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Abstract

Miridae is the largest Heteroptera family, with a tremendous worldwide economic impact, both as pests and natural enemies.
Unlike most Hemiptera, herbivorous and omnivorous mirid bugs are lacerate/macerate and flush feeders, not phloem feeders.
Plant responses to damage by arthropods of this feeding guild therefore occur via jasmonic acid or ethylene signaling pathways
rather than the salicylic acid pathway. Moreover, unlike most other Heteroptera that lay eggs on the plant surface, mirids insert
their eggs in plant tissues, resulting in oviposition injury. Similarly, regarding phytopathogenic fungi and oomycetes, a distinction
should be made between biotrophic fungi (triggering the salicylic acid pathway plant response), and necrotrophic and/or
hemibiotrophic fungi or oomycetes (triggering jasmonic acid or ethylene pathway plant responses). In that respect, phytopath-
ogenic fungi or oomycetes (PFO) differ from phytopathogenic viruses and bacteria, the former being all biotrophic while the
latter are theoretically hemibiotrophic. Here, for the first time, we review tripartite interactions between mirids, PFO, and crop
plants. The major deliverables are as follows: Five major interaction frameworks are identified: (i) crop plant infection by PFO
mechanically facilitated by prior mirid infestation; (ii) crop plant infection by PFO hampered by prior mirid infestation via crop
plant signaling; (iii) crop plant infestation by mirids facilitated by prior PFO infection via crop plant signaling; (iv) crop plant
infestation by mirids hampered by prior PFO infection via crop plant signaling; (v) crop plant infestation by mirids and/or
infection by PFO hampered by prior mirid infestation and/or PFO infection via crop plant resource quality alteration. PFO and
mirids may also occur concomitantly, favored by the same conditions, i.e., climatic or linked to endogeneous factors (e.g., redox
status) in crop plant. Instances from each framework are described, and highlighted interactions are examined in view of
managing mirid—PFO complexes on crop plants.

Keywords Biotrophic - Grain mold - Herbivorous - Heteroptera - Mango - Miridae - Necrotrophic - Omnivorous - Powdery
mildew - Sorghum
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1 Introduction

Plant pathogens and arthropod pests individually or cumula-
tively have an adverse impact on crop plant health, generally
leading to crop damage and loss, and sometimes plant mortal-
ity (Oerke 2006). Plant pathogens (Savary et al. 2012), partic-
ularly phytopathogenic fungi and oomycetes (Meng et al.
2009), cause many highly destructive plant diseases, often
with severe economic consequences for farmers.

For instance, in the European Union alone, late blight
caused by the oomycete Phytophthora infestans (responsible
for the disastrous Irish famine in the mid-nineteenth century;
Wheeler Jr 1981) still causes annual losses (control and dam-
age costs) estimated at more than €1.0 billion (Haverkort et al.
2008). Otherwise, insect pests were estimated to cause an
average annual loss of 7.7% in crop production in Brazil
alone, corresponding to a total annual economic loss of ap-
proximately US$17.7 billion (Oliveira et al. 2014). In China,
the plant bug Apolygus lucorum alone is held responsible for
cotton yield losses of up to 20-30% every year (Zhang et al.
2017).

Stout et al. (2006) assessed plant-mediated interactions be-
tween pathogenic microorganisms and herbivorous
arthropods. Hatcher (1995) and Rostas et al. (2003) reviewed
three-way interactions between plant pathogenic (or phyto-
pathogenic) fungi or oomycetes (hereafter referred to as
PFO), herbivorous insects (of all types), and their host plants.
In addition, Mitchell (2004) investigated the vectorial status of
Heteroptera regarding plant pathogens of all types, and Hauser
etal. (2013) conducted a meta-analysis on the combined (syn-
ergistic or antagonistic) effects of herbivorous arthropods and
phytopathogens on plant performance.

However, specific three-way (or tripartite) interactions be-
tween PFO and plant bugs belonging to the Miridae family
(the largest family in the Heteroptera sub-order), hereafter
referred to as mirid bugs (MB), have to our knowledge never
been reviewed. Here, we specifically review such interactions
for this Heteroptera group, which is relevant for two major
reasons.

Firstly, the Miridae family is of tremendous econom-
ic importance since it encompasses both major crop
pests (the incidence of some increasing as emerging
pests on crops genetically modified with Bacillus
thuringiensis (Bt) genes; e.g., Lu et al. 2010; Sequeira
2019) and major natural enemies of pests (e.g., Pérez-
Hedo and Urbaneja 2015), and to a lesser extent of
weeds/invasive plants (e.g., Ray and Hill 2016).
Regarding the former (MB as crop pests), all possible
ways to manage them without synthetic pesticides (due
to their adverse environmental and sanitary impacts)
have to be sought, particularly by taking advantage of
biological interactions within agroecosystems. Similarly,
regarding the latter two (MB as natural enemies), all
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possible ways to increase their efficiency should be in-
vestigated (including reduction/suppression of synthetic
pesticide use).

