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Abstract: Over semi-arid agricultural areas, the surface energy balance and its components are largely
dependent on the soil water availability. In such conditions, the land surface temperature (LST)
retrieved from the thermal bands has been commonly used to represent the high spatial variability
of the surface evaporative fraction and associated fluxes. In contrast, however, the soil moisture
(SM) retrieved from microwave data has rarely been used thus far due to the unavailability of high-
resolution (field scale) SM products until recent times. Soil evaporation is controlled by the surface
SM. Moreover, the surface SM dynamics is temporally related to root zone SM, which provides
information about the water status of plants. The aim of this work was to assess the gain in terms
of flux estimates when integrating microwave-derived SM data in a thermal-based energy balance
model at the field scale. In this study, SM products were derived from three different methodologies:
the first approach inverts SM, labeled hereafter as ‘SMO20’, from the backscattering coefficient and
the interferometric coherence derived from Sentinel-1 products in the water cloud model (WCM);
the second approach inverts SM from Sentinel-1 and Sentinel-2 data based on machine learning
algorithms trained on a synthetic dataset simulated by the WCM noted ‘SME16’; and the third
approach disaggregates the soil moisture active and passive SM at 100 m resolution using Landsat
optical/thermal data ‘SMO19’. These SM products, combined with the Landsat based vegetation
index and LST, are integrated simultaneously within an energy balance model (TSEB-SM) to predict
the latent (LE) and sensible (H) heat fluxes over two irrigated and rainfed wheat crop sites located in
the Haouz Plain in the center of Morocco. H and LE were measured over each site using an eddy
covariance system and their values were used to evaluate the potential of TSEB-SM against the
classical two source energy balance (TSEB) model solely based on optical/thermal data. Globally,
TSEB systematically overestimates LE (mean bias of 100 W/m2) and underestimates H (mean bias
of −110 W/m2), while TSEB-SM significantly reduces those biases, regardless of the SM product
used as input. This is linked to the parameterization of the Priestley Taylor coefficient, which is set to
αPT = 1.26 by default in TSEB and adjusted across the season in TSEB-SM. The best performance of
TSEB-SM was obtained over the irrigated field using the three retrieved SM products with a mean R2

of 0.72 and 0.92, and a mean RMSE of 31 and 36 W/m2 for LE and H, respectively. This opens up
perspectives for applying the TSEB-SM model over extended irrigated agricultural areas to better
predict the crop water needs at the field scale.
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1. Introduction

Mapping evapotranspiration (ET) is of paramount importance in water resources
management [1] as it is the most important component that controls the energy and water
balance [2]. In addition, an accurate ET estimate at a large scale is imperative, especially
over arid and semi-arid areas where the vegetation cover is heterogeneous and where
plants are subject to stress and water shortages due to limited soil water availability.
Therefore, a spatialized estimation of ET can help manage the overall water resources in
a sustainable manner. Over extended areas, remote sensing is the only viable technique
that can provide spatially explicit ET using energy balance methods and has shown great
potential for characterizing land surfaces through land use, vegetation coverage, water
stress, etc. Amongst the variety of remotely sensed land-surface variables, three are
particularly pertinent to ET estimation: vegetation cover index, land surface temperature
(LST), and surface soil moisture (SM).

The normalized difference vegetation index (NDVI) is one of the most commonly
used vegetation index to feed ET models [3]. It is computed from red and near infrared
bands and can be considered as a useful indicator to characterize vegetation status, and
consequently ET rates [4]. NDVI is classically used to derive the vegetation fraction cover
(fc), which helps constrain the partition between soil evaporation and plant transpiration [5].
LST is a signature of the energy balance as well as mainly controlled by the soil water
availability, especially in arid and semi-arid areas. In recent decades, many efforts have
been devoted to extract spatially distributed LST data from remotely sensed thermal
infrared data. Nowadays, many optical/thermal sensors on board satellites provide images
of NDVI and LST at high spatial resolution ranging from 30 to 100 m for applications in
monitoring the Earth’s surface processes [6].

At the same time, SM plays a key role in the evaporation process and is considered
as an essential component in meteorological and hydrological forecasting [7]. Microwave
remote sensing is recognized as the most promising and powerful tool for deriving large
scale SM products because microwaves are not affected by atmospheric conditions and
at low frequencies, measurements are strongly related to the water content in the first
few centimeters of the soil [8]. SM is currently derived at a global scale from microwave
radiometer data such as AMSR-E (Advanced Microwave Scanning Radiometer-EOS, [9])
at the C band (4–8 GHz) and SMOS (Soil Moisture and Ocean Salinity, [10]) or SMAP
(Soil Moisture Active and Passive, [11]) at the L band (1.4 GHz). One drawback is that
passive microwave radiometry provides coarse spatial resolution data (i.e., several tenths
of kilometers). This coarse spatial resolution is therefore unsuitable for many applications
such as irrigation management and identifying crop stress at a field scale, particularly
over heterogeneous surfaces. The SMAP mission [11] was expected to provide SM at a
spatial resolution of 9 km at three days repeat intervals by combining radar and radiometer
measurements. However, the radar on broad SMAP stopped transmitting on July 2015 due
to an anomaly that involved the radar’s high-power amplifier, and since then, SMAP has
continued to work with data from the radiometer only.

As agricultural applications need remotely sensed SM at high spatial and temporal
resolutions, therefore, great progress has been made to improve the spatial resolution
of readily available SM data. A review of different methodologies for disaggregating
passive microwave data for high resolution SM has recently been reported by Sabaghy
et al. (2018) [12] and Peng et al. (2017) [13]. Santi et al. (2010) [14] downscaled the Ad-
vanced Microwave Remote Scanning Radiometer Earth Observing System (AMSR-E) at
10 km using the radiometer-based smoothing filter-based intensity modulation (SFIM)
model. Gevaert et al. (2015) [15] used brightness temperatures sharpened by the SFIM
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technique and the Land Parameter Retrieval Model (LPRM, [16]) to retrieve soil moisture
at 10 km from AMSR-E. Along the same line, Chan et al. 2018 [17] disaggregated the
SMAP brightness temperature to 9 km using an interpolation technique, resulting in soil
moisture estimates at a 9 km resolution. Other methodologies have been exploited such as
the combination of passive microwave and optical/thermal data within a disaggregation
algorithm to estimate SM at a 1 km resolution [18,19] or 100 m resolution [20]; the combina-
tion of passive microwave and in-situ measurements within a high resolution land data
assimilation system (HRLDAS) to predict SM at 1 km resolution [21]; the combination of
passive and active microwave data to estimate SM at a 100 m–3 km resolution [21–23]; and
using the machine learning algorithm to disaggregate coarse-scale remotely sensed SM
from 10 to 1 km resolution using high resolution auxiliary data [24]. The point is that all
these approaches have limitations and uncertainties due to specific sensitivities to surface
and atmospheric conditions [13,25].

