 0 k M n and t ∈ [n α , o( √ n)], R e -iua(k+1) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du -π s (ϕ y s,k ) √ 2π sσ s √ n -C t sn + 1 st 2 √ n ϕ y s,k ∞ -C log n sn ϕ y s,k γ . Note that σ s = Λ (s) = σ[1+O(s)]. From (6.
√ 2πte t 2 2 [1 -Φ(t)] 1 for any t > 0, it follows that R e -iua(k+1) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du e t 2 2 [1 -Φ(t)] -π s (ϕ y s,k ) 2πt sσ s √ n -C t 2 sn + 1 st √ n ϕ y s,k ∞ -C t log n sn ϕ y s,k γ -C t √ n + 1 t 2 ϕ y s,k ∞ -C t log n sn ϕ y s,k γ . (6.77)
Using the construction of the function ϕ y s,k and (6.69) give that uniformly in s ∈ (0, s 0 ), 

w ∈ P(V * ), ϕ ∈ B γ and 0 k M n , ϕ y s,k ∞ c ϕ ∞ ( 6 
n→∞ R e -iua(k+1) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du e t 2 2 [1 -Φ(t)] ν(ϕ y 0,k ) × 2π.
As s = o(1) as n → ∞ for any fixed k 1 and a ∈ (0, 1 2 ), it holds that lim n→∞ e -sa(k+1) = 1. Then, in view of (6.76), it follows that

lim n→∞ B n,k e t 2 2 [1 -Φ(t)] = ν(ϕ y 0,k ).
This, together with (4.18), implies the desired lower bound:

∞ k=0 lim inf n→∞ B n,k e t 2 2 [1 -Φ(t)] 1 {k Mn} ∞ k=0 ν(ϕ y 0,k ) = ν(ϕ). ( 6 

.80)

Estimate of D n,k . We shall apply Fatou's lemma to provide an upper bound for D n,k . An important issue here is to find a dominating function, which is possible due to the integrability of the density function ρ ε 2 on the real line. More specifically, in the same way as in the proof of (6.76), we use the Fourier inversion formula and the Fubini theorem to get

D n,k = 1 2π e -sa(k+1) × |w| ε R e -iu(a(k+1)+w) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du ρ ε 2 (w)dw.
We decompose the integral in D n,k into two parts:

D n,k e t 2 2 [1 -Φ(t)] = 1 2π e -sa(k+1) ε |w|< √ n + |w| √ n × R e -iu(a(k+1)+w) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du e t 2 2 [1 -Φ(t)] ρ ε 2 (w)dw =: E n,k + F n,k . (6.81) Estimate of E n,k . Since k M n and |w| √ n, we have |l| := |a(k + 1) + w|/n = O( 1 √ n ). Note that t sσs √ n = 1+O(s) and e t 2 2 [1-Φ(t)] 1 √ 2π ( 1 t -1 t 3 ), t > 1. Applying Proposition 6.2 with l = (a(k + 1) + w)/n, we get that uniformly in ε |w| < √ n, lim n→∞ R e -iu(a(k+1)+w) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du e t 2 2 [1 -Φ(t)] = 2π × π s (ϕ y 0,k ).
As above, for any fixed k 1 and a ∈ (0, 1 2 ), we have lim n→∞ e -sa(k+1) = 1. Since the function ρ ε 2 is integrable on R, by the Lebesgue dominated convergence theorem, we obtain that there exists a constant c > 0 such that

lim n→∞ E n,k 1 {k Mn} = ν(ϕ y 0,k ) |w| ε ρ ε 2 (w)dw cεν(ϕ y 0,k ).
This, together with (4.18), implies that

∞ k=0 lim n→∞ E n,k 1 {k Mn} cε ∞ k=0 ν(ϕ y 0,k ) cεν(ϕ). ( 6 

.82)

Estimate of E n,k,2 . Notice that there exists a constant c > 0 such that for any n 1,

