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The paper addresses the simulation of heat dominated compressible flows in a closed cavity using a pressure-based lattice Boltzmann (LB) method in which the thermal effects are modelled by applying a pressure-featured zero-order moment of the distribution functions.

A focus is made on the conservation of mass at boundary nodes, which is a challenging issue significantly complicated by the density-decoupled zero-order moment here. The mass leakage at boundary nodes is mathematically quantified, which enables an efficient local mass correction scheme. The performance of this solver is assessed by simulating buoyancy-driven flows in a closed deferentially heated cavity with large temperature differences (non-Boussinesq) at Rayleigh numbers ranging from 10 3 to 10 [START_REF] Quéré | Accurate solutions to the square thermally driven cavity at high Rayleigh number[END_REF] . The simulations show that mass leakage at solid walls in such configurations is a critical issue to obtain reliable solutions, and that it eventually leads to simulations overflow when the cavity is inclined. The proposed mass correction scheme is however shown to be effective to control mass leakage and get accurate solutions. Thus, associated with the proposed mass conservation scheme, the pressure-based LB method becomes reliable to study natural convection dominated flows at large temperature differences in closed geometries with mesh aligned boundaries or not.

I. INTRODUCTION

Heat-dominated fluid dynamics is prevalent in both thermal sciences and engineering applications from low speed flow to high speed flow, such as the rising "thermals" used by soaring birds, various cooling systems for electronic devices, nuclear reactors, chemical processing equipment, cooling system in automotive vehicles and in turbomachinery. Despite that great progress has been made in understanding the relevant physics in different backgrounds, heat-dominated flow at high Raleigh numbers (e.g. > 10 7 ) still remains challenging for both experiments and numerical simulations. Mainly, the challenges can be attributed to the complex physics caused by the potential large temperature gradients [START_REF] Ghiaasiaan | Convective heat and mass transfer[END_REF][START_REF] Cebeci | Physical and computational aspects of convective heat transfer[END_REF] .

As a typical heat-transfer scene, the natural thermal fluid convection driven by buoyancy force due to density and temperature variations has been intensively investigated both experimentally [START_REF] Salat | Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity[END_REF][START_REF] Mergui | Convection naturelle en cavité carrée différentiellement chauffée: investigation expérimentale à Ra= 1, 69× 109[END_REF] and numerically [START_REF] De Vahl | Natural convection of air in a square cavity: a bench mark numerical solution[END_REF][START_REF] Chenoweth | Natural convection in an enclosed vertical air layer with large horizontal temperature differences[END_REF][START_REF] Quéré | Accurate solutions to the square thermally driven cavity at high Rayleigh number[END_REF][START_REF] Massarotti | Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer[END_REF][START_REF] Wan | A new benchmark quality solution for the buoyancydriven cavity by discrete singular convolution[END_REF][START_REF] Vierendeels | Numerical study of natural convective heat transfer with large temperature differences[END_REF][START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] . In contrast to the numerical simulations, the thermal fluid experiments are more reliable, but are also much more expensive and difficult to manipulate fluid parameters and boundary conditions [START_REF] Salat | Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity[END_REF]12 . However, many of the existed numerical schemes proposed to solve heat-dominated flows were mainly limited to solutions with small temperature variations where the Boussinesq approximation is reasonable to apply [START_REF] Massarotti | Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer[END_REF][START_REF] Vierendeels | Numerical study of natural convective heat transfer with large temperature differences[END_REF] . Numerical methods adequate for thermal fluid dynamics with large temperature variations are of high demand, and are under faster developing 13,[START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF] . Especially, different from the traditional CFD methodologies, the relatively new lattice Boltzmann (LB) method using Cartesian grid is promising to provide efficient simulations for heat-dominated flows due to its advantages of simple parallel implementation, full compatibility with complex geometries, and high computational efficiency for unsteady flow [START_REF] Krüger | The lattice Boltzmann method[END_REF] .

To date, the LB method has not only achieved a reputation in the weakly compressible isothermal flow region [START_REF] Krüger | The lattice Boltzmann method[END_REF] , but also been extended to thermal compressible flow. First, under the low Mach number limit (Ma < 0.2), several pressure-based LB algorithms [START_REF] Filippova | Lattice-BGK model for low Mach number combustion[END_REF][START_REF] Filippova | A novel lattice BGK approach for low Mach number combustion[END_REF][START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF][START_REF] Hosseini | Hybrid lattice Boltzmann-finite difference model for low Mach number combustion simulation[END_REF][START_REF] Hosseini | Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows[END_REF] have been proposed with the energy equation either solved by another LB process (the well-known DDF method) [START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF][START_REF] Cao | Variable property-based lattice Boltzmann flux solver for thermal flows in the low Mach number limit[END_REF] or by the conventional finite difference (FD) method (known as the hybrid method) [START_REF] Filippova | A novel lattice BGK approach for low Mach number combustion[END_REF][START_REF] Hosseini | Hybrid lattice Boltzmann-finite difference model for low Mach number combustion simulation[END_REF][START_REF] Hosseini | Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows[END_REF][START_REF] Filippova | Grid refinement for lattice-BGK models[END_REF] . These low Ma pressure-based LB methods have been successfully applied in different thermal flows, such as combustion [START_REF] Hosseini | Hybrid lattice Boltzmann-finite difference model for low Mach number combustion simulation[END_REF][START_REF] Hosseini | Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows[END_REF] , thermal flow with variable fluid properties [START_REF] Cao | Variable property-based lattice Boltzmann flux solver for thermal flows in the low Mach number limit[END_REF] and multi-physical flow [START_REF] Lee | A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame[END_REF] . Second but more importantly, improved LB methods capable of thermal flow from low Ma to high Ma (e.g. Ma = 1) have been recently proposed, including the density-based LB method improved by Feng, Sagaut, and Tao 13 and the pressure-based LB method developed by Farag et al. [START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF][START_REF] Farag | A unified hybrid Lattice-Boltzmann method for compressible flows: -Bridging between pressure-based and density-based methods[END_REF] . Both of these two methods adopted the hybrid strategy solving the energy equation using conventional finite difference schemes to maintain the high computational efficiency. The main difference is that Farag's method includes the temperature in the LB framework by modifying the zeroth order moment of the distribution functions, while Feng's method modifies the second order moment.

