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The paper addresses the simulation of heat dominated compressible flows in a closed cav-9

ity using a pressure-based lattice Boltzmann (LB) method in which the thermal effects are10

modelled by applying a pressure-featured zero-order moment of the distribution functions.11

A focus is made on the conservation of mass at boundary nodes, which is a challenging12

issue significantly complicated by the density-decoupled zero-order moment here. The13

mass leakage at boundary nodes is mathematically quantified, which enables an efficient14

local mass correction scheme. The performance of this solver is assessed by simulating15

buoyancy-driven flows in a closed deferentially heated cavity with large temperature dif-16

ferences (non-Boussinesq) at Rayleigh numbers ranging from 103 to 107. The simulations17

show that mass leakage at solid walls in such configurations is a critical issue to obtain18

reliable solutions, and that it eventually leads to simulations overflow when the cavity is19

inclined. The proposed mass correction scheme is however shown to be effective to control20

mass leakage and get accurate solutions. Thus, associated with the proposed mass conser-21

vation scheme, the pressure-based LB method becomes reliable to study natural convection22

dominated flows at large temperature differences in closed geometries with mesh aligned23

boundaries or not.24
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I. INTRODUCTION25

Heat-dominated fluid dynamics is prevalent in both thermal sciences and engineering applica-26

tions from low speed flow to high speed flow, such as the rising “thermals” used by soaring birds,27

various cooling systems for electronic devices, nuclear reactors, chemical processing equipment,28

cooling system in automotive vehicles and in turbomachinery. Despite that great progress has been29

made in understanding the relevant physics in different backgrounds, heat-dominated flow at high30

Raleigh numbers (e.g. > 107) still remains challenging for both experiments and numerical sim-31

ulations. Mainly, the challenges can be attributed to the complex physics caused by the potential32

large temperature gradients1,2.33

As a typical heat-transfer scene, the natural thermal fluid convection driven by buoyancy force34

due to density and temperature variations has been intensively investigated both experimentally3,4
35

and numerically5–11. In contrast to the numerical simulations, the thermal fluid experiments are36

more reliable, but are also much more expensive and difficult to manipulate fluid parameters and37

boundary conditions3,12. However, many of the existed numerical schemes proposed to solve38

heat-dominated flows were mainly limited to solutions with small temperature variations where39

the Boussinesq approximation is reasonable to apply8,10. Numerical methods adequate for ther-40

mal fluid dynamics with large temperature variations are of high demand, and are under faster41

developing13,14. Especially, different from the traditional CFD methodologies, the relatively new42

lattice Boltzmann (LB) method using Cartesian grid is promising to provide efficient simulations43

for heat-dominated flows due to its advantages of simple parallel implementation, full compatibil-44

ity with complex geometries, and high computational efficiency for unsteady flow15.45

To date, the LB method has not only achieved a reputation in the weakly compressible isother-46

mal flow region15, but also been extended to thermal compressible flow. First, under the low Mach47

number limit (Ma < 0.2), several pressure-based LB algorithms16–20 have been proposed with the48

energy equation either solved by another LB process (the well-known DDF method)18,21 or by49

the conventional finite difference (FD) method (known as the hybrid method)17,19,20,22. These low50

Ma pressure-based LB methods have been successfully applied in different thermal flows, such as51

combustion19,20, thermal flow with variable fluid properties21 and multi-physical flow23. Second52

but more importantly, improved LB methods capable of thermal flow from low Ma to high Ma53

(e.g. Ma = 1) have been recently proposed, including the density-based LB method improved by54

Feng, Sagaut, and Tao 13 and the pressure-based LB method developed by Farag et al. 14,24 . Both55
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of these two methods adopted the hybrid strategy solving the energy equation using conventional56

finite difference schemes to maintain the high computational efficiency. The main difference is57

that Farag’s method includes the temperature in the LB framework by modifying the zeroth order58

moment of the distribution functions, while Feng’s method modifies the second order moment.59

Comparatively, Farag’s method exhibited superior capability for supersonic flow up to Ma ≈ 424
60

while Feng’s method is up to Ma ≈ 1.5. Since these two method remain within the classic LB61

framework, they are much more simple and efficient than the multi-speed (MS)25–27 approach62

which adopts enlarged discrete velocity set (e.g. D2Q27 and D3Q343) to restore the energy equa-63

tion directly. The recent commercial solver ProLB adopting Farag’s pressure-based LB method64

has exhibited superior capability for subsonic and supersonic flows, and is promising to model65

complex thermal fluid dynamics with both low Ma and relatively high Ma involved. With the goal66

to address with a unique solver in ProLB complex industrial flow configurations with low and high67

Ma regions and improve the efficiency in terms of developments, support and use, we extend in68

this work its capability to deal with natural convection dominated flows at low speed and large69

temperature difference.70

Although the above mentioned thermal LB method is theoretically able to model thermal flow,71

the reported validations were all based on aligned boundaries. Actually, mass conservation (or72

mass leakage) along non-aligned boundaries is a substantial challenge to extend the LB method73

to heat-dominated simulations, and this is especially true for the Farag’s pressure-based method.74

