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Abstract  17 

 18 

Automated quantification of the behaviour of freely moving animals is increasingly 19 

needed in ethology, ecology, genetics and evolution. State-of-the-art approaches often 20 

require tags to identify animals, high computational power for data collection and 21 

processing, and are sensitive to environmental conditions, which limits their large-scale 22 

utilisation. Here we introduce a new automated tracking system based on millimetre-23 

wave radars for real time robust and high precision monitoring of untagged animals. To 24 

validate our system, we tracked 64 sheep in a standard indoor behavioural test used for 25 

genetic selection. First, we show that the proposed radar application is faster and more 26 

accurate than conventional video and infrared tracking systems. Next, we illustrate how 27 

new behavioural estimators can be derived from the radar data to assess personality 28 

traits in sheep for behavioural phenotyping. Finally, we demonstrate that radars can be 29 

used for movement tracking at larger spatial scales, in the field, by adjusting operating 30 
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frequency and radiated electromagnetic power. Millimetre-wave radars thus hold 31 

considerable promises for high-throughput recording of the behaviour of animals with 32 

various sizes and locomotor modes, in different types of environments. 33 

 34 

Keywords: computational ethology, radar tracking, behavioural phenotyping, Ovis aries, 35 

corridor test. 36 

 37 

1.  Introduction 38 

 39 

Animal behaviour research increasingly requires automated recording and analyses of 40 

movements (Branson et al., 2009). The emerging field of computational ethology 41 

provides methods for high-throughput monitoring and statistical analyses of movements 42 

that enable the quantitative characterisation of behaviour on large numbers of 43 

individuals, the discovery of new behaviours, but also the objective comparison of 44 

behavioural data across studies and species (Anderson and Perona, 2014; Brown and 45 

de Bivort, 2018).  46 

These quantitative approaches are particularly powerful to study inter-individual 47 

behavioural variability or personalities in animal populations (Morand-Ferron et al., 48 

2015). In livestock, for instance, large-scale genetic selection programmes are based on 49 

the measurements of several hundreds (if not thousands) of farm animals (O’Brien et al. 50 

2014). Many behavioural tests have been developed to assess behavioural and 51 

personality traits in farm animals (Canario et al. 2013), and some applications have 52 

been developed in breeding programmes for instance to discard the more aggressive 53 

individuals for beef cattle production (Phocas et al. 2006). Behavioural measures are 54 

frequently obtained from direct observations by the experimenters or farmers (e.g., 55 

Boissy et al., 2005), limiting use of behavioural criteria for breeding programmes. 56 

Indeed, the absence of automated measurements make data collection cumbersome, 57 

time-consuming and prone to biases, which currently limits the ability to quantify 58 

behavioural traits at the experimental or commercial farm level.  59 

Tracking methods involving on-board devices, such as Global Positioning 60 

Systems (GPS) (Tomkiewicz et al., 2010), radio telemetry (Cadahia et al., 2010), radio 61 
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frequency identification (RFID) (Voulodimos et al., 2010) or harmonic radar (Riley et al., 62 

1996), are hardly suitable for detailed high throughput behavioural phenotyping due to 63 

the limited accuracy and duration of measurements. Best available methods therefore 64 

involve image-based analyses (Pérez-Escudero et al., 2014; Romero-Ferrero et al., 65 

2019). However, these techniques often require large computational resources to 66 

acquire and process images (Garcia et al 2019) and are sensitive to light variation (Dell 67 

et al., 2014).  68 

Recently, Frequency-Modulated Continuous-Wave (FMCW) radars operating in 69 

the millimetre-wave frequency band have been proposed for automated tracking of 70 

animal behaviour (sow: Dore et al., 2020b, bees: 2020a; sheep: Henry et al., 2018). In 71 

this approach, it is possible to record the 1D movements (distance to radar) of individual 72 

sheep in an arena test (Henry et al., 2018). Tracking with FMCW radars has the great 73 

advantage of being non-invasive (does not require a tag), insensitive to light intensity 74 

variations, and fast (as it does not require large memory resource). FMCW radars 75 

therefore provide considerable advantages for the development of automated high-76 

throughput analyses in regard to more conventional approaches (e.g. video and infrared 77 

tracking systems).  78 

Here we developed a millimetre-wave FMCW radar system for automated 79 

tracking and analyses of the 2D trajectories of freely moving animals. We illustrated our 80 

approach by analysing the behaviour of 64 sheep in an “arena test” commonly used to 81 

estimate the sociability of individual sheep in genetic selection (Boissy et al., 2005; 82 

Hazard et al., 2014). First, we compared the speed and accuracy of radar tracking with 83 

more conventional video and infrared tracking systems. We then derived new 84 

behavioural estimators computed from the radar data, that could be used for large-scale 85 

behavioural phenotyping. Finally, we tested the radar system for long-distance tracking, 86 

in the field, by adjusting radar emission frequency and radiated electromagnetic power. 87 

 88 

2. Materials and methods 89 

 90 

Sheep 91 

 92 
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We ran the experiments in July 2019 at the experimental farm La Fage of the French 93 

National Research Institute for Agriculture, Food, and Environment (INRAE), France 94 