Comparatively, Farag's method exhibited superior capability for supersonic flow up to Ma ≈ 4 [START_REF] Farag | A unified hybrid Lattice-Boltzmann method for compressible flows: -Bridging between pressure-based and density-based methods[END_REF] while Feng's method is up to Ma ≈ 1.5. Since these two method remain within the classic LB framework, they are much more simple and efficient than the multi-speed (MS) [START_REF] Alexander | Lattice Boltzmann model for compressible fluids[END_REF][START_REF] Qian | Simulating thermohydrodynamics with lattice BGK models[END_REF][START_REF] Qiu | A hermite-based lattice Boltzmann model with artifi-cial viscosity for compressible viscous flows[END_REF] approach which adopts enlarged discrete velocity set (e.g. D2Q27 and D3Q343) to restore the energy equation directly. The recent commercial solver ProLB adopting Farag's pressure-based LB method has exhibited superior capability for subsonic and supersonic flows, and is promising to model complex thermal fluid dynamics with both low Ma and relatively high Ma involved. With the goal to address with a unique solver in ProLB complex industrial flow configurations with low and high Ma regions and improve the efficiency in terms of developments, support and use, we extend in this work its capability to deal with natural convection dominated flows at low speed and large temperature difference.

Although the above mentioned thermal LB method is theoretically able to model thermal flow, the reported validations were all based on aligned boundaries. Actually, mass conservation (or mass leakage) along non-aligned boundaries is a substantial challenge to extend the LB method to heat-dominated simulations, and this is especially true for the Farag's pressure-based method.

The mass leakage (ML) problem has been noticed and reported since a long time [START_REF] Yin | Mass conservation across moving solid-fluid boundaries in lattice Boltzmann method[END_REF][START_REF] Bao | A mass conserving boundary condition for the lattice Boltzmann equation method[END_REF][START_REF] Yu | Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries[END_REF] . It has been theoretically proved very recently by Xu et al. [START_REF] Xu | A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[END_REF] to be inevitable for general LB methods using boundary treatments of at least second-order accuracy at general boundaries. Moreover, it was pointed out [START_REF] Xu | A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[END_REF] that the ML problem could be more serious for flow featuring significant compressible effect, which is a prominent in heat-dominated flow at high Rayleigh numbers, because fluid compressibility is a direct source of the mass leakage. For the Farag's method, the implementation of mass conservation is supposed to be significantly complicated because the redefinition of the zeroth order moment of the LB distribution functions is decoupled from the fluid density.

Therefore, it is critical to identify the mass leakage and to implement mass correction to apply the Farag's pressure-based LB method to heat-dominated flows simulations.

Based on the above analysis, in this paper, we focus on extending Farag's pressure-based LB method using mass correction to simulate heat-dominated flow with aligned and non-aligned boundaries. The rest of this paper is organized as follows: Firstly fundamentals of Farag's pressure-based LB model are briefed in §II. Then the mass leakage at boundary nodes is theoretically identified in §III. Based on that, the pressure-based LB method using mass correction is used to simulate heat dominated flow with aligned and inclined boundaries at a wide range of Rayleigh numbers in §V. Finally, some critical conclusions are drawn in §VI.

II. FUNDAMENTALS OF FARAG'S PRESSURE-BASED LB METHOD

Farag's pressure-based LB method [START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF] solves the full Navier-Stokes equations with the mass and momentum equations solved within the LB framework and the energy equation computed by using traditional finite difference (FD) schemes. The two processes are thoroughly coupled. The fluid density and velocity resolved in the LB process is directly used to conduct the thermal convective behaviors in the conventional CFD process. In turn the conventionally resolved thermal variable is directly included in the definition of the zeroth order moment of the distribution functions during the LB collision process (see Appendix B). Details of the FD schemes solving the energy equation is provided in Appendix C.

