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Abstract: In the context of autonomous robots, one of the most important tasks is to prevent potential
damage to the robot during navigation. For this purpose, it is often assumed that one must deal with
known probabilistic obstacles, then compute the probability of collision with each obstacle. However,
in complex scenarios or unstructured environments, it might be difficult to detect such obstacles.
In these cases, a metric map is used, where each position stores the information of occupancy. The
most common type of metric map is the Bayesian occupancy map. However, this type of map is not
well suited for computing risk assessments for continuous paths due to its discrete nature. Hence,
we introduce a novel type of map called the Lambda Field, which is specially designed for risk
assessment. We first propose a way to compute such a map and the expectation of a generic risk over
a path. Then, we demonstrate the benefits of our generic formulation with a use case defining the
risk as the expected collision force over a path. Using this risk definition and the Lambda Field, we
show that our framework is capable of doing classical path planning while having a physical-based
metric. Furthermore, the Lambda Field gives a natural way to deal with unstructured environments,
such as tall grass. Where standard environment representations would always generate trajectories
going around such obstacles, our framework allows the robot to go through the grass while being
aware of the risk taken.

Keywords: risk assessment; path planning; risk modeling; occupancy grid; safe navigation; field robotics

1. Introduction

Nowadays, autonomous robots are more and more visible in our lives. They start
to prove themselves useful in a very broad spectrum of applications, from autonomous
driving to supporting humans in dangerous jobs such as mining or search and rescue
missions. One common aspect of every robot’s tasks is the notion of safety; before taking
any action, the robots have to assess the associated risk of the action.

To assess such a risk, robots need a way to represent and store the surrounding
environment. In structured and controlled environments, such as warehouses, the easiest
solution is to provide the robot with a map of the environment, as well as the positions
of every obstacle, robot, and operator. Storing such entities leads to the construction
of semantic maps, where each obstacle is stored as an object (e.g., a wall, operator, or
robot). Under this representation, the robot has to keep track of every moving obstacle
while avoiding collisions with the environment. However, such a representation of the
environment is not always available or easy to build from raw data in all situations. For
example, it is impossible to perfectly describe the underlying environment of a snowy
forest or a crowded park. There are indeed many unstructured obstacles in the first
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case that are not easily storable in such semantic maps, while in the second one, a lot of
dynamic obstacles hinder the construction of a precise map. Clustering raw data from
Light Detection And Ranging (lidar) measurements, as done by Fulgenzi et al. [1], for
example, might not be possible for the aforementioned scenarios.

When such high-level environmental representation is not available or possible,
a lower-level map is constructed, which called a metric map. Instead of storing features,
the metric map tessellates the environment into cells, where each one stores the information
of occupancy. This kind of map has been heavily studied and used since the beginning of
robotics. They were introduced by Elfes [2], who proposed the concept of occupancy grids.
Each cell stores the probability that the underlying environment is occupied and, hence, not
traversable for the robot. This type of map is easy to construct and can be used to perform
a great variety of tasks, such as Simultaneous Localization and Mapping (SLAM) or path
planning. However, as previously demonstrated by Heiden et al. [3], a problem quickly
arises when the robot wants to assess the probability of collision for a given path. Indeed,
we are tempted to assess the probability of collision as the joint probability that every
cell is free of obstacles. As an example, Figure 1 shows a robot crossing an environment
where the probability of occupancy is 0.1 for each cell. Depending on the tessellation size,
the probability of collision can be 0.19 or 0.34 for a tessellation half as small as the first
one. This behavior comes from the fact that the correlation between the occupancy of
two positions of the environment is not null. Nevertheless, it is impossible to accurately
estimate this correlation. The same problem arises when dealing with occupancy grids
stored in quad-trees [4]. Indeed, the robot could decide to cross a large high-probability
cell instead of ten small low-probability ones.

P(coll) = 0.34

0.1 0.1 0.1 0.1

P(coll) = 0.19

0.1 0.1

Figure 1. Example of collision assessment in an occupancy grid. The robots (black boxes with their
front represented as a filled triangle) want to cross an environment by following the dashed red line.
The collision probability is uniform for the whole environment (0.1). The discretization size greatly
influences the probability of collision, with the bottom scenario yielding a safer path even though the
underlying environment is the same.

Furthermore, the probability of collision is not well suited to describing the risk in
complex situations. For example, crossing a part of the environment at 5 km/h is not as
risky as crossing the same environment at 70 km/h. The damages caused by a potential
collision are far more consequential at a higher speed.

Under these considerations, we introduce the concept of the Lambda Field. The
Lambda Field is a representation of an environment that allows the computation of the
probability of collision while being independent of the tessellation size. It also provides a
natural way to assess more complex risks than the probability of collision. Our framework
consists of a novel occupancy-mapping technique, as well as a formulation for assessing
risks on it, thus yielding a direct way for path-planning algorithms to work on these maps.
Our key contributions are:

• A novel type of map called the Lambda Field, which is specially designed to allow
generic risk assessments and is better fitted for unstructured environments;

• A mathematical formulation of risk assessment over a path with an application to
path planning in tall grass;

• A theoretical and experimental evaluation of the Bayesian occupancy grid, showing that
such a framework can over-converge in the case of unstructured and sparse obstacles.
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In this paper, we provide a revised and extended version of our previous work [5].
We give an extended theory that takes into account the mass of the obstacles, allowing
the robot to move in unstructured environments. Moreover, we improve the theory of
Heiden et al. [3] to take into account the robot size and prove that the Lambda Field is a
generalization of their theory. We also extend our results with tests in real-world conditions,
in both structured and unstructured environments, showing that Lambda Fields better
map unstructured environments and allow behaviors that are impossible using classical
occupancy grids.

2. Related Work

In order to perform path planning, the first step is to construct a representation of the
environment. In the context of unstructured or complex environments, a semantic map
is impossible to create and a lower-level representation, called a metric map, has to be
used. This kind of map tessellates the environment into cells, where each one stores the
information of occupancy. The idea of tessellating the sensed environment was originally
proposed by Elfes [2]. Later, Coué et al. [6] enhanced this idea by adding a Bayesian layer,
which better handles uncertainty and noisy readings, increasing the robustness of the map.
Many variations of the Bayesian occupancy filter have been developed over the years, mainly
adding dynamic obstacles in the grid. Saval-Calvo et al. [7] wrote a review of the different
Bayesian Occupancy Filter frameworks, presenting a taxonomy of the methods. O’Callaghan
and Ramos [8] proposed a way to store the occupancy map without discretization by using
Gaussian processes. This method keeps the dependence between cells in the grid, which
was not the case in the original occupancy grid from Elfes [2]. In an attempt to reduce
the complexity of the Gaussian process, Kim and Kim [9] used overlapping local Gaussian
processes. Regardless of this amelioration, the time computational complexity is still an issue
for these kinds of methods, whereas the standard occupancy grids, as well as our method,
do not suffer from such problems. Ramos and Ott [10] developed an analog method using
Hilbert maps (HMs), overcoming the computational complexity of the Gaussian process.
In order to take into account the uncertainty in the different parameters, the method was
extended to Bayesian Hilbert maps by Senanayake and Ramos [11]. Lately, HMs have been
generalized to dynamic environments by Guizilini et al. [12], allowing real-time occupancy
predictions. These methods still need to tune parameters that have great consequences
on the quality of the resulting maps. An alternative algorithm for occupancy grids was
presented in Agha-mohammadi et al. [13] by storing richer data in a map, taking into account
the estimation of the variance for each cell. Under these considerations, our framework
and the Bayesian occupancy grid are very alike, as the environment is tessellated into
cells. The Lambda Field also stores a confidence interval over each cell in the same fashion
as Agha-mohammadi et al. [13].

Once a representation of the environment is available, the robot can start to assess risk
in its map. The risk was first defined by the likelihood of not colliding with anything, as
suggested by Fraichard [14]. In the context of autonomous driving, the Time to Collision
introduced by Lee [15] is widely used. This metric measures the time at which the robot
will collide with a specific obstacle given the current path. The Time to Collision is useful in
accident mitigation systems, but is not well fitted for long-term planning. It is mainly useful
for mitigating the speed of a vehicle in traffic. It has been demonstrated by Laugier et al. [16]
that the Time to Collision lacks context, and is hence not the best solution for every situation.
Furthermore, this kind of metric is used in the context of known dynamic obstacles and is
not easily transposable for path-planning algorithms. Given these factors, the risk has to
be defined in another fashion in the context of path planning in occupancy grids.

The risk is also very dependent on the application. For example, Vaillant et al. [17]
and Caborni et al. [18] tackled the problem of path planning for neurosurgery. For this ap-
plication, the risk depends essentially on which zones of the brain the tool goes through. It
is very different from standard path-planning risks, as in this context, we are sure to collide
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with a part of the brain for every possible path. In that sense, the path-planning framework
should be able to tackle different types of risk, which is the case of the Lambda Field.

Majumdar and Pavone [19] addressed the issue of how a robot should quantify risk
and what constitutes a ‘good’ risk metric. They came to the conclusion that a risk measure
is said to be coherent if it satisfies axioms, showing that otherwise, the risk metric can
have undesired behaviors. However, the physical meaning is neglected, which leads to
non-intuitive definitions for risk metrics and difficult parameter settings for path planning.
In our work, we thereupon define the risk as an understandable quantity, which is, for
our application, the expected force of collision on a given path. Our metric also respects
the axioms defined by Majumdar and Pavone [19], leading to a risk proven to behave as
desired, as well as having a physical unit.