(43.918304, 3.094309). We tested 64 lambs (32 males, 32 females) Ovis aries with 95 

known weight (range: 12kg – 31.3kg) and age (range: 59 days – 88 days). Ewes and 96 

their lambs were reared outdoor on rangelands. After weaning, lambs were reared 97 

together outside and tested for behaviour 10 days later. This delay allowed the 98 

development of social preferences for conspecifics instead of preference for mother. All 99 

the lambs were previously tested in a “corridor test” to estimate their docility towards a 100 

human. Briefly the test pen consisted of a closed, wide rectangular circuit (4.5 x 7.5 m) 101 

with opaque walls (Boissy et al., 2005). A non-familiar human entered the testing pen 102 

and moves at constant speed through the corridor until two complete tours had been 103 

achieved. Every 5 s (i.e. the corridor was divided into 6 virtual zones and 1 zone was 104 

crossed every 5 s by the human) the zones in which the human and the animal were 105 

located were recorded and the mean distance separating the human and the lamb was 106 

calculated. The walking human also recorded with a stopwatch the total duration when 107 

the human saw the head of the lamb to discriminate between fleeing and following 108 

lambs. The reactivity criteria towards an approaching human was constructed by 109 

combining both measurements (for more details see Hazard et al., 2016). The higher 110 

was the resulting variable (i.e. docility variable), the more docile was the animal.  111 

 112 

Arena test 113 

 114 

We tested all the sheep in the arena test, a standard protocol for assessing the 115 

sociability of sheep through measures of inter-individual variability in social motivation in 116 

the absence or presence of a shepherd (Boissy et al., 2005; Hazard et al., 2014). Briefly, 117 

a sheep (focal sheep) was introduced in the pen (2mx7m) with artificial lights (Fig. 1A; 118 

for more details see Ligout et al. 2011). Three other sheep from the same cohort (social 119 

stimuli) were placed behind a grid barrier, on the opposite side of the corridor entrance. 120 

The test involved three phases (Fig. 1B). In phase 1, the focal sheep could explore the 121 

corridor for 15s and see its conspecifics through a grid barrier. In phase 2, visual contact 122 

between the focal sheep and the social stimuli was disrupted using an opaque panel 123 
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pulled down from the outside of the pen. This phase was used to assess the sociability 124 

of the sheep towards its conspecifics and lasted 60s. In phase 3, visual contact between 125 

the focal sheep and its conspecifics was re-established and a man was standing still in 126 

front of grid barrier for 60s. This phase was used to assess the sociability of the focal 127 

sheep towards conspecifics in presence of a motionless human. 128 

 129 

Data collection 130 

 131 

We measured the displacement of the focal sheep in phases 2 and 3 of the arena test 132 

(phase 1 is the initiation phase) using three automated tracking systems: infrared 133 

sensors, a video camera, and a millimetre-wave FMCW radar. During the measures, an 134 

experimenter also recorded the number of high-pitched bleats by the focal sheep, a 135 

proxy of the sociability (i.e. sociability variable) of the sheep (Boissy et al., 2005). 136 

 137 

Tracking with infrared cells 138 

 139 

Infrared cells were previously used to quantify sheep behaviour in the arena test. We 140 

placed two infrared sensors every meter along the arena length (Fig. 1A). We used two 141 

infrared sensors to determine the direction of the moving sheep. The focal sheep was 142 

recorded each time it passed through one of these sensors. Sheep movements were 143 

thus tracked in 1D (longitudinal movements in the corridor) and data resolution was 1m. 144 

 145 

Video tracking 146 

 147 

We placed a video camera on one end of the arena (opposite to entrance side, Fig. 1B). 148 

The camera was elevated 2m above ground in order to film the entire arena. Sheep 149 

movements were tracked in 2D. For image processing, we applied a detection algorithm 150 

using the state-of-the-art image object detector tiny-YOLO (You Only Look Once) 151 

network, which is a version of the YOLO model adapted for faster processing allowing 152 

244 images of 0.17 mega pixels (416 x 416 pixels) per second (on a TITAN X graphics 153 
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card) (Redmon et al., 2016). This neural network was pre-trained on the PASCAL Visual 154 

Object Classes Challenge dataset (Everingham et al., 2012). 155 

 156 

Radar tracking 157 

 158 

We placed a millimetre-wave FMCW radar (Fig. 1C, see technical characteristics in 159 

Table 1) at one end of the arena (entrance side, Fig. 1B). The radar was setup outside 160 

of the test pen behind a Styrofoam wall transparent to millimetre-wave (Dietlein et al., 161 

2008). The transmitting antenna array radiated a repetition over time of a so-called chirp 162 

(i.e. a saw-tooth frequency-modulated signal (Balanis, 2011)). The chirp was 163 

backscattered by the targeted focal sheep, but also by the surrounding scene which 164 

provides undesirable radar echoes called the electromagnetic clutter. The total 165 

backscattered signal was then collected by the receiving antenna array and processed 166 

to mitigate the clutter and to derive the sheep 2D trajectory from radar data. In the 167 

millimetre-wave frequency range, the detectability of the sheep depends mainly on the 168 

bandwidth of the frequency modulation, the beamwidth of the radar antennas, and the 169 

radiated electromagnetic power (Balanis, 2011)).  170 

 171 

Radar signal processing 172 

 173 

Processing of radar data included two main steps. First, we extracted the position of the 174 

animal. Next, we computed behavioural parameters to characterize the movement of the 175 

animal. 176 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.09.418038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.418038