Here, we concentrate on the LB part with an emphasis on the mass conversation issue. For sake of simplicity but without loss of generality, the classical BGK model is used to demonstrated the basic characteristics, i.e.,

f i (t + ∆t, x + e i ∆t) -f i (t, x) = - 1 τ ( f i -f eq i ) + ∆t 2 F i (1) 
where f i is the i th distribution function, t is time, ∆t is the time step, x is the Eulerian coordinate vector of a lattice node, e i is the i th discrete velocity, τ is the relaxation parameter determined as τ = 1/2 + µ/(ρc 2 s ∆t) with c s being the sound speed and µ being the fluid dynamic viscosity, f eq i is the equilibrium part of f i , and F i is the i th external force term according to Guo's model [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice Boltzmann method[END_REF] . The LB equation ( 1) is usually solved by directly decomposing it into a linear stream process (the left-hand side) and a local non-linear collision process (the right-hand side). f i is the distribution function after the stream process, and f col i will be used to denote that after the collision process. 

where the Einstein summation convention is applied, ω i is the i th weight factor, ρ is the fluid density, θ = T /T re f is the normalized temperature, u α is the α th velocity component with α, β , γ being coordinate indices, and [e i δ ] αβ γ = e iα δ β γ + e iβ δ αγ + e iγ δ αβ . Consistently, the first three moments of the distribution functions can be expressed as

∑ f col i = p/c 2 s = ρθ , ∑ f i e i = ∑ f col i e i = ρu, ∑ f i e i e i = ∑ f col i e i e i = ρuu + pI (3)
where ∑ represents summation over the whole discrete velocity set, p is the pressure, and I is the identity matrix. Noticeably, the zeroth order moment of f i is not given above because it is significantly complicated by the implementation of mass conservation and will be demonstrated in the followed paragraphs.

As illustrated in Eq. ( 3), the main difference compared to the classical LB method is that the zeroth order moment is directly related to the pressure instead of the usually used density (i.e., ∑ f eq i = ρ). Due to this modification, on one hand the compressible Navier-Stokes momentum equation is fully restored within the LB conception, on the other hand the summation of f i is no longer directly related the mass conservation, and hence the mass equation cannot directly restored from the stream and collision processes.

Alternatively, the mass conservation equation is enforced in a way combining the LB and the traditional FD conceptions. Similar to the classical LB method, the mass flux can be properly approximated during stream process since it directly depends on the first-order moment, i.e.,

∇(ρu) = -∑ f i (t + ∆t, x) -f col i (t, x) ∆t = -∑ f i (t, x -e i ∆t) -f col i (t, x) ∆t = ∇ ∑ e i f col i (t, x) + O(∆t) (4) 
Accordingly, the mass equation can be discretized as

ρ(t + ∆t, x) -ρ(t, x) ∆t = -∇(ρu) + O(∆t) = ∑ f i (t + ∆t, x) -f col i (t, x) ∆t (5)
It should be noticed that, to this step, the discretization scheme in Eq. ( 5) is still shared by Farag's pressure-based and the classical density-based LB methods. According to the widely applied Chapman-Enskog analysis [START_REF] Chapman | The mathematical theory of non-uniform gases, cambridge univ[END_REF] , this scheme is actually of second order accuracy because the first-order error term in the left-hand side is implicitly resolved to second-order accuracy in the stream process in the right-hand side.

By substituting the zeroth order moment of f col i (see ( 3)) into Eq. ( 5), the density is consistently updated as

ρ(t + ∆t, x) = ρ(t, x) + ∑ f i (t + ∆t, x) -(ρθ )(t, x) (6) 
Clearly, the zeroth order moment of f i is apparently distinguished from that of f col or f eq i by including the time derivative of ρ, which significantly complicated the relationship between the distribution functions and the mass conservation.

From the above description, we can conclude that by incorporating the conventionally solved temperature into the definition of the zeroth order of the LB distribution functions and applying a consistently modified implementation of mass conservation, Farag's pressured-based LB method successfully recovers the mass and compressible momentum equations to second order accuracy.

In this way, the weakly compressible limitation is removed with most of the favorable characteristics of the LB method maintained. However, since the physical meaning of the distribution functions is significantly complicated and cannot be solely expressed by their moments, the boundary treatments directly focusing on reconstructing the unknown distribution functions cannot be used within the pressure-based LB method without significant adjustment. In contrast, the existing immersed boundary methods focusing on reconstructing macroscopic variables (e.g. the interpolation-based IB method implemented in ProLB) can be directly extended in the pressurebased LB method.

III. MASS LEAKAGE QUANTIFICATION

In this section, mass leakage (ML) within Farag's pressure-based LB framework is measured by adopting the bounce-back (BB) conception widely used in the classic density-based LB method.

The main challenge to complete this ML measurement is that the physical definition of the zeroth order moment of the distribution functions varies during the stream and collision processes, and its expression of macroscopic variables could be rather complex for ML analysis (see §II).

Whereas, the mass leakage is conceptually a non-physical mass flux through the boundaries during the convective stream process, which is mainly determined by the first-order moment of the distribution functions, e.g. ρu = ∑ f i e i . Since ρu = ∑ f i e i = ∑ f col i e i is shared throughout both Farag's method and the classic LB method, the mass leakage analysis achieved in the classic LB frame can be definitely extended to its pressure-based counterpart. In the rest of this paper, only static boundaries are considered.