Alternatively, C-band SAR (synthetic aperture radar) observations such as those
collected by the recently launched Sentinel-1 can provide SM at 20 m resolution every
six days [26]. Over covered soils, the C-band Sentinel-1 is affected by soil roughness
and vegetation characteristics, and the backscattering coefficient σ0 has shown its strong
sensitivity to SM, soil roughness, and vegetation characteristics [27–30]. Therefore, several
models and approaches have been developed to retrieve SM. The most commonly used
backscattering model is the semi-empirical water cloud model (WCM) [31]. Coupled to a
soil backscatter model, WCM estimates the total signal as the incoherent sum of vegetation,
soil and the soil attenuated by the vegetation cover contributions. The widespread use of
this model originates not only from the good results obtained, but also from its simplicity.
Unlike more complex models, WCM only needs one or two variables to describe the
vegetation in the model. Theoretically, it is the vegetation water content [31]. However,
the recent research has focused mainly on variables derived from remotely sensed data.
Generally, the variables are derived from optical observations such as the plant height [32],
leaf area index (LAI) [33,34], and NDVI [29,34,35]. Recently, Ouaadi et al. (2020) [30]
developed a new approach to invert SM over wheat crops based on the use of Sentinel-1
data only (the interferometric coherence and backscatter coefficient), without the need
of any ancillary data. The interferometric coherence was used to describe the vegetation
contribution in the WCM and made it possible to get away from the dependence on optical
data, which are restricted by weather and illumination conditions.

Several ET modeling approaches have been reported in the literature. At large scale,
the surface energy balance (SEB) models forced by LST data represent a good trade-off
between accuracy and operationality over complex landscapes. The TSEB (two source
energy balance, [36]) model is one of the commonly used SEB models, and has been
widely used over several fields with contrasted conditions [37–40]. However, various
modifications have been applied in the model to improve its accuracy in terms of H/LE
estimates [41,42]. In the same way, Ait Hssaine et al. (2018) [43] used surface SM data as
an additional constraint on the TSEB model (named the TSEB-SM model) and calibrated
the soil evaporation and plant transpiration separately to predict an accurate total ET.
TSEB-SM has shown its robustness regarding ET estimates as it adjusts the Priestley Taylor
coefficient according to the actual soil water availability (accounting for crop water stress
regardless of the soil evaporation rate) and to the actual vegetation water status (hence
representing the senescence period). TSEB-SM was also tested using remotely sensed data
using SMOS SM disaggregated to a 1 km resolution and the Moderate resolution Imaging
Spectroradiometer (MODIS) LST/NDVI data over a rainfed wheat, indicating coherent
results [44]. However, one major shortcoming of this previous approach is that it operates
at a 1 km resolution, which is very coarse for agricultural applications.

Over heterogenous sites with typical parcel size of tens to hundreds of meters, it is
therefore of crucial importance to develop new methodologies to capture the ET dynamics
at high-spatial resolution. In this context, the present work builds on the recent advances of
high-resolution SM products to assess the utility of SM information to represent the surface
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energy balance over the highly heterogeneous landscape of semi-arid agricultural areas. In
particular, this study aims to quantify the gain in terms of flux accuracy when integrating
SM to the classic TSEB model based only on LST/NDVI data. In practice, different SM
products at high-resolution with different degrees of complexity (derived from Sentinel-1
or from the disaggregation of SMAP data), in addition to LST/NDVI data were integrated
within TSEB-SM to predict latent and sensible heat fluxes over two wheat crop sites in an
irrigated and rainfed area of central Morocco where eddy covariance measurements were
collected.

2. Data Description and Method
2.1. Study Area

The study was carried out at two sites in the Tensift Basin in central Morocco during
the 2017–2018 agricultural season. The first site is a rainfed wheat field located about
40 km east of Marrakech (“Sidi Rahal”), while the second is an irrigated wheat field located
approximately 70 km west of Marrakech (“Chichaoua”) (Figure 1). The climate in the
Tensift region is semi-arid. Rainfall is low and irregular, generally occurring in a single wet
season from November to April. The mean annual rainfall is about 250 mm/year while the
reference evapotranspiration ET0 is about 1600 mm/year [45,46].
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Figure 1. Location of the two study sites, the rainfed wheat crop in the Sidi Rahal area (East of Marrakech) and the
drip-irrigated wheat crop in the Chichaoua site (West of Marrakech) in the Haouz Plain.

The Sidi Rahal field covers an area of approximately 1 ha situated within a large
area occupied by rainfed wheat “Bour”. According to soil analyses conducted in this
site [47], soil texture is characterized by a fine texture with 47% clay, 33% loam, and 18.5%
sand [47,48]. The Chichaoua field is about 1.5 ha, seeded with winter wheat, and irrigated
by drip according to the FAO crop water requirements, with a flow rate of 7.14 mm/h
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for each dripper. The soil at “Chichaoua” is loamy-clay (37.5% clay, 32.5% sand). More
information on the study site is provided in Ait Hssaine et al. (2018) [49], Rafi et al.
(2019) [50], and Ouaadi et al. (2020) [30].