 177 

Extraction of sheep positions 178 

 179 

We extracted the distance of the focal sheep to the radar and its direction in the 180 

horizontal plane of the scene. To mitigate the electromagnetic clutter, we estimated the 181 

mean value (mean) and standard deviation (std) of the signal provided by the radar in 182 

absence of the sheep and derived the signal Detection(�, �) from the signal Sradar(�, �) 183 

delivered in presence of the animal, as follows:  184 

�������	
��, �, �� 

��������, �, �� ����
��, ��

�����, ��
 

Where � is the distance to the sheep, mean is the time-averaged signal radar coming 185 

from the range � and angular position �, std is the time-standard deviation of the radar 186 

signal. Fig. 1D shows an example of position estimations of a sheep over time after 187 

removing the clutter. 188 

 189 

Extraction of new behavioural parameters 190 

 191 

From the 2D trajectory data, we extracted new behavioural parameters to characterize 192 

sheep movements using three approaches. 193 

 194 

Computation of behavioural classes 195 

 196 

We statistically identified broad classes of behaviour using automated classification. 197 

First, we extracted movement parameters (speed, sinuosity and speed of displacement) 198 

from the trajectories. Then, to differentiate the movement modifying the distance of the 199 

sheep from the social stimuli (i.e. the three conspecifics) and a lateral movement, the 200 

speed vector was split in two dimensions: along the two lateral walls of the corridor and 201 

across the two longitudinal walls. These characteristics were estimated on time windows 202 

of 1s for each sheep and for each experimental phase. Finally, to derive behavioural 203 

classes, we performed an extraction from a Gaussian mixture model using the extracted 204 

data for each lamb (Reynolds and Rose, n.d.). The number of classes (i.e. the number 205 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.09.418038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.418038


of Gaussians to be used) was determined by comparing models using 1 to 15 classes. 206 

We selected the model with the lowest Akaike score which represents the model with 207 

the features best explaining the parameter under consideration (Burnham and 208 

Anderson, 2002). 209 

 210 

Computation of behavioural transitions 211 

 212 

We determined behavioural changes over time using Ricker wavelet processing (Ryan, 213 

1994; see examples Fig. 3). Wavelet processing consists in filtering the sheep position 214 

signal using a wavelet as a filter (Poirier et al., 2009). This type of filtering is applied to 215 

several time scales, thus allowing the detection of a behaviour regardless of how long 216 

this behaviour lasts. Our aim was to determine the precise moments when the focal 217 

sheep changed its moving behaviour, which was estimated using the spectrum 218 

described by each wavelet. We observed that the number of local maxima in the wavelet 219 

transform coefficients is sensitive to the number of behaviour changes (see example in 220 

Fig. S1B). 221 

 222 

Computation of space coverage 223 

 224 

We investigated the space occupied across time by the focal sheep using heatmaps 225 

(see examples Fig. 4). We partitioned the arena into 80 zones of 44x40cm each (i.e. 16 226 

partitions along the arena length and 5 partitions along the arena width). We chose this 227 

zone dimension because it corresponded to the width of a small lamb (Idris et al., 2011). 228 

We counted the number of zones the focal sheep remained in for more than 200ms. We 229 

considered that a lamb stayed in a given zone for less than 200ms either because it was 230 

positioned at the edge of this zone or because the estimation of position by the radar 231 

was inaccurate (this situation occurred for less than 10% of detections). 232 

 233 

Outdoor radar tracking 234 

 235 
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We ran outdoor experiments in order to demonstrate the applicability of our radar 236 

system for long-range tracking of sheep (Fig. 4). These measurements where done in 237 

an open space with no obstacles (60m x 15m). A man moved in order to induce animal 238 

movements. We tested one female sheep (2 years, 60 Kg). To enhance detection range 239 

to 40 m, we used a FMCW radar with a lower operating frequency (24GHz; (Simon et 240 

al., 2014)). At constant transmitted power, lower frequencies enables to reduce the free-241 

space attenuation of the radiated electromagnetic power (Balanis, 2011). We used the 242 

same signal processing as with the 77GHz radar. 243 

 244 

Statistical analyses 245 

 246 

We ran all analyses using the programming environment R(R Core Team, 2014). Raw 247 

trajectory data extracted from radar and video measures are available in Dataset S1.  248 

 249 

Comparison of the performances of the different tracking systems 250 

 251 

We tested the ability of radar and video tracking systems to capture the same 252 

information as the infrared cells from the computation of two parameters: (1) a crossing 253 

rate and (2) a proximity score (respectively LOCOM and PROX in Hazard et al. 2014). 254 

The crossing rate is the number of times the animal moved between virtual zones 255 

defined by the infrared cells (1x2m) without distinguishing between the zones nor the 256 

direction of movement. This rate thus provides information on the displacement activity 257 

of animals seeking contact with their conspecifics. The proximity score is the total 258 

duration the focal sheep remained in each zone weighted as the animal moves closer to 259 

its conspecifics. The weight depends on the distance between the sheep and the 260 

conspecifics: 261 

�� 

1

�
 

with �� the weight of the zone considered, � the index of the zone delimited by the 262 

infrared sensors. � 
 1 corresponds to the zone close to the conspecifics, and � 
 7 263 

corresponds to the zone close to the corridor entrance. Thus, an animal with a high 264 

proximity score spent more time close to its conspecifics. We calculated these two 265 
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parameters from data collected from infrared cells, video and radar tracking systems 266 

and compared them using Pearson’s correlation tests (using ‘stats’ R package).  267 

We compared the accuracy of radar and video data systems by running a general 268 

linear mixed model (GLMM using glmer function in ‘lme4’ R package (Bates et al., 269 

2014)) testing the effect of the tracking method on the proportion of false detections, 270 

with sheep identity as random factor. We estimated the correlation between the number 271 

of false detections with the two methods using the Pearson’s correlation test. 272 

 273 

Analyses of new movement features  274 

 275 

We tested the influence of the sheep characteristics on behavioural classes using 276 

generalised models (GLMMs). Models (binomial family) tested the effects of phase, 277 

docility, weight, age, sociability, sex, and dual interactions of each variable with test 278 

phase, on the proportion of time spent in fast movements (behavioural class 2). 279 