R e -iu(a(k+1)+w) R n s,iu (ϕ y s,k )(x) ψ - s,ε (u) ρ ε 2 (u)du ϕ y s,k ∞ R ρ ε 2 (u)du c ϕ y s,k ∞ . Using the fact that t = o( √ n) and ρ ε 2 (u) cε u 2 ,

and again the inequality e

t 2 2 [1 -Φ(t)] 1 √ 2π ( 1 t -1 t 3 ), t > 1, we get lim sup n→∞ F n,k 1 {k Mn} c ε lim sup n→∞ t |w| √ n ρ ε 2 (w)dw c ε lim n→∞ t √ n = 0. Hence ∞ k=0 lim sup n→∞ F n,k 1 {k Mn} = 0. (6.83) 
Since ε > 0 can be arbitrary small, combining (6.81), (6.82) and (6.83), we get the desired bound for D n,k :

∞ k=0 lim sup n→∞ D n,k e t 2 2 [1 -Φ(t)]
1 {k Mn} = 0. (6.84)

Putting together (6.80) and (6.84), we conclude the proof of (6.70) as well as the first expansion (6.63). The proof of the second expansion (6.64) can be carried out in a similar way. As in (6.71) and (6.73), using (6.67), we have

E ϕ(G n •x)1 {log | f,Gnv |-nλ 1 - √ nσt} = r s (x)e -t 2 2 -t 3 √ n ζ(-t √ n ) Mn k=0 E Q x s (ϕr -1 s χ y k )(G n •x)e -sT x n 1 {T x n +Y x,y n 0} + r s (x)e -t 2 2 -t 3 √ n ζ(-t √ n ) E Q x s (ϕr -1 s χ y Mn+1 )(G n •x)e -sT x n 1 {T x n +Y x,y n 0} =: A n + A n ,
where this time we choose M n = A log n with A > 0, and s < 0 satisfies the equation (6.34). The main difference for handling the first term consists in using Proposition 6.3 instead of Proposition 6.2. For second term, we have 

E Q x s (
ct n ϕ ∞ c √ n ϕ ∞ .
This finishes the proof of the expansion (6.64).

Proof of Theorem 2.8. Theorem 2.8 follows from Theorems 6.4 and 6.6.

Proof of the local limit theorem with moderate deviations

The goal of this section is to establish Theorem 2.9 on the local limit theorems with moderate deviations for the coefficients f, G n v .

The following result which is proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] will be used to prove Theorem 2.9. Assume that ψ : R → C is a continuous function with compact support in R, and that ψ is differentiable in a small neighborhood of 0 on the real line.

Lemma 7.1 ([45]). Assume conditions A1 and A2. Then, there exist constants s 0 , δ, c, C > 0 such that for all s ∈ (-s 0 , s 0 ), x ∈ P(V ), |l| 

E Q x s 1 δ(y, G n •x) p|s| < +∞.
Using Lemmas 4.5, 7.1 and 7.2, we are equipped to prove Theorem 2.9.

Proof of Theorem 2.9. It suffices to establish the second assertion of the theorem since the first one is its particular case. Without loss of generality, we assume that the target functions ϕ and ψ are non-negative.

By the change of measure formula (4.3), we get that for any s ∈ (-s 0 , s 0 ) with sufficiently small s 0 > 0,

I := E ϕ(G n •x)ψ σ(G n , x) -nλ 1 - √ nσt (7.2) = r s (x)κ n (s)E Q x s (ϕr -1 s )(G n x)e -sσ(Gn,x) ψ log | f, G n v | -nλ 1 - √ nσt .
As in the equation (6.4), for any |t| = o( √ n) (not necessarily t > 1), we choose s ∈ (-s 0 , s 0 ) satisfying the equation

Λ (s) -Λ (0) = σt √ n . ( 7.3) 
Note that s ∈ (-s 0 , 0] if t ∈ (-o( √ n), 0], and s ∈ [0, s 0 ) if t ∈ [0, o( √ n)). In the same way as in the proof of (6.72), from (7.3) Hence, using (3.8), we have I = r s (x)e -n[sΛ (s)-Λ(s)] E Q x s (ϕr -1 s )(G n •x)e -sT x n ψ T x n + Y x,y n = r s (x)e