In the context of occupancy grids, a risk map is widely used to deal with the risk. For
path planning, the occupancy grid is replaced with a risk map, where each cell stores the risk
at this position. The higher the risk, the more the robot should avoid this place while planning
its trajectory. Tsiotras and Bakolas [20] used wavelets to store the environment and a risk map
at different scales; for this application, the risk was defined as the probability of occupancy.
Then, the path-planning method was to find the path minimizing the overall sum of the risk
of each traversed cell. Hence, the total risk lacks physical meaning. Our framework differs
from the previous one, as the total risk of a path has the same unit as the risk metric used. In
another context, De Filippis et al. [21] used a risk map to control the altitude of an unmanned
aerial vehicle. The risk was defined as the probability of flying in unsafe conditions for
a given point on the map. In the same fashion, Primatesta et al. [22] defined the risk as
the hourly probability of lethal incidents for each position of the unmanned aerial vehicle.
The risk was also set to the maximum for obstacles and no-fly zones. Joachim et al. [23]
used a risk map to prevent a robot from going too close to dangerous obstacles, such as
pedestrians or other cars, allowing the robot to safely navigate in narrow spaces, such as
parking spots. Pereira et al. [24] also used a risk map to find the best path for underwater
vehicles, where the risk was set to the probability that the position was occupied by an
obstacle. Although all these methods demonstrated good results, they all assumed that the
risk was only a function of the position, omitting the robot configuration. As said before,
the robot configuration can greatly change the risk. For instance, going to a position at high
speed is often more dangerous than going at a low speed. Feyzabadi and Carpin [25] defined
a risk function that depends on the position as well as the robot action. As a result, the robot
could choose to go to a position only if its speed was low enough. Our framework uses
the same idea while giving a physical meaning to the cost of the overall path. Therefore,
the probability of collision is a metric that is too simple to perfectly describe the risk. As said
by Eggert [26], in the case of ADAS systems, we would rather want to assess the expected
damage done to the vehicle than the probability of collision. We then propose a framework
allowing the computation of a generic risk that can be defined depending on the application.

Using its representation of the environment and a risk function, the robot can start plan-
ning. Many of the popular methods use a binary representation of the environment, mean-
ing that any point in the environment is either free or occupied. A review of such algorithms
can be found in Tsardoulias et al. [27]. The most common way to convert the Bayesian
grid into a binary grid is to apply a user-defined threshold, as done by Yang et al. [28].
However, applying a threshold to the environment might lead to discarding some obsta-
cles, commanding the robot to plan entry into potentially occupied zones. A review of
algorithms of path planning in occupancy grids was done by Čikeš et al. [29]. The different
algorithms presented in this article all aim to minimize the cost function of the path, which
is the sum of the cost of each traversed cell. The cost of a path has no physical meaning;
thus, determining if the path is truly safe might become a difficult task.

Another method proposed by Fulgenzi et al. [1] is to cluster the occupancy grid,
leaving the unclustered space as free or occluded. The risk assessment is then reduced to
evaluating the risk for probabilistic known obstacles. However, such clustering can be very
difficult to compute in unstructured environments. We thus need a way to evaluate the cost
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of a path in occupancy grids while taking into account the probability of occupancy. Using
Rapidly Exploring Random Trees, Fulgenzi et al. [30] and Fulgenzi et al. [31] defined the
cost of a path as the joint probability of not having a collision in each node. Their framework
assumes that traveling between nodes is risk-free; if we do not make this assumption, we
fall back on the initial problem of computing a cost over a continuous path. To overcome
the problem of computation of the risk over a continuous path, several methods have been
proposed. Rummelhard et al. [32] defined the risk in a Bayesian occupancy grid as the maxi-
mum probability of collision over the cells. Nevertheless, there is no natural way to include
a more complicated risk in the framework, and these metrics can show unintended behav-
iors in complicated scenarios. Indeed, traversing one high-probability cell has the same risk
as traversing ten cells of the same probability for the second metric. Dhawale et al. [33]
chose to represent the environment as a Gaussian process and represented the obstacles
using a threshold over the Gaussians. Doing this dissociates free space and occupied space,
falling back on the methods presented in Tsardoulias et al. [27]. Gerkey and Konolige [34]
computed the cost of a path by summing the probability of occupancy of the cells that the
path crosses. This sum is then injected into a global cost function, taking into account other
constraints, such as the speed or the distance to the objective, where each constraint has a
user-defined coefficient. Francis et al. [35] used the same idea for path planning in Hilbert
maps, which were introduced by Ramos and Ott [10]. The drawback of these methods is
that the cost lacks physical meaning, as they sum probabilities. Since this sum does not
have any physical unit, its associated coefficient does not have one either, making its tuning
non-intuitive for the user. Finally, Heiden et al. [3] used the concept of the product integral
to compute the probability of collision over a path. It leads to a probability of collision,
but this method has no physical meaning. We show in this article that our framework can
be seen as the generalization of their framework.

3. Theoretical Framework

We present in this section the theoretical framework for assessing a generic risk over a
path in Lambda Fields. First, we justify the use of the mathematical tools by showing how
they naturally arise while dealing with continuous environments. Then, we address the
construction of the Lambda Fields in Section 3.1, as well as a way to compute confidence
intervals over the field in Section 3.2. Indeed, the more the cells are measured, the more
confident the robot should be to move. Next, we present in Section 3.3 a framework capable
of assessing a generic risk over a path in a Lambda Field. We then extend this framework
and design a risk function allowing the robot to navigate in unstructured environments,
such as tall grass, in Section 3.4. Finally, we improve the framework of Heiden et al. [3] in
Section 3.5 to take into account the size of the robot and show that, under our improvement,
it can be seen as a special case of our framework.

The key concept of the Lambda Field is its ability to assess the probability of collision
inside a subset of the environment (e.g., the path of the robot), leading to the computation
of a generic risk that can be adjusted depending on the scenario. To better understand
the reasons for the following framework, we will first demonstrate its construction. We
assume that the probability of encountering a collision for a path of area ∆a is λi∆a, where
λi ∈ R≥0 is the rate of the event ‘collision’ and ∆a→ 0 such that λi∆a ≤ 1. The larger the
intensity λi is, the more likely it is that a collision will occur. In a macroscopic approach,
the intensity λi corresponds to the expected number of collisions in a cell of area 1 m2 and
can, therefore, vary from 0 (i.e., the cell will never create a collision) to +∞ (i.e., the cell
will create an infinite number of collisions during the traversal).

The probability of crossing N surfaces of areas ∆a with a rate λi without collision is

N−1

∏
i=0

(1− λi∆a). (1)
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Taking the limit of the path area ∆a→ 0 leads to the computation of the Volterra type
I product integral. For a path crossing a total area of A where each subregion of area ∆a
has a rate λ(a), a being the total area crossed from the beginning, we have

lim
∆a→0

A/∆a

∏
i=0

(1− λ(i∆a)∆a) = exp

(
−
∫ A

0
λ(a)da

)
. (2)

A proof of Equation (2) can be found in [36]. The probability of encountering no
collisions over a path is then the probability that no event ‘collision’ happens in a heteroge-
neous Poisson point distribution of rate λ(a). Taking the limit of a binomial distribution
indeed leads to a Poisson point process distribution. Hence, the natural way of dealing
with collisions in a continuous manner is to use a Poisson point process distribution. This
process counts the number of events that have happened given a certain area, depending
on the mathematical space. In our case, we want to count the number of the ‘collision’
events that could occur given a path (i.e., a subset of R2). We point out that the theory
is here presented for 2D paths, but the extension in R3 is trivial, as the only change is
the tessellation of the map being in 3D instead of 2D. For a positive scalar field λ(x),
with x ∈ R2, the probability of encountering at least one collision in a path P ⊂ R2 is

P
(
coll|P

)
= 1− exp

(
−
∫
P

λ(x)dx
)

. (3)

Nonetheless, it is impossible to both compute and store the field λ(x), as it has an
infinite number of degrees of freedom. Hence, we tessellate our field into cells of a fixed
size in a fashion similar to that of Bayesian occupancy grids. Throughout this paper, we will
assume that we are dealing with a tessellated field where each cell has an area ∆a ∈ R>0.
By tessellating the field, the probability of collision is given by

P
(
coll|P

)
= 1− exp

(
−Λ(C)

)
with Λ(C) = ∆a ∑

ci∈C
λi, (4)

for a path P crossing the cells C = {ci}0:N−1 = {c0, . . . , cN−1}, where each cell ci has an
area of ∆a and an associated lambda λi, which is the intensity of the cell. The lambda can
be seen as a measure of the density of the cell: The higher the lambda is, the more likely it
is that a collision will happen in this cell.

Using this representation, we hereby see that the probability of collision is not depen-
dent on the size of the cells. It is indeed the same to compute the probability of collision for
crossing two cells of area ∆a/2 or one cell of area ∆a for a constant λ.