Interactions between more than two variables were excluded because of the high 280 

number of variables relative to sample size. Sheep identity was included as a random 281 

factor. We ran a model selection by using all features combinations (age, weight, 282 

docility, sociability, sex and the phase when the radar measurement was done). We kept 283 

the model with the highest Akaike score. We used a similar procedure to test the 284 

influence of the sheep characteristics of the lambs on continuous wavelet transforms 285 

(Gaussian models) and heatmaps (Poisson models). For the continuous wavelet 286 

transform, we performed two different wavelet transforms on the lateral and on the 287 

longitudinal position of the sheep. For heatmaps, we tested different grid resolutions 288 

characterised by zone sizes: a low resolution grid with 21 zones (3 x 7) and a high 289 

resolution grid with 45 zones (5 x 15). 290 

 291 

Classification of behavioural types  292 

 293 

To classify sheep from on our new behavioural estimators, we ran a principal 294 

component analysis (PCA) based on the eight behavioural measures extracted from the 295 

radar data in phase 2 and phase 3: proportion of fast movements (class 1) out of all 296 
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movements (class 1 + class 2), longitudinal movements (wavelets Y), latitudinal 297 

movements (wavelets X), space coverage (heatmaps). 298 

 299 

3. Results 300 

 301 

Radar tracking is more faster and more accurate than video tracking 302 

 303 

To validate the radar tracking system, we compared the data obtained from the infrared 304 

cells, video and radar. We analysed data from 58 (29 males, 29 females) out of the 64 305 

sheep initially tested, because some recordings failed during measurements due to 306 

human errors or miss detection by infrared cells.  307 

Both data collected by radar and video enabled to capture information given by 308 

infrared cells with high fidelity. Proximity scores and crossing rates obtained from 309 

infrared cells were positively correlated with data obtained from radar (Pearson 310 

correlation; proximity: r = 0.77, p < 0.001; crossing rate: r = 0.87, p < 0.001) and video 311 

(Pearson correlation test; proximity: r = 0.91, p < 0.001; crossing rate: r = 0.34, p = 312 

<0.001). Imperfect correlation between proximity scores and crossing rates obtained 313 

from different tracking methods are caused by the different reference points used for 314 

tracking: infrared cells detect the full body of the sheep, whereas image analysis detects 315 

the centre of mass of the sheep, and the radar detects body parts of the sheep that are 316 

closest to it. 317 

The comparison between the radar and the video data showed both tracking 318 

systems involved low levels of false detections (i.e. when the distance between the body 319 

centre of the sheep and its estimated position is greater than one sheep body length). 320 

However, radar tracking generated ca. three times less false detections than video 321 

tracking (Binomial GLMM, z = -3.595, p < 0.001; Table 2). False detection with the two 322 

methods had different origins. False video detections resulted from insufficient colour 323 

contrast between the lamb and the background (e.g. when the lamb was close to the 324 

wall of the corridor), whereas false radar detections resulted from the low angular 325 

resolution of the radar and potential multiple reflections of the transmitted 326 

electromagnetic signal by obstacles in the scene (such as walls, ground, human). Radar 327 
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and video tracking systems are therefore complementary. The combination of the two 328 

systems gave the exact position of the sheep in 97.83% of the measures.  329 

Radar tracking had additional advantages over video tracking in terms of data 330 

processing (Table 2). The radar produced two times more measures per second. Radar 331 

processing was also much faster and therefore it may be used for real time data 332 

analyses. Radar measures were of similar size as video measures (ROM), but required 333 

ca. 7 times less memory (RAM) to process. Finally, radar processing did not require a 334 

learning phase with important data collection and a time-consuming training phase that 335 

can last several hours just for the adaptation of the model, or several days if the network 336 

is not trained beforehand.  337 

 338 

New behavioural indicators from radar data 339 

 340 

The following analyses were made on the 64 sheep tested (32 males, 32 females). The 341 

obtained 2D trajectory data offered the opportunity for high resolution analyses of sheep 342 

movements. 343 

 344 

Behavioural classes: detection of slow and fast movements 345 

 346 

We applied a Gaussian Mixture Model (GMM) procedure to statistically identify 347 

behavioural classes from the 2D trajectory data. We found four behavioural classes (Fig. 348 

2A). Class 1 (51.3% of measures) was characterized by null or slow movements (“slow 349 

movements”). Class 2 (35.48% of measures) was characterized by fast movements with 350 

low sinuosity (“fast movement”). Class 3 (10.2% of measures) was characterized by fast 351 

movements with high sinuosity (“fast tortuous”). Class 4 (3.01% of measures) was 352 

characterized by slow movements with high sinuosity (“slow tortuous”). Each of the two 353 

behavioural classes with strong sinuosity (classes 3 and 4) represented less than 10% 354 

of all data. We thus focused our analyses on slow and fast movements (classes 1 and 355 