-t 2 2 + t 3 √ n ζ( t √ n ) E Q x s (ϕr -1 s )(G n •x)e -sT x n ψ T x n + Y x,y n .
Notice that r s (x) → 1 as n → ∞, uniformly in x ∈ P(V ). Thus in order to establish Theorem 2.9, it suffices to prove the following asymptotic: as n → ∞,

J := σ √ 2πn E Q x s (ϕr -1 s )(G n •x)e -sT x n ψ T x n + Y x,y n → ν(ϕ)
R ψ(u)du.

(7.4)

We shall apply Lemmas 4.5 and 7.1 to establish (7.4). Recall that the functions χ y k and χ y k are defined by (6.66). Then, using the partition of the unity (6.67) as in the proof of Theorem 6.6, we have

J =: J 1 + J 2 , ( 7.5) 
where, with M n = A log n and a sufficiently large constant A > 0,

J 1 = σ √ 2πn E Q x s (ϕr -1 s χ y Mn )(G n •x)e -sT x n ψ T x n + Y x,y n J 2 = σ √ 2πn Mn-1 k=0 E Q x s (ϕr -1 s χ y k )(G n •x)e -sT x n ψ T x n + Y x,y n .
Upper bound of J 1 . In order to prove that J 1 → 0 as n → ∞, we are led to consider two cases: s 0 and s < 0.

When e -sb 2 +sY x,y n . Hence, by the Hölder inequality, Lemmas 4.5 and 7.2, we obtain that, as n → ∞, uniformly in s ∈ (-s 0 , 0],

J 1 C √ n E Q x s 1 δ(y, G n •x) -2s Q x s Y x,y n -A log n 1/2 C √ n e -c A log n → 0,
where again A is large enough. Upper bound of J 2 . Note that the support of the function χ y k is contained in the set {x ∈ P(V ) : -Y x,y n ∈ [a(k -1), a(k + 1)]}. Therefore on supp χ y k we have -a Y x,y n + ak a. For any w ∈ R set Ψ s (w) = e -sw ψ(w) and, according to (6.1), define Ψ + s,ε (w) = sup w ∈Bε(w) Ψ s (w ), for ε ∈ (0, 1 2 ). Let also ϕ y s,k (x) = (ϕr -1 s χ y k )(x), x ∈ P(V ). (7.7) With this notation, choosing a ∈ (0, ε), it follows that J 2 σ √ 2πn

Mn-1 k=0 E Q x s ϕ y s,k (G n •x)e -sY x,y n Ψ + s,ε (T x n -ak) σ

√ 2πn

Mn-1 k=0 e -sa(k-1) E Q x s ϕ y s,k (G n •x)Ψ + s,ε (T x n -ak) .

Since the function Ψ + s,ε is non-negative and integrable on the real line, using Lemma 6.1, we get

J 2 (1 + C ρ (ε))σ √ 2πn
Mn-1 k=0 e -sa(k-1)

× E Q x s ϕ y s,k (G n •x)(Ψ + s,ε * ρ ε 2 )(T x n -ak) ,
where C ρ (ε) > 0 is a constant converging to 0 as ε → 0. Since the function ρ ε 2 is integrable on R, by the Fourier inversion formula, we have

(Ψ + s,η,ε * ρ ε 2 )(T x n -ak) = 1 2π R e iu(T x n -ak) Ψ + s,ε (u) ρ ε 2 (u)du.
By the definition of the perturbed operator R s,iu (cf. (4.5)), and Fubini's theorem, we obtain s,ε ρ ε 2 is compactly supported on R, applying Lemma 7.1 with ϕ = ϕ y s,k , ψ = Ψ + s,ε ρ ε 2 and l = ak nσ , we obtain that there exists a constant C > 0 such that for all s ∈ (-s 0 , s 0 ), x ∈ P(V ), y ∈ P(V * ), 0 k M n -1, ϕ ∈ B γ and n 1,