3.1. Computation of the Field

As we established a new approach to representing the occupancy of an environment,
we need to develop a way to dynamically compute the lambdas. We assume that the
robot is equipped with a lidar sensor, which gives a list of cells crossed by beams without
collision and another list of cells where the beams collided. Using this sensor model, we
construct the Lambda Field in the following manner. We want to find the combination of
λ = {λi}0:MC−1 for a map tessellated into MC cells that maximizes the expectation of the
K beams that the lidar has shot since the beginning. In addition, each lidar beam has an
associated error region Ek of area ek centered on the measurement, meaning that the actual
obstacle is in Ek. Figure 2 shows an example of such a lidar beam error region.
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beam bk

Ek

Figure 2. The robot measures an obstacle using a lidar sensor. The obstacle (in red) is in the area Ek
(in gray) centered on the measurement (black dot).

Therefore, each lidar collision gives a region where an obstacle is. This kind of sensor
simplification is common and was used, for example, by [37]. At this stage, we assume
that every lidar measurement possesses the same error region area e. The case where
each beam has a different error region is covered in Appendix A, which can be useful for
radar measurements or lidars with substantial beam divergence. For each lidar beam bk,
the beam crossed the cells cm ∈ Mk without collision and hit an obstacle contained in the
cells ch ∈ Ek. The log-likelihood of the beam bk is

L(bk|λ) = ln
[

exp
(
−Λ(Mk)

)(
1− exp

(
−Λ(Ek)

))]
. (5)

The log-likelihood of K lidar beams is then

L({bk}0:K−1|λ) =
K−1

∑
k=0
L(bk|λ)

=
K−1

∑
k=0

[
−Λ(Mk) + ln

(
1− exp

(
−Λ(Ek)

))]
.

(6)

We want to maximize this quantity and, hence, nullify its derivative, as the function is
concave. In order to find a closed form, we approximate the derivative with the assumption
that the variation of lambda inside the error region of the lidar is small enough to be
negligible. Thus, for each λi ∈ Ek, we have

∆a ∑
ch∈Ek

λh ≈ eλi. (7)

Using this approximation, the derivative is

∂L({bk}0:K−1|λ)
∂λi

≈ −mi · ∆a + hi
∆a

exp(eλi)− 1
, (8)

where mi is the number of times that the cell ci has been counted as ‘miss’ (i.e., was outside
the error region), and hi is the number of times the cell ci has been counted as ‘hit’ (i.e., was
in the error region of the sensor). We finally find the zero of the derivative, leading to

λi =
1
e

ln
(

1 +
hi
mi

)
. (9)

This closed form allows a low computational complexity of the Lambda Field. We
also see that the formula is independent of the size of the cells, which is the main limitation
of the current representation that we were aiming at resolving.

We are then able to construct the Lambda Field using Equation (9).

3.2. Confidence Intervals

In the same way as [13], we define the notion of confidence over the values in the
Lambda Field. Indeed, the more the cells are measured, the greater the confidence in the
robot’s movements should be. For each cell ci, we seek the bounds λL and λU such that
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P(λL ≤ λi ≤ λU) ≥ 95 %

⇔P(λL ≤
1
e

ln
(

1 +
hi
mi

)
≤ λU) ≥ 95 %.

(10)

To compute those bounds, we introduce the notion of false positives and false neg-
atives: Every cell measurement j has a probability ph

j of rightfully reading ‘hit’ and a

probability pm
j of rightfully reading ‘miss’. The probabilities ph

j and pm
j have to be experi-

mentally computed and can vary according to a great number of parameters; for example,
the probability ph

j is lower in the event of heavy rain or snow.
Using the relation hi = M− mi, where M is the number of times the cell has been

measured, we can rewrite the above equation as

P(KL ≤ hi ≤ KU) ≥ 95 %, (11)

such that

λL =
1
e

ln
(

KL
M− KL

+ 1
)

,

λU =
1
e

ln
(

KU
M− KU

+ 1
)

.
(12)

The quantity hi can be seen as a sum of M Bernoulli distributions, such that

hi =
hi−1

∑
j=0

h̄j +
mi−1

∑
j=0

(
1− m̄j

)
, (13)

where h̄j and m̄j are Bernoulli variables equal to 1 if the reading was right and 0 otherwise.

The quantity ∑j

(
1− m̄j

)
is hence the number of times the sensor wrongfully reads ‘hit’

instead of ‘miss’.
The distribution of hi is not binomial, but a Poisson binomial distribution with poor

behaviors in terms of computation. Since the Poisson binomial distribution satisfies the
Lyapunov central limit theorem, we can approximate its distribution with a Gaussian
distribution of same mean and variance:

µ =
hi−1

∑
j=0

ph
j +

mi−1

∑
j=0

1− pm
j and

σ2 =
hi−1

∑
j=0

ph
j (1− ph

j ) +
mi−1

∑
j=0

pm
j (1− pm

j ).

(14)

We can then have the bounds at 95%, for example, with

KL ≈ max(µ− 1.96σ, 0),

KU ≈ min(µ + 1.96σ, M).
(15)

The bounds λL and λU are then retrieved from KL and KU using Equation (12).

3.3. Generic Framework for Risk Assessment

As mentioned before, the motivation for the Lambda Field is its ability to compute
path integrals and, hence, a risk along a path. This risk can be defined depending on
the application and is independent of the following framework, meaning that it can be
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interchanged without any modification of the theory. For a path P ⊂ R2 crossing the cells
C = {ci}0:N−1 in order, the probability density function (p.d.f) over the Lambda Field is

f (a) = exp
(

nΛ
(
{cn}

)
−Λ

(
{cj}0:n−1

))
· λn exp(−aλn), (16)

where n = ba/∆ac, b·c is the standard floor function and Λ(·) is defined in Equation (4).
The variable a denotes the area the robot has crossed. Note that {cn} is a singleton, i.e.,
Λ({cn}) = ∆aλn, whereas Λ({cj}0:n−1) = ∆a ∑n−1

i=0 λi sums n elements (and equals zero if
n = 0).

One can note that the conversion of the area a into the curvilinear abscissa is trivial,
the latter being more convenient for path-planning applications. For a robot of width W
that has crossed an area a, its curvilinear abscissa s equals a/W. The length of the robot is
not considered, as we assume that the body of the robot only spans cells that have already
been crossed. As such, only the front of the robot of width W discovers new cells that are
potentially risky.

Furthermore, Equation (16) can be easily proved, as integrating f (a) over a path P
crossing the cells C = {ci}0:N−1 in order gives the probability of encountering at least
one collision:

P
(
coll|P

)
=
∫ N∆a

0
f (a)da = 1− exp

(
−Λ(C)

)
. (17)

We can then define the expectation of a risk function r(·) over the path as

E[r(A)] =
∫ N∆a

0
f (a)r(a)da. (18)

The random variable A denotes the crossed area at which the first ‘collision’ event
occurs. If the cells are small, we can assume that the function r(·) is constant inside each
cell. Using this assumption, we simplify the above equation to

E[r(A)] =
N−1

∑
i=0

Kir(∆ai) with Ki = exp
(
−Λ({cj}0:i−1)

)[
1− exp

(
−Λ({ci})

)]
, (19)

for a path P going through the cells {ci}0:N−1.
The risk function r(·) is generic and can take into account the state of the robot, as

well as the state of the world. One can notice that the special case r(·) = 1 leads to the
probability of collision given by Equation (4). Furthermore, the probability density f (a)
only looks at the risk generated by the first collision occurring on the path. Therefore, it
is assumed that the robot stops after any collision and does not continue its course. This
assumption can be lifted if necessary, as shown in the next section.

For our applications, we chose to model the risk as the force of collision (i.e., loss of
momentum) if the collision occurs at the area a. It is indeed a good quantification of the
damage induced by the collision and is a better metric of the risk than the probability of
collision, as shown by Eggert [26]. First, we present as an example a way to assess this
risk by assuming that every obstacle has an infinite mass. Indeed, this assumption holds
for most scenarios where the robot’s mass is negligible compared to the obstacles’ masses
(e.g., a tree or a wall). We then lift this assumption in Section 3.4, where each obstacle now
has a probabilistic mass, allowing the robot to evolve in unstructured environments.

Assuming the obstacle that the robot collides with has an infinite mass, the force of
collision is computed as

r(a) = mR · vn
R(a), (20)
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where mR is the mass of the robot, and vn
R(a) is its velocity towards the obstacle at the area

a. As shown in Figure 3, the velocity towards the obstacle of normalized normal n is

vn
R =

∣∣∣nTvR

∣∣∣
=
∣∣vR · cos(θ)

∣∣ for ||n|| = 1
(21)

where ·T stands for the usual vector transpose, vR = ||vR|| the robot velocity, and θ the
angle between the robot heading and the obstacle’s normal. The angle of collision is
interesting to take into account for numerous scenarios, such as an autonomous vehicle
driving over a cliff. Because of skidding, the vehicle may find itself in a configuration
where it has no choice but to collide with the safety railing. The best choice will intuitively
be to minimize the collision and, hence, collide with the railing with a high incidence angle.

θ

vR

vn
R

vt
R

n

Figure 3. A robot of speed vR = ||vR|| collides with an obstacle of normal n with an angle θ. The speed
of the robot can be decomposed into the tangential component vt

R and the normal component vn
R.

Only the latter influences the collision with the obstacle.