The mass leakage (ML) problem has been noticed and reported since a long time28–30. It has been75

theoretically proved very recently by Xu et al.31 to be inevitable for general LB methods using76

boundary treatments of at least second-order accuracy at general boundaries. Moreover, it was77

pointed out31 that the ML problem could be more serious for flow featuring significant compress-78

ible effect, which is a prominent in heat-dominated flow at high Rayleigh numbers, because fluid79

compressibility is a direct source of the mass leakage. For the Farag’s method, the implemen-80

tation of mass conservation is supposed to be significantly complicated because the redefinition81

of the zeroth order moment of the LB distribution functions is decoupled from the fluid density.82

Therefore, it is critical to identify the mass leakage and to implement mass correction to apply the83

Farag’s pressure-based LB method to heat-dominated flows simulations.84

Based on the above analysis, in this paper, we focus on extending Farag’s pressure-based85

LB method using mass correction to simulate heat-dominated flow with aligned and non-aligned86

boundaries. The rest of this paper is organized as follows: Firstly fundamentals of Farag’s87
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pressure-based LB model are briefed in §II. Then the mass leakage at boundary nodes is theoreti-88

cally identified in §III. Based on that, the pressure-based LB method using mass correction is used89

to simulate heat dominated flow with aligned and inclined boundaries at a wide range of Rayleigh90

numbers in §V. Finally, some critical conclusions are drawn in §VI.91

II. FUNDAMENTALS OF FARAG’S PRESSURE-BASED LB METHOD92

Farag’s pressure-based LB method14 solves the full Navier-Stokes equations with the mass and93

momentum equations solved within the LB framework and the energy equation computed by using94

traditional finite difference (FD) schemes. The two processes are thoroughly coupled. The fluid95

density and velocity resolved in the LB process is directly used to conduct the thermal convective96

behaviors in the conventional CFD process. In turn the conventionally resolved thermal variable is97

directly included in the definition of the zeroth order moment of the distribution functions during98

the LB collision process (see Appendix B). Details of the FD schemes solving the energy equation99

is provided in Appendix C.100

Here, we concentrate on the LB part with an emphasis on the mass conversation issue. For sake101

of simplicity but without loss of generality, the classical BGK model is used to demonstrated the102

basic characteristics, i.e.,103

fi(t +∆t,x+ei∆t)− fi(t,x) =−
1
τ
( fi− f eq

i )+
∆t
2

Fi (1)104

where fi is the ith distribution function, t is time, ∆t is the time step, x is the Eulerian coordinate105

vector of a lattice node, ei is the ith discrete velocity, τ is the relaxation parameter determined as106

τ = 1/2+µ/(ρc2
s ∆t) with cs being the sound speed and µ being the fluid dynamic viscosity, f eq

i is107

the equilibrium part of fi, and Fi is the ith external force term according to Guo’s model32. The LB108

equation (1) is usually solved by directly decomposing it into a linear stream process (the left-hand109

side) and a local non-linear collision process (the right-hand side). fi is the distribution function110

after the stream process, and f col
i will be used to denote that after the collision process.111

In Farag’s pressure-based method, the temperature is directly included in the definition of f eq
i112

to model thermal and compressible effects, i.e.,113

f eq
i = ωi

[
ρθ +

eiα

c2
s

ρuα +
eiαeiβ − c2

s δαβ

2c4
s

: ρuαuβ +
eiαeiβ eiγ − c2

s [eiδ ]αβγ

6c6
s

: ρuαuβ uγ

]
(2)114

where the Einstein summation convention is applied, ωi is the ith weight factor, ρ is the fluid115

density, θ = T/Tre f is the normalized temperature, uα is the α th velocity component with α,β ,γ116
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being coordinate indices, and [eiδ ]αβγ = eiαδβγ + eiβ δαγ + eiγδαβ . Consistently, the first three117

moments of the distribution functions can be expressed as118

∑ f col
i = p/c2

s = ρθ , ∑ fiei = ∑ f col
i ei = ρu, ∑ fieiei = ∑ f col

i eiei = ρuu+ pI (3)119

where ∑ represents summation over the whole discrete velocity set, p is the pressure, and I120

is the identity matrix. Noticeably, the zeroth order moment of fi is not given above because it is121

significantly complicated by the implementation of mass conservation and will be demonstrated122

in the followed paragraphs.123

As illustrated in Eq. (3), the main difference compared to the classical LB method is that the124

zeroth order moment is directly related to the pressure instead of the usually used density (i.e.,125

∑ f eq
i = ρ). Due to this modification, on one hand the compressible Navier-Stokes momentum126

equation is fully restored within the LB conception, on the other hand the summation of fi is no127

longer directly related the mass conservation, and hence the mass equation cannot directly restored128

from the stream and collision processes.129

Alternatively, the mass conservation equation is enforced in a way combining the LB and the130

traditional FD conceptions. Similar to the classical LB method, the mass flux can be properly131

approximated during stream process since it directly depends on the first-order moment, i.e.,132

∇(ρu) =−∑
fi(t +∆t,x)− f col

i (t,x)
∆t

=−∑
fi(t,x−ei∆t)− f col

i (t,x)
∆t

= ∇∑ei f col
i (t,x)+O(∆t)

(4)133

Accordingly, the mass equation can be discretized as134

ρ(t +∆t,x)−ρ(t,x)
∆t

=−∇(ρu)+O(∆t) = ∑
fi(t +∆t,x)− f col

i (t,x)
∆t

(5)135

It should be noticed that, to this step, the discretization scheme in Eq. (5) is still shared by136