For the classic density-based LB method, the widely accepted definition of mass leakage is the net loss of distribution functions during the stream process at boundary nodes (see Fig. III), i.e.,

E(x) = ∆x ∆t ∑ x+e i ∆t∈S f col i (x) -f col ī (x + e i ∆t) (7) 
where S represents the non-fluid area, ∆x is the grid spacing, and ∆t is the time step, and e i is the i th discrete velocity with its components taking values among 0 and ±∆x/∆t. Actually, E in Eq. ( 7) is an approximation of the local mass flux cross the boundary, i.e.,

E(x) = ∆x ∆t ∑ x+e i ∆t∈S f col i (x) -f col ī (x + e i ∆t) ≈ ∑ f i,w Sign(e i • n) ≈ ∑ f i,w e i • n = ρu w • n = 0 (8)
where the sub-index w represents the involved wall boundary, e ī = -e i , and n is the local normal vector at the boundary. The relationship ( 8) is of first-order accuracy for aligned boundaries, otherwise is of zero-order accuracy [START_REF] Xu | A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[END_REF] . Despite the perturbations of the approximation to the conventional mass flux, E has been demonstrated as an effective and accurate measurement of the mass leakage within the classic LB framework. For example, the well-known BB scheme, directly assigning the distribution functions streaming towards non-fluid areas to those associated with the reversed velocity directions yielding E = 0 at every node, is the only known boundary treatment satisfying the mass conversation well. In addition, Eq. ( 8) clearly demonstrates that the reasonability of E in Eq. ( 7) stems from the first-order moment definition of f i as mentioned above.

However, Eq. ( 7) cannot be directly applied within Farag's pressure-based LB method in a clean way (e.g. the classic BB scheme) due to the complicated relationship between f i and ρ. To avoid this complexity, it is appealing to express the ML definition in Eq. ( 7) from a macroscopic viewpoint before going to the pressure-based framework. This can be achieved by including the distribution functions streaming from the neighbouring fluid nodes and boundary nodes (see Fig.

III) into Eq. ( 7), i.e., where F represents the fluid domain, ρ BB is the density applying the BB strategy satisfying E = 0 at every boundary node, and ρ is the density reconstructed by specific boundary treatments.

E(x) = ∆x ∆t ∑ x+e i ∆t∈S f col i (x) + ∑ x+e i ∆t∈F f col ī (x + e i ∆t) - ∆x ∆t ∑ x+e i ∆t∈S f col ī (x + e i ∆t) + ∑ x+e i ∆t∈F f col ī (x + e i ∆t) = ∆x ∆t ρ BB (x) -ρ(x) (9) 
Clearly, Eq. ( 9) is now independent of the zero-moment definition of f i , and thus can be used to measure the mass leakage for both the LB methods. The remained problem is to construct ρ BB properly within Farag's pressure-based LB framework.

Considering that the distribution functions in Eq. ( 9) are actually the post-stream distribution functions at x, the required ρ BB can be determined by the mass conservation equation ( 6) as

ρ BB (t + ∆t, x) = ρ(t, x) + ∑ x+e i ∆t∈S f col i (t, x) + ∑ x+e i ∆t∈F f col ī (t, x + e i ∆t) -ρ(t, x)θ (t, x) (10) 
Similarly, the other distribution functions in Eq. ( 9) is implicitly included in ρ(t + ∆t, x).

Therefore, by substituting Eq. ( 10) into Eq. ( 9), the mass leakage within Farag's pressure-based LB framework can be formulated as

E(t + ∆t, x) = ∆x ∆t ρ(t, x) + ∑ x+e i ∆t∈S f col i (t, x) + ∑ x+e i ∆t∈F f col ī (t, x + e i ∆t) -ρ(t, x)θ (t, x) -ρ(t + ∆t, x) (11) 
Consequently, the local density correction can be expressed as

∆ρ(t + ∆t, x) = ∆t ∆x E(t + ∆t, x) =ρ(t, x) + ∑ x+e i ∆t∈S f col i (t, x) + ∑ x+e i ∆t∈F f col ī (t, x + e i ∆t) -ρ(t, x)θ (t, x)] -ρ(t + ∆tx) (12) 
Similar to the local mass correction methods used by Bao, Yuan, and Schaefer [START_REF] Bao | A mass conserving boundary condition for the lattice Boltzmann equation method[END_REF] , in the rest of this paper, ∆ρ in Eq. ( 12) will be directly used to correct the density at boundary nodes, i.e., ρ(x) = ρ BB .

IV. PHYSICAL CONFIGURATION AND NUMERICAL SETUP

The canonical natural convection flow in a heated square cavity is considered in this paper to assess Farag's pressure-based LB method using mass correction in simulating heat-dominated flow. The method based on the D3Q19 model (see Appendix A) is implemented in the commercial solver ProLB with the energy equation conventionally solved (see Appendix C). The recursively regularized technique [START_REF] Coreixas | Recursive regularization step for high-order lattice Boltzmann methods[END_REF][START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF] is adopted to facilitate stable solutions. A cut-cell immersed boundary (IB) method is used to implement the boundary conditions [START_REF] Feng | Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows[END_REF] for both the LB process and the FD procedure (see Appendix D). In this IB method, the macroscopic variables (e.g. the density, velocity and temperature) at the boundary nodes are interpolated from their surrounding fluid nodes and nearest boundary points so that the equilibrium distribution functions can be reconstructed.