This risk metric assumes that every obstacle the robot might encounter has an infinite
mass. We also assume perfect inelastic collision, as most deployed vehicles are designed
to absorb collisions as much as possible. This means that if the robot collides with an
obstacle, the resulting collision would lead the robot to stop (i.e., losing a momentum
of mR · vn

R). Depending on the application, other metrics can be developed. We present
in the next section the development of a more complicated metric allowing the robot to
navigate through unstructured obstacles such as tall grass by lifting the approximation that
all obstacles have infinite masses.

3.4. Taking into Account the Mass of the Obstacles

In the context of autonomous navigation, the robot might have to go through objects
that look like obstacles from the point of view of the lidar, but are in fact harmless for the
robot. An ideal example of this scenario is where the robot has to go through tall grass
to reach its goal. Since the lidar returns very close measurements of the grass around the
robot, the robot would be unable to move. However, with images provided by a camera,
an algorithm could clearly detect that the obstacles are only tall grass; hence, the robot
should proceed and reach its goal.

As the risk metric developed in the previous section assumes that every obstacle has
an infinite mass, it is unable to deal with such scenarios. Thus, this assumption is lifted,
and each obstacle is assumed to have a probabilistic mass. We thereby estimate the class of
the obstacles in each cell and infer the associated probabilistic mass distribution. This can
be done with a camera and deep learning segmentation [38] or radar classification [39]. In
addition to the Lambda Field, we store a map of the probability distribution function of
the mass distribution for each cell, which is provided by one of the above-cited methods.
Furthermore, as collisions with low-mass obstacles do not pose a threat to the robot, the risk
metric is defined as the force of collision with obstacles that will stop the robot, therefore
discarding threat-less collisions.
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Figure 4 shows examples of probability distribution functions for several obstacle
classes. The main use of a probabilistic formulation for the masses is to deal with the
uncertainty of the labels. Indeed, the grass can easily hide a high-density obstacle, such
as a rock. Moreover, the mass of the vegetation is very variable, and the robot can expect
a harmless collision as much as a harmful collision while going through these kinds of
obstacles. In the case where no label is available for a cell, the worst case is taken into
account, meaning that the mass of the cell is set to infinity.

0 2 4 6 8 10 ∞
Mass [kg]

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty
de

ns
ity

fu
nc

tio
n

bush
tree
grass

Figure 4. Examples of probability density functions of several labels. The arrow represents the Dirac
delta function. The mass of the grass is very likely to be close to zero, but there is a chance that a
high-mass obstacle is hiding in it (e.g., a rock). The mass of a bush is very uncertain, as it may be
more or less dense. In contrast, the mass of a tree is always very high.

We chose to discretize the probability density function into a sum of Dirac impulsions
δ(·). The mass p.d.f f m

i (·) of the cell ci is then

f m
i (m) =

∞

∑
k=0

αik · δ(m− k∆m), (22)

with ∆m being the discretization step and αik being the probability that m ∈ [k∆m, (k +
1)∆m]. In addition, only a finite number of αik are not null in order to store the p.d.f.

A problem quickly arises from Equation (19) if we want to take into account the
mass of the obstacles. The equation only looks at the first collision, as it assumes that
any collision would lead the robot to stop its course. For very light obstacles, such as
grass, this assumption falls apart. Hence, we need to add a term to the equation to allow
the robot to continue its course after a collision. To do so, we need to understand the
meaning of the lambdas. For an area ∆a where the Lambda Field is constant with a value λ,
the expected number of ‘collision’ events is ∆aλ. Using the probability psi, the probability
of the robot being stopped because of the collision at the cell ci, we want that each collision
has the probability psi of being harmful for the robot. Hence, we use our probability of
traversal psi as a new measure over the field. Given the harmful probability psi for the cell
ci, the intensity function Λ(C) becomes

Λm(C) = ∆a ∑
ci∈C

λi psi. (23)

Using this newly defined intensity measure, only hazardous collisions are investigated,
treating collisions that do not stop the robot as harmless.

Assuming that the robot can go through obstacles if their mass is below a certain
threshold mmax, the probability psi is then

psi = P(mi > mmax)

= 1−
∫ mmax

0
f m
i (m)dm,

(24)
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where f m
i (·) is the p.d.f of the mass of the cell ci. In addition, since we do not assume

anymore that the obstacles have infinite masses, the risk r(·) (i.e., the loss of momentum at
the impact) becomes

rm(∆ai, m) = mR

(
vn

R(∆ai)− mRvn
R(∆ai)

mR + m

)

= mR
m · vn

R(∆ai)
mR + m

,

(25)

where m is the mass of the ith cell. Since the mass of each obstacle is probabilistic, we
need to sum over all the possible masses to find the expected force of collision over a path,
leading to (the proof is detailed in Appendix B):

E[rm(A, M)] =
N−1

∑
i=0

Ki

∫ ∞

0
f m
i (m)rm(∆ai, m)dm

=
N−1

∑
i=0

Ki

∞

∑
k=0

αikrm(∆ai, k∆m).

(26)

where M is the random variable corresponding to the mass of the cell in which the collision
happened, and Ki is computed in the same way as in Equation (19), but using Λm(·). One
can note that we can rewrite the above equation in the form

E[rm(A, M)] =
N−1

∑
i=0

Ki r′(∆ai)

with r′(∆ai) =
∞

∑
k=0

αikrm(∆ai, k∆m),

(27)

hence going back to the known expectation formula of Equation (19). We omitted the
parameters αik in the parameters of r′(·), as they are directly retrievable from the crossed
area ∆ai. In addition, notice that setting P(mi = ∞) = 1 for all of the cells leads, as expected,
to the same risk as when using Equation (20).

One can note that there is no direct way of taking into account the mass of the obstacles
in the Bayesian occupancy grids. Indeed, the Bayesian occupancy grid only stores the
information of occupancy for a given cell instead of more abstract information, that is, the
intensity of the ‘collision’ event in the case of the Lambda Field. As such, the Lambda
Field possesses an extra layer of assessment where, using the risk function, the framework
quantifies the risk associated with the event. This layer allows one to take into account
numerous types of information, such as the mass of the obstacles, as done in this section.
Furthermore, the Bayesian occupancy grid suffers from its dependence on the tessellation
size and is, thus, not suited to inferring generic risks on a path, as stated in the introduction.

In the following, we analyze a method for assessing the probability of collision in
Bayesian occupancy grids that does not depend on the tessellation size [3]. We show that,
with our improvement to take into account the size of the robot, their method can be seen
as a special case of our framework.

3.5. Comparison and Improvement of the Reachability Metric

In this section, we analyze and adapt the concept of reachability defined in [3]. These
authors’ work was indeed the first to address the problem of risk assessment in occupancy
grids, which is shown in Figure 1. We first investigate the different metrics proposed in
the article and then show that, with our improvement to consider the size of the robot,
our framework can be seen as a generalization of their method. They propose the use
of the concept of the product integral, which is the product counterpart of the standard
integration. A summary of the product integration can be found in [36]. They introduced
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the probability of occupancy po(·) (defined in their article as m(·)) as the density of the cell.
At first, they defined the reachability Rt for a path from the time t = 0 to T as a product
integral, computed as

Rt =
T

∏
0
(1− po(x(t)))dt, (28)

where x(t) is the robot position at the time t and po(x(t)) is the probability that the position
x(t) is occupied. The higher the reachability, the safer the corresponding path is. However,
they argue that it would be better to consider the distance traveled through a cell instead of
the time. It is indeed better, as the first metric leads to a counter-intuitive reachability: for a
robot crossing at a speed v a straight path of length l, where all cells have the probability
po of being occupied, the reachability is

Rt =
l/v

∏
0
(1− po)

dt

= lim
∆t→0

l/v/∆t

∏
i=0

(1− po)
∆t.

(29)

Using the fact that (1− po)∆t = exp
(
ln(1− po)∆t

)
and the Riemann definition of the

integral, the expression can be simplified to

Rt = exp

(∫ l/v

0
ln(1− po)dt

)
= (1− po)

l/v.

(30)

The reachability from the first metric Rt is then higher when the speed is high, mean-
ing that it would be safer to cross the path at a higher speed. Indeed, the trajectory is
parametrized on the time of traversal; as such, the faster the robot is going, the smaller
the number of position samples to evaluate will be. A robot of infinite speed would thus
consider all paths safe, as the integration would not carry any sample points, whereas a
very slow robot would lead to consideration of more sample points and, therefore, lower
the reachability, as shown in Equation (30).

Their second reachability metric RL does not possess such a behavior, as they parametrized
the integral over the traveled distance L(t, t + dt) between two instants, leading to

RL =
T

∏
0
(1− po(x(t)))L(t,t+dt)

=
T

∏
0
(1− po(x(t)))|ẋ(t)|dt.