Secondly, although true bugs, particularly MB, are gener-
ally perceived as ineffective in disseminating plant pathogens,
particularly PFO (Wheeler Jr 2001), their interactions with the
latter deserves further attention and investigation because MB
differ from other insect groups in their relation to plant path-
ogens, particularly due to:

» the feeding styles of herbivorous and omnivorous MB
(Fig. 1a);

» the extent of omnivory (zoophytophagy) in this group;

+ their oviposition behavior, with egg insertion in plant tis-
sues (Fig. 1b).

Indeed, among Heteroptera, there is a clearcut difference in
feeding styles between herbivorous/omnivorous
Cimicomorpha (Miridae, Tingidae, and Anthocoridae) on the
one hand, and Pentatomorpha (e.g., Coreidae, Geocoridae,
Lygaeidae, Pentatomidae, and Pyrrhocoridae) on the other
(Gopalan and Subramaniam 1978; Hori 1974; Miles 1978;
Wheeler Jr 2001). Contrary to the generally accepted view,
herbivorous and omnivorous mirid bugs are not phloem

Fig. 1 a Adult Moissonia importunitas mirid bug on a rattlebox
(Crotalaria spectabilis) leaf in Réunion. Yellow/light green stains are
symptoms of feeding damage. Both of these symptoms and black feces
are evidence of “lacerate/macerate and flush” mesophyll feeding (O F. Le
Bellec — CIRAD). b Egg-laying punctures of Eurystylus oldi and
Creontiades pallidus mirid bugs on a developing sorghum kernel. Egg
tips (opercula) protrude from the kernel surface. These punctures may
serve as entry points for grain mold phytopathogenic fungi (© A.
Ratnadass — CIRAD)
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feeders, unlike most phytophagous Heteroptera, and more gen-
erally Hemiptera, but rather either lacerate and flush (L&F) or
macerate and flush (M&F) feeders (Cobben 1978; Hori 2000;
Sharma et al. 2014; Wheeler Jr 2001). Plant responses to their
damage are therefore generally via jasmonic acid (JA) or eth-
ylene (ET) signaling pathways rather than via the salicylic acid
(SA) pathway (Al-Naemi and Hatcher 2013; Karban and Chen
2007; Koornneef and Pieterse 2008; Pappas et al. 2015; Pappas
et al. 2016; Wielgoss et al. 2012). However, in their review of
the effects of plant fungal infection on herbivorous insects,
according to both insect and pathogen lifestyles, Fernandez-
Conradi et al. (2018) overlooked the difference between phlo-
em feeders and L&F and M&F feeders.

Similarly, regarding PFO, a distinction should be made
between biotrophic fungi (which trigger the SA pathway plant
response) and necrotrophic and/or hemibiotrophic fungi/
oomycetes (which trigger JA/ET pathway plant responses)
(De Vos et al. 2005; Heidel and Baldwin 2004; Ponzio et al.
2013; Thaler et al. 2012; Walling 2000). In that respect, PFO
differ from phytopathogenic viruses and bacteria, the former
being all biotrophic since they need living tissue for their
multiplication (Pallas and Garcia 2011), while the latter
should all be considered as hemibiotrophic (Kraepiel and
Barny 2016).

One typical tripartite association that is never found with
MB is the development of sooty mold, a fungus-pest
association/interaction common in other Hemiptera groups
since L&F/M&F feeders do not exploit phloem sap, resulting
in the absence of honeydew production.

Otherwise, MB, along with most other Cimicomorpha and
unlike other Heteroptera, cause oviposition injury resulting
from egg insertion, because the females have a robust ovipos-
itor which they use to drill into the host plant in order to release
the egg inside the vegetative tissues (Romani et al. 2005), while
Pentatomorpha lay eggs on the plant surface (Wheeler Jr 2001).
Furthermore, oviposition is preceded by rostrum probing of the
substrate, a process during which plant bug stylets are inserted
in plant tissues (Constant et al. 1996; Ferran et al. 1996;
Gopalan and Basheer 1966; Wheeler Jr 2001).

Our review does not encompass entomopathogenic fungi,
non-pathogenic endophytic fungi, mycorrhizae, nor specifi-
cally mycetophagous MB (for these aspects, refer to Vega
and Blackwell (2005)). Note however that L&F/M&F feeders
are more likely, just like chewing herbivorous arthropods, to
indiscriminately consume plant and fungus tissue, unlike sap
feeders (Fernandez-Conradi et al. 2018; Mondy and Corio-
Costet 2004; Moran 1998; Rostas et al. 2003).

Moreover, although we focused on crop plants, when evi-
dence from such plants was lacking in the literature, we took
examples concerning weeds or invasive plants, especially
when we felt that generic lessons could be drawn and appli-
cable to crop plants. Similarly, some examples were taken
from other herbivorous or omnivorous Cimicomorpha (viz.

lacebugs (Tingidae) and pirate bugs (Anthocoridae)), and
even other arthropod groups (viz. some herbivorous thrips
(Thysanoptera) and mites (Acari)) with the same life/feeding
style as herbivorous MB.