Farag’s pressure-based and the classical density-based LB methods. According to the widely137

applied Chapman-Enskog analysis33, this scheme is actually of second order accuracy because the138

first-order error term in the left-hand side is implicitly resolved to second-order accuracy in the139

stream process in the right-hand side.140

By substituting the zeroth order moment of f col
i (see (3)) into Eq. (5), the density is consistently141

updated as142

ρ(t +∆t,x) = ρ(t,x)+∑ fi(t +∆t,x)− (ρθ)(t,x) (6)143
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Clearly, the zeroth order moment of fi is apparently distinguished from that of f col or f eq
i by144

including the time derivative of ρ , which significantly complicated the relationship between the145

distribution functions and the mass conservation.146

From the above description, we can conclude that by incorporating the conventionally solved147

temperature into the definition of the zeroth order of the LB distribution functions and applying a148

consistently modified implementation of mass conservation, Farag’s pressured-based LB method149

successfully recovers the mass and compressible momentum equations to second order accuracy.150

In this way, the weakly compressible limitation is removed with most of the favorable charac-151

teristics of the LB method maintained. However, since the physical meaning of the distribution152

functions is significantly complicated and cannot be solely expressed by their moments, the bound-153

ary treatments directly focusing on reconstructing the unknown distribution functions cannot be154

used within the pressure-based LB method without significant adjustment. In contrast, the ex-155

isting immersed boundary methods focusing on reconstructing macroscopic variables (e.g. the156

interpolation-based IB method implemented in ProLB) can be directly extended in the pressure-157

based LB method.158

III. MASS LEAKAGE QUANTIFICATION159

In this section, mass leakage (ML) within Farag’s pressure-based LB framework is measured by160

adopting the bounce-back (BB) conception widely used in the classic density-based LB method.161

The main challenge to complete this ML measurement is that the physical definition of the ze-162

roth order moment of the distribution functions varies during the stream and collision processes,163

and its expression of macroscopic variables could be rather complex for ML analysis (see §II).164

Whereas, the mass leakage is conceptually a non-physical mass flux through the boundaries dur-165

ing the convective stream process, which is mainly determined by the first-order moment of the166

distribution functions, e.g. ρu = ∑ fiei. Since ρu = ∑ fiei = ∑ f col
i ei is shared throughout both167

Farag’s method and the classic LB method, the mass leakage analysis achieved in the classic LB168

frame can be definitely extended to its pressure-based counterpart. In the rest of this paper, only169

static boundaries are considered.170

For the classic density-based LB method, the widely accepted definition of mass leakage is the171
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net loss of distribution functions during the stream process at boundary nodes (see Fig. III), i.e.,172

E(x) =
∆x
∆t ∑

x+ei∆t∈S

[
f col
i (x)− f col

ī (x+ei∆t)
]

(7)173

where S represents the non-fluid area, ∆x is the grid spacing, and ∆t is the time step, and ei is174

the ith discrete velocity with its components taking values among 0 and ±∆x/∆t. Actually, E in175

Eq. (7) is an approximation of the local mass flux cross the boundary, i.e.,176

E(x) =
∆x
∆t ∑

x+ei∆t∈S

[
f col
i (x)− f col

ī (x+ei∆t)
]

≈∑ fi,wSign(ei ·n)≈∑ fi,wei ·n= ρuw ·n= 0

(8)177

where the sub-index w represents the involved wall boundary, eī = −ei, and n is the local178

normal vector at the boundary. The relationship (8) is of first-order accuracy for aligned bound-179

aries, otherwise is of zero-order accuracy31. Despite the perturbations of the approximation to180

the conventional mass flux, E has been demonstrated as an effective and accurate measurement181

of the mass leakage within the classic LB framework. For example, the well-known BB scheme,182

directly assigning the distribution functions streaming towards non-fluid areas to those associated183

with the reversed velocity directions yielding E = 0 at every node, is the only known boundary184

treatment satisfying the mass conversation well. In addition, Eq. (8) clearly demonstrates that185

the reasonability of E in Eq. (7) stems from the first-order moment definition of fi as mentioned186

above.187

However, Eq. (7) cannot be directly applied within Farag’s pressure-based LB method in a188

clean way (e.g. the classic BB scheme) due to the complicated relationship between fi and ρ . To189

avoid this complexity, it is appealing to express the ML definition in Eq. (7) from a macroscopic190

viewpoint before going to the pressure-based framework. This can be achieved by including the191

distribution functions streaming from the neighbouring fluid nodes and boundary nodes (see Fig.192

III) into Eq. (7), i.e.,193

E(x) =
∆x
∆t

[
∑

x+ei∆t∈S
f col
i (x)+ ∑

x+ei∆t∈F
f col
ī (x+ei∆t)

]

− ∆x
∆t

[
∑

x+ei∆t∈S
f col
ī (x+ei∆t)+ ∑

x+ei∆t∈F
f col
ī (x+ei∆t)

]

=
∆x
∆t

[
ρ

BB(x)−ρ(x)
]

(9)194
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FIG. 1. Sketches of the streaming process at boundary nodes considering a D2Q9 lattice. Nodes in the solid

area, e.g. G1, are not necessary.

where F represents the fluid domain, ρBB is the density applying the BB strategy satisfying195

E = 0 at every boundary node, and ρ is the density reconstructed by specific boundary treatments.196