2). 356 

 We tested the effects of the individual characteristics of sheep on time spent in 357 

each behavioural class using GLMMs. Results of the best model (i.e. highest Akaike 358 
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score) are summarized in Table 3 (see model selection in Table S1). Male, old, large 359 

and highly docile sheep spent significantly more time in slow movement during phase 3 360 

than during phase 2 (Fig. 2C). Highly sociable sheep also spent more time in slow 361 

movements during phase 3 than during phase 2 (Fig. 2D).  362 

 363 

Wavelet analyses: detection of erratic behavioural transitions 364 

 365 

We quantified behavioural changes during time (variation in speed, direction, or both) 366 

using continuous wavelet analyses. We tested the effects of the individual 367 

characteristics of sheep on the frequency of behavioural changes using GLMMs and 368 

model selection (Tables S2 and S3). When considering longitudinal movements along 369 

the corridor length (Table 4A), we found that males made more behavioural transitions 370 

in phase 3 than in phase 2. Highly sociable sheep made more behavioural transitions in 371 

phase 3 than in phase 2 (Fig. 3A). When considering latitudinal movements along the 372 

corridor width (Table 4B), we found that highly docile sheep made more behavioural 373 

transitions in phase 3 than in phase 2 (Fig. 3B). Thus overall, wavelet analyses of 374 

longitudinal movements can be used as a proxy of sociability, and analyses of latitudinal 375 

movements give information about docility. 376 

 377 

Heatmap analyses: Detection of occupied space  378 

 379 

We quantified spatial coverage by individual sheep (number of zones occupied in the 380 

corridor) using heatmaps. We tested the effects of the individual characteristics on the 381 

number of zones in which the sheep spent more than 200ms using GLMMs and model 382 

selection (Tables S4 and S5). When considering a grid with low spatial resolution, i.e. 383 

similar zone dimensions as with infrared cells (i.e., dimension: 0.6 x 1m; example Fig. 384 

4A), we found that sheep used 2.37 times less space in phase 3 than in phase 2 (Table 385 

5A). Larger individuals used more space than smaller ones (Table 5A). Increasing the 386 

spatial resolution of the grid, i.e. similar zone dimension as a lamb body size (i.e. 387 

dimension: 0.44 x 0.40 m; example Fig 4A), revealed that highly docile sheep used more 388 

space in phase 3 than in phase 2 (Table 5B). Young and highly social individuals used 389 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.09.418038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.418038


more space than old and poorly social individuals in both phases. Body size effect, 390 

however, was not significant anymore. Therefore, heatmap analyses are sensitive to 391 

grid size resolution. Decreasing grid size increased behavioural resolution. 392 

 393 

 Sheep behavioural phenotype  394 

 395 

We explored whether the new behavioural measures extracted from the radar data 396 

could capture information from behavioural traits measured manually by the 397 

experimenter in the corridor test. We focused on docility and sociability. 398 

We ran a PCA based on the eight behavioural measures extracted from the radar 399 

data in phase 2 and phase 3: proportion of fast movements (class 1) out of all 400 

movements (class 1 + class 2), longitudinal movements (wavelets Y), latitudinal 401 

movements (wavelets X), space coverage (heatmaps). We retained two PCs using the 402 

Kaiser-Guttman criterion (Kaiser, 1991). PC1 explained 36% of the variance and PC2 403 

explained 22% of the variance. PC1 was positively associated with all behavioural 404 

variables (Fig. 5A). Sheep with high PC1 values moved more often faster, made more 405 

behavioural transitions, and used more zones than sheep with low PC1 values. We 406 

therefore interpreted PC1 as a “movement speed” variable. PC2 was positively 407 

associated with the four behavioural variables of phase 3 and negatively associated with 408 

the four behavioural variables of phase 2 (Fig. 5A). Sheep with high PC2 values showed 409 

a more important increase of time spent moving fast, of the frequency of behavioural 410 

transitions, and numbers of zones occupied from phase 2 to phase 3 than sheep with 411 

low PC2 levels. We interpreted PC2 as a variable of “movement increase between 412 

phases”.  413 

Sociability was significantly explained by PC1 (LM, PC1: estimate = 0.027, t = 414 

2.552, p = 0.014; PC2: estimate = -0.104, t = -0.764, p = 0.448; Fig. 5B). Docility was 415 

significantly explained by PC2 (LM, PC1: estimate = -0.081, t = -0.943, p = 0.350; PC2: 416 

estimate = 0.283, t = 2.547, p = 0.014; Fig. 5C). Therefore, the automatically extracted 417 

radar data can capture inter-individual variability in sociability and docility traits usually 418 

measured by experimenters. 419 

 420 
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Outdoor radar tracking 421 

 422 

To demonstrate that our tracking system can be used in various experimental contexts, 423 

we tracked sheep in an outside corridor at a larger spatial scale (10 x 60m; Fig. 6A). We 424 

monitored the 2D trajectory of one sheep over a maximum distance of 45m (Fig. 6B). 425 

The presence of the man to induce sheep movement did not impair tracking (Fig. 6C). 426 

 427 

Discussion 428 

 429 

Research in behaviour and ecology increasingly requires automated monitoring and 430 

annotation of animal movements for comparative quantitative analyses (Anderson and 431 

Perona, 2014; Brown and de Bivort, 2018). Here we introduced a radar tracking system 432 

suitable to study the 2D movements of sheep within a range of 45 m. The system is non-433 

sensitive to light variations, compatible with real time data analyses, transportable, fast 434 

processing and adaptable to various species and experimental contexts. Moreover, it 435 

does not require to use tags or transponders for tracking the animals. It is therefore 436 

suitable for the collection of large sets of behavioural data in an automated way required 437 

in many areas of biological and ecological research. 438 

 FMCW radars were recently used to track sheep and pigs in 1D (Dore et al., 439 

2020b; Henry et al., 2018) and bees in 3D (Dore et al., in press). Here, for the first time, 440 

we demonstrate the applicability of this approach to monitor 2D trajectories of untagged 441 

walking animals within a range of 45 meters with high spatial resolution. Radar 442 

acquisition system has several advantages over more conventional methods, and in 443 

particular video tracking, as it collects more data per seconds, requires less RAM, less 444 

processing time (e.g. does not require to train neural networks) and generates less false 445 

detection rates. It can therefore be applied for real-time detection of animal position. 446 