(31)

Since the traveled distance d(t) equals
∫ t

0 |ẋ(t)|dt, we have dd(t) = |ẋ(t)|dt, and
Equation (31) can be simplified to

RL =
D

∏
0
(1− po(xd(d))))dd

= (1− po)
D in case of homogeneous field,

(32)

where D =
∫ T

0 |ẋ(t)|dt is the total distance crossed by the robot and xd(·) is the position
of the robot as a function of the traveled distance. Using Equation (32), the probability of
collision does not depend on the tessellation size or the speed of the vehicle. The main
drawback is that there is no natural reason to use the concept of product integrals in
Bayesian occupancy grids, as it is here merely a tool to make the probability constant.
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Furthermore, the robot is considered to be reduced to a point. The well-known solution
to this problem is to inflate the obstacles, at the cost of assuming that the robot is round.
As the Lambda Field takes into account the size of the robot, we propose an improvement
of their theory to take into account the robot’s width W. Instead of only integrating over
the robot line path, we also integrate over the entire width of the robot (i.e., the size of
the front of the robot) for each position xd(d). Under this consideration, the reachability
equation becomes

RL =
D

∏
0

W/2

∏
−W/2

(
1− po(x(d, w))

)dw dd, (33)

where x(d, w) is a point of the robot parametrized as the distance that the robot has traveled
d and the distance from the center of the robot head in its width direction w. We can see
that for the special case W = 1 and po(x(d, w)) constant for w ∈ [−W/2, W/2], we fall
back on Equation (32). Assuming that the robot fully crosses the cells it encounters, we can
develop a more convenient formulation for calculations. If the robot fully crosses the N
cells C = {ci}0:N−1 of size S× S m2 and probability of occupancy poi, Equation (33) can be
rearranged to give

RL =
N−1

∏
i=0

S

∏
x=0

S

∏
y=0

(1− poi)
dx dy

=
N−1

∏
i=0

(1− poi)
∆a,

(34)

where ∆a = S2 is the area of each cell.
From there, the improvement in Equation (34) of the theory of Heiden et al. [3] can be

linked to the theory of the Lambda Field. Indeed, for a path crossing the cells C = {ci}0:N−1
in a Lambda Field, the probability of not colliding during the traversal is computed as

1− P(coll) = exp

−∆a ∑
ci∈C

λi


=

N−1

∏
i=0

exp(−λi)
∆a (35)

=
N−1

∏
i=0

(1− poi)
∆a with poi = 1− exp(−λi).

Hence, the probability of occupancy poi of a cell in [3] is the probability of colliding
in the cell ci of area 1 m2 in a Lambda Field. Therefore, with our improvement given
by Equation (34), the theory of Heiden et al. [3] is then a special case of our framework,
where the risk function r(·) is set to 1 and the area of the cells is assumed to be equal to 1.
Compared to [3], we propose a more meaningful approach, where the theory provides a
way to assess risk that is not restricted to be the probability of collision.

4. Validation
4.1. Setup

We implemented our framework in a robot equipped with an LMS151 lidar and
a camera, as shown in Figure 5. Since the robot has four-wheel steering, it was not
impacted much by slipping and skidding, and the odometry was sufficient to estimate the
robot displacements.
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Figure 5. Robot used in the experimentations. It is equipped with a Sick LMS151 lidar and a camera.

For every new lidar scan, the displacement between the current and previous position
was estimated, and the map was updated. The Lambda Field was estimated at each
iteration using Equation (9). Moreover, the map was centered on the robot. We chose not
to rotate the map, but to rotate the robot instead to nullify the errors coming from the
rotation. Indeed, a straight wall was quickly distorted after a few rotations because of
the tessellation of the map. We also had to keep a global offset of the map, as otherwise,
small displacements were not taken into account. Without this offset, the map was not
precisely updated, as any displacement below half the cell size was discarded. The mass of
the robot was also set to mR = 50 kg. For safety purposes, the maximum speed of the robot
was set to 0.5 m s−1, and the maximum acceleration to 0.05 m s−2. The parameters used
for the confidence intervals of the mapping were pm = 0.9999 and ph = 0.99 for all cell
measurements, where the cells had a size of 0.1× 0.1 m. The value of pm was intentionally
very high, as it was nearly impossible for a lidar beam to go through obstacles. The normals
of the obstacles were estimated using the method developed in [40]. At each lidar scan,
the normals of the points were estimated by using their nearest neighbors, and the normal
of each underlying cell ci was updated as follows:

θ̄ =

arctan(S̄/C̄) if C̄ ≥ 0
arctan(S̄/C̄) + π otherwise,

(36)

with

C̄ =
Ni−1

∑
k=0

cos(θk) and S̄ =
Ni−1

∑
k=0

sin(θk), (37)

where Ni is the number of normal measurements θk for the cell ci.

4.2. Comparison with the Bayesian Occupancy Grid

In order to demonstrate the discrepancies between the Bayesian occupancy grid and
the Lambda Fields, we theoretically investigated the key differences between the two
frameworks, and then, in real-world experiments, showed their consequences on the
quality of the maps.

First, we investigated the convergence of the occupancy of a single cell. In the context
of unstructured environments, it is very common to have cells that are only partially
occupied. This can come from either very thin objects, such as tall grass or crops, or from
obstacles that do not reflect the laser beam well, such as a dense bush. In both cases, the cell
will be measured as both ‘hit’ and ‘miss’, as the beam can cross or hit the obstacles in the
cell. Using the theory presented in [41] to construct the Bayesian occupancy grid, we used
the log odds representation of occupancy. Assuming that a cell is measured N times and is
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filled at a ratio of r ∈ [0, 1] (1 is completely filled, 0 is completely empty), the cell will be
measured ‘hit’ rN times and ‘miss’ (1− r)N times. The Bayesian occupancy grid estimates
the occupancy probability of the cell as

P(occb) = 1− 1

1 + exp
(

rNlo + (1− r)Nl f

) , (38)

where lo is the log odds representation of the probability that the cell is occupied given a
‘hit’ measurement, whereas l f is the log odds representation that the cell is occupied given
a ‘miss’ measurement (i.e., it informs that the cell is free). These quantities are computed as

lo = ln

(
P
(
occ|z = hit

)
1− P

(
occ|z = hit

)), and

l f = ln

(
P
(
occ|z = miss

)
1− P

(
occ|z = miss

)),

(39)

with z being the measurement of the sensor that is either ‘hit’ or ‘miss’. Substituting the
definition of the log odds representation with its expression, we have

P(occb) = 1− 1

1 +

[(
P(occ|z=hit)

1−P(occ|z=hit)

)r( P(occ|z=miss)
1−P(occ|z=miss)

)1−r
]N

, 1− 1

1 +
[
Or

o ·O1−r
f

]N ,

(40)

where Oo, O f ∈ R≥0 are defined as the odds of, respectively, P
(
occ|z = hit

)
and

P
(
occ|z = miss

)
. Taking the limit N → ∞, we have

lim
N→∞

P(occb) =


1 if Or

o ·O1−r
f < 1

0.5 if Or
o ·O1−r

f = 1

0 if Or
o ·O1−r

f > 1.

(41)

Therefore, we see that the Bayesian occupancy grid will always converge to an ex-
tremum (apart from the special case where Or

o ·O1−r
f = 1, meaning that the measurements

do not provide information about the occupancy). On the contrary, the Lambda Field
does not converge to an extremum. Indeed, putting the estimation of lambda given by
Equation (9) into the probability of collision of Equation (3), we have

P(occλ) = 1− exp

(
−∆a · 1

e
ln
(

1 +
Nr

N(1− r)

))

= 1−
(

1 +
r

1− r

)− ∆a
e

.

(42)

In the case where the lidar error region e is equal to the area of the cells ∆a, meaning
that we are sure that the collision comes from this cell, the equation simplifies to

P(occλ) = 1− 1
1 + r

1−r

= r,
(43)
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meaning that the probability of collision is purely the ratio of occupancy of the cell and
does not depend on the number of measurements N. Figure 6 shows the convergence of the
Bayesian occupancy grids and the Lambda Field. In order to ease the reading, the amount
of information for a ‘hit’ measurement is the same as for a ‘miss’ measurement of the cell,
meaning that P

(
occ|z = hit

)
= 1− P

(
occ|z = miss

)
and thus lo = −l f .
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Figure 6. Convergence of the collision probability for a given cell occupied at 40% and 60%. The
Bayesian occupancy grid will quickly converge to a probability of occupancy of either 0 or 1, whereas
our framework stays at the true occupancy value of the cell.

The behavior still remains the same without this assumption, as shown by
Equation (41). The Lambda Field estimation stays at the true occupancy value of the
cell, whereas the occupancy probability of the Bayesian occupancy grid converges to either
0 or 1 depending on the occupancy. As expected, the higher the confidence of the sensor’s
measurement, the faster the probability converges. This behavior can be hazardous in an
unstructured environment, as a cell filled at 49% will converge to a probability of occupancy
of 0 after a few seconds.