Clearly, Eq. (9) is now independent of the zero-moment definition of fi, and thus can be used to197

measure the mass leakage for both the LB methods. The remained problem is to construct ρBB
198

properly within Farag’s pressure-based LB framework.199200

Considering that the distribution functions in Eq. (9) are actually the post-stream distribution201

functions at x, the required ρBB can be determined by the mass conservation equation (6) as202

ρ
BB(t +∆t,x) = ρ(t,x)+

[
∑

x+ei∆t∈S
f col
i (t,x)+ ∑

x+ei∆t∈F
f col
ī (t,x+ei∆t)

]
−ρ(t,x)θ(t,x)

(10)203

Similarly, the other distribution functions in Eq. (9) is implicitly included in ρ(t + ∆t,x).204

Therefore, by substituting Eq. (10) into Eq. (9), the mass leakage within Farag’s pressure-based205

LB framework can be formulated as206

E(t +∆t,x) =
∆x
∆t

[
ρ(t,x)+ ∑

x+ei∆t∈S
f col
i (t,x)

+ ∑
x+ei∆t∈F

f col
ī (t,x+ei∆t)−ρ(t,x)θ(t,x)−ρ(t +∆t,x)

] (11)207

Consequently, the local density correction can be expressed as208
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∆ρ(t +∆t,x) =
∆t
∆x

E(t +∆t,x)

=ρ(t,x)+

[
∑

x+ei∆t∈S
f col
i (t,x)+ ∑

x+ei∆t∈F
f col
ī (t,x+ei∆t)

]
−ρ(t,x)θ(t,x)]−ρ(t +∆tx)

(12)209

Similar to the local mass correction methods used by Bao, Yuan, and Schaefer 29 , in the rest210

of this paper, ∆ρ in Eq. (12) will be directly used to correct the density at boundary nodes, i.e.,211

ρ(x) = ρBB.212

IV. PHYSICAL CONFIGURATION AND NUMERICAL SETUP213

The canonical natural convection flow in a heated square cavity is considered in this paper214

to assess Farag’s pressure-based LB method using mass correction in simulating heat-dominated215

flow. The method based on the D3Q19 model (see Appendix A) is implemented in the commercial216

solver ProLB with the energy equation conventionally solved (see Appendix C). The recursively217

regularized technique34,35 is adopted to facilitate stable solutions. A cut-cell immersed boundary218

(IB) method is used to implement the boundary conditions36 for both the LB process and the FD219

procedure (see Appendix D). In this IB method, the macroscopic variables (e.g. the density, ve-220

locity and temperature) at the boundary nodes are interpolated from their surrounding fluid nodes221

and nearest boundary points so that the equilibrium distribution functions can be reconstructed.222

Meanwhile, the non-equilibrium distributions are reconstructed from the derivatives of the macro-223

scopic variables generated during the macroscopic interpolations. For the simulations conducted224

in this paper, uniform grid strategy is applied over the whole fluid domain (see Fig. 2).225

The physical configuration of the heated square cavity is shown in Fig. 2. The air modeled226

as a perfect gas satisfying P = ρRT (R is the gas constant) is considered in the fluid domain.227

Sutherland’s law is utilized to compute the dynamic viscosity µ(T ) = µ∗ ∗ ( T
T ∗ )

3/2 ∗ T ∗+S
T+S with228

T ∗ = 273K, S = 110.5K, and µ∗ = 1.68∗10−5kgm−1s−1. The thermal conductivity is calculated229

by λ (T ) = µ(T )Cp
Pr with Cp being the specific heat capacity of air and Pr = 0.71. For the wall230

boundaries, as shown in Fig. 2, isothermal conditions are assigned to the left and right walls231

with the temperature fixed at T1 and T2, respectively, while the top and bottom walls are set to232

be adiabatic (i.e., ∂T/∂n = 0). Meanwhile, ∂ p/n = 0 is applied to all the boundaries, and an233

external gravity is imposed on the fluid. Consequently, the flow is resulted from the interaction234
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among the implied gravity, the buoyancy force caused by thermal effect, and the fluid viscosity.235

Accordingly, the Rayleigh number, the ratio between the buoyancy force and viscous force, is the236

main characteristic parameter, i.e.,237

Ra =
gρ2

0 ∆T L3Pr
T0µ2

0
(13)238

where g is the gravity acceleration, ρ0,T0 = (T1 +T2)/2 and µ0 is the reference density, mean239

temperature and the fluid dynamic viscosity, respectively, ∆T = T2−T1, Pr is the Prandt number,240

and L is the length of the cavity serving as a free parameter to change the Rayleigh number.241

Besides, the normalized temperature gap (i.e., ε = T1−T2
T1+T2

), indicating the variation amplitude of242

the temperature, is another important characteristic parameter for the heat-dominated flow.243

In the concerned numerical assessment, heat-dominated flow with T1 = 240K, T2 = 960K and244

thus a large ε = 0.6 (the Boussinesq assumption requires ε < 0.1) is simulated over a wide range245

of Ra, i.e., 103 ≤ Ra≤ 107. Moreover, cavities inclined at different angles from 0◦ to 45◦ (see Fig.246

2(b)) are included to verify the capability for non-aligned boundaries.247

(a) Aligned cavity (b) Inclined cavity

FIG. 2. Aligned (a) and inclined (b) heated square cavities with uniform Cartesian grid ∆x/L = 0.02.
248