Importantly, the radar is not dependent on brightness and can be used for outside 447 

tracking over long distances by adjusting operating frequencies. It also enables the 448 

tracking of individualised animals without tags, based on the size and shape of the radar 449 

echoes of the different targets. Others methods can be used to estimate the sheep 450 

position. The main two methods are video detection (Bonneau et al., 2020), which can 451 
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detect sheep in 2D up to 25m but with a precision of about 2m, and GPS detection 452 

(Gwyn et al., 1995), but this requires to animals.  453 

 Our application of radar-based tracking to behavioural phenotyping of sheep 454 

shows that the radar analysis is consistent with current manual or semi-automated 455 

analyses. we found that sheep tend to have a greater displacement in phase 2 than in 456 

phase 3 of the corridor test. This is consistent with previous work showing that sheep 457 

are more active when socially isolated, presumably as the result of them searching for 458 

social contact with conspecifics. These docile animals tend to move less when they are 459 

in contact with men. Importantly, the high resolution 2D trajectories obtained from the 460 

radar enabled to identify new behavioural estimators that could greatly benefit the fast 461 

and automated identification of behavioural phenotypes. These different estimators are 462 

not dependent on the radar tracking system per se, but requires to detect the position of 463 

the sheep with sufficient time resolution. For example, our application of unsupervised 464 

behavioural annotation to identify statistically significant behaviours by sheep in the 465 

corridor test showed that sheep exhibit less fast movements in phase 3 than in phase 2. 466 

Our utilisation of wavelet analyses revealed the occurrence of erratic displacements. 467 

The more the sheep was sociable the more it made erratic longitudinal movements. The 468 

more the sheep was docile, the more it made erratic latitudinal movements.  We also 469 

analysed space occupation by sheep, showing that individuals exploit narrower areas in 470 

phase 3 than in phase 2. All these results are consistent with previous observations 471 

using manual or semi-automated recording methods. Most importantly, the combination 472 

of these new automatically computed estimators appears to be correlated with 473 

behavioural traits of interest that were until now measured manually by an experimenter 474 

during the corridor test or in complementary tests (e.g. carousel test). Therefore, in 475 

principle, our automated tracking and analysis system can be used for automated 476 

classification of animal behavioural profiles, which is a major issue for mass phenotyping 477 

in animal selection (Beausoleil et al., 2012). Note however that our pioneering study is 478 

based on relatively low sample sizes (64 individuals) and further measurements are 479 

needed to verify the biological trends observed on a much larger number of sheep.   480 

Beyond genetic selection of farm animals, our system can be tuned to suit a large 481 

diversity of animal sizes and experimental contexts. Range and resolution of detection 482 
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can be improved using different radars. For instance, we had to placed the radar at 1 483 

meter from the corridor in order to track the entire corridor area. But with other antennas 484 

and a radar with larger field of view could have been placed at the edge of the corridor. 485 

Moreover, the detection was limited to a few meters but it is possible to detect a sheep 486 

at tens of meters using a radar operating at a lower frequency (24GHz) and/or 487 

transmitting higher electromagnetic power. It is also possible to improve radar detection 488 

by using more antennas. Indeed, by multiplying the number of antennas, we multiply the 489 

number of signal estimations and then the noise from the radar can be decreased. In the 490 

future, the same radar technology could be used to track individuals in groups over 491 

longer distances in open fields, for instance to explore the mechanisms underpinning 492 

social network structures and collective behaviour (Ginelli et al., 2015; King et al., 2012). 493 

Furthermore, it is possible to improve the processing of the radar signal for tracking 494 

large number of sheep simultaneously by using deep radar processing but this would 495 

require the use of a large amount of annotated data to train the neural networks (Huang 496 

et al., 2018). Individual tracking within groups could be improved with non-invasive 497 

passive tags that depolarize radar signal in specific directions (Lui and Shuley, 2006).  498 

To conclude we demonstrate the feasibility of tracking a sheep in a restricted 499 

area using a FMCW radar. This detection is possible even if each wall of the corridor 500 

backscatters the transmitted electromagnetic signal. This radar can also be 501 

advantageously used to extract features that are relied to the movement of the sheep 502 

and can estimate if it is erratic, fast and the space occupied in the corridor. In contrast to 503 

other short-range methods, this 2D detection method does not require pre-annotated 504 

data and can be applied in real time. This flexibility holds considerable premises for 505 

tracking the behaviour of animals of various sizes and environments in a wide range of 506 

contexts and research fields.  507 
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 Tables 623 

 624 

Table 1: Technical characteristics of the FMCW radar  used for indoor tracking (Haderer 625 

et al., 2008) and outdoor tracking (Simon et al., 2014).  626 

 627 
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Name Indoor 

tracking 

Outdoor 

tracking 

Note 

Operating 

frequency  

77GHz 24GHz This frequency is also called the 

carrier frequency of the frequency-

modulated signal transmitted by the 

radar 

Modulation 

Bandwidth 

3GHz 800MHz Frequency interval, centred at the 

operating frequency, used for the 

saw-tooth frequency modulation of 

the transmitted signal 

Resolution 5cm 18.75cm Resolution 

�

��
, with c the celerity 

and B the modulation bandwidth 

Ramp time 

 

256 µsec 1ms Up-ramp duration of the saw-tooth 

frequency-modulated signal (or 

chirp duration)  