σ n 2π R e -itak R n s,iu (ϕ y s,k )(x) Ψ + s,ε (u) ρ ε 2 (u)du -Ψ + s,ε (0) ρ ε 2 (0)π s (ϕ y s,k ) C √ n ϕ y s,k γ .
Using (6.79) and choosing a sufficiently small γ > 0, one can verify that the series C

√ n

Mn-1 k=0 ϕ y s,k γ converges to 0 as n → ∞. Consequently, we are allowed to interchange the limit as n → ∞ and the sum over k in (7.8).

Then, noting that ρ ε 2 (0) = 1 and Ψ + 0,ε (0) = R sup w ∈Bε(w) Ψ 0 (w )dw, we obtain that uniformly in v ∈ V and f ∈ V * with v = 1 and f = 1, lim sup a. Set Ψ s (w) = e -sw ψ(w), w ∈ R and Ψ + s,ε (w) = inf w ∈Bε(w) Ψ s (w ), for ε ∈ (0, 1 2 ). Then, with a ∈ (0, ε), Lower bound of J 3 . Proceeding as in the proof of the upper bound (7.9) and using Lemma 7.1, we obtain Putting together (7.5), (7.6), (7.10) and (7.15), we obtain the asymptotic (2.24). This ends the proof of Theorem 2.9.

J 2 σ √ 2πn Mn-1 k=0 E Q x s ϕ y s,k (G n •x)e -sY

  11) and d s,ϕ (y) = P(V ) ϕ(x) log δ(y, x)π s (dx), y ∈ P(V * ). (4.12) These functions are well-defined as shown in Lemmas 4.7 and 4.8 below. In particular, we have b 0,ϕ = b ϕ and d 0,ϕ = d ϕ , where b ϕ and d ϕ are defined in (2.9) and (2.10), respectively.

1 2 ,

 2 which, together with the inequality | log(1 + a)| 2|a| for any |a|

5 )G n e nλ 1 +bn P max 1 i d G n e i e nλ 1 +bn d i=1 P G n e i e nλ 1 +bn e -c b 2

 5i=12 Proof. Inequalities (5.2) and (5.3) are direct consequences of Lemma 5.1. By (5.2) and the fact that G n Gnv v , the first inequality in (5.4) follows.To show the second inequality in(5.4), since all matrix norms on V are equivalent, we get P

Lemma 5 . 4 .P ∧ p G n e n p i=1 λ i +bn e -c b 2

 542 Assume the conditions of Lemma 5.1. Let 1 p d be an integer. Then there exist constants c, c > 0 and n 0 ∈ N such that for any n n 0 , e -c b 2 n n

  5) (with G n replaced by G n ) to get e -c b 2 and (5.10), the lower bound of (5.6) easily follows: e -c b 2 n n P ∧ p G n e bn . (5.11)

  ν x ∈ P(V ) : δ(x, y) e -bn e -c b 2

2 .

 2 (5.31) Hereafter, (b n ) n 1 is any sequence of positive numbers satisfying bn √ n → ∞ and b n = o(n 1 2-α ) as n → ∞. By (5.31) and the fact that log

6 . 6 . 1 .

 661 Proof of Cramér type moderate deviation expansion Smoothing inequality. For any integrable function h : R → C, denote its Fourier transform by h(u) = R e -iuw h(w)dw, u ∈ R. If h is integrable on R, then by the Fourier inversion formula we have h(w) = 1 2π R e iuw h(u)du, for almost all w ∈ R with respect to the Lebesgue measure on R.Now we fix a non-negative density function ρ on R with compact support [-1, 1], whose Fourier transform ρ is integrable on R. For any 0 < ε < 1, define the scaled density function ρ ε

6. 3 . 8 .Theorem 6 . 4 .