During the investigated agricultural season, an EC system was installed at the center
of each wheat field at a height of 2.6 m and 2.70 m at the Chichaoua and Sidi Rahal
sites, respectively (Figure 1). For the 2017–2018 agricultural season, the maximum height
of wheat was 110 cm and 80 cm for the Chichaoua and Sidi Rahal sites, respectively,
meaning that the relative height was about 160 cm and 190 cm above the canopy for the
Chichaoua and Sidi Rahal sites, respectively. These heights ensure that the EC is in the
constant flux layer, which is located approximately 1.5–2 canopy heights above the soil
surface [51]. EC systems, consisting of a 3D sonic anemometer (CSAT3, Campbell Scientific
Ltd., Loughborough, UK) and a Krypton hygrometer (KH20, Campbell Scientific Ltd.)
provided continuous measurements of vertical sensible heat (H) and latent heat (LE) fluxes.
Each EC tower was also equipped with net radiometers (CNR) (Kipp and Zonen, Davis,
CA, USA) to measure radiation components (long and shortwave radiations) at 1.73 m
and 1.80 m over the Chichaoua and Sidi Rahal sites, respectively. In addition, two plates
buried at a 5 cm depth were used: one plate below an irrigation dripper and one plate at
the middle of two drippers at the Chichaoua site, and two plates nearby the EC tower at
the Sidi Rahal site. Heat flux G was roughly estimated as the sum of both measurements.
Air temperature (Tair) and relative humidity (RH) were measured by an HMP155 (Vaisala’s
HUMICAP) installed at 2.14 m and 2.72 m above the soil at the Chichaoua and Sidi Rahal
sites, respectively. Furthermore, a 3D sonic anemometer was used to measure the wind
speed at 2.6 m and 2.7 m over the Chichaoua and Sidi Rahal sites, respectively.

Automatic soil water content measurements were acquired from time domain reflec-
tometry sensors (TDR Campbell Scientific CS616, Logan, UT, USA) buried near the EC
tower at different soil depths of 5, 10, 20, 30, 50, and 70 cm and at 5, 15, 25, 35, 50, and
80 cm for the Sidi Rahal and Chichaoua fields, respectively. In addition, two thermal
infrared radiometers (IRTs) (Apogee, Minneapolis, MN, USA) measured the radiometric
brightness temperature of the surface (with a mixed contribution of soil and vegetation)
over both sites, and then converted them to LST using Planck’s Law and the estimated
surface emissivity. An average of both measurements was used as input to the model.

2.2. Satellite Data

Three remote sensing data types were used to run TSEB/TSEB-SM: LST, NDVI, and
the surface SM derived from the three different methodologies described below.

2.2.1. Land Surface Temperature and Vegetation Index

Data from Landsat-7 and -8 were extracted for LST and NDVI retrieval over the
regions of interest. Landsat-7 is equipped with ETM+ (Enhanced Thematic Mapper Plus)
and provides images at 30 m resolution for six reflective bands and 60 m resolution for
thermal bands with 16-day temporal resolution. Landsat-8 is equipped with multispectral
sensors including the operational land imager (OLI) and the thermal infrared sensor (TIRS).
Landsat OLI acquires images in nine spectral bands with a spatial resolution of 30 m while
the TIRS sensor provides images at two thermal bands with a spatial resolution of 100 m
every 16 days. An eight-day repeat cycle of Landsat LST/NDVI data can be achieved by
combining the images from both Landsat-7 and Landsat-8 satellites. Landsat data were
downloaded through the USGS ‘Earth Explorer’ website free of charge. Note that USGS
delivers images at 30-m resolution for all products after cubic convolution resampling.

To produce the LST at a 30 m resolution, atmospheric corrections were performed on
the Landsat-7/8 thermal radiances using the LANDsat Automatic Retrival of Ts (LAN-
DARTs) algorithm [52], which relies on the MODerate resolution atmospheric TRANs-
mission (MODTRAN) model [53] and ERA-Interim data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) center [54]. The three main steps were: (1) con-
verting digital numbers of multispectral data into thermal radiances using the metadata
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and the USGS formulas; (2) correcting the thermal data for atmospheric absorption and
re-emission; and (3) correcting for surface emissivity. Surface emissivity was derived from
NDVI with the formulation proposed by Sobrino et al. (2004) [55] adapted from Wittich
(1997) [56].

2.2.2. Surface Soil Moisture

Three remote sensing SM products derived by different methodologies were used:

• SM product based on Sentinel-1 data only

Ouaadi et al. (2020) inverted SM (named after SMO20) from the WCM using Sentinel-1
radar data. WCM relates the backscattering coefficient to soil properties (SM and soil
roughness) and to vegetation properties (biomass, LAI, NDV, etc.). Therefore, to account
for the impact of vegetation on SAR backscatter, the WCM requires a vegetation descriptor.
The recent retrieval approach is based on the interferometric coherence (calculated from
two consecutive acquisitions of the same orbit) to derive the above ground biomass used
as a vegetation descriptor in the WCM [30]. SM time series were retrieved by minimizing
the cost function between the observed and predicted backscattering coefficient for each
Sentinel-1 acquisition using a simple “brute-force” approach [57]. Twenty-five SMO20
acquisition dates were available for orbit 52 at a 35.2◦ incidence angle and for orbit 154
at a 40◦ incidence angle over the Chichaoua and Sidi Rahal sites, respectively, during
the 2017–2018 agricultural season. To apply our approach, SM, LST, and NDVI must be
acquired on the same date. However, Sentinel-1 and Landsat7/8 did not systematically
overpass our study areas on the same day. Therefore, the quasi-concurrent dates, meaning
with an offset of one/two days between Landsat-7/8 and Sentinel-1, were included in
addition to the dates with (clear sky) Landsat and Sentinel-1 overpasses. Finally, a set of
12 images with concurrent Landsat and Sentinel-1 was used over both sites (Chichaoua
and Sidi Rahal) for the period study.

• SM product based on Sentinel-1 and Sentinel-2 data

El Hajj et al. (2016) [34] estimated SM (named after SME16) by means of multi-layer
perceptron neural networks based on Sentinel-1 and Sentinel-2 data. The approach con-
sisted in combining SAR and reflectance images through the WCM. The Sentinel-2 NDVI
provided every five days (10 days with Sentinel-2A and 10 days with Sentinel-2B) is used
as a vegetation descriptor in the WCM. SM is inverted using the neural network tech-
nique based on the Levenberg–Marquardt optimization algorithm (Marquardt, 1963). The
procedure is fully described in El Hajj et al. (2016). In total, 31 images were processed
for the 2017–2018 agricultural season (November–May) for orbit 45 at the 34.5◦ and 42.2◦

incidence angles over Chichaoua and Sidi Rahal, respectively. However, only 10 images
were exploited over the Chichaoua site, and 11 images over the Sidi Rahal site, with a shift
of one or two days with respect to clear sky Landsat-7/8 overpasses.