Repetition time 50ms 30ms Period of the transmitted frequency-

modulated signal (or chirp repetition 

interval) 

Number of linear 

arrays in the 

transmitting array 

antenna 

4 

 

 

1 One linear array composed of 8x2 

rectangular patches radiating 

elements 

  

Number of linear 

arrays in the 

receiving array 

antenna 

8 2 Eight linear arrays composed of 8 

rectangular patches radiating 

elements 

Main lobe 

beamwidth of the 

transmitting array 

antenna in the 

horizontal plane 

50° 58° Angular range (or field of view) of 

the radar illumination in the 

horizontal plane 

Transmitted 

power 

100mW 100mW Power delivered at the input 

terminals of the transmitting array 
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 628 

 629 

 630 

 631 

 632 

Table 2: Comparison of data processing characteristics with radar and video tracking 633 

systems. 634 

 635 

Tracking method Radar Video 

Number of measures per second 50 25 

Read Only Memory (ROM) for all measures of a 

sheep 

151Mo 62Mo 

Random Access Memory (RAM) per measure 524Kb 3.7Mb 

Processing time per measure <20ms 250ms 

Total false detection rate  6% 16% 

 636 

  637 

antenna (the radiated power is 

defined as the product of the 

transmitted power by the efficiency 

of the antenna)   
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Table 3: Analyses of behavioural classes. Results of the best GLMM (binomial family, 638 

after model selection – see Table S1). The model tested the effects of phase, docility, 639 

weight, sex, age, sociability, and dual interaction of each variable with phase, on the 640 

proportion of time spent in fast movements (behavioural class 2). Sheep identity was 641 

included as a random factor. Significant effects (p<0.05) are shown in bold.  642 

 643 

 644 

 645 

 646 

Table 4: Wavelet analyses. Results of the best GLMM (Poisson family, after model 647 

selection – see details in Tables S2 and S3). The model tested the effects of phase, 648 

docility, weight, sex, age, sociability, and binary interactions of each variable with phase, 649 

on the number of wavelets. Lamb identity was included as a random factor. Significant 650 

effects (p<0.05) are shown in bold. Wavelet Y: longitudinal movements. Wavelet X: 651 

latitudinal movements. 652 

 653 

 Variable Estimate t-value P-value 

Wavelet Phase 513.352 54.603 <0.001 

Variable Estimate z-value P-value 

Phase -1.272453 -102.321 < 0.001 

Docility -0.134811 -2.725 0.006 

Weight 0.042312 0.753 0.451 

Sex -0.018224 -0.165 0.869 

Age -0.095193 -1.673 0.094 

Sociability 0.137659 3.596 < 0.001 

Phase x docility 0.156352 19.868 < 0.001 

Phase x weight 0.046431 5.223 < 0.001 

Phase x sex 0.068090 3.882 < 0.001 

Phase x age 0.078200 8.537 < 0.001 

Phase x sociability -0.127900 -20.900 < 0.001 
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Y Sex -11.392 -0.835 0.405 

Weight 2,417 0.349 0.727 

Age -3,875 0,552 0.582 

Docility -3.342 -0,548 0.585 

Sociability 17.371 3.679 <0.001 

Phase x sex 38.656 2.103 0.0403 

Phase x weight 1.941 0.208 0.836 

Phase x age -2.426 -0.257 0.798 

Phase x docility 1.253 0.152 0.879 

    

Wavelet 

X 

Phase -67.0684 -5.68335 < 0.001 

Sex -2.70137 -0.21731 0.828 

Weight -1.28441 -0.203557 0.839 

Age -0.193189 -0.0302208 0.976 

Docility -9.23551 -1.66137 0.100 

Sociability 0.669471 0.155654 0.877 

Phase x sex 27.8832 1.64681 0.106 

Phase x weight -5.40654 -0.629084 0.532 

Phase x age -1.34492 -0.154463 0.878 

Phase x docility 17.9056 2.36483 0.022 

Phase x sociability 7.0736 1.207 0.233 

 654 

  655 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.09.418038doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.418038


Table 5: Heatmap analyses. Results of the best GLMM (Poisson family, after model 656 

selection – see details in Tables S4 and S5). The model tested the effects of phase, 657 

docility, weight, sex, age, sociability, and dual interactions of each variable with phase, 658 

on the number of areas where the lamb spent more than 1s. Sheep identity was 659 

included as a random factor. Significant effects (p<0.05) are shown in bold. A. Low 660 

spatial resolution. B. High spatial resolution. 661 

 662 

 Variable Estimate t-value P-value 

A Phase -0.597701 -9.20941 < 0.001 

Weight 0.0615106 1.99628 0.046 

Sociability 0.0365622 1.63703 0.102 

B Sex 0.0188161 0.299427 0.765 

Age -0.0653912 -2.04381 0.041 

Phase -0.765708 -14.4685 < 0.001 

Docility -0.0837715 -2.665 0.008 

Sociability 0.0480015 2.19218 0.029 

Weight 0.0407016 1.27774 0.201 

Phase x docility 0.0978634 2.15262 0.031 

 663 

 664 

Figures 665 

 666 
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667 

   668 

Figure 1: Corridor test. A. Top view of the focal sheep and the social stimuli in the669 

corridor (example image extracted from video data). B. schematic representation of670 

experiments phases 1, 2 and 3. C. Image of the FMCW radar frontend (phot credit AD)671 