 3864 Proof of Theorem 2.The goal of this section is to establish Theorem 2.8. To this aim we first prove the moderate deviation expansion in the normal range y ∈ [0, o(n 1/6 )] for the couple (G n •x, log | f, G n v |) with a target function ϕ on G n •x. Assume A1 and A2. Then, as n → ∞, uniformly in x = Rv ∈ P(V ) and y = Rf ∈ P

  .67) Denote by supp(χ y k ) the support of the function χ y k . It is easy to see that for any k 0 and y ∈ P(V * ), -log δ(y, x) ∈ [a(k -1), a(k + 1)] for any x ∈ supp(χ y k ). (6.68)As in Lemma 4.10 we show that there exists a constant c > 0 such that for any γ ∈ (0, 1], k 0 and y ∈ P(V * ), it holds χ y k ∈ B γ and

  10), we have t sσ √ n = 1+O(s), and thus t sσs √ n = 1 + O(s). Using the inequality

  s 0, since the function ψ has a compact support, say [b 1 , b 2 ], we have T x n + Y x,y n ∈ [b 1 , b 2 ]. Noting that Y x,y n 0, we get T x n b 1 , and hence e -sT x n e -sb 1c. Since the function ψ is directly Riemann integrable on R, it is bounded and henceJ 1 c √ n Q x s Y x,y n -A log n .Applying Lemma 4.5 with k = A log n and choosing A sufficiently large, we obtain that, as n → ∞, uniformly in s ∈ [0, s 0 ),J 1 C √ n e -c A log n → 0. (7.6) When s < 0, from T x n + Y x,y n ∈ [b 1 , b 2 ], we get that e -sT x n

J 2 ( 1 + 1 {k

 211 C ρ (ε))σ n 2π ∞ k=0 Mn-1} e -sa(k-1) × R e -iuak R n s,iu (ϕ y s,k )(x) Ψ + s,ε (u) ρ ε 2 (u)du. (7.8) To deal with the integral in (7.8), we shall use Lemma 7.1. Note that e Ck 2 n → 1 as n → ∞, uniformly in 0 k M n -1. Since the function Ψ +

n→∞ J 2 ( 1 + 10 )

 2110 C ρ (ε)) last equality we used(4.18). Letting ε → 0, n → ∞, and noting that C ρ (ε) → 0, we obtain the desired upper bound forJ 2 : uniformly in v ∈ V and f ∈ V * with v = f = 1Lower bound of J 2 . Since on the set {-Y x,y n ∈ [a(k -1), a(k + 1)]}, we have -a Y x,y n + ak

13 )( 1 +

 131 as ε → 0 and n → ∞, we get the lower bound for J 3 : uniformly in v ∈ V and f ∈ V * with v = 1 and f = 1Upper bound of J 4 . By Lemma 6.1, we have Ψ -s,ε C ρ (ε))Ψ + s,ε * ρ ε 2 . Applying Lemma 7.1 with ϕ = ϕ y s,k and ψ = Ψ + s,ε ρ ε 2 , it follows from the Lebesgue dominated convergence theorem that J 4 (1 + C ρ (ε)) ∞ k=0 ν ϕ y 0,k Ψ + 0,ε (0) ρ ε 2 (0) |w| ε ρ ε 2 (w)dw,(7.14)which converges to 0 as ε → 0. Combining (7.11), (7.13) and (7.14), we get the desired lower bound for J 2 : uniformly in v ∈ V and f ∈ V * with v = 1 and f = 1, lim inf n→∞ J 2 ν(ϕ) R ψ(u)du.(7.15) 

Proof of Theorem 2.3.

  We shall prove a more general version of Theorem 2.3 under the changed measure Q x s . For any s ∈ (-s 0 , s 0 ) and ϕ

	4.3.
	.10)
	Note that (4.10) is stronger than the exponential Hölder regularity of the
	invariant measure π s stated in Lemma 4.4.