Meanwhile, the non-equilibrium distributions are reconstructed from the derivatives of the macroscopic variables generated during the macroscopic interpolations. For the simulations conducted in this paper, uniform grid strategy is applied over the whole fluid domain (see Fig. 2).

The physical configuration of the heated square cavity is shown in Fig. 2. The air modeled as a perfect gas satisfying P = ρRT (R is the gas constant) is considered in the fluid domain. with C p being the specific heat capacity of air and Pr = 0.71. For the wall boundaries, as shown in Fig. 2, isothermal conditions are assigned to the left and right walls with the temperature fixed at T 1 and T 2 , respectively, while the top and bottom walls are set to be adiabatic (i.e., ∂ T /∂ n = 0). Meanwhile, ∂ p/n = 0 is applied to all the boundaries, and an external gravity is imposed on the fluid. Consequently, the flow is resulted from the interaction among the implied gravity, the buoyancy force caused by thermal effect, and the fluid viscosity.

Accordingly, the Rayleigh number, the ratio between the buoyancy force and viscous force, is the main characteristic parameter, i.e.,

Ra = gρ 2 0 ∆T L 3 Pr T 0 µ 2 0 ( 13 
)
where g is the gravity acceleration, ρ 0 , T 0 = (T 1 + T 2 )/2 and µ 0 is the reference density, mean temperature and the fluid dynamic viscosity, respectively, ∆T = T 2 -T 1 , Pr is the Prandt number, and L is the length of the cavity serving as a free parameter to change the Rayleigh number.

Besides, the normalized temperature gap (i.e., ε = T 1 -T 2 T 1 +T 2 ), indicating the variation amplitude of the temperature, is another important characteristic parameter for the heat-dominated flow.

In the concerned numerical assessment, heat-dominated flow with T 1 = 240K, T 2 = 960K and thus a large ε = 0.6 (the Boussinesq assumption requires ε < 0.1) is simulated over a wide range of Ra, i.e., 10 3 ≤ Ra ≤ 10 7 . Moreover, cavities inclined at different angles from 0 • to 45 • (see Fig. To facilitate quantitative analysis in the rest of this paper, some critical physical measurements are introduced here. Firstly, following Vierendeels, Merci, and Dick 11 , the Nusselt number Nu measuring heat flux across the vertical walls as well as its averaged value Nu is defined as:

Nu(y) = L λ 0 ∆T λ ∂ T ∂ x | wall Nu = 1 L y=L y=0 Nu(y)dy (14) 
Secondly, mass leakage in the cavity simulations is measured by the overall mass loss normalized as

ML = ∑ V ρ n -∑ V ρ 0 ∑ V ρ 0 ( 15 
)
where V represents the whole fluid domain. In addition, U re f = Ra 0.5 µ(T 0 )

ρ 0 L
is used as the reference velocity [START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] in the rest of this paper.

V. RESULTS AND DISCUSSION

The assessment of Farag's pressure-based LB method using mass correction in heat-dominated flow over 10 3 ≤ Ra ≤ 10 7 is conducted using the ProLB software in this section. Firstly, the mass leakage as well as the caused problems are analyzed in §V A. Then, performance of the mass correction equipped method for non-aligned boundaries is assessed in §V B. Finally, performance of the method over the considered Rayleigh number range is assessed in §V C.

A. Mass leakage quantification and its effect on thermal simulations

The mass leakage in thermal simulations using Farag's pressure-based LB method as well as its influence on the solutions (e.g. the heat flux estimation) is investigated here. Ra = 10 7 is used in the simulations as it is supposed to be associated with the most complex thermal physics for the considered range of Rayleigh numbers, 10 3 ≤ Ra ≤ 10 7 . Without loss of generality, the cavity inclined at 15 • is considered to study the effect of non-aligned boundaries. In addition, different grid sizes (from N 2 = 50 2 to 400 2 ) are tested to clarify its effect on the ML problems.

Fig. 3 shows the history of the overall ML for both aligned and inclined cavity using different grid resolutions. As can be observed, the mass leakage accumulates with time in all the cases.

For the simulations with non-aligned boundaries, the mass leakage is so significant that all the simulations crash in the early stage. In contrast, for the cases with aligned boundaries, the mass leakage decreases significantly with refining grid spacing, from about -80% using N 2 = 50 2 to about 3% using N 2 = 400 2 at U re f t/L = 250. However, even with relatively low increasing rate, the accumulated ML still leads to computation crash finally, e.g. this occurs at around U re f t/L = 400 in the case with N 2 = 200 2 . The observed dependence of ML on grid spacing and boundary orientation is consistent with the theoretical analysis of ML reported in Ref. [START_REF] Xu | A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[END_REF] for general LB methods. Similar to the ML displayed in Fig. 3, the decreasing rate of Nu as well as the discrepancy of the temperature profiles (see Fig. 4(b)) reduces with increasing N. Although these behaviours are usually deemed as a pure grid spacing converging process (e.g. in Ref. [START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF] ), the problem is actually beyond that because of two reasons. First, the monotonic decreasing trend of Nu is non-physical since the simulations are supposed to reach a steady state featuring a constant Nu. Second, due to the accumulating mass leakage, the reasonable result obtained using very fine grid (e.g. N = 400)

can not be maintained with more time steps simulated. Therefore, it can be concluded that, for the considered thermal simulation, ML is a critical challenge that refining grids could relieve it. In addition, as shown in Fig. 4(b), the grid spacing depended discrepancy of the temperature profiles is more obvious in the result reported in Ref. [START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF] using an improved density-based LB method, indicating that the ML challenge might be also critical in other LB frameworks.