Each rectangle corresponds to rectangular patch (Haderer et al., 2008). D. Example of672 

position estimations of a sheep over time after removing the clutter and normalizing the673 

estimated value. 674 
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675 

Figure 2: Analyses of behavioural classes. A. Distribution of the four behavioural676 

classes after a Gaussian Mixture Model. B. Frequency of behavioural classes during677 

phase 2 and phase 3 of the corridor test. C. Correlation between the proportion of time678 

spent in slow movements and the sociability score of sheep during phase 2 and 3 (see679 

details of models in Table 3). D. Correlation between the proportion of time spent in slow680 

movements and the sociability score of sheep during phase 2 and 3 (Table 3). N = 64681 

sheep. 682 
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 684 

685 

Figure 3: Wavelet analyses. A. Example of wavelet transform for lateral movements (X)686 

Red dots correspond to the detection of a change in the displacement at scale factor687 

and time position (i.e., a local maximum of the wavelet transform of the signal position)688 

B. Example of wavelet transform for longitudinal movements (Y). C. Relationship689 

between the number of local maxima (red dots in Figures A and B) in the wavelet690 

extraction and the degree of sociability of sheep during phases 2 and 3. D. Relationship691 

between the number of wavelets and the degree of docility of sheep during phases 2692 

and 3. See details of models in Table 4. N = 64 sheep. 693 
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 695 

Figure 4: Heatmap analyses. Relationship between the number of zones occupied by696 

the lambs and the degree of docility in phase 2 and phase 3. A. Low spatial resolution697 

grid (cell dimension: 0.6 x 1m). B. High spatial resolution grid (cell dimension: 0.44 x698 

0.40 m). Top: examples of heatmaps. Bottom: Correlations. See details of models in699 

Table 6. N = 64 sheep. 700 
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702 

 703 

Figure 5: A. Correlations between the two first components (PCs) of the principal704 

component analysis (PCA). Arrows represent the eight behavioural variables on PC1705 

(movement speed) and PC2 (movement increase between phases). Contribution of706 

variables to the variance explained is colour coded. Each data point represents the PC1707 

and PC2 scores of a given lamb (N = 64). B. Relationship between PC1 and sociability.708 

C. Relationship between PC2 and docility. Blue lines represent linear models (see main709 

text). N = 64 sheep. 710 
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 712 

713 

Figure 6. A. Picture of the outside corridor used for radar tracking of a sheep. The radar714 

was positioned 60m from the end of the corridor. B. Example of trajectory of a sheep715 

derived from radar data. C. Example of trajectory derived from radar data of a sheep716 

(red) and a man (green) to induce the sheep movement.  717 

 718 
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Supplementary materials 720 

 721 

Data S1: Raw trajectories obtained from radar and video for each sheep. 722 

 723 

Table S1: Model selection for behavioural class analyses. Null model, best model, 724 

second and third best models are displayed. 725 

Variables AIC Delta AIC Weight 

age x phase + weight x phase + docility x phase + 

sex x phase + sociability x phase 
5423.774 0 9.92E-01 

age x phase + weight x phase + docility x phase + 

sociability x phase 
5433.82 10.04546 6.53E-03 

age x phase + weight x phase + docility x phase + 

sex + sociability x phase 
5436.306 12.5314 1.88E-03 

Age x phase + docility x phase + sex x phase + 

sociability x phase 
5447.138 23.36415 8.37E-06 

 726 

Table S2: Model selection for X wavelet analyses (latitudinal movements). Null model, 727 

best model, second and third best models are displayed.  728 

Variables AIC Delta AIC Weight 

age x phase + weight x phase + docility x phase + 

sex + sociability x phase 
1170.346 0 5.93E-01 

age + weight x phase + docility x phase + sex + 

sociability x phase 
1173.937 3.591115 9.85E-02 

age x phase + weight + docility x phase + sex + 

sociability x phase 
1174.289 3.942563 8.26E-02 

age x phase + weight + docility x phase + sex + 

sociability 
1174.586 4.239789 7.12E-02 
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 729 

Table S3: Model selection for Y wavelet analyses (longitudinal movements). Null model, 730 

best model, second and third best models are displayed.  731 

Variables AIC Delta AIC Weight 

age x phase + weight x phase + docility x phase + sex + 

sociability x phase 
1189.577 0 5.73E-01 

age x phase + weight x phase + docility + sex + 

sociability x phase 
1193.051 3.474946 1.01E-01 

age x phase + weight + docility x phase + sex + 

sociability x phase 
1193.325 3.748755 8.79E-02 

age + weight x phase + docility x phase + sex + 

sociability x phase 
1193.374 3.797822 8.57E-02 

 732 

Table S4: Model selection for heatmap analyses (low spatial resolution). Null model, 733 

best model, second and third best models are displayed. 734 

 735 

Variables AIC Delta AIC Weight 

weight x phase + sociability x phase 544.1552 0 1.35E-01 

weight x phase + sex x phase + sociability x phase 546.3065 2.151297 4.61E-02 

sex x phase + sociability x phase 546.376 2.220815 4.46E-02 

weight x phase + sociability x phase + docility x 

phase 
546.569 2.413782 4.05E-02 

 736 

Table S5: Model selection for heatmap analyses (high spatial resolution). Null model, 737 

best model, second and third best models are displayed. 738 

 739 

Variables AIC Delta AIC Weight 

age + docility x phase + weight x phase + 

sociability 
664.2827 0 0.058719217 

age + docility x phase + weight + sociability 664.9303 0.6476525 0.042476067 
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age + docility x phase + sociability x phase 665.5479 1.2652317 0.031191675 

docility x phase + weight x phase + sociability x 

phase 
665.8718 1.5891709 0.026527492 

 740 

 741 

 742 
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