249

To facilitate quantitative analysis in the rest of this paper, some critical physical measurements250

are introduced here. Firstly, following Vierendeels, Merci, and Dick 11 , the Nusselt number Nu251

measuring heat flux across the vertical walls as well as its averaged value Nu is defined as:252

Nu(y) =
L

λ0∆T
λ

∂T
∂x
|wall Nu =

1
L

∫ y=L

y=0
Nu(y)dy (14)253
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Secondly, mass leakage in the cavity simulations is measured by the overall mass loss normalized254

as255

ML =
∑V ρn−∑V ρ0

∑V ρ0
(15)256

where V represents the whole fluid domain. In addition, Ure f =
Ra0.5µ(T0)

ρ0L is used as the reference257

velocity11 in the rest of this paper.258

V. RESULTS AND DISCUSSION259

The assessment of Farag’s pressure-based LB method using mass correction in heat-dominated260

flow over 103 ≤ Ra≤ 107 is conducted using the ProLB software in this section. Firstly, the mass261

leakage as well as the caused problems are analyzed in §V A. Then, performance of the mass262

correction equipped method for non-aligned boundaries is assessed in §V B. Finally, performance263

of the method over the considered Rayleigh number range is assessed in §V C.264

A. Mass leakage quantification and its effect on thermal simulations265

The mass leakage in thermal simulations using Farag’s pressure-based LB method as well as266

its influence on the solutions (e.g. the heat flux estimation) is investigated here. Ra = 107 is used267

in the simulations as it is supposed to be associated with the most complex thermal physics for268

the considered range of Rayleigh numbers, 103 ≤ Ra≤ 107. Without loss of generality, the cavity269

inclined at 15◦ is considered to study the effect of non-aligned boundaries. In addition, different270

grid sizes (from N2 = 502 to 4002) are tested to clarify its effect on the ML problems.271272

Fig. 3 shows the history of the overall ML for both aligned and inclined cavity using different273

grid resolutions. As can be observed, the mass leakage accumulates with time in all the cases.274

For the simulations with non-aligned boundaries, the mass leakage is so significant that all the275

simulations crash in the early stage. In contrast, for the cases with aligned boundaries, the mass276

leakage decreases significantly with refining grid spacing, from about -80% using N2 = 502 to277

about 3% using N2 = 4002 at Ure f t/L= 250. However, even with relatively low increasing rate, the278

accumulated ML still leads to computation crash finally, e.g. this occurs at around Ure f t/L = 400279

in the case with N2 = 2002. The observed dependence of ML on grid spacing and boundary280

orientation is consistent with the theoretical analysis of ML reported in Ref.31 for general LB281

methods.282
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FIG. 3. Time histories of mass leakage at Ra = 107 for aligned and inclined cavity (lines with square

markers). The x markers indicate crashed computation.

(a) Nu (b) Temperature profiles

FIG. 4. Time history of Nu (a) and temperature profile at x/L = 0.5 and Ure f t/L = 250 (b). In (b), result

from Ref.35 (lines with markers) is included for comparison.

To clarify the influence of the observed ML on the solutions, time histories of the averaged283

Nusselt number along the aligned wall in the right side and the temperature profiles at x/L = 0.5284

and Ure f t/L = 250 are plotted in Fig. 4(a) and (b), respectively. As we can see, for all the285

tested grid resolutions, Nu (see Fig. 4(a)) firstly increases with time during the thermal convection286

establishment, but it then decreases gradually after Ure f t/L = 250 to the end of the simulations.287

Similar to the ML displayed in Fig. 3, the decreasing rate of Nu as well as the discrepancy of288

the temperature profiles (see Fig. 4(b)) reduces with increasing N. Although these behaviours are289

usually deemed as a pure grid spacing converging process (e.g. in Ref.35), the problem is actually290

beyond that because of two reasons. First, the monotonic decreasing trend of Nu is non-physical291
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since the simulations are supposed to reach a steady state featuring a constant Nu. Second, due to292

the accumulating mass leakage, the reasonable result obtained using very fine grid (e.g. N = 400)293

can not be maintained with more time steps simulated. Therefore, it can be concluded that, for the294

considered thermal simulation, ML is a critical challenge that refining grids could relieve it. In295

addition, as shown in Fig. 4(b), the grid spacing depended discrepancy of the temperature profiles296

is more obvious in the result reported in Ref.35 using an improved density-based LB method,297

indicating that the ML challenge might be also critical in other LB frameworks.298

B. Effectiveness of the mass correction scheme299

To cure the mass leakage problem observed in the last subsection, we implemented a local300

mass correction (MC) method in the solver based on the theoretical analysis proposed in §III.301

Effectiveness of the MC method is assessed here. First, similar to the ML analysis in §V A, the302

cases with aligned boundaries considering different grid resolutions (50≤ N ≤ 400) are analyzed.303

Second, the heated cavity inclined at different angles from 0◦ to 45◦ is simulated to assess the304

robustness of the mass corrected LB method. Still, the most representative Ra = 107 is considered.305

Before detailed physical analysis, it is pointed out that mass leakage measured by Eq. (15) in306

all the considered simulations is exactly zero, indicating that the theoretical mass leakage analysis307

for Farag’s pressure-based LB method is accurate and reliable.308

Fig. 5(a) and 5(b) display the time history of Nu and the temperature profiles at x/L = 0.5,309

respectively, for the cases with aligned boundaries. As shown in Fig. 5(b), all the results with310