B. Effectiveness of the mass correction scheme

To cure the mass leakage problem observed in the last subsection, we implemented a local mass correction (MC) method in the solver based on the theoretical analysis proposed in §III.

Effectiveness of the MC method is assessed here. First, similar to the ML analysis in §V A, the cases with aligned boundaries considering different grid resolutions (50 ≤ N ≤ 400) are analyzed.

Second, the heated cavity inclined at different angles from 0 • to 45 • is simulated to assess the robustness of the mass corrected LB method. Still, the most representative Ra = 10 7 is considered.

Before detailed physical analysis, it is pointed out that mass leakage measured by Eq. ( 15) in all the considered simulations is exactly zero, indicating that the theoretical mass leakage analysis for Farag's pressure-based LB method is accurate and reliable. N from 50 to 400 converge well to the reference data from Ref. [START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] , exhibiting substantially improvement compared to those without mass correction shown in Fig. 4(a). Consistently, all the temperature profiles shown in Fig. 5(b) achieve excellent agreement with the reference data, which is significantly improved from those without mass correction shown in Fig. 4(b). Clearly, the mass correction not only improves the reliability of the simulations, but also allows using coarse grid resolution to achieve good results thus significantly improve the computational efficiency. Besides, the observed improvement using mass correction also confirms that the problems observed in §V A is mainly caused by mass leakage. inclined cavity. Similar conclusion can be also drawn from the corresponding Nu listed in Table I. The observed discrepancy is supposed to be associated with the fact observed in Ref. [START_REF] Xu | A theoretical analysis of mass leakage at boundaries within the lattice Boltzmann method[END_REF] that boundary nodes along 45 • inclined boundaries tend to produce the most significant mass leakage, which might introduce unfavorable coupling with the heat flux in the considered configuration. Error (%) 0.0 -0.12 -0.67 -5.17 Meanwhile, the present results agree well with the reference data reported in Ref. [START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] , indicating that the heat-dominated flows are well reproduced by the solver. The canonical natural thermal convection in a square cavity heated by a large temperature difference ∆T /T re f = 1.2 is considered to assess the performance of the mass corrected pressurebased LB method with the Rayleigh number ranging from 10 3 to 10 7 and the cavity inclined at different angles. The numerical results show that the mass leakage is a serious challenge leading to simulation crashes. Although the problem could be significantly relieved by applying aligned boundaries with very fine grid resolutions, the reliability of simulations is still supposed to be ruined when more time step is simulated. Fortunately, the proposed theoretical ML identification is accurate, based on which the applied local mass correction is able to remove it cleanly. Together with the mass correction, the high-speed featured Farag's LB method implemented in ProLB performs well over the considered 10 3 ≤ Ra ≤ 10 7 for both aligned and inclined boundaries.

The presented capability extension of Farag's pressure-based LB method is limited to low Ma regime. However, it clearly illustrates the way to apply the method for thermal problems with complex geometry involved. Moreover, it also enables the solver to deal with practical problems where both low and high Ma thermal physics emerges, e.g. a cooling fan might has low Ma area near the fix hub but high Ma area around the blade tips. That probably will be our next research topic.

∂ ρ ∂t + ∂ ρu α ∂ x α = 0 (B1a) ∂ ρu α ∂t + ∂ ρu α u β ∂ x β = - ∂ p ∂ x α + ∂ ∂ x β µ( ∂ u α ∂ x β + ∂ u β ∂ x α - 2 3 ∂ u γ ∂ x γ δ αβ ) + F α (B1b) ∂ s ∂t + u ∂ s ∂ x α = 1 ρT µ( ∂ u α ∂ x β + ∂ u β ∂ x α - 2 3 ∂ u γ ∂ x γ δ αβ ) ∂ u α ∂ x β + ∂ ∂ x α (λ ∂ T ∂ x α ) (B1c)
where F α is the external force, e.g., the gravity used in this study, and s is the entropy.

The solving process is illustrated in Fig. 9. Clearly, the LB process in the left-hand side solves the mass and momentum equations (the first two in Eq. (B1)), while the FD process in the righthand side solves the energy equation. The two processes are deeply coupled: the LB process relies on the thermal variable θ = T /T 0 solved by the FD process to include thermal and compressible effects, and, in turn, the FD process uses ρ and u solved by the LB process to complete the heat convection. The FD process will be detailed in the followed Appendix C. ) are then evaluated by

F(s i+ 1 2 ) =    u i si,R i f u i ≥ 0 u i si+1,L i f u i ≤ 0 (C5a) F(s i-1 2 ) =    u i si-1,R i f u i ≥ 0 u i si,L i f u i ≤ 0 (C5b)