Direct and indirect interactions were defined by Willsey
et al. (2017). The potential mechanisms through which crop
plants, PFO, and MB interact fall within five major frame-
works (Fig. 2), namely (i) CP infection by PFO mechanically
facilitated by prior MB infestation; (ii) CP infection by PFO
hampered by prior MB infestation via CP signaling; (iii) CP
infestation by MB facilitated by prior PFO infection via CP
signaling; (iv) CP infestation by MB hampered by prior PFO
infection via CP signaling; and (v) CP infestation by MB and/
or infection by PFO hampered by prior MB infestation and/or
PFO infection via CP resource quality alteration.

Otherwise, PFO and MB may also merely occur concom-
itantly, namely favored by the same conditions, i.e., climatic
or linked to endogeneous crop plant factors (e.g., redox status;
Husson 2013), triggered or not by abiotic factors. Our review
focuses on the first four interaction frameworks, since the fifth
one (dealing with resource quality alteration) is quite trivial
and has been well described elsewhere (e.g., Fernandez-
Conradi et al. 2018). Our review does not encompass either
phytotoxaemia, i.e., the case when MB feeding symptoms can
be confused with those caused by chewing insects, drought,
hail, high temperatures, insufficient pollination, mechanical
injury, nutrient deficiency or toxicity, and pollution, but espe-
cially with plant disease symptoms (Wheeler Jr 2001), includ-
ing those resulting from infection by PFO (Hori 2000;
Gopalan and Subramaniam 1978). Interestingly, even the po-
tato late blight disease was mistakenly proposed to be caused
by the plant bug Lygus lineolaris (Wheeler Jr 1981).

2 Crop plant infection by phytopathogenic
fungi is facilitated by prior mirid bug
infestation

This specific aspect (dissemination of fungal pathogens) was
partially reviewed by Wheeler Jr (2001). There are several
examples whereby MB infestation facilitates mechanical
transmission of PFO to crop plants (annual or perennial).
For instance, Calonectria rigidiscula, which causes cocoa die-
back, infects trees through MB (Sahlbergella singularis (Fig.
3) and Distantiella theobroma) lesions on stems (Crowdy
1947). Actually, it was reported that neither the insects nor
the fungus alone normally causes serious damage to the tree,
but their combined damage has a major impact on the cocoa
industry in West Africa (Crowdy 1947). On cashew trees in
India, the MB Helopeltis antonii was reported to be the pri-
mary causal agent of inflorescence blight, with Gloesporum
mangifera, Phomopsis anacardiae, Pestaliopsis spp., and
Botrydiplodia spp. associated with it as secondary saprophytic
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Fig. 2 a Main 3-way interactions
between herbivorous mirid bugs
(MB), phytopathogenic fungi/
oomycetes (PFO), and crop plants
(CP). Solid green arrows, positive
(on target organism) direct
effects; solid red arrows, negative
(on target organism) direct
effects; dotted purple arrows,
indirect effects (either positive or
negative). b CP infection by PFO
mechanically facilitated by prior
MB infestation. ¢ CP infection by
PFO hampered by prior MB
infestation via CP signaling. d CP
infestation by MB facilitated by
prior PFO infection via CP
signaling. e CP infestation by MB
hampered by prior PFO infection
via CP signaling. f CP infestation
by MB and/or infection by PFO
hampered by prior MB infestation
and/or PFO infection via CP
resource quality alteration.
Ilustrations by Simon Ratnadass

colonizers (Wijetunge et al. 2003). In addition to these quite
well-documented cases, Cech (1989) suspected that MB egg-
laying injuries facilitate the entry of fungal pathogens of oak.
In Dominica, Whitwell (1993) reported evidence of egg-
laying scars by MB Dagbertus sp. and Rhinacloa antennalis
as sites of pathogen entry and subsequent infection in mango.
This was also reported for the same MB species in avocado
(Pefia et al. 2003).

Besides perennial plants, several cases have been reported
in annual crops, e.g., Orthops campestris as vector of the
carrot phytopathogenic fungus Stemphylium radicinum
(Bech 1967). In the USA, the cotton fleahopper
Pseudatomoscelis serratus was suspected to contaminate cot-
ton flower buds with various micro-organisms, particularly
fungi of the genera Penicillium, Fusarium, and
Alternaria (Cadou 1994; Martin Jr et al. 1987). This
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was also observed in the Congo with Helopeltis spp.
and Colletotrichum gossypii causing cotton anthracnose
(Cadou 1994; Steyaert and Vrydagh 1933; Vrydagh
1936). Lygus hesperus was also reported to be a vector
of Aspergillus flavus in cotton (Stephenson and Russell
1974). However, the best documented example concerns
sorghum panicle-feeding MB (mainly Eurystylus oldi)/
grain mold (Figs. 1b and 4a and b) in West and
Central Africa (Aheto et al. 2017; Marley and Malgwi
1999; Ratnadass et al. 1995; Ratnadass et al. 2003a).
Feeding/egg-laying puncture symptoms induced by
panicle-feeding MB (also referred to as “head bugs”) may be
confused with those of grain mold infection due to
phytotoxaemia (Fig. 4a and b). While grain mold fungi may
penetrate sorghum grains directly under high humidity condi-
tions, infection by these fungi can also be facilitated by biotic
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Fig. 3 Cocoa mirid bugs (Sahlbergella singularis) in Cameroon. An
adult in the foreground and nymphs in the background. Brown stains
are symptoms of leaf feeding damage (© R. Babin — CIRAD)