• SM product based on the disaggregation of SMAP data using MODIS and Landsat
data

Ojha et al. (2019) [20] derived a 100 m resolution SM product (named after SMO19)
from the sequential disaggregation of the 36 km resolution SMAP SM maps to a 1 km
resolution using MODIS data and to a 100 m resolution using Landsat data. First, a SM
product at 1 km resolution was retrieved from the physical and theoretical scale change
(DISPATCH) algorithm [18,58] by combining the coarse-scale microwave-retrieved SM and
MODIS data. Then, SM at 1 km was aggregated to an intermediate spatial resolution (ISR)
set to 10 km. ISR SM and Landsat data were next integrated within a new model based on
the downscaling relationship to produce SM at a 100 m spatial resolution [20]. SM maps at
100 m resolution were retrieved on each date when Landsat data were available by taking
the SMAP overpass on the date before or after the Landsat overpass date.

Twenty-one DisPATCh images were produced for the 2017–2018 agricultural season
(October–June), but only 11 cloud free images could be used over the Chichoua site and
14 images over the Sidi Rahal site.
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Figure 2 illustrates the dates of the Landsat-7/8 and Sentinel-1 overpasses. Note that
SMO19 corresponds to the SMAP overpass date.
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Figure 2. Dates of the Sentinel-1 and clear sky Landsat-7/8 overpasses for both the Chichaoua and Sidi Rahal sites.

• SM data analysis

Figure 3 displays the intercomparison at Chichaoua and Sidi Rahal sites separately
between the SM retrieved from remote sensing with three different approaches, and in-situ
measurements: O20 for Ouaadi et al. (2020), E16 for El Hajj et al. (2016), and O19 for Ojha
et al. (2019). Statistical metrics are reported in Table 1.
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Table 1. Statistical parameters for validation results of satellite retrieved soil moisture (SM) at the
Chichaoua and Sidi Rahal sites.

SMO20 SME16 SMO19

Chichaoua

R2 0.72 0.52 0.62

RMSE (m3/m3) 0.04 0.05 0.04

MBE (m3/m3) 0.02 0.02 −0.02

Sidi Rahal

R2 0.36 0.54 0.45

RMSE (m3/m3) 0.09 0.11 0.11

MBE (m3/m3) −0.03 −0.08 −0.12

Over the Chichaoua site, the determination coefficient (R2) was 0.72, 0.52, and 0.62.
The root mean square (RMSE) was 0.04, 0.05, and 0.04 m3/m3, and the mean bias error
was 0.02, 0.02, and −0.02 m3/m3 when using SMO20, SME16, and SMO19, respectively.
Poorer performance was obtained over the Sidi Rahal site, where the R2 was 0.36, 0.54,
and 0.45, the RMSE was 0.09, 0.11, and 0.11 m3/m3, and the MBE was −0.03, −0.08, and
−0.12 m3/m3 for the O20, E16, and the O19 approaches, respectively. It can be clearly seen
that the results contrasted, and the Sidi Rahal site showed a lower correlation compared to
the Chichaoua site when using all three approaches.

The O20 approach seems to give good results compared to the E16 one, especially
over the Chichaoua site. This may be linked to the vegetation descriptor used to describe
the vegetation development within the WCM, which can affect the signal modeling, and in
turn biased the derived SM. Note that the O20 approach uses interferometric coherence
while E16 uses the NDVI as the vegetation descriptor within the WCM. El Hajj et al. (2016)
indicated that more precise SM estimates were obtained for NDVI lower than 0.75, while
the SM estimates dropped drastically for a NDVI superior to 0.75 (RMSE ~0.06 m3/m3). In
addition, Ouaadi et al. (2020) analyzed the time series of predicted backscattering coefficient
(σ0) by the WCM using several vegetation descriptors on wheat crop. They reported that
the early saturation of NDVI at the end of the season affects the variability of the signal and
showed that the dry biomass, which is highly correlated to the interferometric coherence,
is the only variable that can explain the signal variation from sowing to harvest [30]. In the
same vein, El Hajj et al. (2018) [59] confirmed that σ0 and SM were poorly correlated at the
C-band for NDVI greater than 0.7. The poorer results obtained over the Sidi Rahal site could
be explained by the stronger soil contribution linked to slightly larger incidence angles (40◦

and 42.2◦ for the O20 and E16 approaches, respectively) of the Sentinel-1 observations. In
addition, it should be noted that the O20 approach has been calibrated over the Chichaoua
site using ancillary field (roughness, vegetation water content, and biomass) data. Its
application to another site may generate some errors, which is clearly illustrated over the
Sidi Rahal site.

Results of the O19 approach (disaggregation scheme) were better than the E16 ap-
proach over the Chichaoua site, which confirms the robustness of the DisPATCh methodol-
ogy over irrigated areas where the variability of SM and vegetation conditions is large [20].
However, the correlation is slightly lower over the Sidi Rahal site compared to both O20
and E16 approaches. In fact, the DisPATCh algorithm is based on the contextual methodol-
ogy, which relies on determining the wet and dry temperatures within each SMAP pixel,
and consequently, the soil evaporative efficiency (SEE) used for downscaling SM. Over
irrigated areas, the SM variability is very large, allowing for a good determination of dry
and wet conditions, and consequently, lower errors on disaggregated SM are expected.
However, over rainfed areas, SM is relatively uniform over large areas as it mostly depends
on large scale rainfall events, which can affect the temperature endmembers calculation
and hence the SMO19 for the Sidi Rahal site, as reported by Ojha et al. (2019). In addition,
the surface and atmospheric conditions can affect the performance of the present approach.
One of the major issues that can explain the differences between DisPATCh and in-situ SM
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is the difference between SMAP and Landsat overpass times. In fact, a high repeat cycle of
thermal/optical data consistent with the SMAP repeat cycle as well as with the irrigation
frequency is required to improve the disaggregation process. Another major limitation
that can affect the comparison is the relative coarse scale of the SMO19 pixel compared to
the field size. Indeed, the Chichaoua and Sidi Rahal sites included more than one pixel of
SMO19, and a simple averaging of all pixels was compared to the SM measurements. The
heterogeneity within the pixel of 100 m may affect the SM estimates.