We also consider the case where an obstacle is wrongly undetected. This situation can
happen when measuring sparse or unstructured obstacles. For instance, a wire fence can
either stop or let through the laser beams depending on the position of the robot. Thus,
we look at the speed at which the Bayesian occupancy grid and the Lambda Field can
recover the true state of an obstacle wrongly labeled as free. For a single cell measured
m times as ‘miss’, we assume that m is large enough such that the Bayesian occupancy
grids converge to the probability of occupancy P(occ) = 0. Then, assuming that after m
measurements, the robot starts to measure the obstacle as ‘hit’, we can approximate the
probability of occupancy around the number of ‘hit’ measurements h ≈ 0 using first-order
Taylor expansion, as

P(occb) = 1− 1

1 + exp
(

ml f + hlo
)

≈
lo exp

(
ml f

)
(

exp
(

ml f

)
+ 1
)2 · h

≈ lo

2
(

cosh(ml f ) + 1
) · h,

(44)

meaning that the recovery rate of the Bayesian occupancy grid vanishes exponentially as a
function of the number of times m the cell has been wrongfully measured. In the case of
the Lambda Field, we have
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P(occλ) = 1− exp

(
−∆a

e
ln
(

1 +
h
m

))

= 1− 1

(1 + h/m)∆a/e

≈ ∆a/e
m
· h,

(45)

indicating that the recovery rate vanishes linearly as a function of the number of times m
the cell has been wrongfully measured. Figure 7 shows the convergence curves towards
the true state of the cell (i.e., 100% filled) for different values of confidence of the sensor
measurements. The cell was measured 50 times as ‘miss’ before (e.g., the robot stayed still
during 2 s for a 25 Hz lidar such as the Sick LMS151). Then, the robot changed position,
allowing the lidar beams to hit the obstacle in the cell, leading to ‘hit’ measurements in
the cell. As expected, the higher the confidence on the sensor (i.e., smaller error region for
the Lambda Field and higher probability for the Bayesian occupancy grid), the faster the
recovery speed is. However, the Lambda Field allows better recovery at the beginning by
growing faster, whereas the Bayesian occupancy grid prefers to quickly converge to the
‘occupied’ state after 50 ‘hit’ measurements. The Lambda Field does, however, take more
time to converge toward a full occupancy of the cell, as it still takes into account the previous
wrong ‘miss’ measurements. Indeed, as shown in Figure 6, the Bayesian occupancy grid
only converges to zero or one. Therefore, as soon as the ‘hit’ measurements become
predominant over the wrong ‘miss’ measurements, the framework quickly converges to 1.
Both frameworks can have their convergence speed shortened by applying a threshold on
the probability of occupancy and the lambda (i.e., cannot go above or below certain values).
However, this enhancement does not modify the previous analysis, as it only bounds the
vanishing of the recovery rate.
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Figure 7. Evolution of the collision probability of a fully occupied cell that has been wrongly
measured as empty 50 times before. As theoretically shown, the Lambda Field manages to recover
more quickly from the wrong estimation, whereas the Bayesian occupancy grid converges faster to
the true state of the cell after 50 ‘hit’ measurements.

In order to demonstrate these considerations in real-world conditions, we mapped
a small zone consisting of a black wire fence where lidar beams could easily get through,
as shown in Figure 8. At first, the position of the robot led the laser beams to cross the
fence without collision, yielding both the Bayesian occupancy grid and the Lambda Field
to converge to a false state. After a few seconds, the robot turned in front of the fence,
leading more lasers beams to actually collide with the obstacle. In this configuration,
the two aforementioned differences between the Lambda Field and Bayesian occupancy
grid were involved. On the one hand, the laser beams still had a chance to go through the
fence, leading cells that were not completely filled to wrongly converge for the Bayesian
occupancy grid. If the lasers collided with the cell less than 50% of the time, the Bayesian
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occupancy grid would wrongly converge to 0. On the other hand, because of the wrong
‘miss’ measurements at the beginning, the Bayesian occupancy grid would struggle more
to recover the true state. In order to measure the quality of the map, we manually labeled
the fence at each iteration and used patches of 4× 4 cells running along the fence. The
inspected zone is shown in Figure 8 in dashed green.
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Figure 8. Mapping of a wire fence where, depending on the robot pose, the laser beams can either collide or go through the
fence (outlined in dashed green in the maps). (a) Picture of the mapped environment. (b) Bayesian occupancy grid of the
wire fence. (c) Lambda Field of the wire fence. One can note that the Bayesian occupancy grid did not have the time to
converge at t = 20 s because of the wrong ‘miss’ measurements at the beginning of the experiment.

Using patches instead of directly analyzing the cells removes the noise due to the
manual labeling and the noisy odometry of the robot. Using these patches, we evaluated
the recall of the detection, computed as the sum of the probabilities of not colliding in each
patch pk over the number P of patches (i.e., the proportion of wrongly detected patches) as

Recallb =
1
P

P−1

∑
k=0

∏
ci∈pk

(
1− P(ci = occ)

)
,

Recallλ =
1
P

P−1

∑
k=0

exp

−∆a ∑
ci∈pk

λi

.

(46)

In addition, the recall can be seen as the mean of the probabilities of not colliding in the
patches. Thus, we also computed the associated standard deviation of the patches. Figure 9
depicts the recall for the Lambda Field and Bayesian grid, as well as the distribution at two
sigmas (approximately 95%) of the probability of not colliding in the patches.
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Figure 9. Mapping error of the wire fence for the Bayesian occupancy grid and the Lambda Field.
The error is defined as the ratio of free space over the whole space that represents the obstacle. As
expected, the Lambda Field converges more quickly to a low error, whereas the Bayesian occupancy
grid needs more time to assess its occupancy.
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As theoretically expected, the Lambda Field recovered more quickly from the wrong
‘free’ state of the wire fence. At t = 20 s, the Lambda Field converged to the state where the
whole fence was considered as an obstacle, whereas the Bayesian occupancy grid was still
converging and had more than 20% of the fence that was considered as free. At t ≈ 23 s,
the robot changed position such that parts of the fence were not visible to the lidar sensor.
As such, the Lambda Field started to converge toward a lower lambda that was mainly seen
on the left vertical wall. Although the recall was lower for the Bayesian occupancy grid,
one can still see holes in the fence at t = 26 s, while the Lambda Field had the whole fence
mapped. Indeed, the distribution at 95% of the probabilities of the patches for the Lambda
Field was always contained in the one of the Bayesian occupancy grid. This means that
although the recall was lower, the Bayesian occupancy grid had patches that were poorly
represented compared to the Lambda Field. One can also note that the car on the right
of the map was better represented in the Lambda Field than in the Bayesian occupancy
grid. The low-lambda obstacles on the left of the Lambda Field correspond to tall grass
and unstructured, sparse vegetation.

Next, we show the effectiveness of our framework in mapping large environments.
To do so, we implemented a simple robot follower scenario in an urban-like environment.
The robot had to follow a pedestrian while keeping the risk of the chosen path below
5 kg m s−1. While following the pedestrian, the robot created a Lambda Field as well as
a Bayesian occupancy grid of the environment, as shown in Figure 10. The maps were
globally alike, except for the unstructured obstacles, which were, in this case, the bushes in
the roundabout, as well as tall grass around the pavement. As the Bayesian occupancy grid
needed to converge to either the ‘occupied’ or ‘free’ state, a lot of information about the
occupancy of the roundabout was discarded. Furthermore, the robot was not able to see
the entire obstacle at first, leading the frameworks to wrongly converge. As shown in the
previous section, the Lambda Field recovered faster in these situations, leading to a more
precise map. As such, most of the information was preserved in the Lambda Field, and
the global shape of the roundabout was more easily recognizable. The other disparities
between the two maps also came from unstructured obstacles, which were small trees and
tall grass.
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Figure 10. (a) Aerial view of the mapped environment, with the robot path in blue and the roundabout in dashed black.
(b) Left: Bayesian occupancy grid; Right: Lambda Field. The Lambda Field is better suited for storing the occupancy of
unstructured obstacles where the Bayesian occupancy grid may over-converge, especially for the roundabout.

Finally, we also mapped an unstructured environment, where the resulting maps
are shown in Figure 11 and the environment is depicted in Figure 11a. The environment
consisted of several trees with a lot of tall grass disrupting lidar measurements. The robot
went around the tree in the center of the picture while navigating in the grass. However,
due to the grass and the wind, the lidar returned many measurements corresponding to
the grass. Whereas the Bayesian occupancy grid only kept the hedge and the main trees,
the Lambda Field kept more information, such as the wooden benches on the top of the
map or the tall grass. This behavior was caused by the necessity of the Bayesian occupancy
grid to always converge to an extremum, leading it to discard a lot of information that
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could be critical. For instance, in the case of agricultural robotics, keeping the crops on the
map is essential for not rolling over them.
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Figure 11. Mapping of an unstructured zone. (a) Picture of the environment. (b) Bayesian occupancy grid of the environment.
(c) Lambda Field of the environment. The robot, with its path in light blue, went around the nearest tree (circled in green)
before going back to its initial position. Because of the tall grass, the Lambda Field stored a lot of obstacles during the
traversal, while the Bayesian occupancy grid discarded the vast majority of them. The hedge and the tree trunk (circled in
green) are still visible in both maps, as they are the only structured obstacles, whereas more unstructured obstacles, such as
benches on the top of the map (circled in green) or bushes, were discarded by the Bayesian occupancy grid.

4.3. Basic Path Planning

Here, we demonstrate that our framework can be used to perform classical path
planning. As shown in Figure 12a, the robot had to go around a tree to reach the goal that
was set behind. To do so, we implemented the path-planning algorithm of [34]. Every
3 s, we sampled feasible commands for the robot, that is, a velocity and steering angle,
and chose the best one. The best path (i.e., command applied for 3 s) was the one that
stayed below a risk threshold and led the robot as close as possible to the target, which
was, in this case, behind the tree. The chosen path also required an upper risk (i.e., the risk
computed using the upper bound of the lambdas) below a certain risk threshold. For each
feasible command, the N cells crossing the path induced by the command applied for 8
s were extracted and the risks were computed. Estimating the risk of a longer time than
the one applied by the command avoided the robot choosing paths that led to a dead end.
Indeed, if the risk was computed only for the time of the command, the applied command
might have led the robot to be right in front of a wall in a configuration where it was
impossible to escape. In the case where no command met the criteria, the robot stopped.
This could happen when the robot was at high speed; because of the limited deceleration,
all of the high-speed commands led to a risk higher than the maximum that was allowed.
Then, the robot completely stopped before continuing its course, as it could now sample
low-speed commands.