factors, especially insects (Bandyopadhyay et al. 2000). As
reviewed by Marley and Ajayi (1999), the first clear evidence
of this relationship in the West and Central Africa sub-region
was obtained in experiments carried out by the Institut
d’économie rurale (IER) at Sotuba (Mali) in 1990 and 1991,
which demonstrated a close relationship between panicle-
feeding MB and grain mold (Ratnadass et al. 1995).
Fungicide application only slightly affected MB damage, but
grain mold damage was greater on unprotected than on
fungicide-protected panicles. Yet, panicles protected from
MB only with plastic bags had no more mold severity than
those protected by fungicide treatment alone, or jointly by
fungicide treatment and plastic bags (Ratnadass et al. 1995).
This was confirmed in experiments conducted by the Institute

Fig. 4 a Eurystylus oldi induced
damage on a sorghum panicle in
Mali. This is a case of mere
phytotoxaemia due to extensive
adult feeding at the milk stage.
Mirid bug punctures at a later
stage may facilitate grain mold
infection (© A. Ratnadass —
CIRAD). b Grain mold damage
on a sorghum panicle in Mali.
This may or not have been
facilitated by prior mirid bug
punctures. Molded grains may be
pink, white, or black (depending
on the pathogen) (© K. Vom
Brocke — CIRAD)

for Agricultural Research (IAR) at Samaru (Nigeria) in 1995
and 1996 (Marley and Malgwi 1999).

The relationship between panicle-feeding MB infestation
and mold infection was confirmed in the Regional Sorghum
Head Bug and Grain Mold Trial conducted in 1996 and 1997
under the West and Central African Sorghum Research
Network (WCASRN) in 15 research stations across 10 coun-
tries participating in the network. Insecticidal treatment had a
significant impact on the grain mold incidence respectively in
five and four out of 11 localities where this parameter was
measured in 1996 and 1997, thus partially confirming the
critical role played by panicle-feeding MB as factors aggra-
vating mold infection (Ratnadass et al. 2003a). PFO involved
in all of these cases were necrotrophic or hemibiotrophic.

3 Crop plant infection by phytopathogenic
fungi is hampered by prior mirid bug
infestation

Herbivorous or omnivorous MB may induce plant resistance
to other more damaging L&F arthropod pests, e.g.:

*  Macrolophus pygmaeus vs spider mites (Pappas et al.
2015; Zhang et al. 2018) and thrips (Zhang et al. 2018)
on cultivated Solanaceae;

e Tupiocoris notatus vs chewing caterpillars (Manduca
sexta) on wild tobacco (Nicotiana atenuata) (Halitschke
et al. 2011; Kessler and Baldwin 2004; Voelckel and
Baldwin 2004);

*  Helopeltis sulawesi vs the major pest/pod-boring moth
Conopomorpha cramerella on cocoa in Southeast Asia
(Wielgoss et al. 2012).
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Prior infestation by some MB may also induce systemic
resistance in plants against subsequent PFO infection
(Karban and Chen 2007). For instance, studies on interactions
between the MB Eccritotarsus catarinensis and the
necrotrophic PFO Acremonium zonatum, a biocontrol agent
of water hyacinth, Eichhornia crassipes, suggested an initial
development of a plant defense response to MB feeding, thus
delaying infection by PFO (Ray and Hill 2016).

Studies by Frati et al. (2006) showed that MB produced
endo-polygalacturonase (PGs) hydrolytic enzymes that are in-
volved in the degradation of pectin, a major plant cell wall
component. Several plants are known to produce extracellular
plant proteins like polygalacturonase-inhibiting proteins
(PGIPs), which are known for their ability to inhibit fungal
PGs and restrict fungal colonization (Frati et al. 2006). PGIPs
of bean (Phaseolus vulgaris) also inhibited PGs of two MB
species (Lygus rugulipennis and Adelphocoris lineolatus) and
two necrotrophic PFO, i.e., Colletotrichum acutatum and
Botrytis cinerea (d’Ovidio et al. 2004). PGs are also produced
by A. lucorum (Zhang et al. 2015), yet prior infestation of
garden balsam (/mpatiens balsima) by this MB did not have
any effect on powdery mildew infection (Pan et al. 2013). This
absence of effect was also observed with Helopeltis spp. in-
festation in cashew, and Oidium anacardii infection (Agboton
et al. 2013). Both of these cases involved biotrophic fungi.