3. Model

The original TSEB is a thermal-based energy balance model described by Colaizzi et al.
(2014) [60]; Elfarkh et al. (2020) [40]; Kustas and Norman, (1997) [37], and Norman et al.
(1995) [36]. It solves the energy balance in the soil and vegetation separately. The plant
transpiration is estimated by the Priestley Taylor (PT) formula, while the soil evaporation
is calculated as a residual term of the energy balance. The PT coefficient (αPT) is one of the
most sensitive parameters of TSEB as it directly controls plant transpiration and indirectly
controls soil evaporation from the previously estimated transpiration. It is taken equal to
1.26 by default in optimum conditions [61]. TSEB has been modified to integrate SM as an
additional constraint in the energy balance [49]. The main equations of the TSEB-SM model
are presented in the Appendix A. The transpiration in TSEB-SM is based on the PT formula
as in the original TSEB, while soil evaporation is presented through a soil resistance term as
a function of SM. TSEB-SM adopts a calibration procedure. First, the soil parameters (arss,
brss) used in the soil resistance estimates are calibrated for fc values inferior to 0.5. Then,
αPT related to plant transpiration is retrieved at a daily time scale when the vegetation
starts to grow (fc > 0.5). These pixel-scale calibrated (soil and vegetation) parameters are
likely to improve ET estimates within the energy balance. More details are available in our
previous studies [44,49].

TSEB-SM has been tested over several wheat fields in the Tensift Basin using in-
situ and coarse remote sensing data (SMOS and MODIS). However, due to strong cover
heterogeneity within the MODIS pixel, the use of such coarse spatial resolution data seems
difficult to apply in our context, since the aim of this work was to map the energy fluxes at
the field scale. Instead, high spatial resolution LST and NDVI from Landsat7/8 combined
with high-resolution microwave-derived SM (retrieved by three different approaches) are
incorporated simultaneously within the TSEB-SM model.

4. Results and Discussion
4.1. Classic TSEB Estimates Using Remote Sensing LST and NDVI

As TSEB-SM basically relies on the TSEB formulation, the performance of TSEB has
been evaluated over the Chichaoua and Sidi Rahal sites as a benchmark for flux estimates.
Figure 4 presents an intercomparison of the simulated and measured energy balance
components including net radiation (Rn), ground heat flux (G), sensible (H), and latent
(LE) heat fluxes. Statistical metrics are reported in Table 2. The Rn and G were well
estimated by the model over the Chichaoua site. G was poorly estimated over the Sidi
Rahal site, which can be explained by the empirical nature of the equation used in the model
(G = cG × Rnsoil) or by errors associated with G measurements. LE was overestimated in
TSEB for both sites. The RMSE was about 140 and 106 W/m2 and MBE was about 94 and
101 W/m2 for Chichaoua and Sidi Rahal, respectively. This overestimation is linked to
αPT, which remains constant in TSEB for the entire agricultural season and can produce
higher values of LE. The impact of αPT is more significant in the senescence phase when
it is expected to drop to values below 1.26. For sensible heat flux, it can be clearly seen
that the model underestimated H with a mean bias of −110 W/m2 over both sites; these
results are in concordance with our previous studies [43] where they confirmed that H
seems to be insensitive to any atmospheric or surface changes in the TSEB model. An
additional explanation of such discrepancies in estimating H might be related to the errors
associated with LST estimation. In fact, it has been shown that an error of 1 K in LST can
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be translated to a 50 W/m2 error in H estimates when the instantaneous energy balance
model is used [62]. However, the rationale behind TSEB-SM is to correct the saturation of
TSEB in the higher LE range by constraining the soil evaporation from SM observations. In
practice, plant transpiration is modulated by varying the PT coefficient corresponding to
the actual plant hydric status.
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Table 2. Statistical results (RMSE, R2, and MBE) between the modeled and measured net radiation,
ground heat flux, sensible, and latent heat fluxes for Chichaoua and Sidi Rahal using the TSEB model.

R2 RMSE (W/m2) MBE (W/m2)

Chichaoua

Rn 0.99 29 −23

G 0.72 19 −8

LE 0.02 140 94

H 0.65 157 −108

Sidi Rahal

Rn 0.99 15 −14

G 0.04 19 3

LE 0.68 106.31 101

H 0.69 119 −117



Remote Sens. 2021, 13, 727 11 of 23

4.2. TSEB-SM Estimates Using Remote Sensing SM, LST, and NDVI

In this section, the time series of retrieved αPT at the Landsat overpass time are first
presented using the three SM datasets discussed previously. Then, the calibrated values
are used to estimate the surface fluxes (Rn, G, H, and LE) using the TSEB-SM model. The
performance of TSEB-SM in terms of the LE and H estimates was assessed against the TSEB
results through a comparison with the EC measurements. Finally, we used a map of the
H and LE fluxes using the TSEB-SM model over an agricultural area (named R3) mainly
occupied by wheat.

Note that the original version of TSEB-SM includes a two-step calibration on the soil
resistance and PT coefficient sequentially. In fact, the calibration of the parameter pair
(arss,brss) requires a considerable number of SM values covering a large range (ideally from
the residual SM to the SM at saturation) in a soil with fc < 0.5.

However, as above-mentioned, few SM data at the Landsat overpass were available
over the entire 2017–2018 agricultural season. Over the Chichaoua site, four SMO20 val-
ues ranging between 0.24 and 0.31 m3/m3, five SME16 values ranging between 0.14 and
0.28 m3/m3, and four SMO19 ranging between 0.13 and 0.21 m3/m3 were available for
fc < 0.5. The range of each SM product was small and does not represent the dry conditions,
which would affect the calibration procedure. The same case occurred for the Sidi Rahal
site, which involves significant uncertainties in the calibrated arss and brss. To overcome
this limitation, the calibration of the pair coefficients (arss and brss) was not applied. The
calibrated coefficients retrieved using in-situ data [43] were exploited for this study, which
were 6.51, 3.82 for Chichaoua and 7.62, 2.43 for the Sidi Rahal site. Hence, the calibration
procedure essentially relies on the retrieval of αPT at the Landsat overpass time.