N from 50 to 400 converge well to the reference data from Ref.11, exhibiting substantially im-311

provement compared to those without mass correction shown in Fig. 4(a). Consistently, all the312

temperature profiles shown in Fig. 5(b) achieve excellent agreement with the reference data, which313

is significantly improved from those without mass correction shown in Fig. 4(b). Clearly, the mass314

correction not only improves the reliability of the simulations, but also allows using coarse grid315

resolution to achieve good results thus significantly improve the computational efficiency. Be-316

sides, the observed improvement using mass correction also confirms that the problems observed317

in §V A is mainly caused by mass leakage.318

Fig. 6 shows the temperature contours at Ure f t/L = 250 for inclination angle increasing from319

0◦ (aligned boundaries) to 45◦ with an increment of 15◦. As can be seen, the solutions are almost320

independent of the inclined angles. The most observable discrepancy is near the bottom wall of 45◦321
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(a) Nu (b) Temperature profiles

FIG. 5. Time history of Nu (a) and temperature profile at x/L = 0.5 and Ure f t/L = 250 (b) for Ra = 107.

inclined cavity. Similar conclusion can be also drawn from the corresponding Nu listed in Table322

I. The observed discrepancy is supposed to be associated with the fact observed in Ref.31 that323

boundary nodes along 45◦ inclined boundaries tend to produce the most significant mass leakage,324

which might introduce unfavorable coupling with the heat flux in the considered configuration.325

FIG. 6. Temperature contour of Ra=107 and grid resolution N2 = 4002 at inclined angle 0◦ (solid line), 15◦

(dashed line), 30◦ (dash dotted line) and 45◦ (dash dot dot line)
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TABLE I. Average Nusselt number at different angles of inclination α compared with reference Vierendeels,

Merci, and Dick 11

α 0◦ 15◦ 30◦ 45◦ Ref

Nu 16.24 16.22 16.13 15.40 16.24

Error (%) 0.0 -0.12 -0.67 -5.17 —

C. Performance over 103 ≤ Ra≤ 107
326

The performance of Farag’s pressure-based method using mass correction in heat-dominated327

flow over 103 ≤ Ra≤ 107 is assessed now. The value of Ra is changed by altering L with the other328

parameters (e.g. T1,T2) unchanged. The cavities are inclined at 15◦ to include the influence of non-329

aligned boundaries. Grid convergence is performed for all the considered Ra with good results rep-330

resented by Fig. 4(a) and (b) at Ra = 107. To facilitate consistent comparison with previous stud-331

ies, results for Ra = 103,104,105,106,107 are presented with N2 = 1002,1002,2002,2002,4002,332

respectively.333

Table II display Nu of the considered simulations. As can be seen, the heat flux increases sig-334

nificantly with Ra from Nu = 1.11 at Ra = 103 to Nu = 16.22 at Ra = 107, indicating a physically335

increasing thermal convection. The increasingly dominating thermal convection is corroborated by336

the increasing Mach number shown in Fig. 7 where the maximum Ma increases from 7.5×10−5
337

at Ra = 103 to 2× 10−4 at Ra = 107 (the reference sound speed corresponding to T0 = 600K is338

unchanged). Meanwhile, for the considered 103 ≤ Ra ≤ 107, the present results achieve good339

agreement (relative difference within 1%) with the data reported in Ref.11, and considerably out-340

perform those reported by Feng et al. applying an improved density-based LB method using very341

fine grids (N = 800) in an aligned cavity. In addition, profiles of temperature and velocity along342

different lines are shown in Fig. 8(a)-(c). As can be observed, the above observed increasing trend343

of Nu is consistent with the increasing temperature gradient near the wall shown in Fig. 8(b).344

Meanwhile, the present results agree well with the reference data reported in Ref.11, indicating345

that the heat-dominated flows are well reproduced by the solver.346
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TABLE II. Nu at inclined angle 15◦ in the range of 103 ≤ Ra≤ 107. Data reported by Feng et al. in Ref.35

is included for comparison, and those in Ref.11 is used as the reference.

Ra Present Feng et al.35 Ref.11 Error (%) Present VS Feng et al.35

103 1.11 — 1.11 0.0 vs —

104 2.20 2.28 2.22 0.9 vs 2.70

105 4.45 4.55 4.48 0.67 vs 1.56

106 8.72 8.82 8.69 0.35 vs 1.50

107 16.22 16.26 16.24 -0.12 vs 0.12

FIG. 7. Profiles of Mach number (normalized by speed of sound at T0 = 600K) at x/L = 0.5 with the cavity

inclined at 15◦.

VI. CONCLUSIONS347

In this paper, we extend the recently developed Farag’s pressure-based LB method implemented348

in the commercial software ProLB, which has exhibited outstanding capability for supersonic flow,349

to heat-dominated flow at low Ma with large temperature difference considering both aligned and350

inclined boundaries. As demonstrated in ProLB, Farag’s pressure-based LB method prefers an351

efficient hybrid strategy that solves the energy equation in a conventional FD manner, and directly352

includes the conventionally solved temperature in the zeroth order moment of the distribution353

functions to restore the energy equation. To address the thermal-coupled mass conservation chal-354

lenge, we theoretically quantify the mass leakage (ML) at the boundary nodes within Farag’s LB355

framework, and implemented a local mass correction in the solver based on that.356
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(a) Temperature profiles at x/L = 0.5 (b) Temperature profiles at y/L = 0.5

(c) Velocity profiles

FIG. 8. Profiles of temperature ((a)-(b)) and velocity (c) inclined cavity for different Rayleigh number,

markers represent reference data11.