Lastly, MB could potentially adversely affect fungal
growth via the antifungal function of scent gland secretions.
For instance, trans-2-hexenal, a volatile aldehyde which is a
major compound secreted by rice stink bugs (Blum et al.
1960), was found to inhibit Aspergillus flavus growth and
aflatoxin production in corn (De Lucca et al. 2011).
However, this was not confirmed with regard to MB
Adelphocoris suturalis (Zhang et al. 2014).

4 Crop plant infestation by mirid bugs is
facilitated by prior phytopathogenic fungus
infection

There are no documented examples of MB infestation of crop
plants being facilitated by PFO infection, while there are many
documented examples of L&F/M&F feeding arthropod (other
than MB) infestation of CP facilitated by PFO infection
(Table 1). In those cases, three fungi out of four are biotrophic
(which is consistent with the CP signaling assumption), while
in the case of cotton lint rot, the use of the fungus for food by
the mite seems to overcome this signaling.

In the case of Orthops palus and the powdery mildew
Pseudoidium anacardii (formerly Oidium mangiferae) fungus
in mango, such facilitation is highly suspected in Réunion,
although its pathway remains unknown (Atiama 2016;
Deguine et al. 2018). O. palus and P. anacardii were found
to have simultaneously caused damage. O. palus was also
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absent in 80% of cases when powdery mildew was absent
(2387 observations over 3 years; Deguine et al. 2018). In
addition, a preliminary experiment conducted in a mango or-
chard showed that sulfur application against powdery mildew
slightly adversely affected O. palus, whereas powdery mildew
infection was not at all affected by insecticide (Lambda-
cyhalothrin) treatment (Ratnadass, unpublished).

Turner et al. (2018) also reported the co-occurrence of a
biotrophic PFO and a MB, i.e., Puccinia silphii and Lygus
lineoralis, respectively, on the perennial oilseed crop
Silphium integrifolium, although these authors did not high-
light a facilitation phenomenon in that case.

5 Crop plant infestation by mirid bugs is
hampered by prior phytopathogenic fungus
infection

Some PFO, particularly Fusarium spp., produce beauvericin
(Logrieco et al. 2002), which has insecticidal activity.
Although this may mainly be harmful to chewing herbivores
that indiscriminately consume plant and fungus tissues, and
less so to piercing-sucking herbivores that only consume sap
(Fernandez-Conradi et al. 2018), beauvericin may also affect
L&F/M&F feeders, including MB, e.g., Lygus spp. (Leland
et al. 2005).

A particular case concerns the natural enemy Nesidiocoris
volucer on tobacco plants infested with tobacco powdery mil-
dew caused by Golovinomyces cichoracearum in Réunion
(Fontaine and Atiama, La Coccinelle®, pers. com., 2019). It
was assumed that mycelium hampered egg-laying, hatching,
and movement of MB nymphs (Fig. 5).

6 Other potential pathways

The co-occurrence of MB and PFO may be due to microcli-
matic conditions that favor both attackers, which is (along
with facilitation) a partial explanation in the case of sorghum
panicle-feeding MB and grain mold (Ratnadass et al. 2003b).
This hypothesis should be tested and possibly ruled out in the
case of mango MB/powdery mildew (Atiama 2016; Deguine
et al. 2018; Ratnadass et al. 2019). No general rule can be put
forward in this respect since the relationship depends on the
MB species (e.g., Ratnadass and Butler 2003), and PFO spe-
cies (e.g., powdery mildew pathogens being favored by cooler
and dryer conditions than those conducive to the development
of pathogens responsible for grain mold; Nasir et al. 2014;
Tonapi et al. 2007).

Another case of co-occurrence of MB and PFO concerns
the cultivation of transgenic insect-resistant (B7) cotton lines,
which significantly reduced insecticide usage against
Lepidopteron pests, resulting in an outbreak of pests that were
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Table 1 Documented examples of arthropod infestation of crop plants facilitated by phytopathogenic fungus infection
Arthropod Fungus/disease Fungus Plant Process References
trophic
strategy
Thrips tabaci Sphaerotheca pannosa/powdery Biotroph  Vine, rose, strawberry, Fungus required as Yarwood (1943); Coyier (1983)
mildew cantaloupe, clove food for thrips
Tetranychus urticae  Sphaerotheca pannosa/powdery Biotroph  Rose Fungus required as  Poncet et al. (2008);
mildew food for mites Bout et al. (2011)
Tetranychus spp. Podosphaera spp./powdery Biotroph  Apple & cherry Unknown Reding et al. (2001)
mildews
Siteroptes Nigrospora oryzae/lint rot Necrotroph Cotton Fungus required as  Laemmlen and Hall (1973)
reniformis food for mites

considered secondary, particularly MB (Lu et al. 2010). On
the other hand, Bt cotton lines also exhibited reduced disease
resistance in comparison to conventional lines, especially for
Fusarium wilt in China (Li et al. 2009); Bt cotton cultivation
in India was also associated with an increase of damage by
many PFO/diseases, e.g., R. solani and Macrophomina
phaseolina root rot, Alternaria macrospora and
Myrothecium leaf blight, and Ramularia areola grey mildew
(Saravanan et al. 2015).