4.2.1. Retrieved αPT at the Satellite Overpass Time

The transpiration in TSEB-SM is based on the PT formula as in the original TSEB.
However, αPT values are retrieved at the satellite overpass time scale when the vegetation
starts to grow (fc > 0.5). These calibrated values are used to estimate the surface fluxes
(Rn, G, H, and LE). Figure 5 displays the retrieved αPT at the satellite overpass time
superimposed with in-situ SM over Chichaoua and Sidi Rahal using the three SM retrieval
approaches. Since only the days that coincide or are close to the time of the Landsat-7/8
overpasses were chosen, few data were available. Over the Chichaoua site, the retrieved
αPT values varied according to the SM variabilities for the O20 and E16 approaches. The
maximum of αPT was about 1.48 and 1.73 for the O20 and E16 approaches, respectively.
This maximum was reached (mid-February) a few days before the peak of NDVI (end of
February). The differences between the O20 and E16 approaches are related to differences in
the retrieved SM values used for the inversion of αPT. For the O19 approach, the variability
of αPT follows the SM variation as for both O20 and E16 approaches, but until its early
peak by the end of January. This may be attributed to the uncertainties in retrieved αPT.
This latter peaks again at mid-February (αPT = 1.54) and drops drastically when wheat
dries out during the senescence period.

Over the Sidi Rahal site, the frequency and amount of rainfall during 2017–2018 were
important. This is well shown in the SM variability that ranged between 0.2 and 0.4 m3/m3.
The αPT (calculated as an average of the inverted αPT for fc > 0.5) was almost constant until
mid-February for the three SM retrieval approaches. The higher αPT value (=2) reached at
the end of February (28 February) may be explained by the optimum conditions on this
day. In fact, the SM retrieved from the three approaches was 0.28, 0.15, and 0.17 m3/m3 for
O20, E16, and O19, respectively, LST was about 296.82 K (Tair = 294.94 K) and the root zone
SM reached its saturation. These conditions promote plant transpiration up to the potential
rate, and consequently higher αPT value. Overall, the results are in accordance with those
found in Ait Hssaine et al. (2020) over the same field where the αPT ranged between 0.5
and 1.2 throughout the 2017–2018 season.
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4.2.2. Surface Fluxes Estimates at the Field Scale

Figures 6 and 7 display the scatterplot of the simulated versus measured Rn, G, H, and
LE fluxes by applying the three SM retrieval approaches over the Chichaoua and Sidi Rahal
sites. According to the statistical metrics reported in Table 3, a significant improvement of
H and LE fluxes was noted when comparing the TSEB and TSEB-SM results. This is mainly
linked to the SM constraint, which leads to a systematic and significant bias reduction
on the evaporative fraction. In addition, the variability of αPT according to the actual
stress conditions is able to improve the sensitivity (reduce saturation) of the energy balance
model in the higher LE range. Over the Chichaoua site, Rn and G were well simulated
by TSEB-SM; the mean R2 using the three SM retrieval approaches was 0.99 and 0.80; the
mean RMSE was 25 and 21 W/m2; and the average MBE was −21 and −2 W/m2 for Rn
and G, respectively. Additionally, it was noticed that LE was well estimated using the O20
approach with an R2 equal to 0.70, an RMSE of 38 W/m2, and MBE of −12 W/m2. In
fact, Sentinel−1 and the Landsat7/8 infrequently passed over the study area on the same
day. Consequently, SM with a shift of one or two days with the Landsat 7/8 overpass was
chosen. These data may affect the retrieved αPT, which in turn creates the discrepancies of
the LE estimates. The O19 approach produced better LE estimates compared to the O20 and
E16 approaches with an R2 of about 0.85, RMSE of 21 W/m2, and low bias of −6 W/m2.
This is consistent with the relatively good accuracy of SMO19 over the Chichaoua site. For
the sensible heat flux H, the O20 and O19 approaches have been shown to perform well
compared to the E16 approach with an R2 of about 0.94 and 0.95 and slightly lower MBE of
about −9 W/m2 and −11 W/m2 for the O20 and O19 approaches, respectively.

Over the Chichaoua site, few points biased the correlation between the simulated
and measured LE/H for the three approaches (green points). Interpreting the anomalies
based on the retrieved αPT is thus needed. For the O20 approach, 1 April 2018 reports an
underestimation of LE linked to a low value of αPT (=0.18) while in-situ and satellite SM was
~0.10 m3/m3 on this particular date. However, this date corresponded to a higher value
of NDVI (0.69) and higher vegetation water content (VWC~4 kg/m2), meaning that αPT
must be higher to predict better LE. The other anomaly was noted on 11 May 2018, which
reported an overestimation of LE with an αPT value of about 0.16. This date corresponded
to the senescence period when NDVI starts to decrease (NDVI = 0.23, VWC ~1 kg/m2),
while the SMO20 of ~0.16 m3/m3 was higher than the in-situ SM of ~0.08 m3/m3, where this
value can affect the retrieved αPT, and consequently the LE estimates. For the E16 approach,
the first anomaly was revealed on 16 November 2017, when the LE was overestimated
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by about 181 W/m2 and the soil was almost bare (NDVI = 0.08). Nevertheless, the SME16
was about 0.13 m3/m3, which was much higher than the in-situ SM of ~0.034 m3/m3. The
αPT inverted by the TSEB-SM was about 0.88, which is definitely too large for such dry
conditions. LE was overestimated on 11 May 2018 by 108 W/m2 for the E16 approach.
For this date, the SME16 was about 0.12 m3/m3, slightly higher than the in-situ SM of
~0.08 m3/m3. For the O19 approach, the anomalies were noted on 1 April 2018 and 17
April 2018, when LE was underestimated by about 250 W/m2. A mean difference of
about 0.05 m3/m3 between the in-situ and SMO19 was noted. However, with the optimal
conditions discussed previously, an αPT of 0.06 and 0.2 remains far too small to predict the
correct LE estimates when vegetation is in full development and undergoes no stress.
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To further investigate the possible source of errors, over the Chichaoua site, a sen-
sitivity study of the SM impact on surface flux estimates was undertaken. Three dates
were chosen: 26 December 2017, 4 February 2018, and 3 May 2018. Figure 8 illustrates the
SM used as input to TSEB-SM versus the root mean square error on H and LE. Note that
the values inside the rectangle represent the RMSE of H and LE using in-situ SM. For the
first date, the best H and LE RMSE were obtained for SM in-situ (RMSE was about 22 and
30 W/m2 for H and LE, respectively). The errors increased for low SM, and became almost
constant for high SM. This can be explained by the energy-limited conditions, meaning that
high SM values do not necessarily lead to greater ET. For the second date, the lower RMSE
on LE was obtained for SM = 0.15 m3/m3. On this date, the RMSE on H remained high.
In contrast, the lower RMSE on H was obtained for SM = 0.35 m3/m3, while the RMSE
on LE was still important for this date. For in-situ SM, sub-optimal RMSE for both H/LE
was noted. For the third date, the best RMSE for both H and LE was obtained for low SM
values, whereas large errors in the H and LE estimates were noted when SM exceeded
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0.10 m3/m3. This sensitivity analysis confirmed the strong impact of SM data on H/LE
estimates.