The canonical natural thermal convection in a square cavity heated by a large temperature357

difference ∆T/Tre f = 1.2 is considered to assess the performance of the mass corrected pressure-358

based LB method with the Rayleigh number ranging from 103 to 107 and the cavity inclined at359

different angles. The numerical results show that the mass leakage is a serious challenge leading360

to simulation crashes. Although the problem could be significantly relieved by applying aligned361

boundaries with very fine grid resolutions, the reliability of simulations is still supposed to be ru-362

ined when more time step is simulated. Fortunately, the proposed theoretical ML identification is363

accurate, based on which the applied local mass correction is able to remove it cleanly. Together364
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with the mass correction, the high-speed featured Farag’s LB method implemented in ProLB per-365

forms well over the considered 103 ≤ Ra≤ 107 for both aligned and inclined boundaries.366

The presented capability extension of Farag’s pressure-based LB method is limited to low Ma367

regime. However, it clearly illustrates the way to apply the method for thermal problems with368

complex geometry involved. Moreover, it also enables the solver to deal with practical problems369

where both low and high Ma thermal physics emerges, e.g. a cooling fan might has low Ma area370

near the fix hub but high Ma area around the blade tips. That probably will be our next research371

topic.372
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Appendix A: The discrete velocity model D3Q19379

The discrete velocities (ci) as well as the corresponding weight factors (ωi) of the applied380

D3Q19 model are detailed in Table. III:381

TABLE III. Discrete velocities and corresponding weights of D3Q19. The sub-index α in ciα refers to the

coordinates x, y, and z.

D3Q19
ciα ωi (0,0,0) 1/3

(±1,0,0) 1/18

(±1,±1,0) 1/36

Noticeably, to reduce the defect of rotation invariant using D3Q19, a set of Hermite basis with382

improved orthogonality is adopted in the recursive regularization of the distribution functions. The383
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improved Hermite basis is formulated as384

H
(3)

i,(αβγ)⊂(x,y,z) =



cyc(H(3)
i,xxy +H(3)

i,yzz)

cyc(H(3)
i,xzz +H(3)

i,xyy)

cyc(H(3)
i,yyz +H(3)

i,xxz)

H(3)
i,xxy−H(3)

i,yzz

H(3)
i,xzz−H(3)

i,xyy

H(3)
i,yyz−H(3)

i,xxz


(A1)385

where (αβγ)⊂ (x,y,z), and Hi,αβγ is the original 3rd order Hermite basis tensor386

H(3)
i,αβγ

= ci,αci,β ci,γ − c2
s [ciδ ]αβγ (A2)387

Appendix B: Governing equations and the hybrid solving process388

By combining Farag’s pressure-based LB method a finite-difference method, the commercial

software ProLB solves the full compressible Navier-Stokes equations, i.e.,

∂ρ

∂ t
+

∂ρuα

∂xα

= 0 (B1a)

∂ρuα

∂ t
+

∂ρuαuβ

∂xβ

= − ∂ p
∂xα

+
∂

∂xβ

[
µ(

∂uα

∂xβ

+
∂uβ

∂xα

− 2
3

∂uγ

∂xγ

δαβ )
]
+Fα (B1b)

∂ s
∂ t

+u
∂ s

∂xα

=
1

ρT

[
µ(

∂uα

∂xβ

+
∂uβ

∂xα

− 2
3

∂uγ

∂xγ

δαβ )
∂uα

∂xβ

+
∂

∂xα

(λ
∂T
∂xα

)
]

(B1c)

389

where Fα is the external force, e.g., the gravity used in this study, and s is the entropy.390

The solving process is illustrated in Fig. 9. Clearly, the LB process in the left-hand side solves391

the mass and momentum equations (the first two in Eq. (B1)), while the FD process in the right-392

hand side solves the energy equation. The two processes are deeply coupled: the LB process relies393

on the thermal variable θ = T/T0 solved by the FD process to include thermal and compressible394

effects, and, in turn, the FD process uses ρ and u solved by the LB process to complete the heat395

convection. The FD process will be detailed in the followed Appendix C.396
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FIG. 9. Sketch of the hybrid strategy adopted in ProLB
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Appendix C: Numerical schemes for the energy equation397

The energy equation in Eq. (B1) is solved using a FD method taking the entropy as the di-398

rect thermal variable. The temporal derivative and convective term in the left-hand side are399

discretized using the first-order explicit Euler scheme and the second-order Monotonic Upwind400

Scheme for Conservation Laws (MUSCL-Hancock)37, respectively. The viscous heat dissipation401

and Fourier heat transfer terms on right-hand side are discretized using second order central dif-402

ference schemes.403

1. Discretization of terms on the left-hand side404

The terms on the left-hand side of Eq. (B1c) are discretized as405

sn+1
i − sn

i
∆t

+
F(sn

i+ 1
2 )
−F(sn

i− 1
2
)

∆x
(C1)406

where n, i and i± 1
2 represent respectively the time step, cell identity and boundary of the ith cell.407