Discretization of terms on the right-hand side

The Fourier part ∂ ∂ x α λ ∂ T ∂ x α and the viscous heat dissipation

( ∂ u α ∂ x β + ∂ u β ∂ x α -2 3 ∂ u γ ∂ x γ δ αβ ) ∂ u α ∂ x β
are discretized here. Since λ in the Fourier part varies with T , the term is decomposed into two parts:

∂ λ ∂ x α ∂ T ∂ x α and λ ∂ 2 T ∂ x 2 α
. Apparently, the first-order spatial derivatives of u, λ and T as well as the second-order spatial derivatives of T are required to be discretized. In ProLB, all of them are discretized using second-order accurate center difference schemes, i.e.,

∂ φ ∂ x α = φ i+1 -φ i-1 2∆x α (C6a) ∂ T 2 ∂ x 2 α = T i+1 -2T i + T i-1 ∆x 2 α (C6b)
where φ = u, λ and T , and α ∈ [x, y, z].

Appendix D: A cut-cell immersed boundary treatment

A cut-cell immersed based recursive regularized boundary treatment is adopted in ProLB to reconstruct the LB distribution functions and the temperature. In the method, the macroscopic variables (e.g., p, u and T ) are reconstructed through interpolation, based on which ρ = p/(RT )

and the equilibrium parts of the distribution functions are directly calculated using Eq. ( 2). Meanwhile, the off-equilibrium parts are reconstructed from the spatial derivatives of macroscopic variables according to the recursive regularization analysis [START_REF] Farag | Consistency study of Lattice-Boltzmann schemes macroscopic limit[END_REF] with the required spatial derivatives are calculated using the finite difference method (centered or not) using values of the previous time step. As an introduction of the immersed boundary method, the following is focused on the details of the reconstruction of the macroscopic variables.

The interpolation of macroscopic variables is illustrated in Fig. where φ represents the required macroscopic variables (e.g., ρ, u and T ), d(x i , x re f ) the distance of the i th neighbor point to the reference point, and the coefficient P = 2 is preferred here [START_REF] Gao | An improved hybrid Cartesian/immersed boundary method for fluid-solid flows[END_REF][START_REF] Franke | Scattered data interpolation: tests of some methods[END_REF] .

Then, the macroscopic variables at the concerned boundary node is interpolated from those at the reference points to implement different kinds of boundary condition. In this paper, two kinds of boundary condition, the Dirichlet and Neumann boundary conditions, are implemented.

For Dirichlet boundary conditions, e.g., the velocity of static walls and T at isothermal walls, the projection point (see Ref w in Fig. 10) of the concerned boundary node at the wall is included in the interpolation stencil. The interpolation can be formulated as 

φ BN = 2∆x 2 (∆ w + ∆x)(∆ w + 2∆ x ) φ w + 2∆ w ∆ w + ∆x φ 1 - ∆ w ∆ w + 2∆x φ 2 (D2a)

2 FIG. 1 .

 21 FIG. 1. Sketches of the streaming process at boundary nodes considering a D2Q9 lattice. Nodes in the solid area, e.g. G 1 , are not necessary.

Sutherland's law

  is utilized to compute the dynamic viscosity µ(T ) = µ * * ( T T * ) 3/2 * T * +S T +S with T * = 273K, S = 110.5K, and µ * = 1.68 * 10 -5kgm -1 s -1 . The thermal conductivity is calculated by λ (T ) = µ(T )C p Pr

2

  (b)) are included to verify the capability for non-aligned boundaries.

FIG. 2 .

 2 FIG. 2. Aligned (a) and inclined (b) heated square cavities with uniform Cartesian grid ∆x/L = 0.02.

FIG. 3 .

 3 FIG. 3. Time histories of mass leakage at Ra = 10 7 for aligned and inclined cavity (lines with square markers). The x markers indicate crashed computation.

FIG. 4 .

 4 FIG. 4. Time history of Nu (a) and temperature profile at x/L = 0.5 and U re f t/L = 250 (b). In (b), result from Ref.[START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF] (lines with markers) is included for comparison.

Fig. 5 (

 5 Fig. 5(a) and 5(b) display the time history of Nu and the temperature profiles at x/L = 0.5, respectively, for the cases with aligned boundaries. As shown in Fig. 5(b), all the results with

Fig. 6

 6 Fig.6shows the temperature contours at U re f t/L = 250 for inclination angle increasing from 0 • (aligned boundaries) to 45 • with an increment of 15 • . As can be seen, the solutions are almost independent of the inclined angles. The most observable discrepancy is near the bottom wall of 45 •

FIG. 5 .

 5 FIG. 5. Time history of Nu (a) and temperature profile at x/L = 0.5 and U re f t/L = 250 (b) for Ra = 10 7 .

FIG. 6 .