At the Sidi Rahal site, Rn was well predicted with an average of R2, RMSE, and
MBE equal to 0.99, 12 W/m2, and MBE −10 W/m2, respectively. The performance of
TSEB-SM for predicting G was lower. As a simple relation based on soil net radiation is
used, an error on the soil radiation estimation can be directly translated into an error in
predicted G. In addition, G is widely known as a difficult component to measure, since the
plates must be totally covered to avoid their exposure to sunlight. However, successive
rainfall events can alter the exposure of plates, which can affect the G measurements.
Unfortunately, H and LE were poorly estimated over the Sidi Rahal site for the three SM
retrieval approaches, as shown in Figure 8. Indeed, the discrepancies revealed by the model
for the O20 and E16 approaches were linked to the lower incidence angle (<40◦), which
affected the soil moisture retrieval (stronger contribution of the soil at lower incidence
angles) [30] and consequently the flux estimates. The overestimation shown in the figure
can mainly be linked to the higher αPT values. When using SMO19, the LE and H estimates
were significantly more biased as the error associated to αPT was directly translated into H
and LE uncertainties.
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Table 3. Statistical results (RMSE, R2, and MBE) between the modeled and measured net radiation,
conductive, latent, and sensible heat fluxes for Chichaoua and Sidi Rahal by applying the TSEB-SM
model for the three SM retrieval approaches, separately.

R2 RMSE (W/m2) MBE (W/m2)

Chichaoua

Using SMO20

Rn 0.99 25 −20

G 0.84 21 1

LE 0.70 38 −12

H 0.94 29 −9

Using SME16

Rn 0.99 26 −21

G 0.78 22 −5

LE 0.63 36 16

H 0.88 56 −32

Using SMO19

Rn 0.99 25 −20

G 0.80 21 −3

LE 0.85 21 −6

H 0.95 26 −11

Sidi Rahal

Using SMO20

Rn 0.99 11 −9

G 0.05 21 17

LE 0.47 81 26

H 0.42 80 −51

Using SME16

Rn 0.99 11 −8

G 0.05 22 17

LE 0.52 80 47

H 0.45 84 −72

Using SMO19

Rn 0.99 13 −12

G 0.01 21 13

LE 0.30 100 45

H 0.16 110 −70
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areas requires remote sensing data with high spatial resolution suitable to the land use
classification to predict accurate ET on a field-by-field basis. To do so, microwave data with
high spatial resolution and Landsat LST and NDVI were combined to map the ET over an
agricultural area (named R3) mostly occupied by wheat, with some vegetables and trees
are also cropped. Overall, the land classification did not affect the strategy of the TSEB-SM
algorithm as the calibration of the soil/vegetation parameters was linked to the fraction
cover threshold (the soil parameters were calibrated for fc < 0.5 and the PT coefficient was
calibrated for fc > 0.5). An automatic weather station was installed in the R3 perimeter to
provide continuous measurements of meteorological data including air temperature solar
radiation, relative humidity, wind speed, and rainfall at the half-hourly time step. These
data were considered unchanged and representative of the entire zone. Three different
dates with contrasting conditions were chosen to have a global vision on ET throughout the
season: 26 December 2017 (fc < 0.5) when the soil is almost bare (ET is mainly controlled by
soil evaporation); 28 February 2018 (fc > 0.5) when the vegetation is in its full development
(plant transpiration controls the ET); and 3 May 2018, which corresponds to the senescence
period when wheat dries out, leading to a drastic drop of NDVI.

Microwave based-SM from the three approaches explained above were used to predict
the sensible and latent heat fluxes in Figures 9–11. SM from the O20 and E16 approaches
were aggregated to Landsat resolution (30 m), while SM from the O19 approach was kept
to a 100 m resolution and Landsat LST/NDVI was aggregated to 100 m. At the field scale,
it was shown that the 100 m resolution was relatively coarse for agricultural applications
in this region while using the O19 approach. To overcome this limitation, a compromise
between two constraints was considered: (1) the site was carefully chosen, which is a large
area dominated by wheat and the size of most fields exceeded 2 ha; and (2) the LE/H
fluxes were estimated at the pixel scale and not at the field scale, so that the impact of the
heterogeneity within the single pixel of 100 m will be subdued.
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One can observe that there was a remarkable variability of hydric conditions from field
to field for the three dates chosen. Such a variability is related to the irrigation distribution
and to sowing date differences from one field to another. Indeed, this large irrigated area
is irrigated by flood, and the amount and date of irrigation is managed by the Regional
Office for Agricultural Development (ORMVAH). It can take up to 15 days for the entire
R3 perimeter to be irrigated, which causes the diversity in terms of hydric conditions. Note
that the irrigation turns could be slightly modified if rain occurred at the date initially
defined.

It should be noted that the time of the Sentinel-1 overpass does not always coincide to
the Landsat-7/8 time revisit. Although, in order to apply our approach, SM with a shift of
one or two days with Landsat-7/8 overpass was chosen. For the first date (26 December
2017), H ranged between 0 and 176, 6 and 164, and 12 and 165 W/m2 for the O20, E16, and
O19 approaches, respectively, while LE ranged between 59 and 301, 56 and 308, and 71
and 292 W/m2 for the O20, E16, and O19 approaches, respectively. The range of values is
acceptable because this date corresponds to the beginning of the season and the wheat is
under development. Higher values of LE correspond to higher SM values. For the second
date (28 February 2018), H varied between 0 and 310, 0 and 284, and 0 and 286 W/m2 for
the O20, E16, and O19 approaches, respectively. The gap noted on the H maps was due to
the negative values produced by the model. As the vegetation was in full development LE
peaked in several fields and ranged between 91 and 683, 83 and 678, and 98 and 633 W/m2

for the O20, E16, and O19 approaches, respectively. Lower LE values correspond to dry
conditions over bare soils that are not cropped. For the third date, H became larger because
the vegetation started to dry out. The maximum of H (average of the three approaches)
was around 317 W/m2, while the maximum of LE was about 535 W/m2.