The convective flux F(si+ 1
2 )

and F(sn
i− 1

2
) are computed through the following three steps:408

1. Data reconstruction. The inter-cell values at the left and right sides of the ith cell is firstly

evaluated by extrapolation, i.e.,

si,L = si−
1
2

∆i (C2a)

si,R = si +
1
2

∆i (C2b)

where the ∆i is a high order approximation of the slop at the center of ith cell which is409

calculated by410

∆i =
1
2

[
(1+Φ)(si− si−1)+(1−Φ)(si+1− si)

]
(C3)411

with Φ = 1
3 [

2∆tui
∆x − sign(ui)] proposed by Toro 37 .412

2. Data evolution. The boundary values of the cell is further evolved by a semi-time step ∆t
2 ,

i.e.,

s̄i,L = si,L +
2∆tui

∆x
(si,L− si,R) (C4a)

s̄i,R = si,R +
2∆tui

∆x
(si,L− si,R) (C4b)
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3. Piece-wise construction of convective flux. The convective flux F(si+ 1
2 )

and F(sn
i− 1

2
) are

then evaluated by

F(si+ 1
2 )
=

 uis̄i,R i f ui ≥ 0

uis̄i+1,L i f ui ≤ 0
(C5a)

F(si− 1
2 )
=

 uis̄i−1,R i f ui ≥ 0

uis̄i,L i f ui ≤ 0
(C5b)

2. Discretization of terms on the right-hand side413

The Fourier part ∂

∂xα

(
λ

∂T
∂xα

)
and the viscous heat dissipation (∂uα

∂xβ

+
∂uβ

∂xα
− 2

3
∂uγ

∂xγ
δαβ )

∂uα

∂xβ

are

discretized here. Since λ in the Fourier part varies with T , the term is decomposed into two parts:
∂λ

∂xα

∂T
∂xα

and λ
∂ 2T
∂x2

α

. Apparently, the first-order spatial derivatives of u, λ and T as well as the

second-order spatial derivatives of T are required to be discretized. In ProLB, all of them are

discretized using second-order accurate center difference schemes, i.e.,

∂φ

∂xα

=
φi+1−φi−1

2∆xα

(C6a)

∂T 2

∂x2
α

=
Ti+1−2Ti +Ti−1

∆x2
α

(C6b)

where φ = u, λ and T , and α ∈ [x,y,z].414

Appendix D: A cut-cell immersed boundary treatment415

A cut-cell immersed based recursive regularized boundary treatment is adopted in ProLB to416

reconstruct the LB distribution functions and the temperature. In the method, the macroscopic417

variables (e.g., p,u and T ) are reconstructed through interpolation, based on which ρ = p/(RT )418

and the equilibrium parts of the distribution functions are directly calculated using Eq. (2). Mean-419

while, the off-equilibrium parts are reconstructed from the spatial derivatives of macroscopic vari-420

ables according to the recursive regularization analysis38 with the required spatial derivatives are421

calculated using the finite difference method (centered or not) using values of the previous time422

step. As an introduction of the immersed boundary method, the following is focused on the details423

of the reconstruction of the macroscopic variables.424

The interpolation of macroscopic variables is illustrated in Fig. 10. As shown in Fig. 10,425

two reference points (i.e., Ref1 and Ref2 one and two grid spacing away from the boundary node,426
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respectively) in the fluid domain along the local normal direction of the wall are introduced to assist427

the interpolation. With the variables at the reference points interpolated from the surrounding fluid428

nodes, values at the concerned boundary node are interpolated from the reference points according429

to specific boundary conditions.430

FIG. 10. Sketch of interpolation-based immersed boundary method. The black square and blue circles

represent a boundary node and its neighbor nodes, respectively.
431

432

Firstly, the macroscopic variables at the reference points are computed through an inverse dis-433

tance weighting (IDW) method, i.e.,434

φxre f =
N

∑
i=1

d(xi,xre f )
−p

∑
N
i=1 d(xi,xre f )−p

φxi (D1)435

where φ represents the required macroscopic variables (e.g., ρ,u and T ), d(xi,xre f ) the distance436

of the ith neighbor point to the reference point, and the coefficient P = 2 is preferred here39,40.437

Then, the macroscopic variables at the concerned boundary node is interpolated from those

at the reference points to implement different kinds of boundary condition. In this paper, two

kinds of boundary condition, the Dirichlet and Neumann boundary conditions, are implemented.

For Dirichlet boundary conditions, e.g., the velocity of static walls and T at isothermal walls, the

projection point (see Refw in Fig. 10) of the concerned boundary node at the wall is included in

the interpolation stencil. The interpolation can be formulated as

φBN =
2∆x2

(∆w +∆x)(∆w +2∆x)
φw +

2∆w

∆w +∆x
φ1−

∆w

∆w +2∆x
φ2 (D2a)
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where φBN is the required variables at the boundary node, φw is those at the projection point,

φ1 and φ2 are those at Ref1 and Ref2, respectively, and δw and δx represent the wall distance of

boundary node and the local grid spacing, respectively. For the Neumann boundary condition,

such as ∂ p
∂n = 0 and the adiabatic wall (∂T

∂n
= 0, the second order Lagrangian interpolation is used

to reconstruct the required variables as

φBN =
4(∆x+∆w)φ1− (∆x+2∆w)φ2

2∆w +3∆x
(D3a)
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