Recent research has also highlighted the role of endoge-
nous plant factors, such as the crop plant reduction/oxidation
and acidification/alkalinization (redox/pH) status in relation
with soil, favoring/hampering specific types of pests/
pathogens (Bousset et al. 2019; Husson 2013), which should
therefore also be considered. For instance, biotrophic fungi are
associated with more alkaline media than necrotrophic fungi
(e.g., those whose infection is facilitated by MB puncture).
This redox/pH framework also helps explain why MB, unlike
phloem-feeding Hemiptera, are poor virus and biotrophic fun-
gi transmitters, but better at transmitting bacteria or
necrotrophic fungi (Wheeler Jr 2001).

© La Coccinelle

Fig. 5 Newly hatched nymph of the mirid bug Nesidiocoris volucer on a
tobacco leaf in Réunion. This shows that tobacco powdery mildew
mycelium hampers bug movements, while also probably deterring egg-
laying (© La Coccinelle)

7 Implications in terms of management
measures

Many action levers could eventually be mobilized based on
the evidence from various crops culled in the literature, as
detailed hereafter (§7.1 to 7.6).

7.1 Chemical and mineral control

Synthetic insecticides (cypermethrin and deltamethrin) used
in the WCASRN regional trial (Ratnadass et al. 2003a) were
found to be effective against both head bugs and grain mold
(although to a lesser extent for the latter). Zhang et al. (2017)
reported that neonicotinoid seed treatments, particularly with
nitenpyram, could provide effective protection and play an
important role in the management of early season
A. lucorum in Bt cotton fields in China. Moreover, seed treat-
ments combining nitenpyram with fungicides could be a suit-
able choice for controlling both MB and PFO (e.g.,
Rhizoctonia solani and Verticillium dahliae) during the cotton
seedling stage (Zhang et al. 2017).

Some mineral pesticides (like sulfur) may have a dual ef-
fect on powdery mildew and MB. This is the case in tomato
regarding Oidium neolycopersici and the natural enemies
Nesidiocoris tenuis and Deraeocoris brevis (potentially),
which are omnivorous MB (Amarasekare and Shearer 2013;
Zappala et al. 2011). N. fenuis is presently released as natural
enemy in tomato fields, yet it may turn out to be a crop pest
(Arno etal. 2010). However, there are no reported instances of
mainly herbivorous MB being directly controlled by powdery
mildew-targeted sulfur applications. On the other hand,
Fernandez et al. (2006) also found that apple fruit damage
by the mullein MB Campylomma verbasci was reduced by
mineral oil sprays targeting apple powdery mildew
(Podosphaera leucotricha).

The use of elicitors of plant defenses, or so-called plant
activators, has been proposed as an alternative approach to
chemical crop protection (Bruce 2010; Sobhy et al. 2014;
Thaler et al. 2001; Vallad and Goodman 2004; Worrall et al.

INRAD 4 springe



46 Page8of14

Agron. Sustain. Dev. (2020) 40: 46

2012). However, to our knowledge, no cases jointly involving
MB and PFO have been reported.

7.2 Physical methods

One particular case pertains to mechanical control with a bug
vac that was developed to suck L. hesperus MB out of straw-
berry fields (Dietrick 1961), but which at the same time
spreads diseases like powdery mildew and gray mold
(Kuepper and Thomas 2002). With such conflicting effects,
tradeoffs should be sought.

On the other hand, the potential of powdery mildew inoc-
ulum removal in mango (as suggested by Misra 2001; Misra
et al. 1998; Nasir et al. 2014) could be tested in Réunion,
including for its effect on mango MB infestation.

7.3 Host plant resistance

Regarding head bugs and grain mold, sorghum varietal resis-
tance to the former contributed to resistance to the latter,
which was also the case with phenotypic plant characteristics
negatively affecting both attackers in relation to microclimatic
conditions (i.e., panicle laxity/openness) (Ratnadass et al.
2003a). Similarly, genetic resistance of cotton to MB pests,
e.g., that due to leaf pubescence (trichome density; McLoud
et al. 2015; Wood et al. 2017), is expected to reduce flower
bud infection by PFO.

7.4 Biological control

On cotton, the fungal natural enemy Beauveria bassiana has
synergistic control potential due to its dual effect on Lygus
spp., as well as R. solani and Pythium myriotylum (Leland
et al. 2005; Ownley et al. 2008). However, B. bassiana appli-
cation as an augmentative biological control measure against
Lygus bugs in strawberry overcomes the need for powdery
mildew-specific fungicide treatments (Dara 2017).