We also implemented the reachability metric of [3] with our improvement for handling
the robot size. As converting the Lambda Field into an occupancy grid using Equation (35)
would lead to computing the risk r(·) = 1 and using our theory, we used the Bayesian
occupancy grid directly computed from lidar measurements. Using the same method
for path planning, we sampled paths and chose the one that led the closest to the goal,
where a path was considered safe if its reachability RL was above a certain threshold 1− ε,
with ε ∈ (0, 1). The threshold ε was set to 0.1 during our experiments. For each command
applied, 300 samples were evaluated.
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Figure 12. The robot had to avoid a tree that was on its path. (a) Picture of the environment. (b) Bayesian occupancy grid
with the path that the robot took in light blue. (c) Lambda Field with the path the robot took in light blue.
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Figure 13. Speed (dashed line) and risk (solid line with a shaded area for its confidence interval) of
the chosen paths of the robot going around a tree for different configurations. The robot was able to
navigate at a higher speed when it was confident about the measurements and had a higher upper
risk limit.

Using both algorithms in the same environment allowed the comparison of the behav-
iors of the robot in a simple case. Figure 12 shows the results of the path planning for the
two environment representations. For the Lambda Field, the maximum allowed expected
risk was set to 0 kg m s−1, meaning that the robot must remain clear of any collisions. We
see that the paths were much alike, and the robot effectively avoided the obstacles in both
cases. It can be seen for the Lambda Field that the robot path crossed some cells where the
lambda was not null, which would lead to a collision. However, as the Lambda Field was
computed in real time, the lidar measured collisions in this cell after the robot crossed it.
The lidar beams could indeed go through the grass or returned a collision depending on
the position of the robot.

The same experiment was conducted using different parameters for the Lambda
Field. Figure 13 shows the resulting speed of the robot for different configurations of
parameters. While the robot had to expect no risk on its path, it was first allowed to
have an upper risk at 5 kg m s−1, meaning that we were sure at 95% that any unexpected
collision had an expected risk below 5 kg m s−1. The robot quickly reached its maximal
speed with full acceleration while keeping the upper risk below the threshold. Under the
same configuration, the robot had to reach the goal while keeping the upper risk below
2 kg m s−1. As the upper risk was smaller, the robot had to reduce its speed. The robot
had the same type of reaction if its confidence in the lidar sensor decreased. In the third
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experiment, the probability of a correct ‘miss’ measurement pm was decreased from 0.9999
to 0.99. The direct implication was that the confidence interval broadened, forcing the
robot again to decrease its speed. Then, the robot had a poor confidence in the lidar, as
well as a small upper risk, leading to a very slow traversal speed. Thereupon, the Lambda
Field allowed classical path planning in the same fashion as in [3]. Our framework also
regulated the speed of the robot to cope with the allowed risk level.

4.4. Going Through Tall Grass

After performing simple path planning, we show that the Lambda Fields allow the
robot to navigate in unstructured environments. As shown in Figure 14a, the robot had to
reach a goal that was behind tall grass. This kind of environment leads to very noisy maps,
which can hinder the robot’s displacements if looking at the probability of collision.

5 m

10−1

100

101

102

L
am

bd
a

5 m

10−1

100

101

102

L
am

bd
a

(a) (b) (c)

Figure 14. The robot had to reach a goal behind the tall grass. (a) Picture of the environment. (b) Lambda Field with the
path the robot took in blue, where the robot was instructed to take absolutely no risks. (c) Lambda Field with the path the
robot took in blue, where the robot was allowed to take some risks.

We here show that according to the risk the robot is willing to take, it chooses to
either go through the tall grass or tries to find a path around it. This kind of behavior is
impossible to have when only looking at the probability of collision. Indeed, the robot is
sure to collide with the grass. The probability of collision is high, but the collision caused
by the grass is harmless, leading to a very small risk. Using a camera, the robot knows that
the obstacles in front of it are tall grass. For any other zone, the mass is set to the worst
case (i.e., P(mi = ∞) = 1), as any other prior may lead to underestimating the risk. We
assumed that tall grass has a 95% chance of having a null mass and a 5% chance of having
an infinite mass. This probability models the possibility that tall grass can hide very dense
obstacles, such as rocks or tree trunks.

Two cases were analyzed: In the first one, the robot had to take no risks, meaning that
for every path the robot took, the expectation of the risk had to be zero. Hence, the robot
chose to go around the tall grass. In the second case, the robot was allowed to take some
risks to reach its goal and went through the tall grass. Figure 14 shows the resulting
Lambda Fields for these two different robot configurations. In the first case, since the tall
grass had a non-zero probability of having a mass that would lead to a harmful collision,
the robot chose to go around the tall grass to reach the goal. Once again, the cells with a
lambda higher than zero on the path of the robot were updated after the robot went through
them. At the time that the robot crossed these cells, the lambdas were null. Figure 15 shows
the speed as well as the risk taken by the robot.

The robot first crossed a zone where the mass was supposed to be low, leading to a
very narrow confidence interval. The confidence interval grew quickly as the robot went
out of the low-mass zone. The robot also stopped several times during the traversal. Indeed,
a lot of grass hindered its movements, as the detection of the grass was very irregular.
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Because of the maximum deceleration of the robot, no paths were below the maximum
risk allowed. The robot then had no choice but to completely stop to be able to plan with
low-speed commands.
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Figure 15. Speed (dashed line) and risk (solid line with a shaded area for its confidence interval) of
the chosen paths of the robot when it chose to go around the tall grass. The numerous stops of the
robot were due to the very random detection of the tall grass.

In the second case, the robot was allowed to take some risks and chose to go through
the tall grass to reach the goal. The differences in the lambdas between the two maps came
from the fact that depending on the robot position, the lidar beams could go through the
grass or return a collision. Furthermore, there was a lot of wind during the experiments,
leading to an accentuation of the noise of the overall map. For this case, different configura-
tions of risk were analyzed. Figure 16 shows the speed as well as the risk taken by the robot.
In the first configuration, the robot entered the grass at t ≈ 12 s. It was allowed to have an
expected risk of 0.1 kg m s−1 and an upper risk of 5 kg m s−1. The grass had a 5% chance
of having an infinite mass. The robot stopped at t ≈ 18 s as it was about to enter a denser
zone, meaning a zone with a higher collision probability. All the high-speed commands led
to too high of a risk, and the robot had to completely stop. During the traversal of the tall
grass, the speed of the robot was maintained at a low value, as the grass might have been
hiding an obstacle. As the robot went out of the grass at t ≈ 36 s, it increased its speed to
its maximum, since a collision was more unlikely to happen. The same experiment was
conducted, but this time, the grass zone had a probability of 99% of having a null mass.
The robot stopped in the same place as the first time, but increased its speed faster as it
was more sure that the collisions were harmless. By doing so, it reached the goal more
quickly. The third time, the robot was sure that there were no obstacles in the grass. Hence,
it crossed the environment at full speed, since any collisions were harmless, even though
the maximum risk allowed was null. A very specific event could appear: Sometimes,
the expected risk was outside the confidence interval. This can be seen for t = 25 s in the
first graph in Figure 16. Computing the risk with lower lambdas could indeed lead to a
higher risk in very specific conditions. In our case, the robot computed the risk for a path
going out of the area, where the mass of the obstacles was classified as low (i.e., the tall
grass) by the camera. By doing so, any collision happening outside this zone would have a
higher expected force of collision. It was then considered less risky to collide inside the
area of low mass; lowering the lambdas led to a higher chance of colliding outside, as the
robot had a lower chance of being stopped inside the zone, leading to a higher risk.
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Figure 16. Speed (dashed line) and risk (solid line with a shaded area for its confidence interval) of
the chosen paths of the robot when it chose to go through the tall grass for different configurations.
The more certain the robot was that there were no obstacles in the grass, the faster it reached its goal.

5. Discussion

The framework was implemented on a standard-grade CPU and ran at more than
10 Hz. Evidently, the smaller the tessellation, the more slowly the framework will operate.
If much larger maps or a finer path planner are needed, the whole framework can easily run
in parallel on a GPU. Each cell can be updated independently, whereas all of the potential
paths can be assessed at the same time. However, we found that for standard applications,
a cell size below 10× 10 cm is not necessary and does not yield better results, which is
mainly due to the sensor’s noise, and evaluating 300 commands at each iteration is enough
for a smooth navigation.

As mentioned before, the theory of the Lambda Field can be seen as a generalization
of the framework of [3]. Under this consideration, it is possible to convert a Lambda
Field into a Bayesian occupancy grid and vice versa using Equation (35). In addition
to adding meaning to the equations of [3], our framework allows the computation of
expectation of a risk. This is possible because the Lambda Field possesses a probability
density function. Furthermore, the theory of the Poisson point process was already used
by [26] for known obstacles. The Lambda Field can be seen as the transposition of their
work for occupancy grids.