  .21)For short denote B k = ((k -1)a n , ka n ]. Remark that the function h n,k is increasing on B k and decreasing on B k+1 . Set for brevity t = -log δ(y, x ) and t = -log δ(y, x ). First we consider the case when t and t are such that t , t ∈ B

k . Then, using (4.17) and (4.16), for any γ ∈ (0, 1], we have

  We need the following bounds. Let M n = A log 2 n , where A > 0 is a constant and n is large enough. It is convenient to denote

	3	e γkan a γ n	d(x , x * ) γ + 3	e γkan n a γ	d(x , x * ) γ
	6	e γkan n a γ	d(x , x ) γ .			(4.26)
	From (4.25) and (4.26) we conclude that [χ y n,k ] γ	6 e γkan a γ n	, which shows
	(4.20).				
	ϕ y n,k = ϕχ y n,k for 0 k M n -1, ϕ y n,Mn = ϕχ y n,Mn .	(4.27)
	Mn				
	k=0				

Lemma 4.11. Assume A1 and A2. Then there exist constants s 0 > 0 and c > 0 such that for any s ∈ (-s 0 , s 0 ), y ∈ P(V * ) and any non-negative bounded measurable function ϕ on P(V ),

  .20) 

	Estimate of I 322 . Since |e -iul	√ n/σs -1| |ul	√	n/σ s | c|l| √	n|u|, combin-
	ing this with (6.18) gives				
	|I 322 | c|l| √	n ϕ γ .		(6.21)

  where in the last inequality we use Lemma 4.5 and choose A large enough.

		ϕr -1 s χ y Mn+1 )(G n •x)e -sT x n 1 {T x n +Y x,y n	0}
	c ϕ ∞ E Q x s χ y Mn+1 (G n •x)e sY x,y n
	c ϕ ∞ e -saA log n Q x s (-log δ(y, G n • x) aA log n)
	c n	ϕ ∞ ,				(6.85)
	Using (6.85), the inequality te t = o( √ n), we get	t 2 2 Φ(-t)	1 √ 2π for all t > 0 and the fact that
	A n n ζ(-t -t 3 e √ √ n ) Φ(-t)	c n	ϕ ∞	e	1 2 Φ(-t) t 2

  We also need the result below, which is proved in[START_REF] Xiao | Large deviation expansions for the coefficients of random walks on the general linear group[END_REF] Lemma 6.2].Lemma 7.2 ([48]). Assume A1 and A2. Let p > 0 be any fixed constant. Then, there exists a constant s 0 > 0 such that

					sup		sup	sup	sup
					n 1	s∈(-s 0 ,s 0 )	y∈P(V * )	x∈P(V )
								1 √ n ,
	ϕ ∈ B γ and n 1,
	σ s	√	n e	nl 2 2σ 2 s		e -itln R n s,iu (ϕ)(x)ψ(t)dt -	√	2ππ s (ϕ)ψ(0)
						R	
		C √ n	ϕ γ +	C n	|t| δ ϕ γ sup	|ψ(t)| + |ψ (t)| + Ce -cn ϕ γ	R	|ψ(t)|dt. (7.1)

  Since the function Ψ - s,ε is non-negative and integrable on the real line, by Lemma 6.1, we get

								x,y n Ψ -s,ε (T x n -ak)
	σ s,k (G By Fatou's lemma, it follows that Mn-1 √ 2πn k=0 e -sak E Q x s ϕ y
	lim inf n→∞ s,k (G lim inf J 2 ∞ k=0 lim inf n→∞ σ √ 2πne -sak E Q x s ϕ y n→∞ J 2 ∞ k=0 lim inf n→∞ σ √ 2πnE Q x s ϕ y s,k (G n •x)(Ψ -s,ε * ρ ε 2 )(T x n -ak)
	-	∞ k=0	lim sup n→∞	σ	√	2πn	|w| ε	E Q x s ϕ y s,k (G n •x)Ψ -s,ε (T x n -ak -w) ρ ε 2 (w)dw
	=: J 3 -J 4 .					(7.11)

n •x)Ψ - s,ε (T x n -ak) . n •x)Ψ - s,ε (T x n -ak) .

Since s = o(1) as n → ∞, we see that for fixed k 1, we have e -sak → 1 as n → ∞.