5. Conclusions

The main objective of this work was to assess the gain in terms of H/LE flux estimates
when integrating microwave-based SM data in a thermal-based energy balance model over
an agricultural area in the Haouz Plain, central Morocco. To do so, SM products were
derived from microwave remote sensing using three different approaches: the first one used
the water cloud model (WCM) forced by Sentinel-1 data and the interferometric coherence
to derive the above ground biomass used as a vegetation descriptor for the WCM; the
second inverted the SM from Sentinel-1 radar data and the vegetation index from Sentinel-2
using a machine learning algorithm trained on a synthetic dataset simulated by the WCM;
and the third approach combined the SMAP SM and Landsat optical/thermal data within
a downscaling model to disaggregate SM at a 100 m resolution. The retrieved SM and
Landsat LST and vegetation index were simultaneously used as input to constrain the
TSEB-SM model. TSEB was chosen as the benchmark model to evaluate the TSEB-SM
performance.

First, the latent (LE) and sensible (H) heat fluxes predicted by the TSEB model were
evaluated by comparing them against the EC measurements. On one hand, the results
showed an overestimation of LE mainly linked to the PT coefficient fixed to a constant value
(=1.26). This value is valid in optimum conditions only when the vegetation undergoes no
stress. On the other hand, H was underestimated by TSEB. H seems to be insensitive to any
atmospheric or surface changes. To overcome this limitation, SM products in conjunction
with Landsat based LST and NDVI were used to constrain the TSEB-SM model, and the
PT coefficient was inverted at the daily time scale when the soil was fully covered by
the vegetation. The H/LE components were well estimated compared to the original
TSEB, especially over the Chichaoua site. In fact, the enhancement of the PT-based TSEB
formalism by integrating SM systematically reduced the bias on the evaporative fraction. In
addition, the temporal variability of αPT corrects the saturation issue of TSEB in the higher
LE range. The sensitivity of LE/H to SM was also tested over the Chichaoua site for three
different dates. The results showed that an error of 0.05 m3/m3 in SM generally translated
into a mean error of 62 W/m2 in LE and 59 W/m2 in H. At the Sidi Rahal site, the LE and
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H were significantly biased, which may be explained by the soil moisture retrieval that
affect the calibrated αPT. Indeed, the error associated with αPT was directly translated into
H and LE.

Overall, those results are very satisfying considering the errors attributed to SM
retrieval. On one hand, the 100 m resolution was larger compared to the parcel size,
therefore, Sentinel-1 with a 20 m resolution was adequate to apply to our approach, whereas
the offset between the Sentinel-1 and Landsat overpass generated significant errors on the
H/LE estimates. However, further efforts should be made to improve the SM estimates.
The next thermal missions (LSTM and TRISHNA) at high spatio-temporal resolution (three
days and 50 m of resolution) will overcome this limitation. In this case, the O20 approach
is suggested for SM retrieval because it is a more physical approach based on the use
of Sentinel-1 data only, without the need for any ancillary data that can be restricted by
weather and illumination conditions.

Finally, maps of LE and H using the three SM retrieval approaches coupled to TSEB-
SM were produced over an agricultural area (named R3) mainly occupied by wheat. Three
dates with contrasting conditions were selected. H seemed to be higher at the beginning of
the season when the soil was almost bare or when the vegetation started to dry out, while
it decreased when the vegetation was in full development. Moreover, LE reached its peak
in wet conditions and in fully covered soil, while it started to decrease at the end of the
season. Since it is difficult to display a network of EC stations to assess the performance of
ET models, we intend, in the future, to deploy a coupled optical microwave scintillometer
(XLAS MkII) to assess the performance of our approach over the entire R3 irrigation district.
In addition, testing the performance of other optical indices (e.g., Enhanced vegetation
index(EVI), Vegetation health Index (VHI), Vegetation Condition Index (VCI)) will be
investigated in future works. Last but not least, assessing the ET dynamics at high-spatial
resolution over the highly heterogeneous landscape of semi-arid agricultural areas will
help to better predict the crop water needs at the field scale as well as manage the overall
water resources in a sustainable manner.
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Appendix A

The TSEB-SM is based on the TSEB equation in the vegetation latent heat flux (LEveg)
estimates:

LEveg = αPTfg
∆

∆ + γ
Rn,veg (A1)

https://www.lmi-trema.ma/
https://www.lmi-trema.ma/


Remote Sens. 2021, 13, 727 20 of 23

where αPT is the PT coefficient; fg the fraction of green vegetation set to 1; γ the psycho-
metric constant (≈67 Pa K−1); ∆ the slope of the relationship between saturation vapor
pressure and air temperature; and Rn,veg is the vegetation net radiation.

Unlike classic TSEB, which estimates the soil latent heat flux as a residual term of the
energy balance in the soil, TSEB-SM uses the resistance formulation:

LEsoil =
ρcp

γ

(es − ea)

rah + rs + rss
(A2)

where es is the saturated vapor pressure at the soil surface; ea is the actual air vapor
pressure; rah is the aerodynamic resistance; rs is the resistance to heat flux in the boundary
layer immediately above the soil surface; and rss is the resistance to vapor diffusion and
capillary flux in the soil. rss is computed as a function of SM and is expressed as [63,64]:

rss = exp
(

arss − brss ×
SM

SMsat

)
(A3)

with SM being the soil moisture in the 0–5 cm soil layer; arss and brss are two empirical
parameters (to be calibrated); and SMsat is the SM at saturation expressed as [65]:

SMsat = 0.1 ∗ (−108 ∗ fsand + 494.305) (A4)

where fsand is the sand fraction.
αPT, arss, and brss are calibrated based on the fractional cover threshold from the SM

and LST data [44].
The rss is first adjusted by minimizing a cost function defined by:

Fins = (Tsurf,sim − Tsurf,mes)
2 (A5)

where Tsurf,sim and Tsurf,mes are the simulated and measured LST, respectively. The inverted
rss is then correlated to the SM to determine the arss and brss parameters when the fc is
lower than 0.5.

Once the soil resistance has been calibrated, the PT coefficient is retrieved at the daily
time scale when fc is larger than 0.5 by minimizing a cost function:

Fdaily =
N

∑
i=1

(Tsurf,sim,i − Tsurf,mes,i)
2 (A6)

An iterative loop is run on soil (rss) and vegetation (αPT) parameters to reach the
convergence of all parameters.
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