One of the major drawbacks of the Lambda Field is the assumption in Equation (7),
which is that every cell in the error region of the range sensor carries the same information.
Using such an approximation indeed leads to inflation of the obstacles, meaning that some
narrow corridors through which the robot could go become impracticable. The modeling
of the sensor can also be discussed: For practical reasons, the sensor is assumed to have a
deterministic error region where the collision is sure to have happened. Selecting too small
of an error region would lead to augmenting the probability of wrong measurements, thus
increasing the confidence interval of the lambdas and, hence, decreasing the speed of the
robot. Inversely, taking too big of an error region leads the map to inflate the obstacles, hence
decreasing the space in which the robot can evolve. However, in the case of lidar sensors, their
precision is such that their error region often reduces to a low number or even a single cell,
meaning that almost no inflation occurs. This can be seen in Figure 8 or Figure 10, for instance,
where the structured obstacles do not appear bigger on the Lambda Field than in the Bayesian
occupancy grid. In the case where the range sensor has a bigger error zone, Appendix C gives
a way to reduce the inflation by using a standard probabilistic sensor model.

The computation of the confidence intervals can also yield deeper discussions. Indeed,
an empty cell close to an obstacle can be considered to have greater chances of failing the
reading and returning a ‘hit’ measurement. Although this problem is already managed by
the error zone, taking into account that cells close to the error zone have a greater chance to
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be misread can lead to more precise maps. This would lead to a lower upper bound of the
lambdas in a large empty zone, thereby increasing the traversal speed (i.e., efficiency) of
the robot. As this article only dealt with constant false positive and negative ratios, future
works will investigate a deeper use of confidence intervals in harsher environments, such
as snowstorms, where many faulty ‘hit’ measurements coming from the snow can hinder
the robot displacements.

So far, only the lidar measurements are used to estimate the lambdas, and a camera is
used for the mass estimation. However, in a more cooperative approach, the robot can also
assess the hazardousness of the environment while navigating in it. For instance, if the
robot goes safely through a zone where the probability of causing a harmful collision psi
is not null, the map can be updated accordingly and the probability of harmful collisions
can drop. Note that adding such information needs to be done carefully, as informing
that a zone is safe for a robot does not mean that another robot with a different mass and
mechanical configuration will also safely cross. Furthermore, as the framework creates
maps centered on the robot, there is currently no tool for matching temporally distant
observations (such as loop closures). In a case where the construction of large-scale maps
is necessary, an external Simultaneous Localization and Mapping (SLAM) algorithm, such
as the Iterative Closest Point (ICP), can provide a corrected localization.

In addition, some issues can appear while estimating the risk with our framework for
global path-planning algorithms. Indeed, it may be harder to understand the metrics. The
longer the path, the higher the risk will be. As this behavior seems intuitive, it leads to
several questions. For two paths with the same risk but a different length, are we willing
to take the two paths with the same confidence? Should we weigh the risk by the length
of the path, meaning that we are willing to take more risk for longer paths? We chose to
understand the risk as the risk of a given command. Indeed, we believe that as humans,
we assess the risk of every step we make without thinking about the length of the path.

Furthermore, the expectation of the risk is not suited to modeling the ‘long-tail’ of the
Gaussian, i.e., the low-probability events that can happen. The faulty measurements of the
lidar are handled with the confidence intervals of the lambdas, but other metrics may better
estimate the ‘long-tail’. The Conditional Value at Risk presented by [19] explicitly measures
the risk of the ‘long-tail’. It can then be a better indicator of the risk when a low-probability,
high-risk situation arises; for example, when a high-mass obstacle hides in the grass.

6. Conclusions

In this article, we presented a novel representation of the occupancy information of
the environment, which is called the Lambda Field. We first derived a way to construct the
map, as well as confidence intervals over these values. This representation allows the com-
putation of expectations over a path, giving a natural way to assess different types of risks.
The Lambda Field is very similar to the Bayesian occupancy grid for mapping, with the
only notable mapping difference being that the Lambda Field better stores unstructured
obstacles, such as bushes, tall grass, or wire fences. In addition, the Lambda Field provides
the computation of a generic risk that depends on the application.

In the case of unmanned ground vehicles, we chose to represent the risk as the force
of collision. In contrast to risk metrics defined on Bayesian occupancy grids, our risk
possesses a physical meaning. We were able to control the level of risk that the robot could
take over its planning, allowing behaviors that are impossible with classical path-planning
representations of the environments. The robot was indeed allowed to cross low-mass
occupied areas, such as tall grass, as long as the risk level was low enough. Therefore,
the Lambda Field provides a framework that regulates the path as well as the speed of the
robot, ensuring the robot’s safety.

Future works will investigate the use of other metrics than the expectation of the
risk while testing the framework in more adverse environments, such as snowstorms or
deep woods. Proprioceptive information of the robot will be included to fill the map more
accurately. Finally, the framework will be improved to take into account dynamic obstacles
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and assess risks in urban-like environments. Using the risk function instead of the standard
probability of collision will lead to more informed decisions in case of danger.
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Appendix A. Heterogeneous Error Regions

In the case that the error regions Ek have a different size for each lidar beam bk, we need
to further approximate the derivative of the log-likelihood. Under the same assumption
that the hi error regions Ek containing the cell ci are small, we have

∂L(X|λ)
∂λi

= −mc · ∆a +
hi−1

∑
k=0

∆a
exp(ekλi)− 1

≈ −mc · ∆a +
hi−1

∑
k=0

∆a
ekλi

,

(A1)

leading to

λi =
1

mi

hi−1

∑
k=0

1
ek

. (A2)

This approximation over-estimates the lambdas compared to Equation (9). Indeed,
in the special case where all the Ek have the same area e, the computed lambdas from
Equation (A2) are

λi =
1
e

hi
mi

. (A3)

As ∀x ∈ R≥0, x ≥ ln(1 + x), we will always over-estimate the lambdas using
Equation (A2). This is the desired behavior, as under-estimating the lambdas would lead
to under-estimate the risk.

Appendix B. Proof of Equation (26)

We here prove Equation (26). We have two random variables: the area at which the
robot collides A and the mass M of the cell where the collision happened, of marginal
probability density functions f (·) and f m(·). Note that we do not have direct access to
f m(·), but only f m

i (·) = f m(·|∆ai), the probability density function of the mass given the
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crossed area, thus given the cell that the robot is currently crossing. Under the assumption
that the risk r(·) is constant inside each cell, the expectation of the function r(A, M) is

E
[
r(A, M)

]
=
∫ N∆a

0

∫ ∞

0
rm(a, m) f (a) f m(m|a)dm da

=
N−1

∑
i=0

∫ (i+1)∆a

i∆a
f (a)

∫ ∞

0
rm(a, m) f m

i (m)dm da

=
N−1

∑
i=0

[∫ (i+1)∆a

i∆a
f (a)da

][∫ ∞

0
rm(∆ai, m) f m

i (m)dm
]

=
N−1

∑
i=0

Ki

∫ ∞

0
rm(∆ai, mi) f m

i (mi)dm

=
N−1

∑
i=0

Ki

∞

∑
k=0

αikrm(∆ai, k∆m),

(A4)

for a path P going through the cells {ci}0:N−1, and

Ki = exp
(
−Λm({cj}0:i−1)

)[
1− exp

(
−Λm({ci})

)]
. (A5)

Appendix C. Probabilistic Error Region

If the range sensor has a large error zone, the inflation of the obstacles may become
problematic. Therefore, we give here a way to estimate the Lambda Field using a prob-
abilistic error region. Let the error region E : R → P(R2) be an application that takes a
parameter and returns a subspace of R2. One example is the application that gives from
the radius r the ball centered on the lidar measurement xl ∈ R2: {x ∈ R2, |x− xl | ≤ r}.
Furthermore, let σ be a random variable of probability density function fσ(·) and a Lambda
Field λ : R2 → R≥0. Under these considerations, the expectation of the intensity of the
error zone E(σ) is

E
[∫
E(σ)

λ(x)dx

]
=
∫
R

fσ(s)
∫
E(s)

λ(x)dx ds

=
∫
R

fσ(s)
∫
R2

λ(x) · 1E(s)(x)dx ds.

(A6)

Under the assumption that the expectation of the intensity of the error zone is finite, we
can switch the integration order using Fubini’s theorem and find a more convenient form:

E
[∫
E(σ)

λ(x)dx

]
=
∫
R2

λ(x)
∫
R

fσ(s) · 1E(s)(x)ds dx

=
∫
R2

λ(x)P(x ∈ E(σ))dx,

(A7)

where 1X is the identity operator, i.e., 1X(x) = 1 if x ∈ X and 0 otherwise. Using this
expectation as the new intensity function Λ(C), tessellating the field and putting it back
into Equation (6), the lambdas are now estimated using the same counters hi and mi, which
now represent, respectively, the sum of the probabilities of being in the error zone and the
sum of the probabilities of not being in the error zone of each lidar measurement. One can
note that in the case where the error region is known, meaning that P(x ∈ E(σ)) is either
equal to zero or one, we fall back on the previously derived equations as hi and mi regain
their function of counting the number of times the cell has been in the error region or not.
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