Otherwise, regarding conservation biological control, con-
flicting effects were highlighted in cocoa orchards in tropical
Africa. Namely, measures to encourage weaver ants
(Oecophylla longinoda) and other ant species as predators of
MB (Bagny-Beilhe et al. 2018) (which could reduce cocoa
dieback incidence: Crowdy 1947) may result in increased in-
cidence of black pod rot, since ants are disseminators of
Phytophthora megakarya, the oomycete causative agent of
the disease (Bisseleua et al. 2017).

7.5 Plant species diversity deployment

This refers to a set of agroecological management strategies
implemented at various scales (Ratnadass et al. 2012). For
instance, through the use of cover crops in conservation agri-
culture strategies, the redox conditions of soil and crop plants
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Fig. 6 Orthops palus punctures on a mango inflorescence in Réunion.
Adult and nymph feeding mainly affects mature inflorescences. This
results in their drying up and causes flower and young fruit drop (© A.
Franck — CIRAD)

could be altered to make them unfit for both types of attackers
(Husson et al. 2016, 2018).

At the scale of the field and its margins, it was found in
China that mungbean (Vigna radiatus) had considerable po-
tential as a trap crop for A. lucorum in Bt cotton fields (Lu
et al. 2009). Maize (Zea mays) fields were also proposed as
potential sinks for these pests (Jiao et al. 2019). In addition,
buckwheat (Fagopyrum esculentum) strip crops were found to
increase A. lucorum regulation in cotton by a Braconid para-
sitoid species (Li et al. 2019). Although no direct interactions
with PFO have been highlighted for this MB species, such
principles could be applied for other MB that are known for
their facilitating effects for infection by PFO, for instance, the
use of sorghum as a trap crop for MB management on cotton
(Ratnadass et al. 2009), or trap cropping with castor bean
(Ricinus communis) to reduce sorghum infestation by
Eurystylus oldi (Ratnadass et al. 2001).

Moreover, in agroforestry (AF) strategies, shade generated
by AF trees in cocoa orchards was found to both facilitate
black pod rot infection and negatively affect MB infestation
(Babin et al. 2010; Gidoin et al. 2014), and hence potentially
dieback incidence. With such conflicting effects, tradeoffs
should be sought.

Fig. 7 Powdery mildew (Pseudoidium anacardii) on mango
inflorescences in Réunion. Some inflorescences are completely covered
with mycelium. This will eventually result in their browning and drying
up (O A. Ratnadass — CIRAD)
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Fig. 8 Proposed strategy for agroecological protection of mango against
P. anacardii and O. palus in Réunion with action levers that could be
mobilized (partially adapted from Deguine et al. 2018 and Ratnadass et al.
2019). Solid green (resp. red) arrows, positive (resp. negative) direct
effect on target organism or lever; dotted blue arrows, indirect effects
via the crop plant. *Not applicable (no regulatory measures nor
synthetic pesticide for curative control). 1. Powdery mildew-resistant
mango cultivars (e.g., Joubert et al. 1993; Vincenot and Normand
2009); 2. Effectiveness of powdery mildew inoculum removal (e.g.,
Misra 2001; Misra et al. 1998; Nasir et al. 2014); 3. Damage caused by
powdery mildew to mango inflorescences (e.g., Nasir et al. 2014); 4.
Effectiveness of sulfur application against mango powdery mildew
(e.g., Nasir et al. 2014); 5. Damage caused by mango MB to mango
inflorescences (e.g., Atiama 2016); 6a and 6b. Potential effect of
Lecanicillium lecanii as a pathogen of some powdery mildews and
some MB species (e.g., Romero et al. 2003; Pasaru et al. 2014); 7.
Effectiveness of sulfur application against omnivorous MB (e.g.,
Amarasekare and Shearer 2013; Zappala et al. 2011); 8. Potential effect

7.6 Agroecological crop protection

As illustrated above, many control techniques may be used for
managing MB and/or PFO, either individually or in combina-
tion, as part of IPM strategies (Barzman et al. 2015). However,
those levers may also be combined within the more relevant
agroecological crop protection (ACP) framework, as de-
scribed by Deguine et al. (2017). Indeed, controlling crop
pests and pathogens using synthetic pesticides with direct tox-
ic activity is increasingly discouraged, while the use of more
environment-friendly approaches such as ACP is essential for
a more sustainable future.