 6 FIG. 6. Temperature contour of Ra=10 7 and grid resolution N 2 = 400 2 at inclined angle 0 • (solid line), 15 • (dashed line), 30 • (dash dotted line) and 45 • (dash dot dot line)

-C. Performance over 10 3 ≤ 5 at

 35 Ra ≤ 10 7The performance of Farag's pressure-based method using mass correction in heat-dominated flow over 10 3 ≤ Ra ≤ 10 7 is assessed now. The value of Ra is changed by altering L with the other parameters (e.g. T 1 , T 2 ) unchanged. The cavities are inclined at 15 • to include the influence of nonaligned boundaries. Grid convergence is performed for all the considered Ra with good results represented by Fig.4(a) and (b) at Ra = 10 7 . To facilitate consistent comparison with previous studies, results for Ra = 10 3 , 10 4 , 10 5 , 10 6 , 10 7 are presented with N 2 = 100 2 , 100 2 , 200 2 , 200 2 , 400 2 , respectively. Table II display Nu of the considered simulations. As can be seen, the heat flux increases significantly with Ra from Nu = 1.11 at Ra = 10 3 to Nu = 16.22 at Ra = 10 7 , indicating a physically increasing thermal convection. The increasingly dominating thermal convection is corroborated by the increasing Mach number shown in Fig.7where the maximum Ma increases from 7.5 × 10 -Ra = 10 3 to 2 × 10 -4 at Ra = 10 7 (the reference sound speed corresponding to T 0 = 600K is unchanged). Meanwhile, for the considered 10 3 ≤ Ra ≤ 10 7 , the present results achieve good agreement (relative difference within 1%) with the data reported in Ref.[START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] , and considerably outperform those reported by Feng et al. applying an improved density-based LB method using very fine grids (N = 800) in an aligned cavity. In addition, profiles of temperature and velocity along different lines are shown in Fig.8(a)-(c). As can be observed, the above observed increasing trend of Nu is consistent with the increasing temperature gradient near the wall shown in Fig.8(b).

FIG. 7 .

 7 FIG. 7. Profiles of Mach number (normalized by speed of sound at T 0 = 600K) at x/L = 0.5 with the cavity inclined at 15 • .

  FIG. 8. Profiles of temperature ((a)-(b)) and velocity (c) inclined cavity for different Rayleigh number, markers represent reference data 11 .

FIG. 9 .

 9 FIG. 9. Sketch of the hybrid strategy adopted in ProLB

  FIG. 10. Sketch of interpolation-based immersed boundary method. The black square and blue circles represent a boundary node and its neighbor nodes, respectively.

φ 1 and φ 2

 2 are those at Ref 1 and Ref 2 , respectively, and δ w and δ x represent the wall distance of boundary node and the local grid spacing, respectively. For the Neumann boundary condition, such as ∂ p ∂ n = 0 and the adiabatic wall ( ∂ T ∂ n = 0, the second order Lagrangian interpolation is used to reconstruct the required variables as φ BN = 4(∆x + ∆ w )φ 1 -(∆x + 2∆ w )φ 2 2∆ w + 3∆x (D3a)

TABLE I .

 I Average Nusselt number at different angles of inclination α compared with reference Vierendeels,

	Merci, and Dick 11					
	α	0 •	15 •	30 •	45 •	Ref
	Nu	16.24	16.22	16.13	15.40	16.24

TABLE II .

 II Nu at inclined angle 15 • in the range of 10 3 ≤ Ra ≤ 10 7 . Data reported by Feng et al. in Ref.[START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF] is included for comparison, and those in Ref.[START_REF] Vierendeels | Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences[END_REF] is used as the reference.

	Ra	Present	Feng et al. 35	Ref. 11	Error (%) Present VS Feng et al. 35
	10 3	1.11	-	1.11	0.0 vs -
	10 4	2.20	2.28	2.22	0.9 vs 2.70
	10 5	4.45	4.55	4.48	0.67 vs 1.56
	10 6	8.72	8.82	8.69	0.35 vs 1.50
	10 7	16.22	16.26	16.24	-0.12 vs 0.12

C. Cintolesi, A. Petronio, and V. Armenio, "Large eddy simulation of turbulent buoyant flow in a confined cavity with conjugate heat transfer," Physics of Fluids 27, 095109 (2015).
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Appendix A: The discrete velocity model D3Q19

The discrete velocities (c i ) as well as the corresponding weight factors (ω i ) of the applied D3Q19 model are detailed in Table . III: 

i,yyz + H

i,xxz )

where (αβ γ) ⊂ (x, y, z), and H i,αβ γ is the original 3rd order Hermite basis tensor

Appendix B: Governing equations and the hybrid solving process By combining Farag's pressure-based LB method a finite-difference method, the commercial software ProLB solves the full compressible Navier-Stokes equations, i.e.,

Appendix C: Numerical schemes for the energy equation

The energy equation in Eq. (B1) is solved using a FD method taking the entropy as the direct thermal variable. The temporal derivative and convective term in the left-hand side are discretized using the first-order explicit Euler scheme and the second-order Monotonic Upwind Scheme for Conservation Laws (MUSCL-Hancock) [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF] , respectively. The viscous heat dissipation and Fourier heat transfer terms on right-hand side are discretized using second order central difference schemes.

Discretization of terms on the left-hand side

The terms on the left-hand side of Eq. ( B1c) are discretized as

where n, i and i ± 1 2 represent respectively the time step, cell identity and boundary of the i th cell.

The convective flux F(s i+ 1 2 ) and F(s n i-1

2

) are computed through the following three steps:

1. Data reconstruction. The inter-cell values at the left and right sides of the i th cell is firstly evaluated by extrapolation, i.e.,

where the ∆ i is a high order approximation of the slop at the center of i th cell which is calculated by