While the most documented example of facilitation of fun-
gus infection following MB infestation concerned panicle-
feeding MB/grain mold in sorghum, a challenging case where
the reverse was observed concerned mango MB and powdery
mildew (Figs. 6 and 7). Although this case is still pending
confirmation, it is supported by other evidence regarding her-
bivorous arthropods with the same feeding style as MB (see

)

15a
—

of natural enemies on O. palus e.g predatory Campylomma leucochila
enhanced via habitat manipulation (e.g., Atiama 2016; Deguine et al.
2018; Jacquot 2016; Ratnadass et al. 2018); 9. Inhibition of JA plant
response following biotrophic attack (e.g., Ponzio et al. 2013); 10.
Attractiveness for O. palus as a necrotrophic attacker (e.g., Deguine
et al. 2018); 11. Effect of elicitor application on mango flowering
synchronization (e.g., Singh et al. 2001; Mohammadi et al. 2015); 12a
and 12b. Potential of SA and JA plant signaling pathways against resp.
P. anacardii and O. palus; 13. Effect of pruning on mango flowering
synchronization (e.g., Oosthuyse and Jacobs 1997); 14a and 14b.
Potential of reduced duration of pest-susceptible stage against resp.
P. anacardii and O. palus; 15a and 15b. Potential of microclimate
alteration on suppression of resp. P. anacardii and O. palus (Ratnadass
et al. 2019); 16. Potential effect of pruning on light penetration in the
orchard and floor vegetation growth (including habitats for conservation
biological control; e.g., Rothe et al. 2019). 17. Potential effect of pruning
on fungal natural enemies via microclimate alteration (Mahot et al. 2019;
Ratnadass et al. 2019). Artwork by Simon Ratnadass

part 4). On this basis and that of confirmed or potential action
levers, in Fig. 8, we propose a framework for management of
O. palus and P. anacardii in mango orchards in Réunion
according to ACP principles (including the strict order accord-
ing to which these levers should be implemented).

For this mango, MB/powdery mildew case study neither
the first nor the last step is applicable since, as both attackers
are well established on the island, there are no regulatory
measures for their control, and also synthetic pesticide treat-
ments are likely to be banned soon for curative control.

With respect to preventive methods, there are no reports of
varietal differences in resistance to MB. Regarding host plant
resistance to powdery mildew among mango cultivars that
have been evaluated in Réunion, Sensation was found to be
less susceptible to P. anacardii (Joubert et al. 1993), contrary
to Kent and Cogshall, both of which are highly susceptible
(Vincenot and Normand 2009), with Tommy Atkins being
intermediate. Regarding physical control for powdery mil-
dew, the methods reported by Misra (2001), Misra et al.
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(1998), and Nasir et al. (2014) have not been tested in
Réunion. Pruning might also have a direct effect on mango
bug/powdery mildew through microclimatic effects, but also
indirect effects via changes in tree phenology (particularly
flowering dynamics), and effects on vegetation soil cover
growth (increased available light), resulting in potential indi-
rect effects on mango bugs through natural enemies, e.g.,
predatory Campylomma leucochila and potential parasitoid
Leiophron sp. (Atiama 2016; Jacquot 2016; Ratnadass et al.
2018; Williams et al. 2003 ; Demirel et al. 2005). As for
elicitors, a literature review suggests that JA sprays could
balance endogenic SA production triggered by powdery mil-
dew infection, without affecting flowering synchronization
(Singh et al. 2001; Mohammadi et al. 2015), which is another
indirect way of minimizing MB damage by reducing the du-
ration of the susceptible stage.

With respect to curative measures, application of sul-
fur as a mineral fungicide could actually also be con-
sidered as preventive against MB, since it does not
seem to have a direct effect on MB. Sulfur may also
have an indirect effect by hampering powdery mildew
and therefore not triggering the SA pathway in host
plants, resulting in non-inhibition of JA signaling, while
having a negative effect on pests with necrotrophic life-
styles like MB. Augmentative biological control con-
cerns biopesticides, e.g., Lecanicillium as a pathogen
of powdery mildews and some MB species (Pasaru
et al. 2014), or in combination with Beauveria
(Portilla et al. 2014).

8 Conclusion

A wealth of examples may be found in the literature regarding
the co-occurrence of L&F/M&F feeding arthropods and
biotrophic PFO, namely two-way interactions, but without
reference to a three-way interaction with the plant (e.g., Rur
2016). In many cases, associations and causal effects are only
suspected, while in others, an absence of effect has been put
forward, supported or not by experimental findings.

All of the interaction pathways we reviewed (including
pre-disposition, namely induced higher susceptibility or resis-
tance resulting in cross-resistance/susceptibility, or a decrease/
increase in host plant resource quality for insects or patho-
gens), may overlap, while being synergistic or antagonistic,
sometimes resulting in an absence of effect.

This review highlights new outlooks that could give rise to
agroecological options for the management of both types of
biotic aggressors.

Our recommendations on ACP against mango MB and
powdery mildew could serve as a basis for ACP against other
MB and PFO of the same guilds/lifestyles that damage other
crops. Beyond the mere pest and pathogen regulation service,
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the ACP strategy contributes to other key ecosystem services,
thus enhancing agroecosystem functioning.

Further research should also be focused on such biological
models (= “pathosystems”) on mango and other plants in or-
der to obtain experimental findings on the suspected interac-
tions (as already achieved for MB/grain mold on sorghum,
also regarding potential interactions with climatic parameters),
while also considering plant hormones and redox/pH aspects
(e.g., in the case of elemental sulfur application; Williams and
Cooper 2004).
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